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Abstract We introduce a novel Markov chain Monte Carlo

algorithm for estimation of posterior probabilities over dis-

crete model spaces. Our learning approach is applicable to

families of models for which the marginal likelihood can

be analytically calculated, either exactly or approximately,

given any fixed structure. It is argued that for certain model

neighborhood structures, the ordinary reversible Metropolis-

Hastings algorithm does not yield an appropriate solution to

the estimation problem. Therefore, we develop an alternative,

non-reversible algorithm which can avoid the scaling effect

of the neighborhood. To efficiently explore a model space, a

finite number of interacting parallel stochastic processes is

utilized. Our interaction scheme enables exploration of sev-

eral local neighborhoods of a model space simultaneously,

while it prevents the absorption of any particular process to

a relatively inferior state. We illustrate the advantages of our

method by an application to a classification model. In par-

ticular, we use an extensive bacterial database and compare

our results with results obtained by different methods for the

same data.
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1 Introduction

A common problem in Bayesian modelling is the learning of

structural layers of probability models, such as the number of

components in mixture distributions, edge sets of graphical

models, choice of predictor variables in regression, and so on.

Such learning problems are often formulated by separating

the structural layer of a model from the quantitative layer,

which refers to the actual values of the model parameters.

Markov chain Monte Carlo (MCMC) algorithms have gained

a considerable popularity for Bayesian model learning. In

particular, for structural learning where a suitable parametric

dimension of a model is unknown a priori, the reversible

jump MCMC algorithm introduced by Green (1995), has

been extensively applied. A recent survey of Markov chain

methodology suitable for variable-dimensional modelling is

given by Sisson (2005).

Despite of the theoretically solid basis of the MCMC

based approach, complex modelling applications may pose

challenges which lead to practically unacceptable precision

level in the numerical solutions derived by the algorithms.

For instance, estimates of posterior probabilities for models

may fluctuate considerably, or the most relevant model struc-

tures can even remain undetected. Several strategies have

been developed to enhance the performance of the MCMC

for structural learning, e.g. single-chain Metropolis-coupled

MCMC (Geyer and Thompson, 1995), graphical monitoring

of MCMC model composition (Giudici and Castelo, 2003),

proposal improvement (Brooks et al., 2003), parallel coupled

MCMC (Altekar et al., 2004).

Generally, when analytical integration can be incorporated

in MCMC, it often increases the numerical tractability of the

learning problem. This feature can be exploited for a wide va-

riety of learning tasks, such as edge determination for graph-

ical models (Giudici and Castelo, 2003), discovery of gene
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regulatory binding motifs (Jensen et al., 2004), and unsu-

pervised classification of molecular marker data (Corander

et al., 2004). For instance, for complex data sets, the classi-

fication model of Corander et al. (2004) can contain several

millions of quantitative parameters. Learning of such models

using the reversible jump MCMC type algorithms, where the

quantitative parameters are sequentially updated, is numeri-

cally intractable.

We consider here a computational strategy for Bayesian

structural learning of models, where the marginal likelihood

with respect to a prior measure for the quantitative parame-

ters can be calculated analytically, for an arbitrary value of

the structural layer. It is further assumed that the structural

layer has a finite set of distinct values, referred to as the model

space. Applicability of our strategy is further widened if also

analytical approximations to the marginal likelihood are ex-

ploited, in a similar fashion as in the methods discussed in

Sisson (2005).

It is generally recognized that MCMC methods are a pre-

ferred alternative to direct optimization algorithms, due to

the tendency of the latter to be trapped at local maxima.

However, for many structural learning problems, the target

distribution is highly multi-modal, and even the MCMC al-

gorithms may experience difficulties in identifying the most

relevant areas of the model space. Also, the neighborhood

structure of the model space may yield an unexpected ob-

stacle for convergence of the MCMC method in practice.

To avoid such problems, Corander et al. (2006) developed a

parallel approach specific to unsupervised classification on

a heuristic basis. Here, we establish consistency of an anal-

ogous approach to the general model learning problem for

discrete spaces.

The structure of the paper is as follows. In the next

section we formulate the Bayesian structural model learn-

ing problem. In Section 3 we establish the consistency

of a novel non-reversible MCMC estimation algorithm.

Numerical examples concerned with unsupervised clas-

sification are considered in Section 4 to illustrate the

preferable features of our method. Some concluding remarks

and possibilities for future research are given in the final

section.

2 Bayesian predictive modelling

Let x denote a generic data set, for which we consider a

finite set {p(· | θδ, δ ∈ �} of probability models. Here δ is

taken as the structural layer of a probability model, while

θδ ∈ �δ represents the quantitative layer, taking values on

a space dependent on the specific structure. The Bayesian

approach (see, e.g. Schervish, 1995) to learning plausibilities

of the elements of � on the basis of the observed x, specifies

formally the predictive, or marginal data distribution as the

mixture

p(x) =
∑
δ∈�

p(δ)p(x | δ)

=
∑
δ∈�

p(δ)

∫
�δ

p(x | θδ)dμ(θδ), (1)

where μ(θδ) is a prior probability measure on the Borel space

(�δ, τ ) where τ is a sigma-algebra, and p(x | θδ) is the condi-

tional data distribution, or the likelihood, given θδ . The value

of p(δ) can be interpreted as the prior predictive weight,

or the prior probability of the structural layer δ, such that∑
δ∈� p(δ) = 1.

In structural model learning one is typically interested

in the posterior probabilities of δ ∈ �, as measures of the

model plausibility to explain the information carried by the

data. These are defined according to

p(δ | x) = p(δ)p(x | δ)∑
δ∈� p(δ)p(x | δ)

. (2)

The standard MCMC approach (see Sisson, 2005 or

Robert and Casella, 2005) to estimating (2), or to identifi-

cation of the model structure corresponding to the maximal

ability to explain the data (given by arg maxδ∈� p(δ | x)), is

to construct a Markov chain in �, with the time homoge-

neous distribution corresponding to (2). From a realization

{δt , t = 0, 1, . . .} of such a chain, the posterior probabilities

can be consistently estimated as

pn(δ | x) = n−1
n∑

t=1

I (δt = δ), (3)

such that pn(δ | x) → p(δ | x), as n → ∞. Similarly, the

value of δ maximimizing (2), can be identified from the real-

ization {δt , t = 0, 1, . . .}. Although the estimator (3) can be

straightforwardly applied to even multiple independent real-

izations of a Markov chain, it is subject to certain numerical

deficiencies from the practical point of view. Namely, as it

is based on the relative frequencies of visits to specific mod-

els structures, estimated posterior probabilities may fluctuate

largely due to a large size of the model space � and problems

with the mixing of the chain. Also, when several independent

realizations are used to calculate the estimates, they cannot be

consistently weighted with respect to their representativeness

of the posterior distribution. Therefore, any chains that have

explored only relatively inferior areas of the model space,

will be given too much weight in (3) in practice, although a

consistent estimate is obtained when n tends to infinity.

One of the most commonly used MCMC algorithms for

structural learning is the Metropolis-Hastings (MH) algo-

rithm (see Tierney, 1994; Carlin and Chib, 1995; Chib and
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Greenberg, 1995), which is defined through the following

transition kernel, governing the probability of transition from

the current state δt to a proposal state δ∗ as:

min

(
1,

p(δ∗)p(x | δ∗)

p(δt )p(x | δt )

q(δt | δ∗)

q(δ∗ | δt )

)
, (4)

where q(δ∗ | δt ) is the probability of choosing state δ∗ as

the candidate for the next state at δt , and q(δt | δ∗) is the

probability of restoration of the current state. When the pro-

posal mechanism is deliberately chosen, the algorithm can

be used to generate an aperiodic, irreducible, and reversible

Markov chain, whose time homogeneous distribution equals

the sought posterior distribution (2).

Given its generality, the MH algorithm has been applied to

an extremely wide range of model learning situations. How-

ever, the success of the algorithm for a particular application

is largely dependent of the possibilities to design effective

proposal distributions. For instance, the neighborhood struc-

ture of the proposal space may create barriers for the conver-

gence of the generated Markov chain in practice. The MH

algorithm introduced in Corander et al. (2004) for Bayesian

unsupervised classification, has the property that for certain

move types (merge and split), typically either

q(δt | δ∗)

q(δ∗ | δt )
→ 0, or

q(δt | δ∗)

q(δ∗ | δt )
→ 1, (5)

when the amount of observations in the data x increases. Con-

sequently, the transitions in the chain realization may become

mainly determined by the proposal ratio, while the models’

abilities to predict the data structure are almost ignored. In

general, for any proposal distribution where the neighbor-

hood structure of the space � implies strongly asymmet-

ric proposal ratios, the ordinary MH algorithm may fail to

produce a reasonable approximation to the posterior. Such

transition mechanisms can easily arise for model dimension

changing MCMC samplers, where the number of sample

paths leading away from a state, is to a large extent distinct

from the number of paths leading to the same state.

The ordinary MH algorithm may fail to produce a reli-

able approximation to the posterior also due to large size of

the model space �. Then, a single chain can easily remain

in a subspace of � representing relatively inferior predic-

tive ability of models. Such problems were early recognized

for various applications, and several modifications have been

introduced in the literature, see Sisson (2005). From the the-

oretical point of view, the challenge of utilizing simultaneous

multiple stochastic search processes, is to allow them interact

while preserving the consistency properties.

To resolve the problem with the MH based classification

algorithm of Corander et al. (2004, 2006) introduced heuristi-

cally a non-reversible MH classification algorithm. The rela-

tively superior properties of the approach were demonstrated

for extensive molecular data sets. In the next section we study

formally the properties of an analogous algorithm for the

general Bayesian model learning problem, and establish its

consistency properties.

3 A non-reversible learning algorithm

Let q(· | δ) denote a generic fixed distribution that assigns

probabilities on �, conditional on δ. Although in a typical

implementation of MCMC there are several types of proposal

distributions, these are all assumed here to be fixed, and it is

sufficient to consider them jointly by using the generic nota-

tion. The distribution q(· | δ) is assumed to be such that the

non-reversible Markov chain with state space �, governed

by the transition kernel

min

(
1,

p(δ∗)p(x | δ∗)

p(δt )p(x | δt )

)
, (6)

is aperiodic and irreducible, where δ∗ refers to a value gen-

erated from q(· | δt ). Since the state space � of the chain is

finite, it follows (e.g., Häggström, 2002) that (6) defines also

a positive recurrent Markov chain. The stationary distribution

of such a chain is in general unknown, and not equal to the

posterior (2). However, it is still possible to construct a con-

sistent estimate of (2) from a realization {δt , t = 0, 1, . . .}. In-

terestingly, non-reversible Markov chain samplers have been

earlier shown to have advantageous convergence properties

(Diaconis et al., 2000) for certain types of discrete distribu-

tions.

For an arbitrary n, let �n ⊆ � denote the subspace of

� that has been visited by the process {δt , t = 0, 1, . . . , n},
i.e. δ ∈ �n if δ = δt , for any t = 1, 2, . . . , n. The following

lemma establishes posterior estimates that can be constructed

from {δt , t = 0, 1, . . . , n}.

Lemma 1. Let {δt , t = 0, 1, . . . , n} be a Markov chain de-
fined according to (6). Then, the estimate of posterior prob-
ability mass for all δ ∈ �,

pn(δ | x) = p(x | δ)∑
δ∈�n

p(x | δ)
,

and the estimate of posterior mode,

arg max
δ∈�n

p(δ | x)

are consistent, i.e.

pn(δ | x) → p(δ | x),

arg max
δ∈�n

p(δ | x) → arg max
δ∈�

p(δ | x),

a.s. as n → ∞.
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Proof: The lemma follows from the standard properties of

positive recurrent Markov chains, see Isaacson and Madsen

(1976), or Häggström (2002), as each state of the finite state

space will be visited with certainty as n tends to infinity.

Notice that the general theory ensures the existence of the

stationary distribution under the stated conditions. �

In the non-reversible chain the proposal distribution

q(· | δ) will have a key role, as for the reversible chains.

However, an advantage of using the non-reversible solu-

tion is that the potential asymmetry of the proposal ratio

q(δt | δ∗)/q(δ∗ | δt ) does not affect the behavior of the algo-

rithm, since only the predictive ability of models p(x | δ)

enters the transition kernel. A further advantage is that the

explicit proposal probabilities need not be calculated in the

practical implementation of the algorithm, e.g., reduces the

computation time considerably for certain applications. For

the non-reversible case it is possible to utilize any fixed pro-

posal distribution, such that the conditions of aperiodicity

and irreducibility are satisfied. Then, Lemma 1 applies, and

a consistent estimate of the posterior may be be constructed

from a realization of any number of chains having the time

homogeneous distribution according to (6).

From the practical perspective, the aperiodicity and irre-

ducibility conditions are analogously required even in the

reversible case, and therefore, the same basic rules apply to

the design of the proposal distribution. For reversible chains

it is necessary to design proposal distributions for which the

actual proposal probabilities of arbitrary states can be an-

alytically calculated in the implementation, since they ap-

pear in the transition probability matrix. On the contrary, the

non-reversible chain can utilize any fixed proposal distribu-

tion for which the proposal probabilities can be theoretically

shown to satisfy the given conditions, even if the actual prob-

abilities of arbitrary state transitions cannot be calculated

analytically.

The non-reversible MH algorithm provides considerable

flexibility to the proposal design, and e.g. solves the problem

(5) related to the neighborhood structure of �. Nevertheless,

as in the standard reversible MCMC case, a single chain solu-

tion may be insufficient for complex applications to provide a

reliable approach to the identification of representative areas

of �. Therefore, we define below a more efficient multiple

chain solution for which the consistency of the estimates

pn(δ | x) and arg maxδ∈�n p(δ | x) can still be validated.

Definition 1. Parallel interacting processes. Let {δt j , t =
0, 1, . . . ; j = 1, . . . , m} and {Zt , t = 0, 1, . . .} be m + 1

stochastic processes defined as follows:

(1) Define a sequence of strictly decreasing probabilities

{αt , t = 1, 2, . . .}, such that αt > αt+1, and αt → 0 as

t → ∞.

(2) Define the stochastic process {Zt , t = 0, 1, . . .} as Z0 =
0, and P(Zt = 1) = αt , P(Zt = 0) = 1 − αt , inde-

pendently for t = 1, 2, . . . .

(3) Let δ0 j , j = 1, . . . , m, be arbitrary initial states of

{δt j , t = 0, 1, . . . ; j = 1, . . . , m}. Given a realization

{Zt , t = 0, 1, . . .}, the transition mechanism of the pro-

cesses {δt j , t > 0; j = 1, . . . , m} depends on values of

Zt according to the following.

(4) For each t , such that Zt = 0, transition from δt j to the

next state δ(t+1) j is determined according to the proba-

bility (6), for j = 1, . . . , m.

(5) For each t , such that Zt = 1, transition from δt j to

the next state δ(t+1) j is determined according to the

following distribution over the space Q(�)
t = {δt j , j =

1, . . . , m} of candidate states:

Pt
(
δ(t+1) j = δt j

) = p(δt j )p(x | δt j )∑m
j=1 p(δt j )p(x | δt j )

, (7)

independently for j = 1, . . . , m.

The m processes{δt j , t = 0, 1, . . . ; j = 1, . . . , m} defined

above are not time homogeneous Markov chains. However,

as t → ∞, their transition probabilities converge to those

of the time homogeneous Markov chain defined in (6). The

interaction strategy exploited here, is reminiscent of those

Bayesian particle filtering methods (e.g., Doucet et al., 2000),

where particles are allowed to cluster according to a stochas-

tic process.

The parallel interacting processes are defined to yield an

efficient, yet consistent scheme for exchange of information

between them. Even if consistency of posterior estimates

can be shown for any strictly decreasing sequence of prob-

abilities {αt , t = 1, 2, . . .}, for practical implementation it is

necessary to be more specific about them. In a classification

application, Corander et al. (2006) utilized a logarithmic rate

of decrease with

αt = 0, t = 1; αt = 1

q log t
, t = 2, 3, . . .

where q ≥ 1 can be chosen suitably, for instance q ∈ [5, 10].

As the probabilities αt govern the possibility for the processes

to interact, a reasonable choice of q allows chains to interact

feasibly often and prevents too rapid isolation as t increases.

The logarithmic rate of decrease is similar to the cooling

schedule providing consistency and optimality properties for

simulated annealing, see e.g. Gidas (1985). The multiplica-

tive constant can be given a value from quite a wide range,

though one needs to acknowledge that it is computationally

inefficient to let the chains mix all the time. The general idea

is to let the chains to explore independently of each other sev-

eral directions in the model space for a reasonable amount of
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time, and then investigate which of them have found plausible

areas. The exact lengths of the intervals between interaction

times are not relevant, but if they are too long, then a lot

of computational operations may have been unnecessarily

wasted on chains staying at clearly inferior states.

The role of the proposal distribution used in the last step

of Definition 1 is to let the conditional posterior probabilities

(7) to guide the interaction events. Given the above definition,

the processes have a tendency to coalesce towards the states

which are associated with higher marginal likelihoods. Also,

when multiple model structures with roughly equal marginal

likelihoods are present, the probabilities (7) lead to a more

dispersed proposal distribution.

The following theorem establishes the fact that we can

construct consistent estimates of the posterior mode and the

individual posterior probabilities from a realization of the m
interacting processes.

Theorem 1. The estimates given in Lemma 1 remain con-
sistent for the parallel interacting processes specified in
Definition 1.

The proof will be given in Appendix. Firstly, we investi-

gate a time homogeneous Markov chain with the state space

�, determined by the transition probability matrix P accord-

ing to (6). Secondly, we establish the behavior of the inter-

acting processes between the interaction times, as t → ∞.

4 Numerical illustration

In this section we apply our parallel learning method to a

Bayesian classification model, analyzing a large and well

studied bacterial database and compare our results with re-

sults obtained by other methods. From a statistical perspec-

tive, this application corresponds to the fitting of a large scale

multinomial mixture model, where both the number of com-

ponents and the component specific probabilities for the ob-

servable attributes are unknown parameters. On the other

hand, from the biological perspective the classes of the mix-

ture model represent underlying biologically relevant groups

in the bacterial population.

It widely recognized that mixture models with an un-

known number of components represent generally a tremen-

dous challenge for statistical inference. Also, the particu-

lar suitability of the Bayesian paradigm has been rightfully

acknowledged in this context.

The example material consists of 5313 strains of bacteria

belonging to the family Enterobacteriaceae. Each strain is

characterized by d = 47 binary characters describing the

occurrence (1) or nonoccurrence (0) of certain biochemical

reactions (Farmer et al., 1985). The strains were classified by

Farmer et al. (1985) into 104 nomen species or corresponding

biogroups representing 27 genera. The by far most frequent

species was Escherichia coli comprising 1708 strains, that

is, almost one third of the material.

We have implemented the non-reversible MH algo-

rithm into the BAPS software introduced by Coran-

der et al. (2004), available at http://www.rni.helsinki.

fi/jic/bapspage.html. Corander et al. (2006) utilized

in their classification approach a stochastic partition S =
(s1, . . . , sk) (1 ≤ k ≤ n) of the observed n items in a data set.

The model space � is in this case the space of partitions of

a finite integer n which correspond to all possible classifica-

tion solutions for the data. Under a uniform prior distribution

on �, and certain forms of generalized exchangeability, the

posterior of the partitions equals

p(S | x) = p(x | S)∑
S∈� p(x | S)

, (8)

where the marginal likelihood is determined as

p(x | S) =
k∏

c=1

d∏
j=1

�
( ∑1

l=0 λcjl
)

�
( ∑1

l=0 λcjl + ncjl
) 1∏

l=0

�(λcjl + ncjl)

�(λcjl)
,

(9)

and �(·) is the gamma function. The hyperparameters of (9)

can for this application be given the well-known reference

form

λcjl = 1/2, l = 1, . . . , r j ; j = 1, . . . , d; c = 1, . . . , k, (10)

corresponding to the Jeffrey’s prior.

To search for the posterior optimal classification Corander

et al. (2006) considered MH transition kernel defined as

min

(
1,

p(x | S∗)

p(x | S)

)
, (11)

where S is the current classification and S∗ a proposal clas-

sification in a non-reversible Markov chain with the state

space �. The fixed proposal mechanism uses the following

four different possibilities:� With probability 1/2, merge two randomly chosen classes

sc, sc∗.� With probability 1/2, split a randomly chosen class sc into

two new classes, with cardinalities uniformly distributed

between 1 and |sc| − 1 and with elements randomly chosen

from sc.� Move an arbitrary individual from a randomly chosen class

sc, |sc| > 1, into another randomly chosen class sc∗ .� Choose one individual randomly from each of two ran-

domly chosen classes sc and sc∗ , and exchange them be-

tween the classes.
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Fig. 1 Predictive abilities (loge p(x | S), vertical axis) of the Bayesian classification model for the Enterobacteriaceae data, over 250 iterations of
50 processes all started at the same initial configuration, produced with the reversible (left) and non-reversible (right) MH algorithms

The crucial conditions for the Lemma 1 and Theorem 1,

are the irreducibility and aperiodicity of the Markov chain

defined in (11). The validity of these conditions for the above

type proposal follows from the lemma below.

Lemma 2. Let q(· | δ) be a generic proposal distribution on
�, which has non-zero entropy on �. Assume p(δ) > 0, for
all δ ∈ �. Then the finite Markov chain defined by (6) is
irreducible and aperiodic.

Proof: We prove first irreducibility. Assume that the pos-

terior is non-negative, p(δ | x) > 0, δ ∈ �. Hence, there is a

positive probability to propose a sequence of state transitions

leading from any δ ∈ � to any other state δ∗ ∈ �. Second,

we show the aperiodicity. If an irreducible Markov chain is

periodic, then all diagonal elements in its transition matrix

are zero. Thus, if the Markov chain defined by the current

algorithm is periodic, there exists no δ ∈ �, such that the ac-

ceptance probability is smaller than unity for some proposed

candidate state. But this will happen if and only if the poste-

rior ratio (6) is always larger than one on �, which is clearly

impossible. Therefore, there will always be at least one non-

zero element on the diagonal of the transition matrix, and the

finite Markov chain cannot be periodic. �

For the elementary facts on Markov chains used in the above

lemma we refer to Isaacson and Madsen (1976).

One of the main motivations behind the non-reversible

classification algorithm introduced by Corander et al. (2006)

was the inappropriate behavior of the reversible algorithm of

Corander et al. (2004) observed for large data sets. In Fig. 1,

we illustrate the advantages of a non-reversible approach,

by a comparison of the behavior of the reversible (left) and

non-reversible (right) MH algorithms for the above Bayesian

classification model when applied to the Enterobacteriaceae

data. Both panels of the figure show 250 iterations of 50

processes all started at the same initial configuration of the

classification model, the vertical axis corresponding to the

logarithm of p(x | S). It can be seen that most of the chains

produced with the reversible MH method, tend towards worse

solutions, whereas the non-reversible processes behave in

the opposite way. This situation provides an example of the

impact a scaling effect of the neighborhood of a particular

model δ ∈ � has to the convergence of a reversible Markov

chain.

The interaction strategy we have utilized, enables explo-

ration of several local neighborhoods of the model space

simultaneously, while it does not allow any particular search

process to be absorbed by a relatively inferior state (as com-

pared to the other m − 1 processes) in the long run. Con-

versely, when several modes with roughly equal local masses

exist in the posterior distrbution, the interaction scheme tends

to allow these to be searched, without collapsing the search

into a single neighborhood. In addition, the classification

problem studied in our example illustrates the advantage of

considering a non-reversible MH algorithm, when the re-

versible algorithm leads to practically unacceptable solution

in model learning.

In a series of papers Gyllenberg et al. (1997, 1998,

1999a,b,c) and Gyllenberg et al. (1999) have studied Farmer’s

Enterobacteriaceae and classified it by the method of mini-

mizing stochastic complexity (SC), Bayesian predictive iden-

tification and cumulative classification. The classification

with the least stochastic complexity (SC = 21.2920) con-

tained 63 classes and is described in detail in Gyllenberg

et al. (1999c).

In contrast to the SC-minimizing classification, the

MH-classification obtained by the method described in the

present paper contained 129 classes and had an SC-value of

21.9968. However, the two classifications share a common
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structure. Generally speaking, the larger classes in the SC-

minimizing classification were split into two or more classes

in the MH-classification. The MH-classification contained

61 pure classes (classes containing only one nomen species),

compared with only 15 for the SC-minimizing classification.

In both classifications one third of these were pure E. coli
classes (20 and 5, respectively). Of the pure MH-classes

14 were perfect (containing all the strains of the nomen

species) and 7 almost perfect (lacking a few strains). The cor-

responding figures for the SC-minimizing classification were

5 and 1. In addition, the SC-minimizing classification had 10

classes containing almost all the strains in a nomen species

plus a few odd strains. Such classes did not appear in the

MH-classification.

To summarize, the classification obtained by the

MH-algorithm confirms the established taxonomy of En-
terobacteriaceae, even to a higher degree than the SC-

minimizing classification. Even the deviations from Farmer’s

et al. (1985) taxonomy make sense. E. coli is the most abun-

dant of the Enterobacteriaceae species and it is very hetero-

geneous. It is therefore microbiologically natural to subdi-

vide it into several classes. On the other hand, some of the

MH-classes, as well as SC-classes, collected several species

from the same genus. There is nothing remarkable with that.

The notions of bacterial species and genera are man made

and an objective definition of these concepts is still lacking.

There is therefore no reason to assume that a mathematical

algorithm should produce classes corresponding to species.

5 Discussion

The general non-reversible algorithm we have introduced

here has some important advantages over the standard re-

versible MH approach to exploring posterior probabilities of

models under the current setting. Firstly, the lack of a pro-

posal probability ratio in the transition kernel leads to more

efficient computation and avoids eventual paradoxical be-

havior induced by the reversibility condition when proposal

ratios are strongly asymmetric. Secondly, the posterior esti-

mates based on Lemma 1 are considerably more stable than

the corresponding estimates based on the relative frequency

of visits to a model. Thirdly, the non-reversible algorithm en-

ables a parallel implementation where chains may exchange

information about the posterior distribution in a consistent

manner. Finally, the lack of a proposal probability ratio in

the transition kernel provides a considerable freedom in the

design of proposal mechanisms. This opens also the possi-

bility of using intelligent search operators instead of the ran-

dom type proposals exploited in our classification example.

For instance, the proposal probability of a particular model

structure may be defined to be proportional to its suitability

according some effective heuristic exploratory tools.

Some earlier MCMC methods have exploited analytical

approximations to the marginal likelihood p(x | δ) within the

posterior sampling scheme (see Sisson, 2005). Applicability

of our strategy is clearly further widened if similar approx-

imations are used under the non-reversible MH algorithm.

One of the crucial challenges in modelling based on MCMC

computation is the assessment of the convergence towards the

target distribution. For large scale applications it would be

extremely helpful if the algorithms had some intrinsic intelli-

gence, e.g., in the sense that they could autonomously decide

whether a particular region of a model space is worth further

exploration. Similarly, in a parallel system the available com-

putational resources could be autonomously re-allocated to

concentrate more on learning some specific parts of a model.

A highly valuable feature of such a self-monitoring system

would be the possibility to assess whether continued compu-

tation is expected to provide further gains in the data predic-

tion with a reasonable probability, or should the process be

terminated. Whereas our non-reversible approach provides

quite accessible means for the first two objectives, the final

aspect is more left open for further research.

Appendix

Proof of Theorem 1: Let {Yt } be a Markov chain with ar-

bitrary initial distribution and P (6) as transition matrix.

Then, (Defs. II.1.6,II.1.8, and Lemma III.2.1, in Isaacson

and Madsen, 1976) the probability of ever visiting any state

j from any state i equals unity. Further, let in the sequel

�t ⊆ � denote generally the subpace of � that has been vis-

ited by time t . Define now the first time when {Yt } has visited

every state,

Tδ = min{t | �t = �, Y0 = δ},

and the probability

g(n)
δ = P(Tδ = n).

Clearly, we have
∑∞

n=1 g(n)
δ = 1, for all δ ∈ �. Then, for any

ε > 0, and any δ ∈ � exists an nδ
0(ε) such that

nδ
0(ε)∑

n=1

g(n)
δ > 1 − ε,

that is P(Tδ = nδ
0(ε)) > 1 − ε. We set n0(ε) =

maxδ∈�(nδ
0(ε)).

Let {Xt } be any of the m parallel interacting processes

specified in Definition 1. We examine here the behavior

of this single process, as it is sufficient to establish the

consistency properties. Let i = 1, 2, . . . and define Zti = 1,

Springer
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ti+1 = min{t > ti | Zti+1
= 1}. Let τi = ti+1 − ti − 1, i.e. τi

is the number of transitions of {Xt } that are distributed ac-

cording P in t = ti , ti + 1, . . . , ti+1. We may now establish

the following behavior of τi :

P(τi ≥ n0(ε)) = 1 − P(τi < n0(ε))

= 1 −
n0(ε)−1∑

t=0

P(τi = t)

= 1 −
n0(ε)−1∑

t=0

(
αti +t+1

ti +t∏
s=ti +1

(1 − αs)

)

≥ 1 −
n0(ε)−1∑

t=0

αti +t+1

≥ 1 − n0(ε) max{αt | t = ti + 1, . . . , ti + n0(ε)}.

Given the previous results, for any ε > 0, there exists an

i > i0, such that P(τi ≥ n0(ε)) > 1 − ε. Further, for any ε >

0, and i sufficiently large,

P((�ti+1
\�ti ) = �)

=
∑

δ∈Q(�)
ti

P((�ti+1
\�ti ) = �, Xti +1 = δ)

=
∑

δ∈Q(�)
ti

P((�ti+1
\�ti ) = � | Xti +1 = δ)P(Xti +1 = δ)

≥
∑

δ∈Q(�)
ti

P(τi ≥ n0(ε))P((�ti+1
\�ti ) = � | Xti +1 = δ)

P(Xti +1 = δ)

≥ (1 − ε)2
∑

δ∈Q(�)
ti

P(Xti +1 = δ)

≥ (1 − ε)2.

Thus, the probability that the interacting processes visit every

possible state of � between the interaction times, converges

to unity, as αt → 0 and ti → ∞. This fact is then sufficient

to establish the result stated in Theorem 1.

Acknowledgment The work of J.C. and T.K. was supported by the
Centre of Population Genetic Analyses, University of Oulu, Finland
(Academy of Finland, grant no. 53297).

References

Altekar G., Dwarkadas S., Huelsenbeck J.P., and Ronquist F. 2004. Par-
allel metropolis-coupled Markov chain Monte Carlo for Bayesian
phylogenetic inference. Bioinformatics 20: 407–415.

Brooks S.P., Giudici P., and Roberts G.O. 2003. Efficient construction of
reversible jump Markov chain Monte Carlo proposal distributions.
J. Roy. Statist. Soc. B 65: 3–39.

Carlin B.P. and Chib S. 1995. Bayesian model choice via Markov-chain
Monte Carlo methods. J. Roy. Statist. Soc. B 57: 473–484.

Chib S. and Greenberg E. 1995. Understanding the Metropolis-Hastings
algorithm. Amer. Statist. 49: 327–335.

Corander J., Gyllenberg M., and Koski T. 2006. Bayesian unsupervised
classification framework based on stochastic partitions of data and
a parallel search strategy. Submitted to J. Statist. Comput. Simu-
lation.

Corander J., Waldmann P., Marttinen P., and Sillanpää M.J. 2004. BAPS
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