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Abstract We propose to combine two quite powerful ideas

that have recently appeared in the Markov chain Monte Carlo

literature: adaptive Metropolis samplers and delayed rejec-

tion. The ergodicity of the resulting non-Markovian sampler

is proved, and the efficiency of the combination is demon-

strated with various examples. We present situations where

the combination outperforms the original methods: adap-

tation clearly enhances efficiency of the delayed rejection

algorithm in cases where good proposal distributions are

not available. Similarly, delayed rejection provides a sys-

tematic remedy when the adaptation process has a slow

start.

Keywords Adaptive Markov chain Monte Carlo . Adaptive

Metropolis-Hastings . Delayed rejection . Efficiency

ordering

1 Introduction and motivation

Markov chain Monte Carlo (MCMC) methods allow to es-

timate Eπ f , the expectation of a function f with respect to

a distribution π , possibly known up to a normalizing con-

stant. A Markov chain that has π as its unique stationary
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and limiting distribution is constructed and simulated. The

mean of f along a realized path of the chain of length N ,
1
N

∑N
i=1 f (Xi ), is the MCMC estimator. Typically the mean

is computed after a burn-in to allow the chain to reach its

stationary regime. Under mild regularity condition (Tierney,

1994) the MCMC sampler is asymptotically unbiased and

normally distributed.

In this paper we propose various strategies to combine

two quite powerful ideas that have recently appeared in

the MCMC literature: adaptive Metropolis samplers (Haario

et al., 1999, 2001) and delayed rejection (Tierney and Mira,

1999; Green and Mira, 2001; Mira, 2002).

Delayed rejection (DR) is a way of modifying the standard

Metropolis-Hastings algorithm (MH) (Tierney, 1994) to im-

prove efficiency of the resulting MCMC estimators relative

to Peskun (1973) and Tierney (1998) asymptotic variance

ordering. The basic idea is that, upon rejection in a MH, in-

stead of advancing time and retaining the same position, a

second stage move is proposed. The acceptance probabil-

ity of the second stage candidate is computed so that re-

versibility of the Markov chain relative to the distribution

of interest, π , is preserved. The process of delaying rejec-

tion can be iterated for a fixed or random number of stages.

Higher stage proposals are allowed to depend on the candi-

dates so far proposed and rejected. Thus DR allows partial

local adaptation of the proposal within each time step of

the Markov chain still retaining the Markovian property and

reversibility.

DR can also be considered as a way of combining different

proposals for MH or different kernels for MCMC. There are

other strategies suggested in the MCMC literature to combine

kernels all having the proper stationary distribution, namely

mixing and cycling (Tierney, 1994). The advantage of DR

over these alternatives is that a hierarchy between kernels
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can be exploited so that kernels that are easier to compute

(in terms of CPU time) are tried first, thus saving in terms

of simulation time. Or moves that are more “bold” (bigger

variance of the proposal, for example) are tried at earlier

stages thus allowing the sampler to explore the state space

more efficiently following a sort of “first bold” versus “sec-

ond timid” tennis-service strategy. Similarly, again to allow

for better exploration of the state space, global moves (i.e.,

updating all coordinates at once) could be tried first and local

moves (updating single or groups of coordinates) could be

attempted later.

The Adaptive Metropolis (AM) algorithm is the global

adaptive strategy we will combine with the local adaptive

strategy provided by the DR.

The intuition behind the AM is that, on-line tuning the

proposal distribution in a MH can be based on the past sam-

ple path of the chain. Due to this form of adaptation the

resulting sampler is neither Markovian nor reversible. In

Haario et al. (2001) the authors prove, from first principles,

that, under some regularity conditions on the way adapta-

tion is performed and if the target distribution is bounded

on a bounded support, the AM retains the desired stationary

distribution.

The paper is organized as follows. In Sections 2 and 3 we

give the details of the DR and of the AM strategies respec-

tively.

We then propose different ways of combining DR with

AM (Section 4) and prove the ergodicity of the resulting

non-Markovian algorithms (Section 5).

In Section 6, various examples will be used to compare

the proposed strategies in terms of efficiency of the resulting

MCMC estimators as well as in terms of CPU simulation

time.

2 Delayed rejection

In this section we give the details of DR. Suppose the current

position of the Markov chain is Xn = x . As in a regular MH,

a candidate move, Y1, is generated from a proposal q1(x, ·)
and accepted with the usual probability

α1(x, y1) = 1 ∧ π (y1)q1(y1, x)

π (x)q1(x, y1)

= 1 ∧ N1

D1

. (1)

Upon rejection, instead of retaining the same position,

Xn+1 = x , as we would do in a standard MH, a second stage

move, Y2, is proposed. The second stage proposal is allowed

to depend not only on the current position of the chain but

also on what we have just proposed and rejected: q2(x, y1, ·).

The second stage proposal is accepted with probability

α2(x, y1, y2)

= 1 ∧ π (y2)q1(y2, y1)q2(y2, y1, x)[1 − α1(y2, y1)]

π (x)q1(x, y1)q2(x, y1, y2)[1 − α1(x, y1)]

= 1 ∧ N2

D2

. (2)

This process of delaying rejection can be iterated. If qi de-

notes the proposal at the i-th stage, the acceptance probability

at that stage is, following (Mira, 2001),

αi (x, y1, . . . , yi ) = 1 ∧{
π (yi )q1(yi , yi−1)q2(yi , yi−1, yi−2) . . . qi (yi , yi−1, . . . , x)

π (x)q1(x, y1)q2(x, y1, y2) . . . qi (x, y1, . . . , yi )

[1 − α1(yi , yi−1)][1 − α2(yi , yi−1, yi−2)] · · · [1 − αi−1(yi , . . . , y1)]

[1 − α1(x, y1)][1 − α2(x, y1, y2)] · · · [1 − αi−1(x, y1, . . . , yi−1)]

}
= 1 ∧ Ni

Di
. (3)

If the i th stage is reached, it means that N j < D j for

j = 1, . . . , i − 1, therefore α j (x, y1, . . . , y j ) is simply

N j/D j , j = 1, . . . , i − 1 and we obtain the recursive for-

mula

Di = qi (x, . . . , yi )(Di−1 − Ni−1)

which leads to

Di = qi (x, . . . , yi )[qi−1(x, . . . , yi−1)[qi−2(x, . . . , yi−2) · · ·
[q2(x, y1, y2)[q1(x, y1)π (x) − N1]

−N2] − N3] · · · − Ni−1]. (4)

Since all acceptance probabilities are computed so that

reversibility with respect to π is preserved separately at each

stage, the process of delaying rejection can be interrupted

at any stage that is, we can, in advance, decide to try at

most, say, 3 times to move away from the current position,

otherwise we let the chain stay where it is. Alternatively,

upon each rejection, we can toss a p-coin (i.e., a coin with

head probability equal to p), and if the outcome is head we

move to a higher stage proposal, otherwise we stay put.

In Tierney and Mira (1999) the DR strategy is proved

to outperform the standard MH in the Peskun absolute effi-

ciency ordering. This means that, using the DR, we obtain

MCMC estimators that have a smaller asymptotic variance

for every function f whose expectation relative to π we want

to estimate (provided f has finite variance under π ).
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3 Adaptive MCMC

In this section we briefly introduce the AM strategy, for more

details and theory see (Haario et al., 2001). The basic idea is

to create a Gaussian proposal distribution with a covariance

matrix calibrated using the sample path of the MCMC chain.

The crucial point regarding the AM adaptation is how the co-

variance of the proposal distribution depends on the history

of the chain. We take, possibly after an initial non-adaptation

period, the Gaussian proposal to be centered at the current

position of the Markov chain, Xn , and set its covariance to

be: Cn = sdCov(X0, . . . , Xn−1) + sdε Id , where sd is a pa-

rameter that depends only on the dimension d of the state

space on which π is defined and ε > 0 is a constant that we

may choose very small. Here Id denotes the d-dimensional

identity matrix. In order to start the adaptation procedure an

arbitrary strictly positive definite initial covariance, C0, is

chosen according to a priori knowledge (which may be quite

poor). A time index, n0 > 0, defines the length of the initial

non-adaptation period and we let

Cn =
{

C0, n ≤ n0

sdCov(X0, . . . , Xn−1) + sdε Id , n > n0.
(5)

Recall the definition of the empirical covariance matrix

determined by points X0, . . . ,Xk ∈ Rd :

Cov(X0, . . . , Xk) = 1

k

(
k∑

i=0

Xi X T
i − (k + 1)Xk X

T
k

)
, (6)

where Xk = 1
k+1

∑k
i=0 Xi and the elements Xi ∈ Rd are con-

sidered as column vectors. Substituting (6) in definition (5),

we get that, for n > n0, the covariance Cn satisfies the recur-

sive formula:

Cn+1 = n − 1

n
Cn + sd

n

(
nXn−1 X

T
n−1 − (n + 1)Xn X

T
n

+ Xn X T
n + ε Id

)
. (7)

which permits the calculation of the covariance matrix with-

out excessive computational cost since the mean, Xn , also

satisfies an obvious recursive formula.

This form of adaptation was proved to be ergodic in Haario

et al. (2001). In numerical applications, some helpful obser-

vations have emerged. The choice for the length of the initial

non-adaptive portion of the simulation, n0, is free, but, ob-

viously, the larger it is, the longer it takes for the effect of

adaptation to take place. In the earlier, non-ergodic version of

the algorithm presented in Haario et al. (1999), it was found

that the adaptation should not be done at each time step,

but only at given time intervals. This form of adaptation im-

proves the mixing properties of the algorithm also with AM.

So the index n0, in fact, can be used to define the length of

non-adaptation periods during the whole chain.

The role of the parameter ε is just to ensure that, theoret-

ically, Cn will not become singular. In most practical cases

ε can be safely set to zero. Following (Gelman et al., 1995),

we take the scaling parameter to be sd = 2.42/d. In Gelman

et al. (1995) the authors show that, in a certain sense, this

choice optimizes the mixing properties of the MH search in

the case of Gaussian targets and Gaussian proposals.

4 DRAM: Combining DR and AM

The success of MCMC methods, in general, depends on how

well the proposal distribution fits the target distribution. In

its basic formulation, DR employs a given number of fixed

proposals that are used at the different stages. Therefore, the

success of the DR strategy depends largely on the fact that

at least one of the proposals is successfully calibrated. The

intuition behind adaptive strategies is to learn from the in-

formation obtained during the run of the chain, and, based

on this, to efficiently tune the proposals. There are, in prin-

ciple, numerous ways of combining AM or MH within the

DR framework, as indicated in the discussion in Section 7.

We shall follow here a rather direct way of combining AM

adaptation with an m-stages DR algorithm:� The proposal at the first stage of DR is adapted just as in

AM: the covariance C1
n is computed from the points of the

sampled chain, no matter at which stage these points have

been accepted in the sample path.� The covariance Ci
n of the proposal for the i th stage (i =

2, . . . , m) is always computed simply as a scaled version

of the proposal of the first stage, Ci
n = γi C1

n .

The scale factors γi can be freely chosen: The proposals

of the higher stages can have a smaller or larger variance

than the proposal at earlier stages. The simulation results in

Green and Mira (2001) suggest that it is more beneficial,

in terms of asymptotic variance reduction of the resulting

estimators, to have larger variance at earlier stages and then

reduce the variance upon rejection. This is also confirmed by

our simulations.

Guidelines on how to construct more elaborated propos-

als that make explicit use of rejected candidates are given in

Tierney and Mira (1999), Green and Mira (2001) and Mira

(2001). In particular, rejected proposals can be used to re-

center and rescale higher stage proposals. These methods

are, however, not employed here, since the aim of this paper

is to point out that already a straightforward combination of

DR and AM, with a very basic adaptation mechanism, may

be very helpful.

From the DR strategy point of view, the rational of the

approach we propose is to adapt, via AM, the first stage
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proposal to better fit the target distribution. If the variance

is too large or small, the points obtained from earlier iter-

ations will change it in the right direction (either increas-

ing or decreasing it)—this indeed is how AM typically

works.

From the AM point of view, clear benefits are expected,

too. It sometimes may be difficult to get the adaptation pro-

cess started. This happens if the initial guess for the proposal

distribution is far from a correct one. AM typically recovers

well if the initial proposal variances are too small, see Exam-

ple 1 below. However, if the variance of the proposal is too

large, or if the covariance for the proposal is nearly singular,

practically no proposals are accepted, and as a consequence

the adaptation process does not get started, see Examples 2

and 3 below. The DR framework provides a natural remedy

for these situations: By reducing the variance of the proposals

at higher stages we ensure that some points will be accepted.

Once this happens, the AM adaptation usually starts working

properly.

In Section 6, we shall present the merits of the DRAM

combination in light of concrete examples. The coding work

required for DRAM is slightly more involved than the rather

straightforward extension that AM implies on top of the ba-

sic MH. However, if one already has codes for both AM

and DR, the combination of them is easily coded. The likeli-

hood function is Gaussian in all the examples here, so all the

simulations could be performed by the same generic DRAM

code. Naturally, the code contains AM, DR and MH as spe-

cial cases.

5 Ergodicity of DRAM

In order to study the properties of the simulation provided

by the non-Markovian DRAM algorithm we first fix some

notation and define the stochastic process corresponding to

the algorithm. We follow mainly the approach and notation

of Haario et al. (2001), to which we refer for unexplained

concepts.

In this section we focus on two-stages DR algorithms but

the theory can be generalized to multiple-stages DR strategies

with more than two attempts to move.

Denote by qC (x, y) the density of a d-dimensional

Gaussian proposal with covariance matrix C centered at

x (thus y has the distribution N (x, C)). We shall as-

sume that S ⊂ Rd is a Borel-measurable subset of the Eu-

clidean space, and the stationary distribution of the Markov

chain, π : S → [0, ∞), is a probability density on S (we

will also denote by π the associated measure). As ex-

plained in Section 2, given two proposals one may al-

ways define a corresponding delayed rejection transition

probability function (DR-tpf). We formalize this into a

definition:

Definition 1. Let π and S be as defined above and let C1, C2

be given covariance matrices. The corresponding two-stages

Gaussian DR-tpf is denoted by QC1,C2 .

In order to give an explicit formula for QC1,C2 we write

(compare with Section 2)

α1(x, y) = 1 ∧ π (y)

π (x)
, (8)

where we understand that π (x) = 0 for x 	∈ S and α1 takes

the value 1 if π (x) = 0. Moreover,

α2(x, y, y′) = 1 ∧ π (y)qC1 (y, y′)(1 − α1(y, y′))
π (x)qC1 (x, y′)(1 − α1(x, y′))

. (9)

Comparing the above formula with (2) one should notice the

cancellation of the second stage proposals due to its sym-

metry. We are now able to define, for any Borel-measurable

subset A ⊂ S such that x 	∈ A

QC1,C2 (x ; A) =
∫

A
qC1 (x, y′)α1(x, y′)dy′

+
∫

A

(∫
Rd

qC1 (x, y′)(1 − α1(x, y′))

× qC2 (x, y)α2(x, y′, y) dy′) dy. (10)

The definition of the transition probability function is com-

pleted by setting

QC1,C2 (x ; {x}) = 1 − QC1,C2 (x ; S\{x}). (11)

For later need we quantify the dependence of QC1,C2 on the

covariance matrices. The following technical lemmas serves

this purpose. The derivative Dk
i j in the Lemma 1 are taken

with respect to the (i, j)th element (i, j = 1, . . . , d) of the

covariance matrix Ck (k = 1, 2). The easy proof of Lemma 1

is left to the reader. In the sequel we denote by a1, a2, . . .

generic positive constants whose actual value is of no direct

interest.

Lemma 1. Let S ⊂ Rd be bounded. Assume that the covari-
ances C1, C2 satisfy the matrix inequality (A ≤ B means
that B − A is a non-negative definite matrix)

a1 Id ≤ C1, C2 ≤ a2 Id , (12)

where 0 < a1 < a2 < ∞. Then there are finite positive con-
stants a3, a4 that depend only on S, a1, a2 such that the in-
equalities
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|Dk
i j qCk (x, y′)|
qCk (x, y′)

≤ a3(1 + |y′|2) (13)

and

|D1
i jα2(x, y′, y)|
α2(x, y′, y)

≤ a4(1 + |y′|2) (14)

hold for all y′ ∈ Rd and x, y ∈ S. Here 1 ≤ k ≤ 2 and 1 ≤ i,
j ≤ d are arbitrary.

We should remark here that α2 is not necessarily differen-

tiable in the strict sense, but (14) should be interpreted as an

estimate of the local Lipschitz constant.

Lemma 2. Let S ⊂ Rd be bounded and assume that the co-
variances C1, C̃1, C2, C̃2 satisfy the matrix inequality (12).
Then there is a constant a5 such that

|QC1,C2 (x, A) − QC̃1,C̃2 (x, A)|
≤ a5(‖C1 − C̃1‖ + ‖C2 − C̃2‖) (15)

for all x ∈ S and measurable A ⊂ S.

Proof: In order to prove (15) we first consider the case

C2 = C̃2. By (11) we may also assume that x 	∈ A.We obtain,

from (10), that

|QC1,C2 (x, A) − QC̃1,C2 (x, A)|

≤
∫ 1

0

∣∣∣∣ d

ds
h1(s)

∣∣∣∣ ds +
∫ 1

0

∣∣∣∣ d

ds
h2(s)

∣∣∣∣ ds,

where

h1(s) =
∫

A
qC(s)(x, y)α1(x, y)dy

with C(s) = sC̃1 + (1 − s)C1 = C1 + s(C̃1 − C1), and

h2(s) =
∫

A

(∫
Rd

qC(s)(x, y′)(1 − α1(x, y′))

× qC2 (x, y)α2(x, y′, y) dy′
)

dy.

Observe that α2 depends on C(s). The matrix C(s) clearly

satisfies the inequalities (12) for all s ∈ [0, 1]. Hence the

previous lemma applies and we obtain the estimate∣∣∣∣ d

ds
h1(s)

∣∣∣∣ ≤ a6a3‖C1 − C̃1‖ sup
y∈S

(1 + |y|2)h1(s)

≤ a7‖C1 − C̃1‖

since h1 ≤ 1 and S is bounded. Here the distance between

the covariances is measured in the usual matrix (L2) norm.

Similarly we compute∣∣∣∣ d

ds
h2(s)

∣∣∣∣
≤ a6‖C1 − C̃1‖

∫
A

(∫
Rd

(a3 + a4)(1 + |y′|2)qC(s)(x, y′)

(1 − α1(x, y′))qC2 (x, y)α2(x, y′, y) dy′) dy

≤ a8‖C1 − C̃1‖
∫

Rd

(1+|y′|2)qC(s)(x, y′)dy′
∫

A
qC2 (x, y)dy

≤ a9‖C1 − C̃1‖ sup
x∈S

∫
Rd

(1 + |y′|2)qC(s)(x, y′)dy′

≤ a10‖C1 − C̃1‖.
In the last estimate we used the fact that C(s) satisfies bounds

similar to (12).

By combining the obtained estimates, the claim follows

in the case C2 = C̃2. The case C1 = C̃1 is similar, although

easier since α2 does not depend on C2. By combining the

two cases the general statement is proved. �

The sequence (Kn) of generalized transition probability

functions defining the DRAM algorithm (with second co-

variance proportional to the first one) is given by

Kn(x0, . . . , xn−1; A) = QCn ,γ Cn , (16)

where Cn is the covariance obtained from the history of the

algorithm as defined in (5). The constant γ > 0 is fixed, see

Section 4. The proof of ergodicity of DRAM algorithm is

based on Theorem 2 in Haario et al. (2001) which we re-

call here (Theorem 3 below) for the readers convenience.

First we need to define a “freezed” transition probability.

Given a generalized transition probability Kn (where n ≥ 2)

and a fixed (n − 1)-tuple, (y0, y1, . . . yn−2) ∈ Sn−1, we de-

note ỹn−2 = (y0, y1, . . . yn−2) and define the transition prob-

ability Kn,̃yn−2
by

Kn,̃yn−2
(x ; A) = Kn (̃yn−2, x ; A) (17)

for x ∈ S and A ⊂ S. Above Sn−1 stands for the (n − 1)-fold

product space. For the definition of the (Dobrushin) coeffi-

cient of ergodicity, δ(K ), we refer to Haario et al. (2001)

(p. 228).

Theorem 3. Assume that (Kn) satisfies the following three
conditions (i)–(iii):

(i) There is an integer k0 and a constant λ ∈ (0, 1) such
that

δ((Kn,̃yn−2
)k0 ) ≤ λ < 1 for all ỹn−2 ∈ Sn−1 and n ≥ 2.
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(ii) There is a probability measure π on S and a constant
c0 > 0 so that

‖π Kn,̃yn−2
− π‖ ≤ c0

n
for all ỹn−2 ∈ Sn−1 and n ≥ 2.

(iii) The estimate for the operator norm

‖Kn,̃yn−2
− Kn+k ,̃yn+k−2

‖M(S)→M(S) ≤ c1

k

n
,

holds, where c1 is a positive constant, n, k ≥ 1 and we
assume that the (n + k − 1)-tuple ỹn+k−2 is a direct
continuation of the (n − 1)-tuple ỹn−2. Here M(S)

stands for the finite signed measures on S, and ‖ ·
‖M(S)→M(S) denotes the operator norm in the space of
bounded measures.

Then, if f : S → R is bounded and measurable, it holds al-
most surely that

lim
N→∞

1

N + 1
( f (X0) + f (X1) + · · · + f (X N ))

=
∫

S
f (x)π (dx). (18)

We are ready to show that the DRAM algorithm yields

asymptotically unbiased estimators for expected values of

functions f with respect to π . The conditions of the theorem

are commented in the remark after the proof.

Theorem 4. Let π be the density of a target distribution sup-
ported on a bounded measurable subset S ⊂ Rd and assume
that π is bounded from above. Then the DRAM algorithm, as
described in Section 4 (see also (16)) is ergodic in the sense
of (18).

Proof: We show that the transition probabilities (16) fulfill

conditions (i)–(iii) of Theorem 3. Observe first that by (5)

and boundedness of S the empirical covariances Cn satisfy

a uniform estimate as in (12) with constants depending only

on S, d and ε. Hence the corresponding densities qCn (x, y)

are uniformly bounded from below for x, y ∈ S and the first

term in the formula (10) easily yields the estimate

Kn,̃yn−2
(x A) ≥ a3π (A)

since π is bounded from above. This is well known to yield

condition (i) with k0 = 1 (compare (Haario et al., 2001,

p. 230)).

In order to check condition (ii) we fix ỹn−2 ∈ Sn−1 and

denote C∗ = Cn−1(̃yn−2). By the very definitions (5), (6) it

follows that

‖C∗ − Cn (̃yn−2, y)‖ ≤ a10/n, (19)

where a10 does not depend on y ∈ S. We may hence

apply Lemma 2 to deduce, for all measurable A ⊂ S,

that |Kn,̃yn−2
(y; A) − QC∗,γ C∗ (y; A)| ≤ a11/n, which in turn

implies that ‖Kn,̃yn−2
− QC∗,γ C∗‖M(S)→M(S) ≤ 2a11/n. By

Tierney and Mira (1999) the delayed rejection kernel sat-

isfies π QC∗,γ C∗ = π, and we obtain

‖π − π Kn,̃yn−2
‖ = ‖π (QC∗,γ C∗ − Kn,̃yn−2

)‖ ≤ 2a11

n
,

as desired.

Finally, the verification of condition (iii) is based on

Lemma 2, which gives that

‖Kn,̃yn−2
− Kn+k ,̃yn+k−2

‖M(S)→M(S)

≤ 2 sup
y∈S,A∈B(S)

|Kn,̃yn−2
(y; A) − Kn+k ,̃yn+k−2

(y; A)|

≤ 2a5(1 + γ ) sup
y1,...,yn+k−2∈S

‖Cn − Cn+k‖ ≤ a12k/n,

where the last inequality follows from definition (5). �

Remark. One can generalize the proof of (Haario et al.,

2001, Theorem 2) and consequently the proof of Theorem 3

above, to obtain a stronger result with less restrictive (but

more implicit) assumptions, see (Atchade and Rosenthal,

2005). Moreover, Andrieu and Moulines (2002) present an

approach that can be used to study a modified algorithm in

the case where the support of π can be unbounded (see also

(Andrieu and Robert, 2001) for a general framework of adap-

tation where the connection to stochastic optimization was

observed). We expect the ergodicity of DRAM to hold un-

der quite minimal assumptions, especially without the extra

smoothness and strong decay of π assumed in Andrieu and

Moulines (2002).

The proof given here is valid, without changes, also for the

modifications of the DRAM algorithm, where for example

the second stage covariance is kept fixed all the time, or

adapted only after prescribed periods.

6 Examples

In this section we present three examples of which the last one

is a real high dimensional application to real data. The first

two examples are, instead, artificially constructed to show

that when either one of the two building blocks of DRAM,

namely DR and AM, are poorly calibrated, the combina-

tion of them almost automatically solves the problems that

would appear running each one of them separately. In par-

ticular we stress the fact that, in our examples, the second

stage proposal in the DR strategy has been scaled down

by a constant factor always taken to be γ = 0.01 while in
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Green and Mira (2001) suggest using a down scale factor

of 0.5 starting from a first stage proposal which is over-

dispersed.

We first employed the target distributions already used in

Haario et al. (1999, 2001) as test cases. More specifically, we

used both correlated Gaussian distributions, and ‘nonlinear

banana-shaped’ distributions. These distributions allow to

an exact computation for the, e.g. 50% and 90% probability

regions, so the correctness of the MCMC runs can be easily

verified. As representative cases we present the results of test

sets in Example 1 below.

In Example 2 we demonstrate with a simple but realis-

tic case a situation where neither DR nor AM alone works

properly but the combination of the two performs quite well.

Example 3 concludes with a real high dimensional mod-

eling problem, where convergence to the target distribution

seems to be difficult to achieve by any method. However, we

see that again DRAM provides the most reliable tool among

the choices tested.

In all the test runs we have compared the results ob-

tained from the basic Metropolis-Hastings (MH), Adaptive

Metropolis (AM), basic Delayed Rejection (DR) and the

combination DR+AM (DRAM). In all the examples we al-

ways update all the coordinates together.

6.1 Example 1

We first want to test situations where the proposal distri-

butions are selected to have clearly too small or too large

variances with respect to the target distribution. We use cor-

related Gaussian targets in various dimensions. The condi-

tion number of the covariance matrix (the ratio between the

largest and smallest eigenvalue of the matrix, the largest be-

ing scaled to 1) is fixed to be c = 2 here. We start with a

Gaussian proposal that has unit diagonal covariance matrix

scaled by the optimal factor sd = 2.42/d following (Gelman

et al., 1995). We will refer to this as the ‘basic proposal’. To

create a proposal with too small variance, this matrix is mul-

tiplied by the factor 0.01, both for MH, AM, DR and DRAM.

In DR and DRAM we used a second stage proposal obtained

by further scaling down the proposal of the first stage by a

factor γ = 0.01.

As it is well known, in this setting the MH algorithm tends

to “walk around” the target distribution with small steps,

without effectively exploring the state space. The same is

naturally true for DR if all the proposals have a variance

which is too small. The point here is to see how the AM

adaptation is able to overcome this problem.

Figures 1 and 2 present typical outcomes of the runs in

a two dimensional setting. Figure 1 gives the results of MH

and AM, while Fig. 2 exhibits the results produced by DR

and DRAM, respectively. The top parts exhibit the sampled

points as well as the 50% and 90% probability regions. The

lower parts of the figures give the proportion of the chain

points within the 50% and 90% probability regions during

the runs. We can see that the adaptation indeed seems to

remove the problem caused by too small variance in proposal

distributions for both the MH and the DR.

For more reliable statistics, we performed the runs repeat-

edly with increasing dimensions, d = 2, 5, 10, 15, . . . , 50,

for the correlated Gaussian target distribution described

above. The chain length was fixed to 20000 steps for all di-

mensions. Otherwise the settings are the same as above, the

variance of the basic proposal distribution was again scaled

down by 0.01. For each dimension, the runs were repeated

100 times. The simulations were started by randomly gener-

ating a point from the target.

For moderately low dimensions, d < 15, roughly, the re-

sults were not sensitive with respect to the length n0 of the

non-adaptation period, one might simply take n0 = 1. For

higher dimensions, it seems that AM with n0 = 1 might be-

come ‘too’ adaptive, and works better if the adaptation is

slowed down with a larger value of n0. As a rule of thumb, a

value of a few hundred for n0 may used for low dimensional

problems, and a few thousand for larger dimensions (d > 15

here).

The true mean of the target distribution was always set

at the origin, so the norm (the Euclidean L2 distance from

the origin) of the average value of the chain can be used as

a measure of the error of the estimate for the expectation.

The mean values over the Monte Carlo repetitions were also

computed for the proportion of the chain points inside the

50% and 90% probability regions.

Figure 3 shows the estimated errors (computed over 100

independent chains) of our estimators for the center point of

the distributions. We see that the adaptive algorithms clearly

outperform the MH and DR runs, where the estimate of the

center point of the distribution may be strongly biased.

Figure 4 shows the results for the 50% and 90% regions.

We can see that for moderate dimensions, up to around

d = 15, the performance of all algorithms are comparable.

For higher dimensions, the adaptation seems to put too many

points in the central part of the target distribution. Increas-

ing the chain length to, e.g., 200,000 for the higher dimen-

sions, would provide a remedy for this problem (see Haario

et al., 2005), but here we have intentionally kept the chain

length fixed regardless of the dimension in order to reveal

differences between the various methods. The combination,

DRAM, improves but does not remove this feature of adap-

tation here, since the second stage proposal was chosen to

have a “too small” covariance matrix. Methods for adap-

tation in high dimensional problems are studied elsewhere,

e.g., in Haario et al. (2005), therefore here we will focus on

simulations in moderate dimensions.

The computational times greatly depend on

implementation—here the runs were performed with a
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Fig. 1 Left figures: results by MH, with too small variance for pro-
posal. Right figures: results by AM, started with the same proposal
distribution as with MH. The upper figures present the sampled points

as well as the 50% and 90% probability regions. The lower figures give
the proportion of the chain points within the 50% and 90% probability
regions during the runs
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Fig. 2 Left figures: results by DR, with too small variance for propos-
als. Right figures: results by DRAM, started with the same proposal
distributions as with DR. The upper figures present the sampled points

as well as the 50% and 90% probability regions. The lower figures give
the proportion of the chain points within the 50% and 90% probability
regions during the runs

Matlab code—and we only give relative figures. The basic

MH algorithm always took the least CPU time. The relative

CPU times of AM, DR and DRAM were, roughly, larger

by factors 1.1, 1.2 and 2.3, respectively. This is natural,

since the adaptation slightly increases the computational

cost of AM compared to MH. As for DR, the cost here

is not essentially larger, since the first stage proposal,

intentionally selected to have a very small variance, is

typically accepted. DRAM adapts the proposal of the first

stage to the ‘correct’ size, so that the second stage is often

also used. This explains its higher computational cost factor

2.3. The acceptance rates were about 90% for MH and nearly

100% for DR (calculated as the combined acceptance from

both stages) for all dimensions. With DRAM the acceptance

rates slightly decreased from 94% to 80% as the dimension

increases, while, for AM, the acceptance rates increase with

dimensions from around 30% to 50%, indicating that, for

adaptations, a longer chain would have been needed for the

higher dimensional settings.

Next, we run basically the same tests as above, but se-

lect proposals which have too large variances, so that the

AM adaptation has difficulties to get started. The covariance

of the ‘basic proposal distribution’ is now multiplied by a

factor of 4 (instead of 0.01 as above) to obtain the fixed pro-

posal for MH, initial for AM, first stage proposal for DR,

and initial first stage for DRAM. The size of this factor was
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mainly chosen to get the AM adaptation at least started in

higher dimensions. In fact, with an essentially larger initial

proposal, practically no new points would be accepted, and

no adaptation would take place. The shrinking factor, γ , for

the second stage proposal in DR and DRAM was kept at the

value 0.01.

As above, we run repeated simulations for increasing di-

mensions. We see that AM seems to outperform MH and,

likewise, DRAM seems to outperform DR in computing the

expected value of the distribution, see Fig. 5. The picture,

however, does not reveal the true behavior of all the algo-

rithms. In fact, for the MH algorithm in high dimensions,

essentially no proposal is accepted and the results in Fig. 5

mainly reflect the fact that the starting point was sampled

from the target distribution itself. The reason of the rejection

is that the variance of the proposal is too large, and its co-

variance does not fit the one of the target, so the acceptance

rate strongly decreases as the dimensions increases. Due to

the same reason, the AM adaptation has difficulties getting

started in high dimensions. The decreasing acceptance rates

with AM again reflect the fact that longer chains would have

been needed.

We can observe that the results of both MH and AM are

clearly improved by the DR strategy. Now DRAM properly

works in all dimensions tested and gives the best estimates

for the center point of the target distribution.

The relative computational times with AM were again,

roughly, larger than those with MH by a factor of 1.1. With

DR and DRAM the factors were about 2.9 and 2.6 respec-

tively. Now DR typically uses both proposal stages, which
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explains the higher factor. DRAM adapts the first stage pro-

posal and thus uses the second stage less frequently, which

explains the somewhat lower CPU times.

6.2 Example 2

Our next example presents a situation where neither AM nor

DR work properly alone, but their combination, DRAM, is

quite efficient. Consider a simple chemical reaction A �k1

k2

B, where a component A goes to B in a reversible manner,

with reaction rate coefficients k1 and k2. The dynamics are

given by the ODE system:

d A

dt
= −k1 A + k2 B,

d B

dt
= k1 A − k2 B,

with initial values fixed as A0 = 1, B0 = 0 at t = 0. We

are interested in estimating k1 and k2 when data for, e.g.,

A(t) = k2/(k1 + k2) + (k1/(k1 + k2))e−(k1+k2)t has been ob-

tained at given sampling times of t . Suppose now that the data

has been sampled too late, in the sense that the reaction has

already reached a steady-state equilibrium at the sampling

times, cf. Fig. 6. It is clear that from such data the values

of the parameters can not be separately determined, only the

ratio k1/k2 may be identified, as well as lower bounds for

k1 and k2. Without priors, the possible values for k1 and k2

would lie in a practically infinite “zone” in a direction where

k1/k2 is constant.

Synthetic data was created for parameter values k1 =
2, k2 = 4 at time points t = 2, 4, 6, 8, 10. Zero mean Gaus-

sian noise with standard deviation of size 0.01 was added.

For the prior we set a broad Gaussian distribution with center

point at (2, 4) and deviation equal to 200 for both parameters.

The goal is to sample from the posterior with MH, DR, AM

and DRAM.

While given here in a simplistic setting, situations of this

type are, in fact, rather often faced in real-life parameter esti-

mation of dynamical systems, see, for instance, Haario et al.

(1999). Some parts of the dynamics are very fast, or internal

structural characteristics of the model lead to strongly corre-

lated parameter combinations. In more complex situations,

it may not be easy to observe the correlations beforehand.

MCMC methods should work in these situations, too. Indeed,

they can provide a good tool for studying the identifiability

of the parameters.

A standard procedure would be to estimate the parameters

by least squares fitting, compute the covariance matrix of

the parameters by the approximate Hessian matrix, use it to

construct the proposal distribution for MH, and perform the

MCMC run using the fitted parameters values as the starting

point for the chain. This is what is done in the test runs below.

However, in the setting of our example there is no unique

minimum for the least squares function, and the covariance

matrix is nearly singular.

Figure 6 shows typical runs with DR and AM. The

computed approximate covariance does not provide a good

proposal, and the efficiency remained very low for DR. The

acceptance rate with the first stage proposal—that is, with

the MH proposal—was around 0.6%. For the second stage

we used scaled versions of the first one, both with smaller

and larger variances. At the second stage the acceptance rate

was at best around 5–7%. We may conclude that while DR is
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somewhat better than MH here, the ‘easy’ way of producing

second stage proposals by scaling does not lead to essential

improvement in this situation.

One could expect that AM would find, possibly after some

initial trials, a well calibrated proposal distribution. However,

since the initial proposal is so poor, it can take a very long

time for AM to start working. Figure 6 illustrates a typical

case. The time it takes to start the adaptation may be long or

short, making the success of AM, at best, uncertain and the

resulting estimates unreliable.

The combination of AM and DR was employed as out-

lined before. The proposal obtained from the covariance of

the fit was used at the first stage. For the second stage the

proposal was scaled down by a factor of 0.1. This gives a

dramatic improvement, see Fig. 7. The second DR stage is

able to find acceptable proposals right from the beginning,

the AM adaptation starts immediately. The acceptance rate

and the mixing of the chain are clearly improved. The first

and second stage acceptance rates were around 30% and 60%

respectively.

In such a low dimensional situation, the chain typically is

not sensitive with respect to the choice of the non-adaptation

period n0, once the adaptation has properly started. However,

here we have to start with a poor initial proposal, which

might not produce accepted points at the very beginning.

Using, e.g., the value n0 = 100 guaranteed a smooth start:

the successful results reported above were obtained without

a single exception in repeated simulations.
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Updating the covariance does not bring any substantial

increase of computational burden in this low dimensional

example. So the CPU times of MH and AM were roughly

equal. The CPU times of DR and DRAM were approximately

twice of those of MH and AM. Again, DRAM uses the second

stage proposal less frequently than DR, and the CPU time is

consequently slightly decreased.

6.3 Example 3

In our final example we discuss a real, high-dimensional

modelling situation: the algae population dynamics in the

shallow, mesotrophic Lake Pyhäjärvi in southwest Finland.

Phytoplankton is modelled with a non-linear dynamics which

describes the succession of four different algae groups as

a function of total phosphorus, total nitrogen, temperature,

global irradiance, and crustacea zooplankton. The noise level

in the data is high, and the model is loaded with several

correlated parameters. More details on the biological back-

ground and modelling issues is given in Malve et al. Here

our purpose is to use the model to demonstrate how MH,

DR, AM and DRAM typically behave in such a challenging

situation.

The growth and decay mechanisms are integrated into a

minimal mass-balance equation system for the wet weight

concentration of algae. Phytoplankton is divided into four

groups (Diatoms, Chrysophycea, nitrogen fixing Cyanobac-

teria and several minor species summed together in the

fourth group), the concentrations of which are denoted as

Ai , i = 1, . . . , 4 ([mg L−1]). The model is given by the fol-

lowing system of ordinary differential equations

d Ai

dt
=

(
μ̃i − σ̃i

h
− Q

V
− pi Z

)
Ai , i = 1, 2, 3, 4; (20)

where the growth limiting factors and loss rates are given by

μ̃i = μiθ
T −Tref

i

I

K I i + I

P

K Pi + P

N

KNi + N
,

σ̃i = σiθ
T −Tref
σ . (21)

Here P and N denote the total amounts of phosphorus

and nitrogen minus that included in the phytoplankton:

P = Ptot − ∑4
i=1 αi Ai and N = Ntot − ∑4

i=1 βi Ai , where

the constants αi and βi give the nutrition content of the cor-

responding phytoplankton species. The terms Ptot, Ntot, T, I
and Z are treated as control variables, given by measure-

ments. The notations and roles of the various variables are

listed in Table 1.

Eight years of observations from the lake, collected be-

tween 1992 and 2000, were used for this study. The observa-

Table 1 Notations and units for the algae model parameters, data and
constants

Estimated parameters i = 1, . . . , 4

μi maximum growth rate at 20◦C [d−1]

σi maximum non-predatory loss rate at 20◦C

[md−1]

θi , θσ temperature coefficients for growth and

non-predatory loss rate

K Ii global irradiance half-saturation coefficient

[W m−2]

K Pi phosphorus half-saturation coefficient

[µg L−1]

KNi nitrogen half-saturation coefficient

[µg L−1]

pi zooplankton filtration rate [mgC L−1 d−1]

Control variables

Ptot total phosphorus concentration [g L−1]

Ntot total nitrogen concentration [g L−1]

Z zooplankton herbivore (crustacea) carbon

mass concentration [mgC L−1]

T temperature [◦C],

Q outflow [m3s−1]

I global irradiance [W m−2]

Known constants

Tref the reference temperature (20◦C)

αi phosphorus content of Ai

βi nitrogen content of Ai

V volume of lake [m3]

h depth of lake [m]

tional error is modelled using i.i.d. Gaussian distribution. To

stabilize the residual variances and to guarantee the positivity

of the simulated observations, a square root transformation

of the concentrations is used. Separate error variances are es-

timated for each of the four algae groups. For the variances

of the error terms of the model we use non-informative con-

jugate priors defined by the inverse gamma distribution. As

an example, in Fig. 10, the algae observations for two of the

years are shown, together with the fitted model and simulated

observations.

The values of the control variables are plotted, for all the

years measured, in Fig. 8.

Although the model is rather reduced, we still have eight

parameters to be estimated for each of the four phytoplankton

groups. After a minor simplification (a common temperature

coefficient for all the non-predatory losses, θσ ) and the ad-

dition of four unknown initial algae concentration values for

each of the eight summers considered, we have total of 61

model parameters to be estimated.

For several of the parameters we use non-informative

priors, with positivity constraints only. Truncated Gaus-

sian distributions are adopted as priors for the initial algae
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Table 2 Initial values, prior and posterior means and standard de-
viations of the estimated parameters of the phytoplankton model.
A single dot (·) in the table indicates that a Uniform prior with
positivity constraint is used for the corresponding parameter

Prior mean/ Posterior Posterior

Parameter initial value Prior Std mean std

μ1 1.07 . 0.0886 0.043

μ2 1.00 . 0.0465 0.033

μ3 1.31 . 0.329 0.089

μ4 1.12 . 0.212 0.10

σ1 0.015 . 0.0845 0.062

σ2 0.052 . 0.137 0.077

σ3 0.317 . 0.349 0.20

σ4 0.036 . 0.0463 0.025

θ1 1.01 0.08 1.14 0.051

θ2 1.07 0.08 1.07 0.049

θ3 1.16 0.08 1.16 0.060

θ4 1.07 0.08 1.13 0.051

θσ 1.20 0.09 1.05 0.060

K I 1 100 100 61.9 48

K I 2 100 100 115 60

K I 3 100 100 16.4 11

K I 4 100 100 134 67

K P1 2.5 10 10.4 5.3

K P2 5 10 8.27 4.9

K P3 10 20 5.50 3.2

K P4 20 50 77.3 28

KN1 10 20 14.5 11

KN2 10 40 32.9 22

KN3 10 20 21.0 13

KN4 10 40 45.7 28

p1 0.051 . 0.0438 0.036

p2 0.044 . 0.0665 0.046

p3 2.075 . 1.09 0.33

p4 0.057 . 0.0802 0.033

concentrations, Ai (t0), with variances approximated by noise

level of the measurements. Gaussian priors could also be

used for the temperature coefficients for the growth and the

non–predatory loss terms, e.g. as in Bowie et al. (1985). Ta-

ble 2 gives the numerical values of the parameters used for

constructing the priors, as well as the means and standard

deviations computed from the posterior.

Initial values for the parameters are derived from the liter-

ature or obtained from discussions with experts in the field.

It turned out that the initial guess was rather far from the

MAP point of the posterior distribution. Several simulations

were performed for testing the algorithms with various op-

tions for the starting point of the chain as well as for the initial

proposal. We summarize below the experience, and present

representative examples of the runs.

It turns out that it is possible to sample rather effectively

the posterior with all the methods—plain MH, DR, AM and

DRAM—using Gaussian proposals—once the chain has con-

verged to the target distribution, and a suitable shape and

orientation for the proposal is first found by pilot runs. But

crucial differences are encountered in how the algorithms are

capable to converge to the target and find an effective pro-

posal without pilot runs. When using MH, a fixed proposal

naturally has to be selected by the user. In the present high di-

mensional situation, this requires exhaustive care and off-line

tuning. In the absence of a successfully selected proposal, the

acceptance rate typically remains extremely low, as demon-

strated in the example runs below. One possible strategy that

could be adopted here is to estimate the parameters by least

squares fitting and use the approximated covariance matrix

of the parameters in the proposal distribution. But standard

optimization routines do not easily converge in the present

situation, often resulting in a singular covariance matrix lead-

ing, again, to ineffective sampling.

The DR algorithm generally performs better here, and is

less sensitive with respect to non-optimally selected initial

proposals.

The AM algorithm also performs reasonably well. Two

types of problems may be encountered, however. As in the

previous examples, if the variance of the initial proposal is

too large, only few points are accepted at the beginning, and

the adaptation has difficulties to get started. On the other

hand, the acceptance rate may start decreasing during the

adaptation. The reason is the basically non-Gaussian, slightly

‘banana-shaped’, correlated character of the posterior. With

AM, we try to explore it using a single Gaussian proposal.

This may lead to a proposal with too large variances and,

consequently, small acceptance rates. As mentioned above,

all the methods work rather well after convergence, the prob-

lems only appear during the warm-up phase.

The DRAM algorithm turns out to be the most reliable

method. That is, it guarantees the mixing of the chain even

with moderately ill-posed initial parameter values and pro-

posal covariances. Basically, the success is due to the use of

the proposal with small variances in situations where AM

alone would use a proposal with too large variance.

Let us then present runs that demonstrate the convergence

properties of the methods tested. We run a chain of length

500,000 using each of the four methods. The initial state of

the chain is fixed using the parameter values given by the lit-

erature The proposal distribution (the initial proposal for the

adaptive methods) is also fixed to be the same for all methods.

A non-correlated Gaussian distribution is employed, with

only a crude ‘tuning’ in the sense that the variances are given

as the variances of the Gaussian prior distributions, when

available. For parameters with positivity prior only (e.g., with

a large upper bound for the flat prior), the variances are cho-

sen so as to give standard deviations of the same order of

magnitude as the prior guesses of the respective parameters.

In DR and DRAM we use a second stage proposal obtained

by scaling down the proposal of the first stage by the factor

γ = 0.01. For AM and DRAM the value n0 = 200 was used
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as the non-adaptation period, a larger value might have been

used as well.

In order to exhibit the convergence properties of the sam-

pling strategies, we plot the residual sum-of-squares obtained

by the various methods. Separate sum-of-squares for the four

model variables were employed, with the different unknown

error variances sampled from non-informative conjugate pri-

ors. For clarity, we only present the pooled sums of the

residuals.

Figure 9 gives a representative example for each different

method. For the MH method the proposal is clearly too ill

posed, the chain does not move at all. Due to the smaller

variance of the second stage proposal, DR is able to make

progress, although the acceptance rate remains very low. The
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same is true here for AM: the initial proposal has too large

variances, an even longer chain would be needed before the

adaptation would find an effective scale for the proposal.

DRAM clearly is the only method whose acceptance rate

remains reasonable high, and which shows a monotone con-

vergence towards lower values of the sum-of-squares. One

should note however, that in this example the convergence

is slow even with DRAM—the target distribution is typi-

cally reached only with a chain whose length is a few million

samples.

After convergence, the parameters are, somewhat sur-

prisingly, rather well identified and not too correlated. The

situation can certainly be attributed to the a priori bounds

available for several of the parameters. Figure 11 gives ex-

amples of two dimensional marginal posteriors, obtained by

DRAM.

7 Conclusions

We show how two ways of modifying the standard MH sam-

pler can be successfully combined. The first modification,

AM, aims at adapting the proposal distribution based on

the past history of the chain. The second modification, DR,

aims at improving the efficiency of the resulting MCMC es-

timators. While AM allows for “global” adaptation, based

on all the previously accepted proposals, DR may allow for

“local” adaptation, only based on rejected proposals within

each time-step. While DR retains the Markovian property

and reversibility, AM is neither Markovian nor reversible.

There are different ways of combining AM and DR. We

tried some basic but very effective ones, as the simulation

results show. One could use AM only at the first stage and

employ fixed MH proposals at higher stages of the delay-

ing rejection process. The choice of the fixed MH proposals

could be based on separate pilot runs. Or one might adapt

the proposals at different stages separately, with the aim of

attempting “global” moves at the first stage (update all coor-

dinates at once) and “local” moves at higher stages (update

single coordinates of groups of them). As an alternative, at

different stages of the delaying rejection, different values of

n0 and sd could be used. We plan to further investigate other

ways of combining DR and AM: DRAM is basically AM

with-in DR. AMDR could also be tried (that is DR with-in

AM): a basic AM algorithm is run, with some values for the

parameters n0 and sd at the first stage and, upon rejection, a

second stage adaptive proposal is used, with different values

of these parameters. Further variations can be investigated.

The key feature is that, as pointed out by Green and Mira

(2001), DR works better if the variance of the proposal is

too big at first stages and down scaled at higher stages. On

the other hand AM recovers well and starts adapting even if

the variance of the initial proposal is too small (clearly if the

variance is too big no proposals are accepted and adaptation

is almost impossible to get started). Thus, a combination

of the two, as in DRAM or other variations of it, clearly

provides protection against both over and under calibrated

proposals.
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