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Abstract A finite mixture model using the Student’s t
distribution has been recognized as a robust extension
of normal mixtures. Recently, a mixture of skew normal
distributions has been found to be effective in the treatment
of heterogeneous data involving asymmetric behaviors
across subclasses. In this article, we propose a robust
mixture framework based on the skew t distribution to
efficiently deal with heavy-tailedness, extra skewness and
multimodality in a wide range of settings. Statistical mixture
modeling based on normal, Student’s t and skew normal
distributions can be viewed as special cases of the skew
t mixture model. We present analytically simple EM-type
algorithms for iteratively computing maximum likelihood
estimates. The proposed methodology is illustrated by
analyzing a real data example.
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1 Introduction

The normal mixture (NORMIX) model has been found to be
one of the most popular model-based approaches to dealing
with data in the presence of population heterogeneity
in the sense that data intrinsically consist of unlabelled
observations, each of which is thought to belong to one
of g classes (or components). For a comprehensive list
of applications and an abundant literature survey on this
area, see Titterington et al. (1985), McLachlan and Basford
(1988), and McLachlan and Peel (2000). It is well known
that the Student’s t distribution involves an additional tuning
parameter (the degrees of freedom) that is useful for outlier
accommodation. Over the past few years, there has been con-
siderable attention to a robust mixture context based on the
Student’s t distribution, which we call the t mixture (TMIX)
model. Recent developments about TMIX models include
Peel and McLachlan (2000), Shoham (2002), Shoham et al.
(2003), Lin et al. (2004), and Wang et al. (2004).

While NORMIX and TMIX models have been well rec-
ognized as useful in many practical applications, data with
varying degrees of extreme skewness among subclasses may
not be well modeled. In attempting to appropriately model a
set of data arising from a class or several classes with asym-
metric observations, Lin et al. (2007) recently introduced a
new mixture model with each unseen component following
a skew normal distribution (Azzalini, 1985, 1986). A skew
normal mixture (SNMIX) model for a continuous random
variable Y is of the form

Y ∼
g∑

i=1

wi f
(
y|ξi , σ

2
i , λi

)
, ωi ≥ 0,

g∑

i=1

ωi = 1, (1)
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where g is the number of components, wi ’s are mixing prob-
abilities and

f
(
y|ξi , σ

2
i , λi

) = 2√
2πσi

exp

(
− (y − ξi )2

2σ 2
i

)

×
∫ λi

(y−ξi )
σi

−∞

1√
2π

exp

(
− x2

2

)
dx

is the skew normal density function with location parame-
ter ξi ∈ R, scale parameter σ 2

i > 0 and skewness parame-
ter λi ∈ R. As described in Lin et al. (2007), the SNMIX
model (1) can be represented by a normal-truncated normal-
multinomial hierarchial structure. Such representation leads
to a convenient implementation for maximum likelihood
(ML) estimation under a complete-data framework.

Although model (1) offers great flexibility in modeling
data with varying asymmetric behaviors, it may suffer from
a lack of robustness in the presence of extreme outlying
observations. In general, the skewness parameters could be
unduly affected by observations that are atypical within com-
ponents in model (1) being fitted. This motivates us to de-
velop a wider class of mixture distributions to accommodate
asymmetry and long tails simultaneously. In this paper, we
are devoted to the fitting of mixture of skew t distributions,
introduced by Azzalini and Capitaino (2003), allowing for
heavy tails in addition to skewness as a natural extension of
Lin et al. (2007). With this skew t mixture (STMIX) model
approach, the NORMIX, TMIX and SNMIX models can be
treated as special cases in this family.

The rest of the paper is organized as follows. Section 2
briefly outlines some preliminary properties of the skew t
distribution. Section 3 presents the implementation of ML
estimation for fitting the skew t distribution via three sim-
ple extensions/modifications of the EM algorithm (Dempster
et al., 1977), including the ECM algorithm (Meng and
Rubin, 1993), the ECME algorithm (Liu and Rubin, 1994),
and the PX-EM algorithm (Liu et al., 1998). Section 4 dis-
cusses the STMIX model and presents the implementation
of EM-type algorithms for obtaining ML estimates of the pa-
rameters. Moreover, we offer a simple way to calculate the
information-based standard errors instead of using computa-
tionally intensive resampling techniques. In Section 5, the ap-
plication of the proposed methodology is illustrated through
real data of body mass indices measuring from the U.S. male
adults. Some concluding remarks are given in Section 6.

2 Preliminaries

For computational ease and notational simplicity, through-
out this paper we denote by φ(·) and �(·) respectively the
probability density function (pdf) and the cumulative dis-

tribution function (cdf) of the standard normal distribution
and denote by tν(·) and Tν(·) respectively the pdf and the
cdf of the Student’s t distribution with degrees of free-
dom ν. We start by defining the skew t distribution and
its hierarchical formulation and then introduce some further
properties.

A random variable Y is said to follow the skew t distri-
bution ST (ξ, σ 2, λ, ν) with location parameter ξ ∈ R, scale
parameter σ 2 ∈ (0,∞), skewness parameter λ ∈ R and de-
grees of freedom ν ∈ (0,∞) if it has the following represen-
tation:

Y = ξ + σ
Z√
τ

, Z ∼ SN (λ), τ ∼ 
(ν/2, ν/2),

Z ⊥ τ, (2)

where SN (λ) stands for the standard skew normal distribu-
tion with pdf given by f (z) = 2φ(z)�(λz), z ∈ R, 
(α, β)
is the gamma distribution with mean α/β, and the symbol
‘⊥’ indicates independence.

The following result, as provided by Azzalini and
Capitanio (2003), is useful for evaluating some integrals
that we use in the rest of the paper:

Proposition 1. If τ ∼ 
(α, β), then for any a ∈ R

E
(
�(a

√
τ )
)

= T2α

(
a
√

α

β

)
.

By Proposition 1, integrating τ from the joint density of
(Y, τ ) will lead to the following marginal density of Y

f (y) = 2

σ
tν(η)Tν+1

(
λη

√
ν + 1

η2 + ν

)
, η = y − ξ

σ
. (3)

Note that as ν → ∞, τ → 1 with probability 1 and Y =
ξ + σ Z .

As shown by Azzalini (1986, p. 201) and Henze (1986,
Theorem 1), a stochastic representation of Z ∼ SN (λ) is

Z = δλ|U1| +
√

1 − δ2
λU2, where δλ = λ/

√
1 + λ2, and U1

and U2 are independent N (0, 1) random variables. This
yields a further hierarchical representation of (2) in the fol-
lowing:

Y | γ, τ ∼ N
(

ξ + δλγ,
1 − δ2

λ

τ
σ 2

)
,

γ | τ ∼ T N
(

0,
σ 2

τ
; (0,∞)

)
, τ ∼ 
(ν/2, ν/2), (4)
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where T N (µ, σ 2; (a, b)) represents the truncated normal
distribution with N (µ, σ 2) lying within the truncated in-
terval (a, b).

From (4), the joint pdf of Y, γ, τ is given by

f (γ, τ, y)

= 1

π

√
1 − δ2

λσ
2

(ν/2)
ν
2


(ν/2)
τ

ν
2

× exp

(
− τ

2(1 − δ2
λ)

η2

)
exp

(
− τ

2
ν

)

× exp

(
− γ 2τ

2(1 − δ2
λ)σ 2

+ γ τ

(1 − δ2
λ)σ 2

δλ(y − ξ )

)
.

(5)

Integrating out γ in (5), we get

f (τ, y)

=
√

2

π

1

σ
τ

ν−1
2

(ν/2)
ν
2


(ν/2)
exp

(
− τ

2
(η2 + ν)

)
�
(
λη

√
τ
)
.

(6)

Dividing (5) by (6) gives

f (γ | τ, y) = 1√
2π

√
τ

σ

√
1 − δ2

λ

× exp

(
− τ

(
γ − (y − ξ )δλ

)2

2(1 − δ2)σ 2

)
�−1

(
λη

√
τ
)
.

(7)

It follows from (7) that the conditional distribution of γ given
τ and Y is

γ | τ, Y ∼ T N
(

δλ(y − ξ ),

(
1 − δ2

λ

)
σ 2

τ
; (0,∞)

)
. (8)

From (6), applying Proposition 1 yields the conditional
density of τ given Y

f (τ | y) = bτ (ν−1)/2 exp

(
− τ

2

(
η2 + ν

))
�
(
λη

√
τ
)
, (9)

where

b =
(

η2 + ν

2

)(ν+1)/2
{




(
ν + 1

2

)
Tν+1

(
λη

√
ν + 1

η2 + ν

)}−1

(10)

is the normalizing constant.

Proposition 2. Given the hierarchical representation (4),
we have the following:

(a) The conditional expectation of τ given Y = y is

E(τ |y) =
(

ν + 1

η2 + ν

) Tν+3

(
M
√

ν+3
ν+1

)

Tν+1 (M)
,

where M = λη
√

ν+1
η2+ν

.

(b) The conditional expectation of γ τ given Y = y is

E(γ τ |y)

= δλ(y − ξ )E(τ |y) +
√

1 − δ2
λ

π fY (y)

(
η2

ν(1 − δ2
λ)

+ 1

)−(ν/2+1)

.

(c) The conditional expectation of γ 2τ given Y = y is

E(γ 2τ |y)

= δ2
λ(y − ξ )2 E(τ |y) + (1 − δ2

λ

)
σ 2

+
δλ(y − ξ )

√
1 − δ2

λ

π fY (y)

(
η2

ν(1 − δ2
λ)

+ 1

)−(ν/2+1)

.

(d) The conditional expectation of log(τ ) given Y = y is

E
(

log(τ )|y)

= DG

(
ν + 1

2

)
− log

(η2 + ν

2

)

+ ν + 1

η2 + ν

⎛

⎜⎝
Tν+3

(
M
√

ν+3
ν+1

)

Tν+1 (M)
− 1

⎞

⎟⎠

+ λη(η2 − 1)√
(ν + 1)(ν + η2)3

tν+1 (M)

Tν+1 (M)

+ 1

Tν+1(M)

∫ M

−∞
gν(x)tν+1(x)dx,

where

gν(x) = DG
(ν + 2

2

)
− DG

(ν + 1

2

)
− log

(
1 + x2

ν + 1

)

+ (ν + 1)x2 − ν − 1

(ν + 1)(ν + 1 + x2)
, (11)

and DG(x) = 
′(x)/
(x) is the digamma function.

Proof: See Appendix. �
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3 ML estimation of the skew t distribution

In this section, we demonstrate how to employ the EM-
type algorithms for ML estimation of the skew t distribu-
tion, which can be viewed as a single component skew t
mixture model that we shall discuss in the next section.
From the representation (4), n independent observations
from ST (ξ, σ 2, λ, τ ) can be expressed by

Y j | γ j , τ j
ind∼ N

(
ξ + δλγ j ,

1 − δ2
λ

τ j
σ 2

)
,

γ j | τ j
ind∼ T N

(
0,

σ 2

τ j
; (0,∞)

)
,

τ j
ind∼ 
(ν/2, ν/2) ( j = 1, . . . , n).

Letting y = (y1, . . . , yn), γ = (γ1, . . . , γn) and τ =
(τ1, . . . , τn), the complete data log-likelihood function of
θ = (ξ, σ 2, λ, ν) given ( y, γ , τ ), ignoring additive constant
terms, is given by

�c(θ | y, γ , τ )

= −ν

2

n∑

i=1

τ j −
n∑

j=1

(
η2

jτ j

2
(
1 − δ2

λ

)
)

+
n∑

j=1

(
δλη jγ jτ j(
1 − δ2

λ

)
σ

)

−
n∑

j=1

(
γ j

2τ j

2
(
1 − δ2

λ

)
σ 2

)
− n log σ 2 − n

2
log(1 − δ2

λ)

+nν

2
log
(ν

2

)
− n log 


(ν

2

)
+ ν

2

n∑

j=1

log τ j ,

where η j = (y j − ξ )/σ .

By Proposition 2, given the current estimate θ̂
(k) =

(ξ̂ (k), σ̂ 2(k)
, λ̂(k), ν̂(k)) at the kth iteration, the expected com-

plete data log-likelihood function or the Q-function as as-
serted in Dempster et al. (1977) is

Q
(
θ | θ̂

(k))

= −ν

2

n∑

j=1

ŝ(k)
1 j −

n∑

j=1

(
η2

j ŝ
(k)
1 j

2
(
1 − δ2

λ

)
)

+
n∑

j=1

(
δλη j ŝ

(k)
2 j(

1 − δ2
λ

)
σ

)

−
n∑

j=1

(
ŝ(k)

3 j

2
(
1 − δ2

λ

)
σ 2

)
− n log σ 2 − n

2
log(1 − δ2

λ)

+nν

2
log
(ν

2

)
− n log 


(ν

2

)
+ ν

2

n∑

j=1

ŝ(k)
4 j , (12)

where

ŝ(k)
1 j = E

(
τ j |y j , θ̂

(k))

=
(

ν̂(k) + 1

η̂2(k)

j + ν̂(k)

)
Tν̂(k)+3

(
M̂ (k)

j

√
ν̂(k)+3
ν̂(k)+1

)

Tν̂(k)+1
(
M̂ (k)

j

) , (13)

ŝ(k)
2 j = E

(
γ jτ j |y j , θ̂

(k)) = δ̂
(k)
λ (y j − ξ̂ (k))ŝ(k)

1 j

+
√

1 − δ̂2(k)

λ

π f̂ (k)
Y j

(y j )

(
η̂2(k)

j

ν̂(k)
(
1 − δ2(k)

λ

) + 1

)−(ν̂(k)/2+1)

, (14)

ŝ(k)
3 j = E

(
γ 2

j τ j |y j , θ̂
(k))

= δ̂2(k)

λ

(
y j − ξ̂ (k)

)2
ŝ(k)

1 j + (1 − δ̂2(k)

λ

)
σ̂ 2(k)

+
δ̂

(k)
λ

(
y j − ξ̂ (k)

)√
1 − δ̂2(k)

λ

π f̂ (k)
Y j

(y j )

×
(

η̂2(k)

j

ν̂(k)
(
1 − δ̂2(k)

λ

) + 1

)−(ν̂(k)/2+1)

, (15)

and

ŝ(k)
4 j = E(log τ j |y j , θ̂

(k)
)

= DG

(
ν̂(k) + 1

2

)

+ ν̂(k) + 1

η̂2(k)

j + ν̂(k)

⎛

⎜⎝
Tν̂(k)+3

(
M̂ (k)

j

√
ν̂(k)+3
ν̂(k)+1

)

Tν̂(k)+1
(
M̂ (k)

j

) − 1

⎞

⎟⎠

− log

(
η̂2(k)

j + ν̂(k)

2

)
+ λ̂(k)η̂

(k)
j

(
η̂2(k)

j − 1
)

√
(ν̂(k) + 1)

(
ν̂(k) + η̂2(k)

j

)3

×
(

tν̂(k)+1(M̂ (k)
j )

Tν̂(k)+1(M̂ (k)
j )

)
+ 1

Tν̂(k)+1
(
M̂ (k)

j

)

×
∫ M̂ (k)

j

−∞
gν̂(k) (x)tν̂(k)+1(x)dx, (16)

with

η̂
(k)
j = y j − ξ̂ (k)

σ̂ (k)
, δ̂

(k)
λ = λ̂(k)

√
1 + λ̂2(k)

,

M̂ (k)
j = λ̂(k)η̂

(k)
j

√
ν̂(k) + 1

η̂2(k)

j + ν̂(k)
,

f̂ (k)
Y j

(y j ) = 2

σ̂ (k)
tν̂(k)

(
η̂

(k)
j

)
Tν̂(k)+1

(
M̂ (k)

j

)
.
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Our proposed ECM algorithm for the skew t distribu-
tion consists of one E-step and four CM-steps as described
below:

E-step: Given θ = θ̂
(k)

, compute ŝ(k)
1 j , ŝ(k)

2 j , ŝ(k)
3 j and ŝ(k)

4 j in
Eqs. (13)–(16) for j = 1, . . . , n.

CM-step 1: Update ξ̂ (k) by maximizing (12) over ξ , which
leads to

ξ̂ (k+1) =
∑n

j=1 ŝ(k)
1 j y j − δ̂

(k)
λ

∑n
j=1 ŝ(k)

2 j∑n
j=1 ŝ(k)

1 j

.

CM-step 2: Fix ξ = ξ̂ (k+1), update σ̂ 2(k)
by maximizing (12)

over σ 2, which gives

σ̂ 2(k+1)

=
∑n

j=1

(
ŝ(k)

1 j

(
y j − ξ̂ (k+1)

)2−2δ̂
(k)
λ ŝ(k)

2 j

(
y j −ξ̂ (k+1)

)+ ŝ(k)
3 j

)

2n
(
1 − δ̂2(k)

λ

) .

CM-step 3: Fix ξ = ξ̂ (k+1) and σ 2 = σ̂ 2(k+1)
, obtain λ̂(k+1) as

the solution of

nδλ

(
1 − δ2

λ

)−δλ

⎛

⎝
n∑

j=1

ŝ(k)
1 j

(
y j − ξ̂ (k+1)

)2

σ̂ 2(k+1)
+

n∑

j=1

ŝ(k)
3 j

σ̂ 2(k+1)

⎞

⎠

+(1 + δ2
λ

) n∑

j=1

ŝ(k)
2 j

(
y j − ξ̂ (k+1)

)

σ̂ 2(k+1)
= 0.

CM-step 4: Fix ξ = ξ̂ (k+1), σ 2 = σ̂ 2(k+1)
and λ = λ̂(k+1), ob-

tain ν̂(k+1) as the solution of

log
(ν

2

)
+ 1 − DG

(ν

2

)
+ 1

n

n∑

j=1

(
ŝ(k)

4 j − ŝ(k)
1 j

) = 0.

Note that the CM-Steps 3 and 4 require a one-dimensional
search for the root of λ and ν, respectively, which can be
easily achieved by using the ‘uniroot’ function built in R. As
pointed out by Liu and Rubin (1994), the one-dimensional
search involved in CM-steps 3 and 4 can be very slow in
some situations. To circumvent this obstacle, one may use
a more efficient ECME algorithm, which refers to some
conditional maximization (CM) steps of the ECM algorithm
replaced by steps that maximize a restricted actual log-
likelihood function, called the ‘CML-step’. With the simple
modifications, the ECME algorithm for fitting the skew t dis-
tribution can be performed by changing CM-steps 3 and 4 of
the above ECM algorithm to a single CML-step as follows:

CML-step: Update λ(k) and ν(k) by optimizing the following
constrained actual log-likelihood function:

(λ(k+1), ν(k+1))

= argmax
λ,ν

n∑

j=1

log

{
tν
(
η

(k+1)
j

)
Tν+1

(
λη

(k+1)
j

√
ν + 1

η2(k+1)

j + ν

)}
.

Another strategy for speeding up convergence rate is to
use the PX-EM algorithm of Liu et al. (1998), which can
be simply done by replacing the CM-steps 2 and 4 in the
previous ECM algorithm with the following PX.CM steps:

PX.CM-step 2:

σ̂ 2(k+1)

=
∑n

j=1

(
ŝ(k)

1 j

(
y j −ξ̂ (k+1)

)2−2δ̂
(k)
λ ŝ(k)

2 j

(
y j − ξ̂ (k+1)

)+ ŝ(k)
3 j

)

2
(
1 − δ̂2(k)

λ

)∑n
j=1 ŝ(k)

1 j

.

PX.CM-step 4:

log

(
nν

2
∑n

j=1 ŝ(k)
1 j

)
− DG

(ν

2

)
+ 1

n

n∑

j=1

ŝ(k)
4 j = 0.

Assuming that the regularity conditions in Zacks (1971,
Chap. 5) hold, these guarantee that asymptotic covariance
of the ML estimates can be estimated by the inverse of
the observed information matrix, Io(θ̂ ; y) =∑n

j=1 û j ûT
j ,

where

û j = ∂ log f (y j )

∂θ

∣∣∣
θ=θ̂

is the score vector corresponding to the single observation
y j evaluated at θ = θ̂ .

Expressions for the elements of the score vector with
respect to ξ , σ 2, λ and ν are given by

∂ log f (y j )

∂ξ
= η j

σ

( ν + 1

η2
j + ν

)
− λν

σ

√
ν + 1

(η2
j + ν)3

tν+1
(
M j
)

Tν+1
(
M j
) ,

∂ log f (y j )

∂σ
= ν

σ

(η2
j − 1

η2
j + ν

)
− λνη j

σ

√
ν + 1

(η2
j + ν)3

tν+1
(
M j
)

Tν+1
(
M j
) ,

∂ log f (y j )

∂λ
= η j

√
ν + 1

η2
j + ν

tν+1
(
M j
)

Tν+1
(
M j
) ,
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∂ log f (y j )

∂ν
= 1

2

{
DG
(ν + 1

2

)
− DG

(ν

2

)

− log
(

1 + η2
j

ν

)
+ η2

j − 1

η2
j + ν

+ λη j
(
η2

j − 1
)

√
(ν + 1)

(
η2

j + ν
)3

tν+1
(
M j
)

Tν+1
(
M j
)

+ 1

Tν+1
(
M j
)
∫ M j

−∞
gν(x)tν+1(x)dx

}
,

where η j = σ−1(y j − ξ ) and M j = λη j

√
ν+1
η2

j +ν
.

4 The skew t mixture model

We consider a g-component mixture model (g > 1) in which
a set of random sample Y1, . . . , Yn arises from a mixture of
skew t distributions, given by

ψ(y j | �) =
g∑

i=1

wi f
(
y j | ξi , σ

2
i , λi , νi

)
,

wi ≥ 0,

g∑

i=1

wi = 1, (17)

where � = (θ1, . . . , θ g) with θ i = (wi , ξi , σ
2
i , λi , νi ) denot-

ing the unknown parameters of component i , and wi ’s be-
ing the mixing probabilities. In the mixture context, it natu-
rally provides a flexible framework for modeling unobserved
population heterogeneity in the collected sample. With this
phenomenon, for each Y j , it is convenient to introduce a
set of zero-one indicator variables Z j = (Z1 j , . . . , Zgj )T

( j = 1, . . . , n) to describe the unknown population mem-
bership. Each Z j is a multinomial random vector with 1
trial and cell probabilities w1, . . . , wg , denoted as Z j ∼
M(1; w1, . . . , wg). Note that the r th element zr j = 1 if Y j

arises from the component r . With the inclusion of indicator
variables Z ′

j s, a hierarchical representation of (17) is given
by

Y j | γ j , τ j , zi j = 1 ∼ N
(

ξi + δλi γ j ,
1 − δλi

2

τ j
σ 2

i

)
,

γ j | τ j , zi j = 1 ∼ T N
(

0,
σ 2

i

τ j
; (0,∞)

)
,

τ j | zi j = 1 ∼ 
(νi/2, νi/2),

Z j ∼ M(1; w1, w2, . . . , wg). (18)

It follows from the hierarchical structure (18) on the basis
of the observed data y and latent variables γ , τ and Z j ’s that
the complete data log-likelihood function of �, ignoring
constants, is

�c(�) =
n∑

j=1

g∑

i=1

Zi j

{
log wi − νiτ j

2
− τ jη

2
i j

2
(
1 − δ2

λi

)

+ δλi ηi jγ jτ j(
1 − δ2

λi

)
σi

− γ j
2τ j

2
(
1 − δ2

λi

)
σ 2

i

− 1

2
log
(
1 − δ2

λi

)− log σ 2
i + νi

2
log

νi

2

− log 

(νi

2

)
+ νi

2
log τ j

}
, (19)

where ηi j = (y j − ξi )/σi and δλi = λi/

√
1 + λ2

i .

Let ẑ(k)
i j = E(Zi j |y j , �̂

(k)
), ŝ(k)

1i j = E(Zi jτ j |y j , �̂
(k)

),

ŝ(k)
2i j = E(Zi jγ jτ j |y j , �̂

(k)
) ŝ(k)

3i j = E(Zi jγ
2
j τ j |y j , �̂

(k)
) and

ŝ(k)
4i j = E(Zi j log τ j |y j , �̂

(k)
) be the necessary conditional

expectations of (19) for obtaining the Q-function at the
kth iteration. These expressions, for i = 1, . . . , g and
j = 1, . . . , n, are given by

ẑ(k)
i j = w

(k)
i f

(
y j | ξ

(k)
i , σ 2(k)

i , λ
(k)
i , ν

(k)
i

)

ψ
(
y j |�̂(k)) , (20)

ŝ(k)
1i j = ẑ(k)

i j

(
ν̂

(k)
i + 1

η̂2(k)

i j + ν̂
(k)
i

) T
ν̂

(k)
i +3

(
M̂ (k)

i j

√
ν̂

(k)
i +3

ν̂
(k)
i +1

)

T
ν̂

(k)
i +1

(
M̂ (k)

i j

) , (21)

ŝ(k)
2i j = δ̂

(k)
λi

(
y j − ξ̂

(k)
i

)
ŝ(k)

1i j

+ẑ(k)
i j

⎧
⎨

⎩

√
1 − δ̂2(k)

λi

πψ
(
y j |�̂(k))

(
η̂2(k)

i j

ν̂
(k)
i

(
1 − δ2(k)

λi

) + 1

)−(ν̂(k)
i /2+1)

⎫
⎬

⎭ ,

(22)

ŝ(k)
3i j = δ̂2(k)

λi

(
y j − ξ̂

(k)
i

)2
ŝ(k)

1i j + ẑ(k)
i j

{(
1 − δ̂2(k)

λi

)
σ̂ 2(k)

i

+
δ̂

(k)
λi

(
y j − ξ̂

(k)
i

)√
1 − δ̂2(k)

λi

πψ
(
y j |�̂(k))

×
(

η̂2(k)

i j

ν̂
(k)
i

(
1 − δ̂2(k)

λi

) + 1

)−(ν̂(k)
i /2+1)}

, (23)
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and

ŝ(k)
4i j = ẑ(k)

i j

{
DG

(
ν̂

(k)
i + 1

2

)
+ ν̂

(k)
i + 1

η̂2(k)

i j + ν̂
(k)
i

×

⎛

⎜⎜⎝
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(k)
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(
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×
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−∞
g
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(k)
i

(x)t
ν̂

(k)
i +1(x)dx

}
(24)

with

η̂
(k)
i j = y j − ξ̂

(k)
i

σ̂
(k)
i

, δ̂
(k)
λi

= λ̂
(k)
i√

1 + λ̂2(k)

i

,

M̂ (k)
i j = λ̂

(k)
i η̂

(k)
i j

√√√√ ν̂
(k)
i + 1

η̂2(k)

i j + ν̂
(k)
i

,

ψ(y j |�̂(k)
) is ψ(y j |�) in (17) with � replaced by �̂

(k)
and

g
ν̂

(k)
i

(x) is gν(x) in (11) with ν replaced by ν̂
(k)
i . The ECM

algorithm for the skew t mixture model is as follows:

E-step: Given � = �̂
(k)

, compute ẑ(k)
i j , ŝ(k)

1i j , ŝ(k)
2i j , ŝ(k)

3i j and ŝ(k)
4i j

in Eqs. (20)–(24) for i = 1, . . . , g and j = 1, . . . , n.
CM-step 1: Calculate ŵ

(k+1)
i = n−1∑n

j=1 ẑ(k)
i j .

CM-step 2: Calculate

ξ̂
(k+1)
i =

∑n
j=1 ŝ(k)

1i j yi − δ̂
(k)
λi

∑n
j=1 ŝ(k)

2i j∑n
j=1 ŝ(k)

1i j

.

CM-step 3: Calculate

σ̂ 2(k+1)

i

=
∑n

j=1

(
ŝ(k)

1i j

(
y j − ξ̂

(k+1)
i

)2 − 2δ̂
(k)
λi

ŝ(k)
2i j

(
y j − ξ̂

(k+1)
i

)+ ŝ(k)
3i j

)

2
(
1 − δ̂2(k)

λi

)∑n
j=1 ẑ(k)

i j

.

CM-step 4: Obtain λ̂
(k+1)
i as the solution of

δλi

(
1 − δ2

λi

) n∑

j=1

ẑ(k)
i j

−δλi

( n∑

j=1

ŝ(k)
1i j

(
yi − ξ̂

(k+1)
i

)2

σ̂
2(k+1)
i

+
n∑

j=1

ŝ(k)
3i j

σ̂ 2(k+1)

i

)

+ (1 + δ2
λi

) n∑

j=1

ŝ(k)
2i j

(
y j − ξ̂

(k+1)
i

)

σ̂ 2(k+1)

i

= 0.

CM-step 5: Obtain ν̂
(k+1)
i as the solution of

log
(νi

2

)
+ 1 − DG

(νi

2

)
+
∑n

j=1

(
ŝ(k)

4i j − ŝ(k)
1i j

)

∑n
j=1 ẑ(k)

i j

= 0.

If the degrees of freedom are assumed to be identical,
i.e. ν1 = · · · = νg = ν, we suggest that the CM-step 5 of the
above ECM algorithm be switched to a simple CML step as
follows:

CML-step: Update ν(k) to

ν̂(k+1) = argmax
ν

n∑

j=1

log

( g∑

i=1

ŵ
(k+1)
i f

(
y j | ξ̂

(k+1)
i , σ̂

2(k+1)
i , λ

(k+1)
i , ν

))
.

Following similar ideas as Liu et al. (1998), the PX-EM
algorithm for the STMIX model can be obtained by replacing
the CM-steps 3 and 5 in the previous ECM algorithm with
the following PX.CM steps:

PX.CM-step3:

σ̂i
2(k+1)

=
∑n

j=1 ŝ(k)
1i j

(
y j − ξ̂i

(k+1))2 − 2δ̂i
(k)∑n

j=1 ŝ(k)
2i j

(
y j − ξ̂i

(k+1))+∑n
j=1 ŝ(k)

3i j

2
(
1 − δ̂i

2(k))∑n
j=1 ŝ(k)

1i j

.

PX.CM-step5:

log

(
νi
∑n

j=1 ẑ(k)
i j

2
∑n

j=1 ŝ(k)
1i j

)
− DG

(νi

2

)
+
∑n

j=1 ŝ(k)
4i j∑n

j=1 ẑ(k)
i j

= 0.

Besides being simple in implementation while maintain-
ing the simplicity and stability properties of the EM algo-
rithm, the PX-EM algorithm is desirable since its conver-
gence is always faster and often much faster than the original
algorithm.

The iterations of the above algorithm are repeated until a

suitable convergence rule is satisfied, e.g., ‖�̂(k+1) − �̂
(k)‖

is sufficiently small. An oft-voiced criticism is that the EM-
type procedure tends to get stuck in local modes. A conve-
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nient way to circumvent such limitations is to try several EM
iterations with a variety of starting values that are representa-
tive of the parameter space. If there exist several modes, one
can find the global mode by comparing their relative masses
and log-likelihood values.

Under some general regularity conditions, we follow Bas-
ford et al. (1997) to provide an information-based method to
obtain the asymptotic covariance of ML estimates of mix-
ture model parameters. By a similar argument as noted ear-
lier, we define by Io(�̂; y) =∑n

j=1 û j ûT
j the observed infor-

mation matrix, where u j = ∂ψ(y j |�)/∂� is the complete-
data score statistic corresponding to the single observation
y j ( j = 1, . . . , n).

Corresponding to the vector of all 5g − 1 unknown pa-
rameters in �, let û j be a vector containing

(û j,w1 , . . . , û j,wg−1 , û j,ξ1 , . . . , û j,ξg , û j,σ1 , . . . , û j,σg ,

û j,λ1 , . . . , û j,λg , û j,ν1 , . . . , û j,νg )T.

The elements of û j are given by

û j,wr = ẑr j

ŵr
− ẑg j

ŵg
,

û j,ξr = ẑr j

σ̂r

(
ν̂r + 1

η̂2
r j + ν̂r

)

×
⎡

⎣η̂r j − λ̂r ν̂r√
(ν̂r + 1)

(
η̂2

r j + ν̂r
)

tν̂r +1(M̂r j )

Tν̂r +1(M̂r j )

⎤

⎦ ,

û j,σr = ẑr j

σ̂r

[
ν̂r (η̂2

r j − 1)

η̂2
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− η̂r j
λ̂r ν̂r

σ̂r

√
ν̂r + 1

(
η̂2

r j + ν̂r
)3

tν̂r +1(M̂r j )

Tν̂r +1(M̂r j )

]
,

û j,λr = ẑr j η̂r j

√
ν̂r + 1

η̂2
r j + ν̂r

tν̂r +1(M̂r j )

Tν̂r +1(M̂r j )
,

û j,νr = ẑr j

2

[
DG

(
ν̂r + 1

2

)
− DG

( ν̂r

2

)
− log

( ν̂r + η̂2
r j

ν̂r
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+ η̂2
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η̂2
r j + ν̂r

+ λ̂r η̂r j
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η̂2
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∫ M̂r j

−∞
gν̂r (x j )tν̂r +1(x j )dx j

]
,

where ẑr j = ŵr f (y j |ξ̂r , σ̂
2
r , λ̂r , ν̂r )/ψ(y j |�̂) for r = 1, . . . ,

g. If the degrees of freedom are assumed to be equal, say
ν1 = · · · = νg = ν, we have û j,ν =∑g

r=1 û j,νr .

5 An illustrative example

Obesity is one of the key factors for many chronic diseases
and the trend in the prevalence of obesity in the U.S. contin-
ues to increase (Flegal et al., 2002). Body mass index (BMI;
kg/m2), calculated by the ratio of body weight in kilograms
and body height in meters squared, has become the medical
standard used to measure overweight and obesity. For adults,
overweight is defined as a BMI value between 25 to 29.9,
and obesity is defined as a BMI value greater than or equal
to 30.

In America, the National Center for Health Statistics
(NCHS) of the Center for Disease Control (CDC) has con-
ducted a national health and nutrition examination survey
(NHANES) annually since 1999. The survey data are re-
leased in a two-year cycle.

For illustration, we consider the BMI for men aged 18 to
80 years in the two recent releases NHANES 1999–2000 and
NHANES 2001–2002. There are 4,579 participants (adult
men) with BMI records. Of these participants, the correlation
coefficient between BMI and body weight is 0.914, indicat-
ing they are highly correlated. To explore a mixture pattern of
BMI arising from two intrinsic groups of body weights, par-
ticipants with weights ranging between 70.1(kg) to 95.0 (kg)
were dropped in our analyses. The remaining data, namely
bmimen, consist of 1,069 and 1,054 participants with body
weights lying within [39.50 kg, 70.00 kg] and [95.01 kg,
196.80 kg], respectively.

For comparison purposes, we fit the data with a two-
component mixture model using normal, Student’ t , skew
normal, and skew t as component densities, while the de-
grees of freedom are assumed to be equal. To be more spe-
cific, a two-component STMIX model with equal degrees of
freedom can be written as

ψ(y|�) = w f
(
y|ξ1, σ

2
1 , λ1, ν

)+ (1 − ω) f
(
y|ξ2, σ

2
2 , λ2, ν

)
.

(25)

Of course, model (25) will include NORMIX (λ1 = λ2 =
0; ν = ∞), TMIX (λ1 = λ2 = 0), and SNMIX (ν = ∞) as
special cases.

For comparing the fitting results, the ML estimates and the
associated information-based standard errors together with
the log-likelihood, and AIC and BIC values for NORMIX,
TMIX, SNMIX and STMIX models are summarized in
Table 1. When comparing these fitted models, we notice that
the smaller the AIC and BIC values, the better the fit. It is ev-
idently seen that the STMIX model has the best fitting result.
Comparing STMIX with SNMIX, it is observed that using a
heavy-tailed t distribution will reduce the skewness effects.
In Fig. 1, we plot the profile log-likelihood of the degrees of
freedom ν for the STMIX model to illustrate that the SNMIX
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Fig. 1 Plot of the profile
log-likelihood of the degrees of
freedom ν for fitting the bmimen
data with a two component
STMIX model with equal
degrees of freedom
(ν1 = ν2 = ν)

Table 1 ML estimation results
for fitting various mixture
models on the BMI adult men
example

NORMIX TMIX SNMIX STMIX

Parameter Mle Se Mle Se Mle Se Mle Se

w 0.397 0.0188 0.438 0.017 0.531 0.013 0.539 0.017
ξ1 21.443 0.0465 21.591 0.089 19.567 0.036 19.672 0.330
ξ2 32.565 0.1845 33.030 0.264 28.760 0.009 29.173 0.182
σ1 2.021 0.0866 1.956 0.083 3.731 0.288 3.482 0.350
σ2 6.422 0.1584 5.006 0.242 7.960 0.159 6.679 0.232
λ1 — — — — 1.834 0.344 1.782 0.257
λ2 — — — — 10.184 2.615 5.912 1.400
ν — — 7.075 1.314 — — 8.502 1.441

�(�̂) −6958.37 −6934.69 −6916.26 −6903.51

AIC 13926.74 13881.38 13846.52 13823.02

BIC 13955.04 13915.34 13886.14 13868.30

model is not favorable for this data set since the profile
log-likelihood has a significant drop at the peak value of
8.5.

To compare these four mixture models in density estima-
tion, we display the fitting results superimposed on a single
set of coordinate axes in Fig. 2. Based on the graphical visu-
alization, it appears that the STMIX fitted density performs
more adequately than the other three fitted densities. It is
of interest to emphasize that the SNMIX fitting leads to an
increase in skewness for coping with excessive heavy tailed-
ness. Furthermore, the fitted SNMIX density is very close to
the fitted STMIX density in the tail region.

To study the validity of the four hypothesized mixture
models, we perform the Kolmogorov-Smirnov’s (K-S) good-
ness of fit test. The procedure for calculating the K-S test
statistic Dn , which is defined as the maximum value of the
absolute difference between the empirical and estimated cu-
mulative distributions, and the corresponding p-values are
described below.

Step 1: Ordering n data values yields y(1) ≤ y(2) ≤ · · · ≤
y(n).

Step 2: Compute the K-S test statistic

Dn = max
j=1,...,n

{
j

n
− F̂(y( j)), F̂(y( j)) − j − 1

n

}
,

where F̂(·) is the fitted cdf of a hypothesized mixture
distribution.

Step 3: Generate n random random numbers from U (0, 1)
and order them, we have u(i)

(1) ≤ u(i)
(2) ≤ · · · ≤ u(i)

(n).
Step 4: Compute

d (i) = max
j=1,...,n

{
j

n
− u(i)

( j), u(i)
( j) − j − 1

n

}
.

Step 5: Let Ii = 1 if d (i) ≥ Dn and 0 otherwise. Repeat Steps
3 and 4 N times, we get I1, . . . , IN . The p-value is
estimated by

∑N
i=1 Ii/N .
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Fig. 2 Histogram of the
bmimen data with overlaid four
ML-fitted two component
mixture densities (normal,
Student’s t , skew normal and
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The resulting K-S tests are listed in Table 2 . The re-
ported p-values can be used as a similarity assessment of
the experimental data against the fitted distribution. Of the
four mixture models, the best fit is STMIX with a p-value
of 0.971. That is, it strongly suggests that the bmimen data
follow a mixture of skew t distributions.

6 Concluding remarks

We have proposed a robust approach to a finite mixture model
based on the skew t distribution, called the STMIX model,
which accommodates both asymmetry and heavy tails jointly
that allows practitioners for analyzing data in a wide vari-
ety of considerations. We have described a normal-truncated
normal-gamma-multinomial hierarchy for the STMIX model
and presented some modern EM-type algorithms for ML es-
timation in a flexible complete-data framework. We demon-
strate our approach with a real data set and show that the
STMIX model has better performance than the other com-
petitors.

Due to recent advances in computational technology, it
is worthwhile to carry out Bayesian treatments via Markov
chain Monte Carlo (MCMC) sampling methods in the con-
text of STMIX model. The basic idea is to explore the joint
posterior distributions of the model parameters together with
latent variables γ and τ , and allocation variables Z when in-

Table 2 The K-S test results for the four fitted mixture models

Model NORMIX TMIX SNMIX STMIX

Dn 0.0322 0.0190 0.0240 0.0106
p-value 0.022 0.425 0.176 0.971

formative priors are employed. Other extensions of the cur-
rent work include, for example, a generalization of STMIX
to multivariate settings (e.g., Azzalini and Capitanio, 2003;
Jones and Faddy, 2003) and determination of the number of
components in skew t mixtures via reversible jump MCMC
(e.g., Richardson and Green, 1997; Zhang et al., 2004;
Dellaportas and Papageorgiou, 2006).

Appendix: Proof of Proposition 2

(a) Standard calculation of conditional expectation yields

E(τ | y) =
∫ ∞

0
τ f (τ | y)dτ

=
∫ ∞

0
bτ

ν+1
2 exp

(
− τ

2
(η2 + ν)

)
�
(
λη

√
τ
)

dτ

= b


(

ν+3
2

)
(

η2+ν

2

)(ν+3)/2

×
∫ ∞

0
γ

(
τ

∣∣∣∣
ν + 3

2
,
η2 + ν

2

)
�
(
λη

√
τ
)

dτ ,

where γ (·|α, β) denotes the density of 
(α, β) and b is
given in (10).

By Proposition 1, it suffices to show

E(τ | y) =
(

ν + 1

η2 + ν

) Tν+3

(
λη
√

ν+3
η2+ν

)

Tν+1

(
λη
√

ν+1
η2+ν

) .
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(b) We first need to show the following:

E

(√
τ

φ
(
λη

√
τ
)

�
(
λη

√
τ
)
∣∣∣∣y
)

=
∫ ∞

0

√
τ

φ
(
λη

√
τ
)

�
(
λη

√
τ
) f (τ, y)

f (y)
dτ

= (ν/2)ν/2

πσ
(ν/2) f (y)

×
∫ ∞

0
τ (ν/2+1)−1 exp

(
− τ

2

( η2

1 − δ2
λ

+ ν
))

dτ

= 1

πσ f (y)

(
η2

ν(1 − δ2
λ)

+ 1

)−(ν/2+1)

. (A.1)

From (8), the expectation of a truncated normal distri-
bution is given by

E(γ | y, τ ) = δλ(y − ξ ) + φ
(
λη

√
τ
)

�
(
λη

√
τ
)

√
1 − δ2

λ

τ
σ. (A.2)

Applying the law of iterated expectation and using (A.1)
and (A.2), we get

E(γ τ | y) = E
(
τ E(γ | y, τ ) | y

)

= δλ(y − ξ )E(τ | y)

+
√

1 − δ2
λσ E

(√
τ

φ
(
λη
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(
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+
√

1 − δ2
λ
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η2
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λ)

+ 1

)−(ν/2+1)

.

(c) Similarly, it is easy to verify that

E(γ 2 | y, τ ) = δ2
λ(y − ξ )2 + (1 − δ2

λ)σ 2

τ

+ σδλ(y − ξ )

√
1 − δ2

λ

τ

φ
(
λη

√
τ
)

�
(
λη

√
τ
) . (A.3)

From (A.1) and (A.3), applying the law of iterated ex-
pectation gives

E(γ 2τ | y) = δ2
λ(y − ξ )2 E(τ |y) + (1 − δ2

λ)σ 2

+
δλ(y − ξ )

√
1 − δ2

λ

π f (y)

(
η2

ν(1 − δ2
λ)

+ 1

)−(ν/2+1)

.

(d) From (9), it is true that

d

dν

∫ ∞

0
f (τ | y)dτ

= d

dν

∫ ∞

0
bτ (ν−1)/2 exp

(
−τ

2
(η2 + ν)

)
�(λη

√
τ )dτ = 0.

By Leibnitz’s rule, we can get

log
(η2 + ν

2

)
+
(

ν + 1

η2 + ν

)
− DG

(ν + 1

2

)

− 1

Tν+1 (M)

∫ M

−∞
gν(x)tν+1(x)dx

+ λ(ν + 1)−
1
2 η(η2 − 1)(η2 + ν)−

3
2

tν+1 (M)

Tν+1 (M)

+ E(log τ | y) − E(τ | y) = 0.

Hence

E
(

log(τ )|y)

= DG

(
ν + 1

2

)
− log

(η2 + ν

2

)
+ ν + 1

η2 + ν

×

⎛

⎜⎝
Tν+3

(
M
√

ν+3
ν+1

)

Tν+1 (M)
− 1

⎞

⎟⎠

+ λη(η2 − 1)√
(ν + 1)(ν + η2)3

tν+1 (M)

Tν+1 (M)

+ 1

Tν+1(M)

∫ M

−∞
gν(x)tν+1(x)dx .
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