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Abstract In this paper, we adapt recently developed

simulation-based sequential algorithms to the problem con-

cerning the Bayesian analysis of discretely observed diffu-

sion processes. The estimation framework involves the intro-

duction of m − 1 latent data points between every pair of ob-

servations. Sequential MCMC methods are then used to sam-

ple the posterior distribution of the latent data and the model

parameters on-line. The method is applied to the estimation

of parameters in a simple stochastic volatility model (SV) of

the U.S. short-term interest rate. We also provide a simulation

study to validate our method, using synthetic data generated

by the SV model with parameters calibrated to match weekly

observations of the U.S. short-term interest rate.

Keywords Bayesian inference . Particle filter . MCMC .

Nonlinear stochastic differential equation

1 Introduction

Diffusion processes governed by stochastic differential equa-

tions (SDEs) can be a convenient tool for modelling eco-

nomic data. As such, the use of diffusion processes in the

area of Mathematical Finance is becoming common place

and much effort has been spent searching for efficient ways

to estimate diffusion parameters.

In the context of likelihood-based inference, estimation

of the parameters requires knowledge of the Markovian tran-

sition density for the SDE. However, as analytic solutions

of SDEs are rarely available, we cannot obtain the transi-

tion density in closed form and are forced to approximate
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it. Various attempts to solve this problem have been made

which include moment based estimation (Chan et al., 1992)

and simulation based methods; see for example Durham and

Gallant (2002).

Typically, since observations arrive at discrete times, yet

the model is formulated in continuous time, it is natural

to work with the first order Euler-Maruyama approxima-

tion. Unfortunately the inter-observation times are usually

too large to be used as a time step with such an approx-

imation. The resulting problem is the classic missing data

problem extended by Pedersen (1995) whose treatment in-

volves augmenting the observed low-frequency data with the

introduction of m−1 latent data points in between every pair

of observations. Markov chain Monte Carlo (MCMC) meth-

ods (Chib and Greenberg, 1995) which sample the posterior

distribution and model parameters have been proposed by

Jones (1997), Elerian et al. (2001) and Eraker (2001). Such

methods can be computationally expensive but can be easily

applied to partially observed diffusions.

Here, we focus on the MCMC approach and address the

problems arising if the amount of augmentation is large, that

is, as m increases. In this case, high dependence between the

parameters and missing data results in arbitrarily slow rates

of convergence of basic algorithms such as single site Gibbs

samplers (Eraker, 2001). For univariate SDEs, Roberts and

Stramer (2001) propose a transformation of the diffusion to

break down this dependence. However, this technique cannot

be applied to general multivariate diffusions such as those

considered in this paper (Wilkinson, 2003).

We propose a simulation filter, utilising the diffusion

bridge construct suggested by Durham and Gallant (2002),

which allows on-line estimation, can be effectively imple-

mented for large sample sizes, and does not break down as

either the degree of augmentation, m or the number of obser-

vations increases. The method relies on recently developed
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particle filtering methods. Such methods have been discussed

extensively in the context of discrete time series; see for

example Pitt and Shephard (1999), Carpenter et al. (1999)

and Doucet et al. (2000). Filtering for SDEs has been dis-

cussed by Del Moral and Jacod (2001) and Johannes et al.

(2006) among others. We apply the methodology to the esti-

mation of parameters in a two component model with a latent

stochastic volatility (SV) variable. To validate the method,

we also provide a simulation study using the SV model as a

test case, with parameters calibrated to match weekly obser-

vations of the U.S. short-term interest rate.

The remainder of this paper is organised as follows. In

Section 2 we formulate the model and detail how MCMC

methods can be used to analyse diffusions, focusing on the

Gibbs sampler in Section 3 and our proposed simulation fil-

ter in Section 4. The simple log-Gaussian stochastic volatil-

ity model is presented in Section 5 with an illustrative ap-

plication and simulation study. Conclusions are drawn in

Section 6.

2 Models

We consider inference for a d-dimensional Itô Diffusion that

satisfies a stochastic differential equation of the form

dY t = μ(Yt , �)dt + β
1
2 (Y t , �)dWt , (1)

where μ(Yt , �) and β
1
2 (Yt , �) are drift and diffusion func-

tions (of dimension d and d × d respectively), depending

on Yt and an unknown parameter vector � of dimension p.
dWt is the increment of d-dimensional standard Brownian

motion. We assume that the conditions under which the SDE

can be solved for Yt are satisfied (Øksendal, 1995).

Often, Yt will consist of both observable and unobserv-

able components. To deal with this, we define Yt = (Xt , Zt )
′,

where Xt defines the observable part and Zt the unobservable

part of the system. Note that Xt and Zt have dimensions d1

and d2 respectively such that Yt has dimension d = d1 + d2.
We assume that the process Xt will be observed at a finite

number of times and the objective is to conduct inference

for the (unknown) parameter vector � on the basis of these

partial and discrete observations. In practice it is necessary to

work with the discretized version of (1), given by the Euler-

Maruyama approximation,

�Yt = μ(Yt , �)�t + β
1
2 (Yt , �))�Wt , (2)

where �Wt is a d dimensional iid N (0, I�t) random vector

and �t is a small scalar.

Now suppose we have measurements xτi at evenly spaced

times τ0, τ1, . . . , τT with intervals of length �∗ = τi+1 − τi .

Then put �t = �∗/m for some positive integer m ≥ 1. By

choosing m to be sufficiently large, we can ensure that the

discretization bias is arbitrarily small, but this also introduces

the problem of m − 1 missing values in between every pair

of observations.

We deal with these missing values by dividing the en-

tire time interval [τ0, τT ] into mT+1 equidistant points τ0 =
t0 < t1 < · · · < tn = τT . Altogether we have d1T (m − 1) +
d2(mT + 1) missing values which we substitute with simu-

lations Yti . We refer to the collection of simulated data and

observations as the augmented data. Eraker (2001) denotes

by Ŷ the d × (n + 1) matrix obtained by stacking all ele-

ments of the augmented data, that is

Ŷ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,t0 X1,t1 . . . x1,tm X1,tm+1
. . . x1,tn

x2,t0 X2,t1 . . . x2,tm X2,tm+1
. . . x2,tn

...
...

...
...

...

xd1,t0 Xd1,t1 . . . xd1,tm Xd1,tm+1
. . . xd1,tn

Z1,t0 Z1,t1 . . . Z1,tm Z1,tm+1
. . . Z1,tn

...
...

...
...

...

Zd2,t0 Zd2,t1 . . . Zd2,tm Zd2,tm+1
. . . Zd2,tn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We now let Y k = (Xk, Zk) denote the kth column of Ŷ .

The joint posterior density of parameters and augmented data

is given by

π (Ŷ , �) ∝ π (�)π (Z0)
n−1∏
k=0

π (Y k+1|Y k, �), (3)

where π (�) is the prior density of the parameter vector,

π (Z0) is the prior density of Z0 and

π (Y k+1|Y k, �) = φ(Y k+1; Y k + μk�t, βk�t) (4)

Here, μk = μ(Y k, �), βk = β(Y k, �) and φ(·; ψ, 	) de-

notes the Gaussian density with mean ψ and variance matrix

	. Note that π (Y k+1|Y k, �) is the transition density obtained

from the Euler discretization.

We have formulated in (3) the joint posterior for the model

parameters as well as observed and unobserved data, but

real interest will usually be in the distribution (�, Ŷ\Dn|Dn)

where Dn = (x0, xm, . . . , xn) denotes the observed data (up

to time tn). We now turn our attention to sampling this distri-

bution, focusing on three MCMC schemes in particular. As

discussed in Tanner and Wong (1987), inference may pro-

ceed by alternating between simulation of parameters condi-

tional on augmented data, and simulation of the missing data

given the observed data and the current state of the model pa-

rameters. As the number of unobservables is typically large,

a Gibbs sampler is a particularly convenient way of sam-

pling from (3). However, as augmentation increases, high

dependence between missing data and parameters results in
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arbitrarily slow rates of convergence. Further, as new data

become available, the sample of parameter values must be

discarded, and a new sample must be created by restarting

the Gibbs sampler from scratch to include new observations.

As each new observation arrives, our proposed simulation

filter samples a new (�∗, (Ŷ\Dn)∗) in two stages: first �∗ is

sampled from a suitable proposal and then (Ŷ\Dn)∗ is sam-

pled from a tractable approximation to (Ŷ\Dn)|�∗, Dn . By

simulating the latent data to be consistent with �∗, the de-

pendence between them is overcome. For further discussion

of MCMC methods in the context of Bayesian analysis of

diffusions, see Roberts and Stramer (2001) and Elerian et al.

(2001).

3 Gibbs sampling

3.1 Single site Gibbs sampler

Here we consider the case in which the Gibbs sampler updates

one column of Ŷ at a time and refer to this algorithm as the

single site Gibbs sampler. We now adopt the notation where

π denotes all proper densities and p denotes π in an un-

normalised form. For k �= 0, n, the full conditional for Y k

is

π (Y k |Y k−1, Y k+1, �) ∝ p(Y k |Y k−1, Y k+1, �) (5)

where

p(Y k |Y k−1, Y k+1, �) = φ(Y k ; Y k−1 + μi−1�t, βi−1�t)

× φ(Y k+1; Y k + μi�t, βi�t).

At iteration s of the Gibbs sampler one then draws

Y k ∼ π (Y k |Y k−1, Y k+1, �)

where Y k−1 is obtained at iteration s and Y k+1 at iteration

s − 1. For nonlinear diffusions Eraker (2001) suggests that

when k is not a multiple of m, Y k is updated using a

Metropolis-Hastings (M-H) step with proposal density

q(·|Y k−1, Y k+1, �)

= φ

(
· ;

1

2
(Y k−1 + Y k+1),

1

2
�tβ(Y k−1, �)

)
. (6)

Eraker motivates this choice by proving that

q(Y k |Y k−1, Y k+1, �) → π (Y k |Y k−1, Y k+1, �) as �t → 0.

When k divides m we only need to simulate the d2 ele-

ments corresponding to Zk . Again, we use a M-H step and

proposal density given by (6) but further conditioned on the

observation xk . This leaves the two special cases, namely

k = 0 and k = n. Using (3), the full conditional of Z0 is

clearly proportional to π (Z0)π (Y 1|Y 0, �) and a M-H step

can be implemented to sample this distribution. When k = n,

the full conditional of Zn is given by π (Y n|Y n−1, �) further

conditioned on the observation xn and direct sampling from

this distribution is possible. For a detailed discussion see

Golightly and Wilkinson (2005).

3.2 Blocking strategies

Elerian et al. (2001) show that updating one column of Ŷ at

a time leads to poor mixing due to high correlation amongst

the latent data and recommend updating missing values in

blocks of random size. We now consider an algorithm where

the Gibbs sampler updates latent values in blocks of size

2m + 1 and we refer to this algorithm as the block Gibbs

sampler. Note that in the case of complete observation, there

is a much simpler version of this algorithm using blocks of

size m − 1, but we do not present that here.

Consider times t j , tM and tM+ where j is an integer mul-

tiple of m, M = j + m and M+ = M + m. Note that these

times correspond to the observations, x j , x M and x M+
. Treat-

ing Y j and Y M+
as fixed, the full conditional for the latent

path in (t j , tM+ ), Y j+1, . . . , Z M , . . . , Y M+−1, is

π (Y j+1, . . . , Z M , . . . , Y M+−1|Y j , x M Y M+
, �)

∝
M+−1∏

i= j

π (Y i+1|Y i , �). (7)

By sampling this distribution for j = 0, m, . . . , n − 2m,

the use of overlapping blocks ensures that all of the Z j and

(except Z0 and Zn) get updated sufficiently often. Naturally,

the end-points of the process corresponding to the unob-

served component, Z0 and Zn, must also be updated. For

every sweep of the sampler we fix Y m and draw from

π (Z0, Y 1, . . . , Y m−1|x0, Y m, �) ∝
m−1∏
i=0

π (Y i+1|Y i , �) (8)

and fix Y n−m and draw from

π (Y n−m+1, . . . , Y n−1, Zn|Y n−m, xn, �)

∝
n−1∏

i=n−m

π (Y i+1|Y i , �), (9)

thus ensuring that Z0 and Zn are updated.

Unfortunately, sampling Y j+1, . . . , Z M , . . . , Y M+−1

directly is not possible. The Euler scheme allows handling
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of the likelihood between two consecutive values of the

process (since we have a linear Gaussian structure in

this case). However, obtaining the conditional density of

missing values between two given observations that are 2m
steps apart, under the nonlinear structure of the underlying

diffusion process, is complicated. To deal with this problem,

we use a M-H step and construct a proposal distribution by

adapting a method proposed by Durham and Gallant (2002),

(see also Elerian et al., 2001) which they refer to as the

“modified bridge” approach.

3.3 Modified diffusion bridge

Consider first the task of sampling Y j+1, . . . , Y M−1, Z M con-

ditional on Y j , x M and �. For a fully observed diffusion, Xt ,

Durham and Gallant (2002) draw X j+1, . . . , X M−1 from a

Gaussian density based on the Euler scheme conditional on

x j and x M . We now adapt their proposal to our partially ob-

served diffusion Yt . That is, treating Y j and x M as fixed, we

draw Y k+1, for k = j, . . . , M − 2, from a Gaussian approx-

imation to π (Y k+1|Y k, x M , �),

π̃ (Y k+1|Y k, x M , �) ∝ π (Y k+1|Y k, �)π̃ (x M |Y k+1, �)/

π̃ (x M |Y k, �). (10)

Here π (Y k+1|Y k, �) is the usual one step ahead Euler transi-

tion density given by (4), π̃ (x M |Y k+1, �) and π̃ (x M |Y k, �)

are given by a much cruder Euler approximation,

π̃ (x M |Y k+1, �) = 
(x M ; xk+1 + μx (Y k+1, �)
+,

βxx (Y k+1, �)
+), (11)

and

π̃ (x M |Y k, �) = φ(x M ; Xk + μx (Y k, �)
−,

βxx (Y k, �)
−) (12)

where 
+ = (M − k − 1)
t, 
− = (M − k)
t and we

partition μ(Y k, �) and β(Y k, �) as

μ(Y k, �) =
(

μx (Y k, �)

μz(Y k, �)

)
,

β(Y k, �) =
(

βxx (Y k, �) βxz(Y k, �)

β zx (Y k, �) β zz(Y k, �)

)
.

Although (11) is not linear Gaussian, we can approximate

it further by noting that μ and β are locally constant (by

assumption). We therefore estimate μk+1 and βk+1 by μk

and βk respectively, to give

π̃ (x M |Y k+1, �) = φ(x M ; Xk+1 + μx (Y k, �)
+,

β(Y k, �)
+). (13)

The approximate joint density of Y k+1 and x M (conditional

on Y k and �) can then be found using standard multivari-

ate Normal theory (see for example, page 21 of Gamerman,

1997). We obtain,

(
Y k+1

x M

)
∼ Nd+d1

{(
Y k + μk�t

Xk + μx
k �

−

)
,

(
βk�t Ck�t

C ′
k�t βxx

k �−

)}
(14)

where C ′
k = (βxx

k , βxz
k ). Conditioning (14) on x M and sim-

plifying yields,

π̃ (Y k+1|Y k, x M , �) = φ(Y k+1; Y k + ηk, σk), (15)

ηk =
(

1

M − k

)
×

(
x M − Xk

μzz
k (M − k)�t + β zx

k

(
βxx

k

)−1(
x M −

[
Xk + μxx

k (M − k − 1)�t
])

)

σk = �t

(
1

M − k

)

×
(

(M − k − 1)βxx
k (M − k − 1)βxz

k

(M − k − 1)β zx
k (M − k)β zz

x − β zx
k

(
βxx

k

)−1
βxz

k

)
.

Hence, drawing recursively from (15) for k = j, . . . , M − 2

gives a diffusion bridge, y j+1, . . . , Y M−1 conditioned to start

at Y j and finish at x M . Thus (15) can be used as a proposal

density in a M-H step inside the block Gibbs algorithm. How-

ever, a more efficient proposal density can be found by not-

ing that in the block Gibbs algorithm we can also condition

on Y M+. We therefore construct the Gaussian approxima-

tion, π̃ (Y k+1|Y k, x M , Y M+
, �) by first writing the approxi-

mate joint density of Y k+1, x M and Y M+, conditional on Y k

and �,

⎛⎝ Y k+1

Y M+

x M

⎞⎠

∼ N2d+d1

⎧⎨⎩
⎛⎝Y k + μk�t

Y k + μk�
∼

Xk + μx
k �

−

⎞⎠,

⎛⎝βk�t βk�t Ck�t
βk�t βk�

∼ Ck�t
C ′

k�t C ′
k�t βxx

k �−

⎞⎠⎫⎬⎭
(16)

where �∼ = (M+ − k)�t . Conditioning (16) on x M and

Y M+
yields

π̃ (Y k+1|Y k, x M , Y M+
, �) = φ(Y k+1; Y k + η′

k, σ
′
k) (17)
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where

η′
k = μk�t + �t(βk, Ck)

(
βk�

∼ Ck�t

C ′
k�t βxx

k �−

)−1

×
(

Y M+ − [Y k + μx
k �

∼]

x M − [Xk + μx
k �

−]

)

σ ′
k = βk�t − �t(βk, Ck)

(
βk�

∼ Ck�t
C ′

k�t βxx
k �−

)−1
(

βk

C ′
k

)
�t.

Naturally, Z M must also be simulated and this is achieved by

drawing from a Gaussian approximation,

Z M ∼ π̃ (Z M |Y M−1, x M , Y M+
, �). (18)

We use the density (17) as a proposal distribution inside

the block Gibbs algorithm. First, we propose Y k+1
∗ for k =

j, . . . , M − 2 recursively from π̃ (Y k+1
∗ |Y k

∗ , x M , �). Next,

we draw the mid-point, Z M
∗ , from π̃ (Y k+1

∗ |Y k
∗ , x M , Y M+, �).

We are then tasked with proposing Y M+1
∗ , . . . , Y M+−1

∗ . We

achieve this by drawing Y k+1
∗ for k = M, . . . , M+ − 2 from

π̃ (Y k+1
∗ |Y k

∗ , Y M+
, �); that is, from the modified bridge den-

sity conditioned to start at Y M
∗ , finish at Y M+

and which is

easily seen to be

π̃ (Y k+1
∗ |Y k

∗ , Y M+
, �)

= φ

(
Y k+1; Y k

∗ + Y M+ − Y k
∗

M+ − k
,

M+ − k − 1

M+ − k
β(Y k

∗ , �)�t

)
.

(19)

We let q(Y j+1
∗ , . . . , Z M

∗ , . . . , Y M+−1
∗ |Y j , x M , Y M+

, �) de-

note the transition density for the move. This density is given

by

π (Z M
∗ |Y M−1

∗ , x M , Y M+
, �)

M−2∏
k= j

π̃ (Y k+1
∗ |Y k

∗ , x M , Y M+, �)

×
M+−2∏
k=M

π̃ (Y k+1
∗ |Y k

∗ , Y M+
, �). (20)

Hence, if the chain is currently at Y j+1, . . . , Z M , . . . ,

Y M+−1, we accept a move to Y j+1
∗ , . . . , Z M

∗ , . . . , Y M+−1
∗ with

probability min{1, A} where,

A =
∏M+−1

k= j π (Y k+1
∗ |Y k

∗ , �)∏M+−1
k= j π (Y k+1|Y k, �)

× q(Y j+1, . . . , Z M , . . . , Y M+−1|Y j , x M , Y M+
�)

q(Y j+1
∗ , . . . , Z M∗ , . . . , Y M+−1∗ |Y j , x M , Y M+

, �)
. (21)

Finally, we consider the problem of sampling the remaining

conditionals (8) and (9). A M-H step can be used to sam-

ple these densities—we draw Z0
∗ using a Metropolis random

walk move and then propose Y k+1
∗ for k = 0, . . . , m − 2 from

π̃ (Y k+1
∗ |Y k

∗ , Y m, �) (given by (19) with M+ replaced by m).

We sample (9) by proposing Y k+1
∗ for k = n − m, . . . , n − 2

from π̃ (Y k+1
∗ |Y k

∗ , xn, �), (given by (15) with M replaced by

n) and Zn
∗ from π (Zn

∗ |Y n−1
∗ , xn, �)—the one step Euler tran-

sition density conditioned on xn . Acceptance probabilities for

these moves are computed in the usual way. Further discus-

sion of block Gibbs style algorithms can be found in Chib

et al. (2004).

3.4 Sampling from the full conditional for �

The remaining step in either the single site or block Gibbs

sampler is to sample �(s) conditional on the current state of

� and the augmented data. The general form of π (�|Ŷ ) is

proportional to (3) and if the density cannot be recognised, a

M-H step can be used. For the SV model discussed in Section

3, we use a Metropolis random walk update to sample �.

It may be the case that we require the last c components

of � = (θ1, . . . , θp)′ to be strictly positive. Here we set � =
(λ1, λ2, . . . , λp)′ where

λk =
{

θk, k = 1, . . . , p − c

log(θk), k = p − c + 1, . . . , p

and assume independent proper Uniform priors for each λk .

At iteration s, if our current value is �, we propose �∗ by set-

ting λ∗
k = λk + wk, k = 1, . . . , p where wk ∼ N (0, γk) and

the collection of tuning parameters, γ = (γ1, . . . , γp)′ deter-

mines the precise mixing properties of the resulting Markov

chain.

Now set � = (λ1, . . . , λp−c, exp(λp−c+1), . . . , exp(λp))′.
Then using (3) the likelihood of � (under the Euler scheme)

is

L(�|Ŷ ) =
n−1∏
k=0

π (Y k+1|Y k, �).

Hence at iteration s we accept the candidate value �∗ with

probability

α(�, �∗|Ŷ ) = min

{
1,

L(�∗|Ŷ )

L(�|Ŷ )

}
,

if �∗ is consistent with the prior, and reject the move other-

wise.

The single site Gibbs sampler then has the following al-

gorithmic form:

1. Initialise all unknowns. Use linear interpolation to ini-

tialise Xk . Set the iteration counter to s = 1.
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2. For all k = 0, 1, . . . , n, at iteration s, draw Y k
(s) from its

full conditional:

• For k not an integer multiple of m, draw Y k
(s) using a

M-H step with proposal density given by (6).

• When k is an integer multiple of m but k �= 0, n, use a

M-H step and propose Y k
∗ from (6) further conditioned

on xk .

• When k = 0, draw Y 0
(s) using a M-H step.

• When k = n, draw Y n
(s) directly from its full conditional.

3. Draw �(s) using the Gaussian random walk update out-

lined above.

4. Increment s and return to step 2.

To implement the block Gibbs sampling strategy, step 2

above can be replaced by sampling from π (Y j+1, . . . ,

Z M , . . . , Y M+−1|Y j , x M , Y M+
, �), given by (7), for j =

0, m, . . . , n − 2m using a M-H move with proposal density

given by (20). The end-points of the unobserved process, Z0

and Zn are updated by sampling from (8) and (9) with a M-H

step.

3.5 Convergence properties

As the amount of augmentation, m, increases, one can make

very precise inference about the diffusion coefficient of the

process via the quadratic variation (see Roberts and Stramer,

2001). It is this dependence (between the quadratic varia-

tion and diffusion coefficient) that results in slow mixing

of MCMC algorithms such as the single site Gibbs sam-

pler considered in Section 3.1 (see Amit, 1991, and Eraker,

2001). Shephard and Pitt (1997) found that the chain con-

verges faster by using random block sizes. Though this block

updating method and also the blocking strategy of Section 3.2

are able to help overcome the dependence within the latent

process, dependence between the parameters and latent pro-

cess remains high and convergence will still become arbi-

trarily slow as either m or the number of observations in-

creases. Roberts and Stramer (2001) overcome this depen-

dence in the context of univariate diffusions by transforming

the missing data, giving a partially non-centered parameter-

isation which leads to an irreducible algorithm even in the

limit m → ∞. However, for a d-dimensional diffusion satis-

fying (1), finding such a transformation requires an invertible

function, g : Rd −→ Rd such that

∇g(∇g)′ = β−1.

As stated by Papaspiliopolous, Roberts and Skôld (2003),

this equation is almost always impossible to solve in practice

for general nonlinear multivariate diffusions such as the SV

model considered here.

One possible solution to the dependence problem is to

implement a joint update of the entire latent process and the

parameters in a M-H step (Wilkinson, 2003). This approach

however, results in a very low acceptance rate as the number

of observations increases. Although the proposed simulation

filter relies on a joint update of � and the latent path, by up-

dating sequentially as each observation becomes available,

the sampler does not suffer from a low acceptance rate due to

operating on the process one observation at a time. Further-

more, the joint update ensures that the latent path is consistent

with the proposed diffusion coefficient and therefore depen-

dence between them is overcome and the algorithm does not

break down for large m or a large number of observations.

4 Simulation filter

4.1 Introduction

Recent interest in sequential filtering has arisen due to the

proposal of a class of filters known as ‘particle filters’.

Whereas the use of Monte Carlo filtering to produce

estimates of posterior means and covariances can be traced

back as far as Handschin and Mayne (1969), particle filters

attempt to approximate the complete posterior. Such filters

have been discussed extensively in the context of discrete

time series with unobserved state variables, e.g., Berzuini

et al. (1997), Pitt and Shephard (1999) and Doucet et al.

(2000). Filtering for both parameters and state has been

discussed by Liu and West (2001) and Stroud et al. (2004)

whilst applications involving SDEs have been examined by

Del Moral et al. (2002) and Johannes et al. (2006). We start

by outlining the general filtering approach (in the context of

discretely observed diffusions).

Consider data, D j = (x0, xm, . . . , x j ), (where j is an in-

teger multiple of m) arriving at times t0, tm, . . . , t j such that

at time t j+m , which we denote by tM , new data xM are ac-

companied by m − 1 missing values, X j+1, . . . , X M−1, and

m values, Z j+1, . . . , Z M−1, ZM corresponding to the unob-

served component. As each observation becomes available

we are interested in the on-line estimation of the unknown

parameter vector, �.

We assume that we have a sample of size S from the

distribution π (�, Z j |D j ), which we denote by π (�, Z j ).

At time tM , we observe xM . Assimilation of the infor-

mation contained in xM consists of generating a sample,

{(�(s), Z M
(s)), s = 1, . . . , S} from the posterior πM (�, Z M )

which can be found by formulating the posterior for parame-

ters, latent and observed data, then integrating out the latent

data. Using (3) we have

πM (�, Z M ) =
∫

ŶM

π (�)π (Z0)
M−1∏
k=0

π (Y k+1|Y k, �) (22)
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where we define ŶM = (Z0, Y 1, . . . , Y m−1, Zm, . . . , Y M−1)

and is simply the vector of latent values up to time tM . Clearly,

(22) can be written as

πM (�, Z M ) = π j (�, Z j )

∫
ŶM \{Ŷ j }

M−1∏
k= j

π (Y k+1|Y k, �) (23)

where ŶM\{Ŷ j } = (Z j , Y j+1, . . . , Y M−1) and is the vector

of latent values in the interval [t j , tM ). So, at time tM , our

target is

πM (�, Z M ) ∝ π j (�, Z j )
M−1∏
k= j

π (Y k+1|Y k, �) (24)

with Z j , Y j+1, . . . , Y M−1 integrated out.

As π j (�, Z j ) has no analytic form, the particle filter

aims to recursively approximate this density by the swarm

of points or particles, {(�(s), Z j
(s)), s = 1, . . . , S} with each

�(s), Z j
(s) having a discrete probability mass of 1/S. It is as-

sumed that as S → ∞, the particles approximate the fil-

tering density, π j (�, Z j ) increasingly well. Note that the

filter treats the discrete support generated by the parti-

cles as the true (filtering) distribution. Various implemen-

tations of the particle filter are possible such as the basic

sampling/importance resampling (SIR) algorithm of Gordon

et al. (1993) and rejection sampling (Pitt and Shephard,

1999). We focus on a slightly different approach, sampling

(24) by drawing (Z j , Y j+1, . . . , Y M−1, Z M , �) via MCMC,

then discarding all components except (�, Z M ). We refer to

the algorithm as the simulation filter.

4.2 MCMC sampling of parameters and state

At time t j we have a sample of size S, {(�(s), Z j
(s)), s =

1, . . . , S} from π j (�, Z j } and our goal, on observing XM at

time tM , is to generate a sample, {(�(s), Z M
(s)), s = 1, . . . , S}

from πM (�, Z M ). Recall that π j (�, Z j ) cannot be sam-

pled directly and the particle filter treats the discrete sup-

port generated by the sample, {(�(s), Z j
(s)), s = 1, . . . , S},

as the true density. Therefore, basic filtering algorithms ini-

tially propose (�∗, Z j
∗ ) from π j (�, Z j ) by selecting an inte-

ger, u, from {1, . . . , S} and setting (�∗, Z j
∗ ) = (�(u), Z j

(u)).

Such an approach can, however, lead to sample impover-

ishment/depletion. Since parameters remain fixed through

time, only a small number of distinct points proposed from

π j (�, Z j ) may be accepted. Since these points are propa-

gated through to the next time point, this will result in a sam-

ple, {(�(s), Z M
(s)), s = 1, . . . , S} containing only a few dis-

tinct values of each �(s).

Some attempts have been made to avoid impoverishment;

Gordon et al. (1993) suggest adding random perturbations

(or ‘jitter’) to state particles at each time step. Since then, the

concept has been applied to fixed parameters. The idea is that

if a particular value is replicated in the sample a number of

times, it will be replaced by distinct (but similar) values. One

first selects an integer, u, uniformly from the set {1, . . . , S}
and then puts

(�∗, Z j
∗ )′ ∼ N

{(
�(u), Z j

(u)

)′
, h2V

}
(25)

where V is the Monte Carlo posterior variance and the overall

scale of the kernel is a function of the smoothing parameter,

h2 usually dependent on the sample size, S. The effect of

(25) is to replace π j (�, Z j ) in (24), with the smooth kernel

density form,

π̂ j (�, Z j ) =
S∑

s=1

φ
{
(�, Z j )′;

(
�(s), Z j

(s)

)′
, h2V

}
. (26)

Note that this yields the filter’s estimate of πM (�, Z M ) as

π̂M (�, Z M ) ∝ π̂ j (�, Z j ) =
M−1∏
k= j

π (Y k+1|Y k, �). (27)

The choice of h2 in (26) is equivalent to the choice of smooth-

ing parameter in kernel density estimation and a trade off be-

tween under and over smoothing should therefore be made.

Standard rules of thumb for calculating a suitable h2 can be

found in Silverman (1986).

For large datasets however, Liu and West (2001) suggest

that the random disturbances add up to give “information

loss” over time (as the kernel density function is always over-

dispersed relative to the posterior sample by a factor 1 +
h2). To correct this, Liu and West (2001) employ a kernel

shrinkage method by setting

(�∗, Z j
∗ )′ ∼ N

{
a
(
�(u), Z j

(u)

)′ + (1 − a)(�̄, Z̄ j )′, h2V
}

(28)

where a2 = 1 − h2, h2 = 1 − ((3δ − 1)/2δ)2, δ is a discount

factor usually around 0.99 and (�̄, Z̄ j )′ is the Monte Carlo

posterior mean of π j (�, Z j ). For the data considered in

Sections 5.3 and 5.4 we find that using (25) works suffi-

ciently well. See Liu and West (2001) and also West (1993)

for further discussion on kernel smoothing.

Having proposed (�∗, Z j
∗ ), the final step in our MCMC

strategy is to propose Y j+1
∗ , . . . , Y M−1

∗ , Z M
∗ from a suitable

proposal density. We use the modified bridge construct out-

lined in Section 3.3 and draw Y k+1
∗ for k = j, . . . , M − 2

from the density, π̃ (Y k+1
∗ |Y k

∗ , x M , �∗) given by (15). We

then propose Z M
∗ from π (Z M

∗ |Y M−1
∗ , x M , �∗)—that is, the

one step ahead Euler transition density conditioned on xM .
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Hence, if at some iteration, s, of our sampler we have current

value


(s) = (Z j , Y j+1, . . . , Y M−1, Z M , �),

then with probability min{1, A}, where

A =
∏M−1

k= j π (Y k+1
∗ |Y k

∗ , �∗)∏M−1
k= j π (Y k+1|Y k, �)

× π (Z M |Y M−1, x M , �)
∏M−2

k= j π̃ (Y k+1|Y k, x M , �)

π (Z M∗ |Y M−1∗ , x M , �∗)
∏M−2

k= j π̃ (Y k+1∗ |Y k∗ , x M , �∗)
,

(29)

we put 
(s+1) = 
∗ and store 
(s+1) ready to be used at the

next iteration. As with any MCMC sampler, the scheme can

be modified by allowing a number of iterations to be dis-

carded as “burn-in”. After performing a further S iterations,

the desired sample, {(�(s), Z M
(s)), s = 1, . . . , S} is obtained by

dropping out all components of each 
(s) except (�(s), Z M
(s)).

Algorithmically, the simulation filter has the following form:

1. Initialise—Set j = 0. For s = 1, . . . , S:

• Draw �(s) ∼ π (�) and Z0
(s) ∼ π (Z0).

2. MCMC—Set M = j + m. Initialise 
(0). For s =
1, . . . , S:

• Propose (�∗, Zk
∗) using (25).

• Propose Y j+1
∗ , . . . , Y M−1

∗ recursively from (15).

• Draw Z M
∗ ∼ π (Z M

∗ |Y M−1
∗ , x M , �∗).

• Set 
∗ = (Z j
∗ , Y j+1

∗ , . . . , Y M−1
∗ , Z M

∗ , �∗) and put


(s) = 
∗ with probability min{1, A} where A is given

by (29), otherwise put 
(s) = 
(s−1).

• Store 
(s).

3. Pruning—For s = 1, . . . , S:

• Discard all components of each 
(s) except (�(s), Z M
(s)).

4. Set j = j + m and return to step 2.

Thus step 2 performs the update for a given time point

and we run our MCMC scheme as each observation becomes

available, allowing for on-line estimation of �. Further mod-

ifications may be made by thinning the MCMC output at the

expense of running the sampler for longer; R iterations can be

performed before thinning by a factor κ (such that R = κS).

This is done separately for each time point, with the final

posterior sample of size S used as the prior for the next time

point. Note that running our algorithm is no more compu-

tationally intensive than running an MCMC scheme for all

observations simultaneously. Computational cost of the sim-

ulation filter (and also of the single site and block Gibbs

sampler) is reported in Section 5.4.

4.3 Convergence

At every iteration in step 2 of the simulation filter, the cur-

rent path Y j , . . . , Y M is entirely consistent with the current

parameter vector, since both the latent process and � are up-

dated jointly. Hence the dependence between them is over-

come. The appeal of using the modified bridge density to

propose the path is two-fold. Firstly, (15) is Gaussian and

therefore easy to simulate from and evaluate. Also, Chib and

Shephard (2002) show that the estimate of the likelihood

contribution under the modified bridge scheme is simply the

Euler approximation of π (Y M |Y j ) times the expected value

of a likelihood ratio of two predictive models.

Now let Q{Y (m)|Y j , x j+m, �} denote the law of the

stochastic process producing the proposed values Y j+1,

. . . , Y j+m−2, Y j+m−1 in the finite interval [t j , t j+m], and let

P{Y (m)|Y j , x j+m, �} denote the true process. As m → ∞
(and hence �t → 0) the true likelihood of the underlying

model is better approximated and∏ j+m−1
k= j π (Y k+1

∗ |Y k
∗ , �∗)∏ j+m−2

k= j π̃ (Y k+1∗ |Y k∗ , x j+m, �∗)

→ dPY |�
dQY |�∗

{Y∗(m)|Y j
∗ , x j+m, �∗}, (30)

the Radon-Nikodym derivative of the true process with re-

spect to the proposal. Since the modified bridge is simply

a discrete time approximation of the underlying diffusion,

conditioned to start at Y j and finish at x j+m , (30) is non-

singular as the volatility of the proposal matches that of the

true process, in the limit as m → ∞. Hence the acceptance

probability (29) tends to a non-zero limit. For further discus-

sion see Chib et al. (2004).

5 Stochastic volatility

To illustrate our methodology, we examine a simple log-

Gaussian stochastic volatility model of the form

dXt = θ1 Xt dt + Xt exp(0.5Zt )dW1,t

dZt = (θ2 − θ3 Zt )dt + θ4dW2,t
(31)

where dW1,t⊥dW2,t and θ3, θ4 > 0. Note that Xt represents

stock price and Zt corresponds to an unobserved volatility

factor. Similar models have been examined by Andersen and

Lund (1997), Eraker (2001) and Durham and Gallant (2002)

whilst discrete time SV models have been examined by Kim

et al. (1998), Stroud et al. (2004) and Shephard (2005). We
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now implement the (reducible) Gibbs sampling algorithms

of Sections 3.1 and 3.2 and the (asymptotically irreducible)

simulation filter of Section 4.

5.1 Gibbs sampling

Expressing (31) in the form given by (1), we have

μ(Yt , �)=
(

θ1 Xt

θ2 − θ3 Zt

)
, β(Yt , �)=

(
X2

t exp(Zt ) 0

0 θ2
4

)

where � = (θ1, θ2, θ3, θ4)′. By assuming a standard non-

informative prior for �, it is easily seen that π (�|Ŷ ) can

be factorised as

π (�|Ŷ ) = π (θ1|Ŷ )π (θ2, θ3, θ4|Ŷ )

where

π (θ1|Ŷ ) =
n−1∏
k=0

φ
(
Xk+1; Xk + θ1 Xk�t, (Xk)2 exp(Zk)�t

)
and

π (θ2, θ3, θ4|Ŷ ) =
n−1∏
k=0

φ
(
Zk+1; Zk + (θ2 − θ3 Zk)�t, θ2

4 �t
)
.

As these expressions have forms similar to that of the likeli-

hood function for linear regression problems, direct sampling

of π (�|Ŷ ) is possible (see Eraker (2001) for further de-

tails). We assume independent proper Uniform priors for

θ1, θ2, log(θ3) and log(θ4) and sample π (�|Ŷ ) using the

Metropolis random walk update outlined in Section 3.4. Al-

though sampling the full conditionals directly will result in

parameter draws that are less autocorrelated (than when us-

ing the random walk update), mixing will still deteriorate

for large m. Further, for more complicated models, full con-

ditional distributions for the parameters are rarely available

in closed form and methods such as the Metropolis random

walk update considered here become important.

5.2 Simulation filter

We now turn our attention to applying the simulation filter

to the SV model. We first assume that at time t j we have

a sample {(�(s), Z j
(s)), s = 0, . . . , S} from π j (�, Z j ). Then

at time tM , as the observation, x M (M = j + m) becomes

available, we sample πM (�, Z M ) via MCMC. We start by

proposing Y k+1
∗ for each k = j, . . . , M − 2 using recursive

application of (15). Note that (15) can be simplified, as the

SV model considered here is block diagonal and therefore

the transition density, (4), can be factorised as

π (Y k+1|Y k, �) = π (Xk+1|Y k, �)π (Zk+1|Zk, �) (32)

where

π (Xk+1|Y k, �) = φ(Xk+1; θ1 Xk�t, (Xk)2 exp(Zk)�t),

(33)

π (Zk+1|Zk, �) = φ
(
Zk+1; (θ2 − θ3 Zk)�t, �2

4�t
)
. (34)

Then, (15) can be written as

π̃ (Y k+1|Y k, x M , �) = π̃ (Xk+1|Y k, x M )π (Zk+1|Zk, �),

(35)

where

π̃ (Xk+1|Y k, x M ) = φ

(
Xk+1; Xk +

(
x M − Xk

M − k

)
,(

M − k − 1

M − k

)
βxx (Y k, �)�t

)
(36)

and βxx (Y k, �) = (Xk)2 exp(Zk).

Therefore, we can draw Zk+1
∗ , (for k = j, . . . , M − 1)

“blindly”; that is, given (�∗, Z j
∗ ) ∼ π̂ j (�∗, Z j

∗ ), we sim-

ulate Zk+1
∗ ∼ π (Zk+1

∗ |Zk
∗, �∗) using a recursive applica-

tion of (34). Then for k = j, . . . , M − 2, we draw Xk+1
∗ ∼

π̃ (Xk+1
∗ |Y k

∗ , x M ) using (36). We then put 
(s) = 
∗ =
(Z j

∗ , Y j+1
∗ , . . . , Y M−1

∗ , Z M
∗ , �∗) with probability min{1, A}

where A is given by (29). For the Stochastic Volatility model

given by (31), the acceptance probability reduces to

A =
∏M−1

k= j π (Xk+1
∗ |Y k

∗ , �∗)∏M−1
k= j π (Xk+1|Y k, �)

×
∏M−2

k= j π̃ (Xk+1|Y k, x M )∏M−2
k= j π̃ (Xk+1∗ |Y k∗ , x M )

.

(37)

Thus, after initialising with a sample from the prior, we

run our MCMC scheme for each new time point, retaining

{(�(s), Z j
(s)), s = 1, . . . , S} for all j = m, 2m, . . . , n.

5.3 An empirical application

To illustrate the methodology proposed in this paper, we

present estimates of the parameters in the simple log- Gaus-

sian stochastic volatility model. We use data consisting of

1509 weekly observations on the three-month U.S. Treasury

bill rate (August 6, 1967–August 30, 1996). The data were

obtained from the Federal Reserve’s weekly H.15 reports

of market data (see URL http://www.federalreserve.gov/

releases/hl5/data /wf/tbsm3m.txt) and are plotted in Fig. 1.
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Table 1 Posterior means,
medians and 95% posterior
probability intervals for � under
the three MCMC schemes.
Parameters are estimated using
weekly observations of the 3
month Treasury bill rate, Oct. 6,
1967–Aug. 30, 1996

θ1 θ2 θ3 θ4

Single site Gibbs sampler

Mean 0.0008 −0.5489 0.0759 0.4319

Median 0.0008 −0.5423 0.0750 0.4300

95% Interval (−0.0004, 0.0020) (−0.8421, −0.2883) (0.0388, 0.1154) (0.3375, 0.5498)

Block Gibbs sampler

Mean 0.0008 −0.5444 0.0710 0.4303

Median 0.0008 −0.5171 0.0674 0.4210

95% Interval (−0.0003, 0.0021) (−1.0481, −0.1709) (0.0219, 0.1366) (0.3061, 0.6053)

Simulation filter

Mean 0.0008 −0.5505 0.0766 0.4354

Median 0.0008 −0.5644 0.0774 0.4335

95% Interval (−0.0008, 0.0022) (−0.8311, −0.2188) (0.0280, 0.1212) (0.3513, 0.5261)

005100010050
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Fig. 1 Weekly observations of
the 3 month Treasury bill rate,
06/10/1967–30/08/1996,
n = 1509

We implement the Gibbs sampling algorithms and the

simulation filter using the sampling strategies outlined in

Sections 3.1, 3.2 and 4; both the single site Gibbs sampler

and block Gibbs sampler are run for 7.5 million iterations

with the first 2.5 million discarded as burn-in, thinned by a

factor of 500, and the remaining 10,000 iterations are then

used for the main monitoring runs. The simulation filter is run

for 1 million iterations with a thin of 100 (to give S = 10,

000 particles at each time point). Discretization bias is set

by putting m = 5 (and therefore �t = 0.2) giving a total of

13573 latent variables. Results for varying m are reported in

Section 5.4.

The M-H scheme of Section 3.4 requires specification

of the tuning parameters, γ . Although heuristic automated

adaption procedures are possible, in this example, setting

γ = (0.0001, 0.005, 0.005, 0.005)′ seems to produce satis-

factory results. Table 1, Figs. 2–4 provide posterior sum-

maries obtained from each MCMC sheme.

Naturally, the single site Gibbs sampler, block Gibbs sam-

pler and simulation filter have the same unique equilibrium

distribution and running each scheme until convergence will

yield identical parameter estimates. For the U.S. T-bill data

plotted in Fig. 1, both schemes lead to parameter estimates

that are consistent with one another (though the Gibbs sam-

pling algorithms both require a much longer run than the

simulation filter).

As the (estimated) MCMC error is related to the autocor-

relations within the chains, a useful way of assessing the rela-

tive performance of the three algorithms is to study the sam-

ple autocorrelation functions for each parameter. Figure 4

shows the benefits of the simulation filter over each Gibbs

strategy; in Figs. 2 and 3, the sampled values of θ2, θ3 and

θ4 are highly autocorrelated (though the blocking strategy

seems to produce slightly less autocorrelated values than the

single site Gibbs strategy) where as in Fig. 4 we see a clear

reduction of the autocorrelations for each component of �

despite a much shorter run.

5.4 Simulation study

To validate the proposed MCMC scheme, this section

presents evidence on the performance of the estimator of �

in the SV model using synthetic data. Data were simulated

from the SV model with θ1 = 0.001, θ2 = −0.6, θ3 = 0.08

and θ4 = 0.5 (calibrated to match the U.S. short-term in-

terest rate) by using the Euler scheme with a sample time
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Fig. 2 Trace, Density and
Autocorrelation plots for �,
obtained from the output of the
single site Gibbs sampler using
weekly observations of the
3 month Treasury bill rate,
Oct. 6, 1967–Aug. 30, 1996

interval of length 0.001. Every 1000th point was recorded

to give a sample path of 500 observations on the interval

[0, 499].

For m = 2, 10, 15, we run the single site Gibbs sampler

and the block Gibbs sampler for 5.5 million iterations with

tuning parameters, γ = (0.0001, 0.005, 0.005, 0.005)′, thin

by a factor 500 and discard the first 500,000 iterations as

burn-in giving 10,000 iterations as the main monitoring run.

We provide a much longer runs for m = 5; 10 million it-

erations with a thin of 1000. The simulation filter is run for

Table 2 Posterior means,
medians and 95% posterior
probability intervals for �

(estimated on 500 simulated
observations), obtained from the
output of the single site Gibbs
sampler. For m = 2, 10, 15,
results are based on the final
5 million iterations of a single
run of 5.5 million (with a thin of
500). For m = 5, results are
based on 10 million iterations
(with a thin of 1000)

θ1 θ2 θ3 θ4

True values

0.0010 −0.6000 0.0800 0.5000

m = 2

Mean 0.0015 −0.5073 0.0662 0.4163

Median 0.0015 −0.4955 0.0648 0.4119

95% Interval (−0.0003, 0.0032) (−0.9014, −0.1865) (0.0292, 0.1177) (0.2956, 0.5510)

m = 5

Mean 0.0015 −0.5505 0.0718 0.4285

Median 0.0015 −0.5238 0.0687 0.4222

95% Interval (−0.0002, 0.0031) (−1.0499, −0.2123) (0.0277, 0.1352) (0.3004, 0.5926)

m = 10

Mean 0.0015 −0.5807 0.0792 0.4297

Median 0.0015 −0.5687 0.0777 0.4272

95% Interval (−0.0002, 0.0034) (−0.9015, −0.1820) (0.0221, 0.1186) (0.3020, 0.5741)

m = 15

Mean 0.0015 −0.5681 0.0776 0.4426

Median 0.0015 −0.5526 0.0760 0.4225

95% Interval (−0.0003, 0.0033) (−0.8976, −0.1793) (0.0227, 0.1278) (0.3110, 0.5835)
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Table 3 Posterior means,
medians and 95% posterior
probability intervals for �

(estimated on 500 simulated
observations), obtained from the
output of the block Gibbs
sampler. For m = 2, 10, 15,
results are based on the final 5
million iterations of a single run
of 5.5 million (with a thin of
500). For m = 5, results are
based on 10 million iterations
(with a thin of 1000)

θ1 θ2 θ3 θ4

True values

0.0010 −0.6000 0.0800 0.5000

m = 2

Mean 0.0015 −0.5385 0.0703 0.4246

Median 0.0015 −0.5234 0.0682 0.4182

95% Interval (−0.0003, 0.0032) (−0.9628, −0.19959) (0.0252, 0.1267) (0.3057, 0.5813)

m = 5

Mean 0.0015 −0.5319 0.0694 0.4254

Median 0.0015 −0.5048 0.0657 0.4147

95% Interval (−0.0002, 0.0032) (−1.0539, −0.1600) (0.0203, 0.1370) (0.3036, 0.6051)

m = 10

Mean 0.0015 −0.5300 0.0692 0.4187

Median 0.0015 −0.5029 0.0655 0.4096

95% Interval (−0.0002, 0.0033) (−1.0360, −0.1940) (0.0246, 0.1347) (0.3030, 0.5822)

m = 15

Mean 0.0015 −0.5497 0.0718 0.4298

Median 0.0015 −0.5369 0.0700 0.4208

95% Interval (−0.0002, 0.0033) (−0.9690, −0.1879) (0.0236, 0.1266) (0.3242, 0.5713)

m = 2, 5, 10 and 15 for 1 million iterations with a thin of 100

(giving S = 10,000 particles at each time point). Note that

each algorithm is coded in C and executed on a Pentium IV

1.8 GHz processor. Computational times for the single site

Gibbs sampler, block Gibbs sampler and simulation filter for

a dataset of length 500, with m = 15 and 1 million iterations

are 1370, 1410 and 399 minutes respectively. It is also impor-

tant to bear in mind that should a new observation become

Fig. 3 Trace, Density and
Autocorrelation plots for �,
obtained from the output of the
block Gibbs sampler using
weekly observations of the
3 month Treasury bill rate,
Oct. 6, 1967–Aug. 30, 1996
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Fig. 4 Trace, Density and
Autocorrelation plots for �,
obtained from the output of the
simulation filter using weekly
observations of the 3 month
Treasury bill rate, Oct. 6,
1967–Aug. 30, 1996

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

Density

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Density

0.00  0.05  0.10  0.15  0.20  0.25

0
5

1
0

1
5

Density

0.0  0.2  0.4  0.6  0.8  1.0  1.2

0
1

2
3

4
5

6

Density

Fig. 5 Density plots for �

(estimated on 500 simulated
observations) obtained from the
output of 10 million iterations
(with a thin of 1000) using the
single site Gibbs sampler (solid
line), the block Gibbs sampler
(dotted line) and the simulation
filter with 1 million iterations
and a thin of 100 (dashed line).
m = 5 in all cases
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Fig. 6 Autocorrelation plots for
θ2 and increasing m (estimated
on 500 simulated observations),
obtained from the output of the
final 5 million iterations of a
single run of 5.5 million
iterations (with a thin of 500)
from (a) the single site Gibbs
sampler, (b) the block Gibbs
sampler and (c) the simulation
filter with 1 million iterations
and a thin of 100

Table 4 Posterior means,
medians and 95% posterior
probability intervals for �

(estimated on 500 simulated
observations), obtained from the
output of the simulation filter.
All results are based on a single
run of 1 million iterations with a
thin of 100

θ1 θ2 θ3 θ4

True values

0.0010 −0.6000 0.0800 0.5000

m = 2

Mean 0.0014 −0.5325 0.0676 0.3974

Median 0.0015 −0.5343 0.0688 0.3991

95% Interval (−0.0008, 0.0038) (−0.8729, −0.2004) (0.0285, 0.1085) (0.2502, 0.5767)

m = 5

Mean 0.0016 −0.6113 0.0714 0.4522

Median 0.0014 −0.5719 0.0672 0.4301

95% Interval (−0.0010, 0.0024) (−1.1113, −0.2594) (0.0209, 0.1513) (0.3305, 0.6567)

m = 10

Mean 0.0015 −0.5953 0.0844 0.4752

Median 0.0014 −0.6208 0.0865 0.4745

95% Interval (−0.0010, 0.0040) (−0.9617, −0.1449) (0.0227, 0.1380) (0.2949, 0.6637)

m = 15

Mean 0.0014 −0.5999 0.0854 0.4526

Median 0.0014 −0.6017 0.0842 0.4275

95% Interval (−0.0010, 0.0050) (−0.8750, −0.1353) (0.0171, 0.1533) (0.2614, 0.7315)

available, both Gibbs sampling strategies must be started

from scratch whereas the simulation filter need only be run

for a further 48 seconds to assimilate the new information.

Figures 5, 6 and Tables 2–4 summarise the posterior dis-

tribution; Table 2 gives posterior means, medians and 95%

probability intervals for � estimated from a single run of

the single site Gibbs sampler. Similar descriptive statistics

are provided in Tables 3 and 4, from the output of the block

Gibbs sampler and the simulation filter. We see that all sam-

plers produce estimates that are close to the true parameters

that generated the sample data (given the estimated MCMC

error). Figure 5 shows that running each scheme until con-

vergence yields estimates that are consistent with each other

(though both Gibbs strategies required a much longer run

than the simulation filter). Furthermore, each table demon-

strates the clear advantage of including latent variables in the

estimation framework. As m increases, there is a notable de-

crease in discretization bias. For example, θ2 has a true value

of −0.6 while in Table 3 the simulation filter yields esti-

mates of −0.5325, −0.5953 and −0.5999 for m = 2, 10 and
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15 respectively. Note that there is little difference in results

for m = 10 and m = 15.

Figure 6 shows the advantage of the simulation filter. As

we increase m, the single site Gibbs sampler and block Gibbs

sampler both give a marked increase in the autocorrelations

of θ2 where as the autocorrelation plots for the simulation

filter die down very quickly for all values of m. In addition,

we find that there is little difference between the autocor-

relations obtained under the single site scheme and those

obtained under the block Gibbs scheme. Note that the com-

parison is essentially qualitative rather than quantitative and

there are a number of ways in which each algorithm can be

improved. The comparison is simply intended to illustrate

the inherent problems with a Gibbs sampling approach, and

that the simulation filter overcomes these.

6 Discussion

In this paper, we have provided a sequential, simulation-

based approach to the problem of parameter estimation of

partially and discretely observed multivariate diffusion pro-

cesses.

By considering the analysis of a discretely observed SDE

as a classic missing data problem (Pedersen, 1995), inference

can be problematic due to high dependence between the pa-

rameters and missing data (Roberts and Stramer, 2001). In

fact, as either m (the amount of augmentation) or the num-

ber of observations becomes large, we see arbitrarily slow

rates of convergence of basic algorithms such as the Gibbs

sampler considered in Section 3. Further, if new data should

arrive, conventional MCMC samplers must be started from

scratch in order to obtain a new sample of parameter values.

Our simulation filter allows on-line estimation of the

model parameters, �, which is an essential requirement for

financial models where data arrives almost continuously. As

each new observation arrives our algorithm overcomes the

dependency between � and the latent data by simulating the

latent data to be consistent with each proposed value of �.

Applications of the methodology included a stochastic

volatility (SV) model, though the simulation filter can be

easily applied to general nonlinear multivariate diffusions.

In particular, it should be noted that our methodology does

not rely on the block-diagonal nature of the diffusion matrix

in the SV example. Applications of the simulation filter to

multivariate diffusions which are not block-diagonal can be

found in Golightly and Wilkinson (2006).

Improving the efficiency of the simulation filter remains of

great interest. For example, using a kernel density estimate to

avoid sample impoverishment is somewhat adhoc. Although

there appears to be no easy solution, this is the subject of

ongoing research.
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