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Abstract Although Hartigan (1975) had already put forward
the idea of connecting identification of subpopulations with
regions with high density of the underlying probability dis-
tribution, the actual development of methods for cluster anal-
ysis has largely shifted towards other directions, for compu-
tational convenience. Current computational resources allow
us to reconsider this formulation and to develop clustering
techniques directly in order to identify local modes of the
density. Given a set of observations, a nonparametric esti-
mate of the underlying density function is constructed, and
subsets of points with high density are formed through suit-
able manipulation of the associated Delaunay triangulation.
The method is illustrated with some numerical examples.
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1 Clusters as regions of high density

1.1 Introduction

Consider the problem of grouping a set of data, represented
by d quantitative variables observed on n subjects, to form
a certain number of data clusters. Among the various alter-
native formulations of the concept of ‘cluster’ itself, one is
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based on the definition of a cluster as a region of high density
of the underlying density function. This approach goes back
to Hartigan (1975, p. 205), who stated:

“Clusters may be thought of as regions of high density
separated from other such regions by regions of low
density”.

Although this idea is partly explored by Hartigan (1975,
Chapter 11), particularly by showing how the above concept
generates a hierarchical structure of ‘high-density clusters’,
which therefore form a tree, the mainstream development of
that book as well as most of the related literature hinges on the
concept of distance, in various specifications. Among the few
papers pursuing Hartigan’s idea, one important contribution
is that of Wong and Lane (1983), who use the k-NN density
estimate as the basis for the clustering procedure. However,
the tree structure of the clusters is not examined in any detail.

One reason for this preference of the mainstream cluster-
ing literature in favour of distance based methods is arguably
computational convenience. However, current computational
resources allow us to reconsider Hartigan’s formulation, and
develop it into a viable methodology. Therefore, the quantity
of interest will be the density value at each observation, in-
stead of the distance between observations. This perspective
does not imply that the method is completely independent of
distances, as explained in more detail later on, but there is a
shift of target in the driving criterion.

The idea of using a density estimate as the basis for clus-
tering methods has been adopted in various recent papers,
in both the statistical and the machine learning literature.
Within the former group, Stuetzle (2003) presents a method
closely related to the minimum spanning tree of a sample,
which exploits the connection between this tree and nearest
neighbour density estimation. More directly related to den-
sity estimation are the papers of Cuevas et al. (2000, 2001),
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who attempt to find connected sets of the form f̂ > c for a
single level c of the density. In the machine learning liter-
ature, a variant of single-level mode analysis is the method
of Ester et al. (1996). A method which extends the previ-
ous one is the OPTICS algorithm by Ankerst et al. (1999),
which leads to the construction of a tree of clusters; how-
ever, as pointed out by Stuetzle (2003), “the idea behind the
algorithm is hard to understand”.

In the rest of this section we present in a somewhat more
detailed manner the idea of high-density clusters for a given
density function f (x), and examine some of the associated
formal properties, building on a preliminary formulation of
these ideas developed by Rosolin et al. (2003). These con-
cepts are subsequently given a sample analogue, based on
a nonparametric estimate f̂ (x) of f (x) and the use of a
Delaunay triangulation of the observed points. Connected
subsets of the triangulation represent the core parts of the
clusters in our methodology. The second stage of the proce-
dure allocates the remaining observations that are not part of
the cluster cores.

1.2 Modes of density and some properties

Consider a d-dimensional density function f (x), x ∈ R
d .

To ease exposition, assume that f is differentiable every-
where; this assumption may be relaxed, with some technical
complications.

For any positive constant c, we section the function f at
level c, thus splitting R

d into two sets, one having density
up to c, and the other with density above c. The latter set
may be connected or not. If it is not connected, then we have
detected two or more regions of high density. The plot in
Fig. 1 illustrates this idea in a simple case with d = 1, and

a specific choice of c leading to two connected sets. Clearly,
the number of connected sets varies with c.

While the definition of R(c) and the identification of the
number of its connected components does not change with
the dimension d, the actual evaluation of the number of
components and their detection is increasingly difficult as d
increases above 1.

To be more specific, define

R(c) = {x : x ∈ R
d , f (x) > c}, 0 ≤ c ≤ max f, (1)

and denote its probability by pc = ∫
R(c) f (x) dx . In the left

plot of Fig. 1, pc is represented by the shaded area.
Also define the inverse function cp, which selects the level

c so that P
{

R(cp)
} = p. Note that R(c1) is the entire support

of the distribution and R(c0+) is the point or the set of points
of maximal density.

For any choice of level c, the level set R(c) consists of
a certain number m of connected components. Since at the
same time c is associated with a probability pc, there is a
correspondence between p and the associated number m of
components of R(cp). We define a step function m(p) which
gives the number of connected components of R(cp) as p
varies in (0, 1). For p = 0 and p = 1, we define m(p) = 0.
The right plot of Fig. 1 shows the function m(p) correspond-
ing to the density on the left.

The function m(p) enjoys some useful properties re-
lated to the modes of the density function, which is why
we refer to it as the ‘mode function’. To fix notation, de-
note by x̃1, . . . , x̃M the set of modes of f ; without loss
of generality, assume that the points x̃ j are distinct and
f (x̃1) ≥ f (x̃2) ≥ · · · ≥ f (x̃M ). To avoid technical compli-
cations in the subsequent discussion, we assume that there
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Fig. 1 Density function and set R(c) for a given c (left) and corresponding function m(p) (right)
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are no saddle points at which f (x) takes on the same value
as any f (x̃ j ). The following properties may then be obtained
immediately:

1. For all p ∈ (0, 1), we have m(p) ≥ 1.
2. If f is unimodal, that is, M = 1, then m(p) ≡ 1 for 0 <

p < 1.
3. The total number of increments of m(p), counted

with their multiplicity, is equal to the number of
modes, M ; a similar statement holds for the number of
decrements.

4. The increment of m(p) at a given point p equals the
number of modes whose ordinate is cp.

The increments of m(p) correspond to the appearance of
one or more modes of f , whereas the decrements corre-
spond to the fusion of two or more groups associated with
existing modes. As c varies, the connected components of
R(c) generate a hierarchical structure which may be repre-
sented in the form of a tree. Since these facts have been
pointed out by Hartigan (1975, Section 11.13) and further
discussed by Stuetzle (2003), we do not replicate the de-
tails here. However, the tree structure is illustrated in the
subsequent numerical examples.

As an aid to interpretation of the tree function, note that,
if p′, p′′ (where p′ < p′′) are discontinuity points of m(p),
and m(p) is constant in the interval (p′, p′′), then

p′′ − p′ =
∫

R(cp′′ )\R(cp′ )
f (x) dx .

Hence, the difference p′′ − p′ gives an indication of how
prominent the modes of level cp′ are with respect to the
others, where the idea of prominence refers not to the height
of the mode, but to the probability mass associated with the
regions R(·). Figure 2 illustrates this fact for the two non-

D
en

si
ty

 fu
nc

tio
n

Fig. 2 Density function and areas associated with two discontinuity
points of the mode function in right panel of Fig. 1

boundary discontinuity points of the right panel of Fig. 1, by
showing with two levels of grey the areas corresponding to
p′ and p′′ − p′.

2 Spatial tessellation and connected components

2.1 Voronoi tessellation and Delaunay triangulation

For the subsequent development we need to recall briefly a
few basic concepts of spatial tessellation; for an extensive
treatment, readers are referred to the treatise of Okabe et al.
(1992).

Given a set S of points x1, x2, . . . , xn of R
d , the Voronoi

tessellation is defined as the partition of R
d formed by n

sets V (x1), . . . , V (xn) such that, for a generic point x of R
d ,

x ∈ V (xi ) if xi is the closest element of S. Identification
of the closest point requires the specification of a distance
function; this is usually assumed to be the Euclidean distance,
and it is the one adopted here.

The regions V (x1), . . . ,V (xn) are polyhedra in R
d , possi-

bly unbounded. The facets of these polyhedra are formed by
polygons of R

d−1, and their edges by lines in R
d−2.

From the Voronoi tessellation, a second tessellation can be
formed as follows. Any two elements xi and x j of S are con-
nected by a line segment if the corresponding elements V (xi )
and V (x j ) of the Voronoi tessellation share a portion of their
boundary facets. These segments partition the space into a
set of new polyhedra. In many cases, these are simplices, i. e.,
polyhedra formed by d + 1 vertices in R

d ; otherwise, they
may be broken down arbitrarily into simplices. The result is
the associated Delaunay triangulation; the term triangulation
relates to the fact that the simplices are triangles when d = 2.
From a computational viewpoint, the Delaunay triangulation
may be obtained directly, i.e., without first constructing the
Voronoi tessellation.

These concepts are illustrated in the left panel of Fig. 3,
which displays the Voronoi tessellation and Delaunay trian-
gulation for a set of points in R

2.

2.2 Sample analogues of R(c)

Assume that a random sample S = {x1, x2, . . . , xn} is drawn
from a distribution with density f (x), with x ∈ R

d . From this
sample, a nonparametric estimate f̂ (x) of f (x) is obtained.
For subsequent development of the method, it does not really
matter which specific estimator is adopted, provided that f̂ is
positive and finite, at least at the observed points. Clearly, it
is sensible to adopt a method with good statistical properties;
among these, an important requirement is consistency of the
estimation method as n → ∞, for the reason explained at
the end of this section. The corresponding natural choice for
estimating R(c) is given by
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Fig. 3 The left plot displays an
example of Voronoi tessellation
(dashed lines) for a set of points
when d = 2, and superimposed
Delaunay triangulation
(continuous lines). The right plot
removes edges of some points
from the original Delaunay
triangulation, keeping points
with f̂ > c for some threshold c

R̂(c) = {x : x ∈ R
d , f̂ (x) > c} , 0 ≤ c ≤ max f̂ .

Since we are interested only in allocation of the data
points, and not of all points in R

d , it is natural to restrict at-
tention to elements of R̂(c) corresponding to the data points,
and then to consider only

S(c) = {xi : xi ∈ S, f̂ (xi ) > c} , 0 ≤ c ≤ max f̂ , (2)

with associated relative frequency

p̂c = |S(c)|/n

where | · | denotes the cardinality of a set. It is easy to show
that p̂c converges almost surely to pc, using theoretical re-
sults ensuring that, under mild conditions, f̂ converges uni-
formly to f as n → ∞; for the latter fact, see for instance
Nadaraya (1965) and Devroye and Wagner (1980).

We recall the argument presented by Wong and Lane
(1983) concerning the property of ‘strong set consistency’ for
set R̂(c) which is shown to be a consistent estimate of R(c)
as n → ∞ provided that a uniformly strongly consistent es-
timate f̂ is adopted. As a consequence, the associated tree
structure of the connected components of R(c) is estimated
consistently.

2.3 Search for connected components

To find the empirical analogue of the mode function m(p),
we must define the sample analogue of the connected com-
ponents of R(c). To this end, we consider the Delaunay tri-
angulation of the sample points after removing the sample
points xi 	∈ S(c) and all edges with at least one vertex among
these points. This step is illustrated in the right-hand panel
of Fig. 3, where the open circles represent observations with
density at or below a given level c.

After removal of edges, some groups of points are con-
nected by a sequence of remaining edges. We call these

groups the connected components of S(c). In most cases,
each group consists of points so that each pair of points in
the group shares one facet of the original Delaunay triangula-
tion, and the union of these facets forms a polyhedron in R

d .
In the case of Fig. 3, we obtain two connected components
and two polyhedra.

The intuitive idea behind this scheme is that, for large n,
each polyhedron approximates a corresponding connected
component of the unobserved set R̂(c). The idea has some
connection to the ‘slice plot’ put forward by Bowman and
Foster (1993), for selecting groups of observations formed of
a given fraction of the sample and having maximal estimated
density.

2.4 Empirical mode functions and cluster tree

The above steps must be performed for a range of values of
c, ideally all 0 < c < max f̂ , but in practice a finite grid of
values is considered. Alternatively, a set of equally spaced
values of p (0 < p < 1) may be scanned, yielding effectively
the same outcome if the grid is sufficiently fine; this is the
route adopted in the following.

For each selected value of p, the set S(cp) is obtained
and the number of its connected components is determined,
as defined above, obtaining the value of empirical mode
function m̂(p).

As already noted at the end of Section 1.2, the increments
of mode function m̂(p) as p ranges from 0 to 1 correspond
to the appearance of new clusters and, vice versa, the decre-
ments correspond to the merging of clusters. Specifically, a
value of p corresponding to an increment of m̂(p) denotes
the ‘birth’ of as many clusters as the increment of m̂(p), and
the elements of S comprising these clusters may be identi-
fied. Similarly, if p∗ is a value of p where m̂(p) decreases,
two or more clusters are merging. In this case, comparison of
the elements constituting Sn(c′) and Sn(cp∗ ), where c′ < cp∗ ,
allows us to detect which groups are merging at level cp∗

and which are their components. Proceeding in this fashion
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Fig. 4 A sample of size 700 of simulated data from four sub-populations. Right plot superimposes contour levels of nonparametric kernel estimate
of the density
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Fig. 5 Simulated data: mode function (left) and corresponding cluster tree (right)

sequentially from p = 0 to p = 1, the whole tree structure
of the clusters is identified.

To illustrate the above procedure, consider the two-
dimensional data displayed in Fig. 4, left panel. There are
700 simulated data points sampled from a mixture of four
subpopulations, whose sizes are 200, 150, 200 and 150, re-
spectively. These subpopulations were chosen so that the
presence of four groups is clearly visible, but at the same
time there is a non-negligible overlap between some groups.
The right panel of Fig. 4 also shows a nonparametric ker-
nel estimate f̂ of the density function. We defer until later
discussion of the choice of the smoothing parameter.

From the estimate f̂ , mode function and cluster tree are
obtained as described above. The result of this process is
displayed in Fig. 5. The cluster tree reflects the original idea
of Hartigan (1975), except that the vertical axis refers to
the fraction of data points included, instead of density level.
For each selected level p, the number of branches extend-
ing above p indicates the number of modes with density

above level cp, and the corresponding number of connected
components.

The construction of the cluster tree allocates a subset of
observations to groups. The proportion of allocated points
lies between the lowest and highest branching points of the
tree. In the example examined here, this proportion is 52.4%,
which is between the levels 28% and 84% in the right plot
of Fig. 5. The left panel of Fig. 6 displays the four identified
groups using four different graphical symbols, and simple
dots to represent unallocated points. The numbering indi-
cated on the plot agrees with the ordering of the mode levels,
with 1 corresponding to the highest and 4 to the lowest
mode.

2.5 Classification of unallocated points

The procedure described so far creates M groups of points,
which we call “cluster cores”, and it leaves a number of points
unlabeled. Allocation of the unlabelled points to existing
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Fig. 6 Simulated data: allocation of points after initial stage (left) and at final stage (right), with groups denoted as follows: 1 = ©, 2 = �, 3 = +,
4 = ×

groups is essentially a classification problem, although of a
rather peculiar type. The unusual aspect is that the unlabelled
points are not positioned randomly in the d-dimensional
space, but are inevitably on the outskirts of the M existing
groups.

There is a wide choice of classification methods. To re-
main within the same kind of approach followed so far, we fo-
cus on methods based on nonparametric density estimation.
The basic idea is as follows: for an unallocated data point x0,
compute the estimated density f̂ j (x0) based on the data al-
ready assigned to group j (for j = 1, 2, . . . , M), and assign
x0 to the group with highest r j (x0) = f̂ j (x0)/ maxk 	= j f̂k(x0).
The actual implementation of this idea may take various
forms:

(a) Estimate M density functions f̂ j (·) once and for all, and
classify all unlabelled points using these estimates.

(b) Proceed sequentially: once a point x0 has been assigned
to group j ′, say, re-estimate f̂ j ′ (·) before allocating the
next data point.

(c) In order to save computation, proceed in a block-
sequential manner, allocating several points at a time,
before updating the estimates f̂ j (·).

All the above options may be combined with the use of
some prior distribution π j , j = 1, . . . , M . In this context,
this distribution can reasonably only be given by the relative
frequencies obtained in the first stage. In this approach, the
classification rule is based on comparison of f̂ j (·) π j .

In the subsequent numerical work, we adopted the inter-
mediate strategy described in (c), in the following manner.
First, we sorted unallocated points according to ratios r j (x),
and split into five blocks of equal size. Next, we allocated
the points in the block with highest density to the existing
groups. We then reestimated the density, followed by allo-

Table 1 Main steps of the method

(1) Compute Delaunay Triangulation (DT).
(2) Compute f̂ (xi ), for i = 1, . . . , n.
(3) For each p belonging to grid of points

in (0, 1),
(a) remove points of low density ( f̂ (xi ) < cp)

from DT,
(b) determine connected sets of retained

points,
(c) compute m(p).

(4) Build cluster tree and form the initial
clusters.

(5) Allocate remaining points to these
clusters.

cation of the second block of points, and so on. The right
panel of Fig. 6 shows the final outcome after allocation of
all points for the simulated data described above.

The major steps of the method are summarised in Table 1.

3 Further aspects

3.1 Nonparametric density estimation

The method described so far is not linked to any specific
method for nonparametric density estimation. The only re-
striction is that f̂ (xi ) < ∞ for i = 1, . . . , n, which is satis-
fied by all estimation techniques known to us. Obviously, a
method with good general properties should be used.

Among the many possible alternatives, we chose a kernel
method with Gaussian kernel and constant smoothing pa-
rameter h = (h1, . . . , hd )�. The critical issue is the choice
of h. There is a vast specialised literature dealing with this
problem, but it is aimed at minimizing the mean square error
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or some related quantity. This is not the point for us, because
the relevant question is how well f̂ performs when used in
our clustering method.

A choice of h targeted to the specific problem would
therefore be desirable. However, this is a project by itself
and is not tackled here. In the present paper, we take a sim-
pler route, adopting a standard, computationally inexpensive,
procedure. Specifically, we choose h resulting in the asymp-
totically optimal integrated mean squared error under the
assumption of normality, which is known to be

h j =
(

4

(d + 2) n

)1/(d+4)

σ j , (3)

where in practice the standard deviation σ j of the j-th vari-
able ( j = 1, . . . , d) must be replaced by an estimate; see, for
instance, Bowman and Azzalini (1997, p. 32). We adopted
this choice both for the first estimate which produces the
cluster tree and for the subsequent classification stage of
unallocated points.

While this strategy may appear naive, it does produce
sensible results in virtually all cases on which we have tested
the method; this conclusion is based on the examples reported
here plus some additional simulated data. Empirically, it was
observed that it is often advantageous to shrink h slightly
towards zero; in the subsequent numerical work, we adopted
a shrinkage factor of 3/4 as an overall reasonable choice.

3.2 Algorithmic and computational aspects

For the actual implementation of the method, the following
software components were used. For the computation of the
Delaunay triangulation, we used a public domain implemen-
tation of the ‘Quickhull’ algorithm by Barber et al. (1996),
available at http://www.qhull.org/download/

This package was interfaced with R (R Development Core
Team, 2004), which was adopted as the general computing
environment for our work. To find the connected components
of a graph, we used the R package spdep. The remainder
of the code was written in R and Fortran-77.

The computational complexity of the various algorithmic
components is as follows.

(i) Barber et al. (1996) state that the Quickhull algorithm
for finding the convex hull of a set of n points in R

d

requires at most O(n log n) operations if d ≤ 3, and
O(nm/m!) where m = d/2� for d > 3. Our numeri-
cal experiments using the publicly available implemen-
tation to obtain the Delaunay triangulation is that the
computing time increases less than quadratically in n
for any fixed d, but it increases more than exponentially
in d for fixed n.

(ii) Computation of f̂ (x) at the n observed points requires
O(d n2) operations.

(iii) The complexity of the ‘depth-first search’ algorithm im-
plemented in the R package spdep is O(n); this is to be
multiplied by the size of the grid used to search over p.

(iv) Order O(n) also holds for our portion of R code, which
keeps track of membership lists.

These facts effectively impose some restrictions on the
size of the problems to which our method can be applied.
The most severe limitation is due to the combined effect of
d and n on the Quickhull algorithm.

4 Examples

4.1 Four simulated groups of data

The result of our method applied to the data displayed in
Fig. 4 is reported in Table 2 and compared with results pro-
duced by a few popular clustering methods, namely k-means
and two variants of hierarchical clustering, complete linkage
and Ward’s method. We also tried other popular methods,
such as hierarchical clustering with single linkage and av-
erage linkage, but their performance was inferior to those
reported here.

For the density-based method, the smoothing parameter
h = (h1, h2)� was chosen as described in Section 3.1, with a

Table 2 Simulated data: number of objects cross-
classified by true partitions (row labels) and clusters ob-
tained by density-based method and some alternatives
(column labels); ARI denotes the adjusted Rand index

1 2 3 4

k-means (best outcome)
1 160 26 14 0
2 0 150 0 0
3 0 0 200 0
4 22 0 0 128

ARI = 0.787

Hierarchical (complete linkage)
1 125 68 7 0
2 0 150 0 0
3 0 0 131 69
4 124 1 0 25

ARI = 0.471

Hierarchical (Ward method)
1 125 68 7 0
2 0 150 0 0
3 0 0 200 0
4 0 1 0 149

ARI = 0.767

Density-based method
1 166 21 13 0
2 0 150 0 0
3 0 0 200 0
4 10 0 0 140

ARI = 0.841
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Fig. 7 Two crescent-shaped clusters and contour levels of kernel density estimates for two choices of smoothing parameter

shrinkage factor of 3/4. While for the density-based method
the number of clusters is selected by the procedure and turned
out to have been estimated correctly at four, for the other
methods this value was set by us. For k-means, the actual
outcome varies with the initial centroids which are randomly
selected, so that we ran the algorithm 20 times, with different
starting values, and reported the best outcome.

To assess the performance of the various methods, we
evaluated the adjusted Rand index, ARI, proposed by Hubert
and Arabie (1985) and used among others by Stuetzle (2003)
for comparing competing clustering techniques. The ARI
gives a measure of agreement between two groupings, inde-
pendent of the labelling of the groups. In this case, one of the
groupings represents the true classification, so that the ARI
value is a measure of performance of the clustering proce-
dure. Higher values of ARI correspond to better performance.

4.2 Two crescent-shaped clusters

A classical challenge for a clustering procedure is identifica-
tion of groups that are not linearly separable, such as the two
crescent-shaped groups shown in Fig. 1 of Wong and Lane
(1983). Since the exact numerical values were not available
to us, we reconstructed their data as closely as possible by
starting from the published plot.

The proposed method identifies the existence of two clus-
ters for a wide range of the shrinkage factor introduced in
Section 3.1. Specifically, we obtained two clusters for all
values between 0.45 and 1.6. Figure 7 illustrates the effect
of using multipliers 0.6 and 1.5 for h on the shape of the
contour lines of the estimated density. It is reassuring that
the number of identified clusters remains fixed at two within
such a wide range of values.

4.3 Olive oil composition

A more substantial example is provided by the data pre-
sented by Forina et al. (1983) and subsequently analysed by

various authors to illustrate clustering techniques; see, for
instance, Stuetzle (2003). The data represent eight chemical
measurements on n = 572 specimens of olive oil produced
in various areas of Italy. There are nine areas from which
these specimens originate, but they are naturally grouped
into three macro-areas: Centre-North, South, and Sardinia.
The purpose of our analysis is to test whether the clustering
algorithm based on the chemical measurements is able to
reconstruct the geographical origin of the oil specimens.

Since the raw data are of compositional nature, totalling
10000, the additive log-ratio transform (ALR) was adopted,
as advocated by Aitchison (1986). If z j ( j = 1, . . . , 8) de-
notes the j-th chemical measurement, the ALR transform is

y j = log z j/zk, ( j 	= k),

where k refers to an arbitrary but fixed variable, whose choice
is essentially irrelevant.

A practical complication in our case is that the z j do not
exactly total 10000 in all cases, due to measurement errors.
A second difficulty is the presence of some 0’s, which is
the value recorded when the actual measurement is below
instrument sensitivity level. To overcome these problems,
we added 1 to all raw data, and normalized them by dividing
each number by the corresponding row sum

∑
j (z j + 1).

Since the resulting data matrix y is of size 572 × 7, which
is too large to be handled by the Quickhull algorithm, we
considered the first five principal components, computed af-
ter scaling the variables. These five components account for
96% of total variability.

To estimate the density function, the smoothing parameter
h was chosen as described in Section 3.1, with a shrinkage
factor of 3/4. The resulting mode function and cluster tree
are shown in Fig. 8. It is reassuring that these plots indicate
the existence of three groups, in agreement with the actual
partition into three geographical macro-areas.

Table 3 reports the cross-classification frequencies of the
actual geographical macro-areas and of the results obtained
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Fig. 8 Olive oil data: mode
function (left) and
corresponding cluster tree
(right)

Table 3 Olive oil data: number of objects cross-classified
by geographical macro-area and clusters obtained by the
density-based methods and some alternatives; ARI denotes
the adjusted Rand index

1 2 3

k-means (best outcome)
South 282 0 41
Sardinia 0 97 1
Centre-North 0 55 96
ARI = 0.663

Hierarchical (complete linkage)
South 107 216 0
Sardinia 98 0 0
Centre-North 88 0 63
ARI = 0.280

Hierarchical (Ward method)
South 109 214 0
Sardinia 98 0 0
Centre-North 114 0 37
ARI = 0.232

Density-based method
South 294 0 29
Sardinia 0 98 0
Centre-North 0 17 134
ARI = 0.792

by the same clustering techniques considered in Table 2, with
the constraint to form three clusters.

5 Final remarks

We conclude by recalling the main features of the proposed
method, and mention some aspects which require further
investigation.

� In contrast to most clustering techniques, the method is
not directly linked to the idea of distance between obser-

vations. However, distances do enter in two steps: (i) non-
parametric estimation of the density function, and (ii) De-
launay triangulation.

� Another aspect different from most clustering techniques
is that the number of clusters is selected by the method.
It is not an input value, as in k-means, and is not left
undetermined, as in hierarchical clustering.

� In principle, the choice of smoothing parameter is critical.
However, our numerical experience indicates that its effect
on the final outcome is limited, and does not reflect the
instability of the actual density estimate. Selection of the
smoothing parameter is a point to be explored in more
detail, possibly using variable bandwidth.

� Allocating points not belonging to cluster cores is naturally
of an incremental nature. This fact allows for the introduc-
tion of a degree of confidence in the allocation, by giving
lower confidence to points which are allocated last, com-
pared with those in the cluster cores and those allocated
in earlier stages. Another option is non-allocation of some
points when this confidence degree is low, if appropriate
for the problem at hand.

� The most critical computational step of the whole proce-
dure is obtaining the Delaunay triangulation. At the current
stage of development in computational geometry, the value
of d which can be handled in reasonable computing time
is not very high.

As an overall conclusion, the method compares
favourably with some established clustering techniques, as
illustrated by the examples. While it is already satisfactory
in many ways, there are aspects of the method which can be
further improved. Exploration of possible refinements men-
tioned above is left for future work.
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