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Abstract Differential Evolution (DE) is a simple genetic al-

gorithm for numerical optimization in real parameter spaces.

In a statistical context one would not just want the optimum

but also its uncertainty. The uncertainty distribution can be

obtained by a Bayesian analysis (after specifying prior and

likelihood) using Markov Chain Monte Carlo (MCMC) sim-

ulation. This paper integrates the essential ideas of DE and

MCMC, resulting in Differential Evolution Markov Chain

(DE-MC). DE-MC is a population MCMC algorithm, in

which multiple chains are run in parallel. DE-MC solves

an important problem in MCMC, namely that of choosing an

appropriate scale and orientation for the jumping distribu-

tion. In DE-MC the jumps are simply a fixed multiple of the

differences of two random parameter vectors that are cur-

rently in the population. The selection process of DE-MC

works via the usual Metropolis ratio which defines the prob-

ability with which a proposal is accepted. In tests with known

uncertainty distributions, the efficiency of DE-MC with re-

spect to random walk Metropolis with optimal multivariate

Normal jumps ranged from 68% for small population sizes

to 100% for large population sizes and even to 500% for

the 97.5% point of a variable from a 50-dimensional Student

distribution. Two Bayesian examples illustrate the potential

of DE-MC in practice. DE-MC is shown to facilitate mul-

tidimensional updates in a multi-chain “Metropolis-within-

Gibbs” sampling approach. The advantage of DE-MC over

conventional MCMC are simplicity, speed of calculation and

convergence, even for nearly collinear parameters and mul-

timodal densities.
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1. Introduction

This paper combines the genetic algorithm called Differen-

tial Evolution (DE) (Price and Storn, 1997, Storn and Price,

1997, Price, 1999) for global optimization over real parame-

ter space with Markov Chain Monte Carlo (MCMC) (Gilks

et al., 1996) so as to generate a sample from a target distribu-

tion. In Bayesian analysis the target distribution is typically a

high dimensional posterior distribution. Both DE and MCMC

are enormously popular in a variety of scientific fields for

their power and general applicability. Lampinen (2001) pro-

vides a bibliography of DE and Gelman et al. (2004) and

Robert and Casella (2004) provide introductions to MCMC.

In our combination we run multiple Markov chains, which

are initialized from overdispersed states, in parallel and let

the chains learn from each other - instead of running the

chains independently as a way to check convergence. (Gel-

man et al., 2004) and as carried out in WinBUGS (Lunn

et al., 2000). The idea of combining genetic or evolution-

ary algorithms with MCMC is explored, among others, by

Liang and Wong (2001), Liang (2002) and Laskey and Myers

(2003) and is closely related to work in the 1990’s on par-

allel tempering and adaptive direction sampling. (Gilks and

Roberts, 1996). The combination of DE and MCMC solves

an important problem in MCMC in real parameter spaces,

namely that of choosing an appropriate scale and orienta-

tion for the jumping distribution. Note that adaptive direc-

tion sampling solves the orientation problem but not the scale

problem.
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Fig. 1 Differential Evolution in two dimensions with 40 (a) and 15 (b)
members in the population (d = 2, N = 40 and 15). The proposal vec-
tor xp to update the i th member is generated from xi and the randomly
drawn members xR1 and xR2 by (2) with γ = 2.4/(2 × 2)1/2 = 1.2 in

(a) and γ = 1.0 in (b) and e = (0, 0) in both. The dashed arrow in (a)
points to the proposal when xR1 would have been drawn after xR2. The
reverse jump from xp to xi is obtained by translating the dashed arrow
to xp .

A commonly used jumping distribution for MCMC in a d-

dimensional real parameter space is the multivariate normal

distribution. (Gelman et al., 2004). The problem then lies in

specifying the covariance matrix of this distribution. The d
variances and the d(d − 1)/2 covariances need to be chosen

in such a way so as to balance progress in each step and a

reasonable acceptance rate (the square-root of the variance

relates to the relevant scale of each parameter and the correla-

tions relate to the orientation). Traditionally, all these are es-

timated from a trial run and much recent research is devoted

to ways of doing that efficiently and/or adaptively (Haario

et al., 2001). If parameters are highly correlated, special pre-

cautions must be taken to avoid singularity of the estimated

covariances matrix. In this paper, N chains are run in par-

allel and the jumps for a current chain are derived from the

remaining N -1 chains. The simplest strategy, which balances

exploration and exploitation of the space, takes the difference

of vectors of two randomly chosen chains, multiplies the dif-

ference with a factor γ and adds the result to the vector of

the current chain (Fig. 1). The difference vector contains the

required information on scale and orientation. Each proposal

is shown to define a Metropolis step, in which each jump is

as likely as the reverse jump, given the current state of the

remaining chains. The N -chain is therefore a single random

walk Markov chain on an N × d-dimensional space. The

new method is called Differential Evolution Markov Chain

(DE-MC). The core of the method can be coded in about 10

lines, requiring only a function to draw uniform random num-

bers and a function to calculate the fitness of each proposal

vector (Fig. 2). We provide some theory and intuition for why

DE-MC works, which also suggests good values for N and γ ,

the only free parameters of the proposal scheme. We demon-

strate how the method can be used for block updating in a

multi-chain Gibbs sampler and provide DE-variants of sim-

ulated annealing and simulated tempering. The effectiveness

of the method is demonstrated on three known distributions

(normal, Student and normal mixtures) and on two Bayesian

data analysis examples.

Fig. 2 C-style pseudocode for
Differential Evolution Markov
Chain and simulated tempering
and annealing variants.
Notation: X = N × d matrix
with elements X[i][j] and X[i] =
xi , the i th member chain of the
population; x p = proposal
d-vector xp , and fitness(.) =
π (.), c = γ . Uniform(a,b) is a
function for drawing uniform
random numbers between a and
b. Record(X) is a function to
collect the draws. The function
CoolingSchedule() = 1 for
DE-MC but unequal to 1 for
simulated tempering and
annealing versions of DE-MC.
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2. Theory

2.1. Random walk metropolis

The random walk Metropolis algorithm (RWM) is a generic

algorithm to draw a sample from a d-dimensional target dis-

tribution with probability density function (pdf) π (.). In this

paper, RWM is used with a multivariate normal jumping dis-

tribution centred at the current point and with variance �̃.

Here �̃ is a variance matrix which must be chosen by the

user. The algorithm works as follows. It repeatedly updates

a single d-dimensional parameter vector x by (a) generat-

ing a proposal xp = x + ε where ε ∼ N (0, �̃), (b) calculat-

ing the Metropolis ratio r = π (xp)/π (x) and (c) accepting

the proposal by setting x = xp with probability min(1, r )

and continuing with x otherwise. The result is a Markov

chain which, under some regularity conditions, has a unique

stationary distribution with pdf π (.). In Bayesian analyses,

π (.) ∝ prior × likelihood. Roberts and Rosenthal (2001) and

Gelman et al. (2004) summarize the guidelines for the choice

�̃ . Optimally, �̃ = c2� with � = covπ (x), the covariance

of the target distribution, and c such that the fraction of ac-

ceptances is, for large d , about 0.23 (0.44 for d = 1 and 0.28

for d = 5). For a multivariate normal target, c = 2.38/
√

d is

optimal.

2.2. Genetic algorithms and differential evolution

In genetic algorithms (Schmitt, 2004) and population MCMC

(Laskey and Myers, 2003) several (Markov) chains are sim-

ulated in parallel. Where the state of a single chain is given

by a single d-dimensional vector x, there are now N such

vectors x1 . . . xN . Here these vectors are called members of a

population X, an N × d matrix, with members in rows. In a

Bayesian analysis the initial population could be drawn from

the prior distribution of the parameters.

Differential evolution (DE) (Price and Storn, 1997) is a

particularly simple genetic algorithm designed for optimiza-

tion in real parameter spaces. Assuming N > 4, the default

proposal for i th member xi in DE is (Storn and Price, 1997)

xp = xR0 + γ (xR1 − xR2) (1)

where xR0, xR1 and xR2 are randomly selected without re-

placement from the population X−i (the population without

xi ). Crossover to further modify the proposal is introduced

and discussed in Section 5.1. The proposal vector is retained

if the fitness of xp is higher than the fitness of xi . If the fit-

ness function is π (.) then the proposal is thus accepted if

r = π (xp)/π (xi ) > 1. Typical values of γ are between 0.4

and 1. Proposal (1) is just one of a family of proposal schemes

(Storn and Price, 1997).

2.3. Differential evolution Markov chain

In order to turn DE into a Markov chain for drawing sam-

ples from a target distribution, the proposal and acceptance

scheme must be such that there is detailed balance with re-

spect to π (.) (Waagepetersen and Sorensen, 2001, Gelman

et al., 2004, Robert and Casella, 2004) This appears impos-

sible with proposal scheme (1). More promising is scheme

DE1, the first one considered in Storn and Price (1995) in

which xR0 in (1) is replaced by xi (Fig. 1). To ensure that

the whole parameter space can be reached, scheme DE1 is

modified to have

xp = xi + γ (xR1 − xR2) + e (2)

where e is drawn from a symmetric distribution with a small

variance compared to that of the target, but with unbounded

support, e.g. e ∼ N (0, b)d with b small. The key of this pa-

per is to introduce a probabilistic acceptance rule in DE:

proposal (2) is accepted with probability min(1,r ) where

r = π (xp)/π (xi ). The resulting algorithm is called Differ-

ential Evolution Markov Chain (DE-MC). The simplicity of

DE-MC is best appreciated from the pseudocode in Fig. 2.

Theorem 1. DE-MC yields a Markov chain, the unique sta-
tionary distribution of which has pdf π (.)N .

Proof: The proof consists of two parts.

(a) π (.) is a stationary distribution of the i th chain, because

the chain is reversible. This holds true because the jumps

in each member chain satisfy detailed balance with re-

spect to π (.) at each step. This can be proven as follows.

For the i th member, the probability from the jump of xi

to xp is equal to the reverse jump, as we can see from

xi = xp − γ (xR1 − xR2) − e = xp + γ (xR2 − xR1) − e

and noting that the pair (xR1, xR2) is as likely as (xR2, xR1)

and that the distribution of e is symmetric. If xi ∼ π (.),

then detailed balance is achieved point wise by accept-

ing the proposal with probability min(1,r ) where r =
π (xp)/π (xi ). As the Jacobian of the transformation im-

plied by (2) is 1 in absolute value1, detailed balance also

holds in terms of arbitrary measurable sets, as required

for reversibility of the Markov chain (Waagepetersen and

Sorensen, 2001). Conditionally on the other chains, π (.)

is therefore a stationary distribution of the i th chain. As

the conditional stationary distribution does not depend

1 The Jacobian is unequal to 1 in the ‘type II’ geometric proposals of
Strens et al. (2002) so that the target is not a stationary distribution of
their downhill Simplex sampler, as can easily be checked by simulation.
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on the state of the other chains and is identical for all

chains, π (x1, . . . , xN ) = π (x1) × . . . × π (xN ) is a joint

stationary distribution.

(b) The stationary distribution is unique, if the chain is ape-

riodic, not transient and irreducible (Robert and Casella,

2004). The first two conditions are satisfied, except for

trivial exceptions, because DE-MC generates a random

walk for each member. For the third condition, it is re-

quired that any state can be reached with positive prob-

ability and this is guaranteed by the unbounded sup-

port of the distribution of e in (2) (Robert and Casella,

2004). Each component has therefore a unique stationary

distribution which, from (a), is π (.) This concludes the

proof. �

Because the joint stationary pdf of the N chains factorizes

to π (x1) × · · · × π (xN ), the states x1 · · · xN of the individ-

ual chains are independent at any generation after DE-MC

has become independent of its initial value. This feature of

population MCMC samplers, first noticed by Mengersen and

Robert (2003), is important for monitoring the convergence

of a DE-MC run with the R̂-statistic of Gelman et al. (2004).

This statistic compares for each scalar parameter of interest

the between- and within-variance of the chains. Because of

the asymptotic independence, the between-member variance

and R̂ can be estimated consistently from a single DE-MC

run. Gelman et al. (2004) consider R̂ below 1.2 acceptable.

2.4. Why does DE-MC work in practice?

Let, if they exist, μ = E(x) and Σ = cov(x), the expectation

and covariance of the target distribution. Then, after conver-

gence, for each population member i and j ,

E(xi ) = μ and E
[
(xi − x j )(xi − x j )

T
] = 2�

with expectation across generations. Also, after burn-in the

averages across the population at each generation converge

for large N to the expectation and covariance of the target

distribution, i.e.

ave(xi ) → μ and ave
[
(xi − x j )(xi − x j )

T
] → 2Σ

for N → ∞

with ave the average across the (pairs of) population mem-

bers.

For large N and small b, the proposal (2) thus looks like

xp = xi + γ ε with E(ε) = 0 and cov(ε) = 2Σ, the covari-

ance matrix of the target. In particular, if π (.) is multivariate

normal, then γ ε ∼ N (0, 2γ 2Σ) so that DE-MC is expected

to behave like RWM. From the guidelines for c in RWM.

(Roberts and Rosenthal, 2001) the optimal choice of γ is

then 2.38 /
√

(2d). This choice of γ is expected to give an

acceptance probability of 0.44 for d = 1, 0.28 for d = 5 and

0.23 for large d. If the initial population is drawn from the

prior, DE-MC translates the ‘prior population’ to the ‘poste-

rior population’.

What happens if N ≤ d? Because N points lie in an N − 1

dimensional space, all proposals (2) will lie in this reduced

space when e = 0. Therefore convergence of DE-MC would

rely on e, which would take a long time if its variance is small.

To stress that convergence does not depend on the unbounded

support of e, we actually used e ∼ Uniform[−b, b]d with

b = 10−4 in all computations (Fig. 2). In the next section

the effect of N on the efficiency of DE-MC is studied via

simulation for N > d.

3. Tests with known targets

DE-MC was applied to multivariate normal distributions and

Student distributions with three degrees of freedom, both tar-

gets centred at the zero vector. The covariance matrix was set

such that the variance of the j th variable was equal to j and

all pairwise correlations were 0.5. These targets were chosen

to reflect the possibly widely differing scales of unknown pa-

rameters in applications. Bimodal distributions, in the form of

two-component normal mixtures, were also used as targets.

In all simulations and analyses the default γ = 2.38/
√

(2d).

In the sequel, draws count the number of proposal evaluations

(each one requiring one evaluation of π (.)) and generations

will refer to cycles through the population (Fig. 2).

3.1. Multivariate normal target

Figure 3 shows how the sample means, standard devia-

tions and correlations of the population X evolve in time

for d = 100. Figure 3a and 3b contrast narrow and broadly

distributed initial populations, both with 200 members and

mean ∼10 for all variables. If the initial population is drawn

from a narrow distribution (Fig. 3a), each standard deviation

tended to increase in time to a value close to its true value

in the target, being 1 for the first variable and 10 for the

hundredth variable. Simultaneously, the means and correla-

tions evolved to values close to their true values; in Fig. 3a,

the mean of the first variable evolved from 10 to close to 0,

and the covariance between the first and last variable evolved

from 0 to around 5 (corresponding to a correlation of 0.5). In

Fig. 3b, the initial distribution is much too broad for the first

variable and slightly too narrow for the hundredth variable,

so that the standard deviation of the first variable decreased

in time, whereas that of the hundredth variable increased in

time. The convergence of DE-MC to probable values was

quicker in Fig. 3b than in Fig. 3a. In all further simulations
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Fig. 3 How the mean and
(co)variance of a Population of
N members convergence to true
values for a 100-dimensional
Normal target in relation to N
and initial population X. Shown
are the mean of the first variable,
the standard deviations (sd1 and
sd2) and covariance (cov) of the
first variable and the last
variable. The true values are 0,
1, 10 and 5, respectively. (a)
narrow initial population,
Uniform[9.9,10]100; (b)–(d)
broad initial population,
Uniform[−5,15]100; (a)–(b)
N = 200; (c) N = 101; (d)
N = 1000.

for normal targets, the initial population was drawn from

Uniform[−5,15]d , reflecting prior ignorance about the mean

and variance of the target.

Figures 3(b)–(d) contrast different population sizes.

Judged by inspection of the figures, convergence was reached

after about 4000, 1000 and 600 generations for N = 101,

200 and 1000, respectively i.e., after 404,000, 200,000 and

600,000 functions evaluations. Judged this way, convergence

is thus fastest for N = 200. The figures focus on the variance

between the members in the population and not so much on

the mean, and not at all on the within member variance.

The R̂-statistic of Gelman et al. (2004), which compares the

within- and between-member variance, drops below 1.2 for

all 100 parameters after about 900–1000 generations for all

three population sizes. Judged by R̂-statistic, these popula-

tions thus converged about equally fast in terms of the num-

ber of generations. For N = 101, the R̂-statistic is clearly

too optimistic about the convergence (Fig. 3c). Smaller (but

not too small) populations thus converge faster than larger

ones in terms of the number of draws. As can be expected,

the sample means, standard deviations and correlations per

generation were more variable in smaller than in larger pop-

ulations (Fig. 3).

We also monitored the fraction of acceptances per gener-

ation. For N = 101, the acceptance fraction varied approx-

imately binomially around 0.20, whereas for N ≥ 200 the

mean fraction after convergence was 0.23. For N = 200 with

narrow initial population (the case of Fig. 3a) the fraction

of acceptances started with values above 0.9 and then de-

creased to values between 0.17 and 0.30 after 2000 iterations.

In the case of Fig. 3b (broad initial population) the accep-

tance fraction was almost immediately in the right range. For

N = 1000, the trace for the acceptance fraction started off at

0.34, then dropped to a mean value of 0.18, and then slowly

increased to 0.23 at iteration 750. Further experimentation

with different starting distributions, e.g., Uniform[0, 5]d , in-

dicated that the shape of this trace is particular to this broad

initial population.

Table 1 shows the efficiency of DE-MC with respect to

RWM with the optimal normal jumping distribution (with

c = 2.38/
√

d and Σ set to the true covariance of the tar-

get) as obtained from a simulation study for d = 5, 50 and

100 and N = 2d, 3d and 10d. The details are as follows.

Each figure in the table is based on at least 100 simula-

tions, each consisting of 106 draws of each sampler after

a burn-in of 105 draws. To ensure convergence of DE-MC,

the burn-in was extended to at least 500 and 1000 generations

for d = 50 and d = 100, respectively. The efficiency is ex-

pressed as 100 × MSERWM/MSEDE-MC, where MSE is mean

squared error in the statistic. The statistics were the empiri-

cal 2.5, 50 and 97.5-percentiles which, for a d-dimensional

target, were determined from the sample for the first and

dth variable. The squared error divided by the true variance

of the variable did not differ much between these variables

and therefore their mean was used in the calculation of the

MSE. Because the theoretical MSEs for the 2.5 and 97.5 per-

centiles are equal, their estimated MSEs were averaged and

their average was used to calculate the efficiency under the

Springer



244 Stat Comput (2006) 16:239–249

Table 1 Efficiency (in
percentages) of DE-MC with
respect to Random Walk
Metropolis with optimal Normal
jumping distribution for the
median (P50) and 2.5%
percentile (P2.5) of
d-dimensional Normal and
Student t3 distributions.

Normal Student t3

d = 5 d = 50 d = 100 d = 5 d = 50

N P50 P2.5 P50 P2.5 P50 P2.5 P50 P2.5 P50 P2.5

2d 82 82 91 81 71 74 68 70 88 147

3d 100 87 85 80 92 91 86 96 102 191

10d 113 86 131 84 127 100 92 99 129 501

Note. The estimated MSEs per draw of RWM were, in column order, 20, 59, 174, 396, 335, 823, 12,
962, 121 and 41604. P2.5 is a pooled efficiency for the 2.5 and 97.5 percentiles.

heading P2.5. It is thus a pooled efficiency for the 2.5 and

97.5 percentiles.

The efficiencies in Table 1 for the normal target are all

above 71% and tend to increase with N/d . For N/d = 10

the estimated efficiencies for the median are all over 100%.

This is unexpected for the normal target, but is not just sim-

ulation error. Possible explanations are that a burn-in of 105

draws was not sufficient for RWM when the starting points

were drawn from Uniform[−5,15]d , that DE-MC had the ad-

vantage that the initial jumps were much larger than those in

RWM and that, for N > 150, it was allowed a longer burn-in.

The simulated MSEs of RWM (Table 1) were indeed slightly

larger than the theoretical ones, but insufficiently larger for a

full explanation. (The asymptotic efficiency of RWM com-

pared to independent sampling is 0.3/d (Gelman et al., 2004),

giving MSEs per draw of 167 and 333 for d = 50 and 100,

whereas in the simulations the MSEs per draw were 174 and

335, respectively (Table 1)).

The acceptance fraction in DE-MC did not vary much with

N/d and was remarkably close to that of RWM (0.28 for d =
5 and 0.23–0.24 for d = 50 and 100). The autocorrelations

in the Markov chain for each member were similarly close to

those in RWM, e.g. 0.89 and 0.99 for the lag-1 correlation for

d = 5 and 50, respectively, and 0.53 and 0.71 for the lag-51

correlation for d = 50 and 100 respectively.

The case N = d + 1 was investigated separately for d =
50 and 100 and resulted in efficiencies of 2–3% or even in

clear nonconvergence as judged by the R̂-statistic.

3.2. Multivariate Student target

DE-MC was also compared with normal jump RWM for mul-

tivariate Student distributions with three degrees of freedom.

If one would know in advance that the target distribution were

Student, then one would of course use a Student jumping dis-

tribution rather than a normal one. However, in practice one

does not know the form of the target and often uses the nor-

mal jumping distributions as the default one. The scales c
(RWM) and γ (DE-MC) were set such that the acceptance

fraction was about 0.28 for d = 5 and 0.23 for d = 50. Some

experimentation showed that the default γ did not need to

be changed and that c = 3.0 is about right for both values

of d.

With 105 burn-in, 106 draws and initial distribution

Uniform[−5,15]d neither RWM nor DE-MC converged

properly as judged on the basis of the R̂-statistic. Therefore

the problem was simplified by setting the initial distribution

to a normal one with mean and covariance equal to those of

the target. Our simulation thus mimics the situation where

normal approximations to the target have been obtained by

other means. (Gelman et al., 2004). With this initial distribu-

tion and a burn-in of 104 generations for DE-MC, there were

no apparent convergence problems. The burn-in for RWM

was set to the maximum number of burn-in draws used in

DE-MC (105d) so as not to favour DE-MC in any sense.

The efficiencies for the Student target in Table 1 are be-

tween 68% and 501%, with a clear increase in efficiency with

N/d and with higher efficiencies for P2.5 than for P50.

3.3. Normal mixture target

The target in this example is a mixture of two normal distri-

butions

π (x) = 1

3
Nd (−5, Id ) + 2

3
Nd (5, Id )

where 5 is the d-vector consisting of fives and Id is the d-

dimensional identity matrix. The modes were farther apart

than in the five-dimensional bimodal example considered

in Liang and Wong (2001) with, for d = 5, a distance of

5
√

10 = 15.8 between the modes. This target is notoriously

difficult to sample from by RWM. The initial populations for

DE-MC were drawn from N (0, Id ) and from N (2.5, 25Id ),

the narrow and the broad distribution in Liang and Wong

(2001).

For d = 5 and a burn-in of 1000 generations, DE-MC es-

timated the expected value (1.667) with a root mean squared

error (RMSE) of ∼0.023 for both N = 100 and 1000 and

for both the narrow and broad initial distribution. The ac-

ceptance fraction was ∼0.16 in all cases. For d = 10 with
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N = 1000, DE-MC with default γ converged to around 0.0

for the narrow initial distribution and to 3.7 for the broad

initial distribution. Clearly, the sampler is unable to jump

from one mode to the other with γ = 2.38/
√

(2d) = 0.53.

Therefore, we adapted DE-MC such that in every tenth gen-

eration γ = 1.0 so as to allow jumps from one mode region to

the other (Fig. 1b). With this adaptation, DE-MC converged

to 1.667 with a RMSE of 0.009 and an acceptance fraction of

0.15. Adapted DE-MC reduced the RMSE for the previous

d = 5 case from 0.023 to 0.015. These results are based on

100 simulations.

4. Bayesian examples

4.1. One-way random-effects model

The one-way random-effects model is a model for the means

of several groups that are linked by the assumption that their

expected means are drawn from a common normal distribu-

tion. It can be written as yi j ∼ N (θ j , σ
2) and θ j ∼ N (μ, τ 2)

for j = 1 . . . J groups and, for the j th group, i = 1 · · · I j . A

Bayesian analysis adds prior distributions for the unknowns

μ, σ 2 and τ 2 (Liu and Hodges, 2003). Commonly used priors

are p(μ) ∝ 1, σ 2 ∼ IG(α, β), τ 2 ∼ IG(a,b) where IG denotes

the inverse-gamma distribution. The analysis shrinks each

group sample mean somewhat towards the overall mean. Liu

and Hodges (2003) demonstrate that even this simple model

may exhibit bimodality in the posterior, at least when there

is a prior-data conflict. We re-analyze their peak discharge

example, where I = 6 and J = 4, with one of their pri-

ors, namely α = 1, β = 10, a = 1.85, b = 0.1 and compare

the results with WinBUGS 1.4 (Spiegelhalter et al., 2003).

WinBUGS, short for “Bayesian inference Using Gibbs Sam-

pling”, updates each dimension in an iteration by sampling

from the full conditional distribution, when available, and by

one-dimensional adaptive rejection sampling, slice sampling

or current point Metropolis otherwise (Spiegelhalter et al.,
2003).

To apply DE-MC, the posterior needs to be programmed

and the parameters need to be mapped to the vector x. We

used x = (μ, log(σ 2), log(τ 2), θ1, θ2, θ3, θ4) so d = 7. The

problem was expressed in the logarithms of σ 2 and τ 2, be-

cause DE-MC is expected to work best in open parameter

spaces. The posterior as given in terms of σ 2 and τ 2 by Liu

and Hodges (2003, (1)) and Gelman et al. (2004, (5.16)) was

multiplied correspondingly by σ 2 τ 2 to become

p(μ, log(σ 2), log(τ 2), θ ) ∝
σ−2α exp(−β/σ 2)τ−2a exp(−b/τ 2)

×
J∏

j=1

[
N (θ j | μ, τ 2)

I∏
i=1

N (yi j | θ j , σ
2)

]

Table 2 Percentiles of the posterior of log(ξ ) and ϕ of the one-way
random-effects model.

log(ξ ) ϕ

N P2.5 P50 P97.5 P2.5 P50 P97.5

True −0.94 0.98 4.00 0.06 0.31 0.90

WinBUGS −0.94 0.98 4.00 0.06 0.31 0.91

DE-MC 14 −0.96 0.97 3.98 0.06 0.31 0.90

DE-MC 21 −0.95 0.98 4.11 0.06 0.31 0.91

DE-MC 70 −0.96 0.98 4.15 0.06 0.31 0.91

where N (·|·) denotes the probability density function of the

normal distribution. Note that the normalizing constants of

the inverse gamma distribution are not needed because α, β,

a and b are fixed. For numerical stability we used the log-

posterior. The initial population was drawn from the prior

with μ ∼ Uniform[−20, 20]. Because bimodality was ex-

pected, γ was set to 1 every 10th generation; otherwise γ

was 2.38/
√

(2d).

Table 2 compares the results of WinBUGS and DE-MC

with N = 2d, 3d and 10d for log(ξ ) with ξ = σ 2/τ 2 and

the shrinkage coefficient ϕ = σ 2/(I τ 2 + σ 2). These analy-

ses used 106 iterations after a burn-in of 105. The acceptance

fraction in DE-MC was 0.21 in all cases. The results of Win-

BUGS and DE-MC with N = 14 differed at most 0.02 from

the true values as calculated by analytical integration over θ

and μ and numerical integration over log(σ 2). For N = 21

and 70, there is a discrepancy is 0.1 for the 97.5% point of

log(ξ ). The median of the estimated 97.5% point of log(ξ )

in 100 re-runs of each DE-MC analysis was 4.00, 4.01 and

4.12 for N = 14, 21 and 70, respectively. The systematic dis-

crepancy for N = 70 disappears with longer burn-in, as we

verified by re-running the analysis with a tenfold longer burn-

in. For completeness we note that 4.12 is the 98.0% point in

the true posterior of log(ξ ) and that the 97.5% point in the

prior is 7.55. This example showed that large population sizes

may require long burn-in for convergence. The bimodality in

π (log(ξ ), ϕ) expected from Liu and Hodges (2003: Fig. 1d)

could not be confirmed, neither in the analytical work nor

from the simulations.

4.2. Nonlinear mixed-effects model

This subsection illustrates DE-MC by re-analyzing the Theo-

phylline data presented in Pinheiro and Bates (2000, p. 444.)

and available in their nlme package in R (R Development

Core Team 2003) with a nonlinear mixed-effects model. The

data consist of the oral doses of the anti-asthmatic drug Theo-

phylline administered to twelve patients and the serum con-

centrations of Theophylline in these patients at 11 time points

over 25 hours after the oral intake. The pharmacokinetics of
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this drug is modelled by the first-order open-compartment

model

μi t = Di kei kai

ci (kai − kei )
[exp(−kei t) − exp(−kai t)]

where μi t is the expected concentration of the i th patient at

time t , Di is the dose of theophylline administered to the

i th patient and kei , kai and ci are unknown patient-specific

parameters representing the elimination rate, absorption rate

and clearance, respectively. For illustration, analysis 2 in Pin-

heiro and Bates (2000, p. 364–365) was mimicked by using

the normal likelihood yit ∼ N (μi t , σ
2), the independent nor-

mal priors log(kei ) ∼ N (lKe, τ 2
e ), log(kai ) ∼ N (lKa, τ 2

a ) and

log(ci ) ∼ N (lCl, τ 2
c ) and improper uniform priors for lKe,

lKa, lCl and log σ 2. Following Gelman et al. (2004), the

priors for the τ -parameters were chosen to be improper uni-

forms on the τ -scale, i.e. p(log(τ 2
x )) ∝ τx , for x = e, a, c.

The total number of parameters in the posterior density is

3 + 3 + 1 + 12 × 3 = 43 of which 36 are random patient-

specific ones.

To apply DE-MC, the log-posterior was programmed in

the same spirit as in the previous example: the normal log-

likelihood for the data yit plus the normal log-likelihood

for 36 patient-specific parameters plus the log-prior for the

three log(τ 2)-parameters. The log-priors of the remaining

parameters are all zero. For comparison, a WinBUGS 1.4

program was written and run using the Bugs-R interface from

Gelman et al. (2004).

The initial population for DE-MC and the initial values

for WinBUGS were drawn from the priors with the improper

ones replaced by uniform distributions. The intervals for lKe,

lKa, lCl and log(σ 2) were nlme-estimate ± 0.5 (Table 3) and

the intervals for τe, τa , and τc were all [0.01, 0.1].

A very long WinBUGS run was used to obtain ‘true’ values

to compare the other results to (Table 3). It lasted 11 hours on

a 3.2GHz Pentium 4. DE-MC with γ = 2.38/
√

(2d), N =
2d and 50,000 generations (Table 3) yielded close values,

the largest discrepancies being for log(τ 2
e ). The acceptance

probability was 0.15; the convergence diagnostic R̂ was 1.1.

Table 4 compares WinBUGS and DE-MC with this setup

in terms of root mean squared error (RMSE) for runs with

the same number of updates. WinBUGS does d updates per

iterations (namely one per dimension) whereas DE-MC with

N = 2d does 2d updates per generation (namely one per

member chain). WinBUGS was run 20 times with 5 chains of

100,000 iterations each. In three of the runs the maximum R̂
over the parameters in Table 4 was over 1.2. After inspection

of these runs, three clearly aberrant chains were discarded.

Table 4 is based on the remaining 97 chains. Of the 100 DE-

MC runs 27 gave maximum R̂ > 1.2 and were discarded.

Per successful chain (all R̂ < 1.2), WinBUGS took 1.7 times

longer than DE-MC. Compared to WinBUGS, the RMSE of

DE-MC is up to a factor of 4 lower for the location parameters

lKe, lKa and lCl and up to a factor 2 higher for the variance

parameters.

Tuning γ so that DE-MC has an acceptance rate of 0.23

gave γ = 1.7/
√

(2d). Now 80 out of 100 DE-MC runs had

R̂ < 1.2. The RMSEs of the location parameters did not

change much. Nine out of the twelve entries for the variance

parameters decreased to values below those of WinBUGS,

the remaining three being within a factor of 1.5. This example

is continued in the next section.

5. DE-MC variants

5.1. Crossover and block updating

In high dimensions it may not always be optimal to sam-

ple all delements of xi simultaneously. With the crossover

mechanism of DE (Storn and Price, 1997), sampling takes

place in lower dimensional spaces. Before the proposal is

compared with xi , it is modified by crossover. The sim-

plest crossover scheme is binomial in which each element

xpj ( j = 1 · · · d) of the proposal is replaced by xi j with

probability 1 − CR, with the extra restriction that not all

elements are replaced. CR is termed the crossover prob-

ability. The sampler described so far thus corresponds to

CR = 1. The resulting DE-MC sampler still converges to

the required target, as can be seen by noting that the

Table 3 Percentiles of the
posterior of the key-parameters
of the first-order open
compartment model for the
Theophylline data as obtained
by a very long WinBUGS run (2
chains, 3 million iterations each,
50% burn-in) and DE-MC with
N = 86 and 50,000 generations,
20% burn-in).

nlme WinBUGS very long run DE-MC N = 86

estimate P2.5 P50 P97.5 P2.5 P50 P97.5

lKe −2.45 −2.57 −2.46 −2.35 −2.57 −2.46 −2.34

lKa 0.47 0.00 0.49 1.01 −0.02 0.48 0.99

lCl −3.23 −3.37 −3.23 −3.08 −3.37 −3.22 −3.08

log(τ 2
e ) −21.66 −11.24 −5.60 −3.21 −10.40 −5.56 −3.21

log(τ 2
a ) −0.87 −1.46 −0.54 0.63 −1.47 −0.55 0.60

log(τ 2
c ) −3.58 −4.12 −3.20 −2.05 −4.10 −3.19 −2.04

log(σ 2) −0.69 −0.95 −0.69 −0.40 −0.95 −0.69 −0.40
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Table 4 Root mean squared
error of percentiles for
WinBUGS (with 100,000
iterations), DE-MC (N = 86
and 50,000 generations) and
Block DE-MC (N = 9 and
50,000 generations with two
inner iterations), based on 97, 73
and 100 simulations of 100
simulations with 20% burn-in
and maximum R̂<1.2 and
requiring 10.2, 4.4 and 4.2
minutes per simulation on a 3.2
GHz Pentium 4, respectively.

WinBUGS DE-MC N = 86 Block DE-MC N = 9

P2.5 P50 P97.5 P2.5 P50 P97.5 P2.5 P50 P97.5

lKe 0.003 0.001 0.003 0.003 0.001 0.002 0.002 0.001 0.002

lKa 0.030 0.013 0.047 0.011 0.005 0.017 0.015 0.008 0.024

lCl 0.009 0.003 0.009 0.003 0.001 0.002 0.005 0.002 0.005

log(τ 2
e ) 1.332 0.144 0.064 1.421 0.060 0.045 1.098 0.087 0.033

log(τ 2
a ) 0.010 0.010 0.031 0.019 0.010 0.030 0.008 0.006 0.018

log(τ 2
c ) 0.010 0.012 0.028 0.014 0.010 0.019 0.007 0.008 0.017

log(σ 2) 0.004 0.002 0.003 0.003 0.002 0.006 0.003 0.001 0.002

sampler is then a doubly component-wise Metropolis algo-

rithm with both members and dimensions as components.

CR = 0 corresponds by its definition in Storn and Price

(1997) to single dimension updating, as in Gibbs sampling.

There is however a difference with Gibbs sampling. The pro-

posals in Gibbs sampling are drawn from the appropriate con-

ditional distribution. The proposals in DE-MC for a particular

dimension are generated, after convergence, from differences

of two numbers drawn from the marginal distribution for

that dimension. This shows that crossover in DE-MC would

work best (as in Gibbs) if the dimensions that are updated

in separate steps are independent. A non-random version of

crossover is to split the parameter vector in blocks and to up-

date the blocks in turn. DE-MC can, of course, be applied to

some elements to x, whereas the others are updated by Gibbs

sampling.

Table 4 (last three columns) shows the possible advan-

tages of block updating for the nonlinear mixed-effect model

of Section 4.2. Here the 43-dimensional parameter vector was

split in 15 blocks. The blocks come naturally in this example

as the time curve of the expected concentration depends on

three correlated parameters for each patient, whereas the pa-

rameters of different patients are expected to be uncorrelated.

This yielded twelve blocks, one per patient. The location pa-

rameters lKe, lKa and lCl also formed a block of three pa-

rameters, as did the τ -parameters. The final block consisted

of σ 2 only. To reduce the correlation between the location

parameters and the patient-specific parameters, the latter pa-

rameters were expressed as deviation from the former. This

also reduced the correlation between the new patient-specific

parameters (for log(kei ) and log(ci ) from 0.8 to ca. 0.4). This

transformation, which was also applied in the WinBUGS

runs of Section 4.2, does not affect the full-space updates of

DE-MC.

If each block update would require the full posterior, each

full cycle of block updates would require 15 times more com-

puting time than full-space DE-MC, thus allowing for only

3333 instead of the 50,000 generations in the setup of Table

4. Fortunately there are two ways to gain efficiency. First, the

population size N can be decreased to 9, as the maximum

block size is 3. With N = 9, one can do 9.6 times more gen-

erations in the same time. Second, updating a block requires

only those parts of the posterior that depend on the parame-

ters of that block. This feature is the key to the efficiency of

the one-dimensional updates in WinBUGS. In the example,

updating the block of a particular patient does not requires

the likelihood contributions of the other patients and updat-

ing the τ -parameters does not require the likelihood at all.

The possible gain for these blocks is not a factor of twelve

(the number of patients) but six, because the block-specific

posteriors need to be calculated both for the current parame-

ters and the proposal, whereas full space DE-MC can re-use

the posterior of the current point. For the same reason, the full

posterior of the remaining two blocks must be evaluated 3/2

times as often. In our implementation, the resulting gain is a

factor of 2.4, which can be increased to a factor of 3.1 by car-

rying out two inner iterations of DE-MC per block update2.

Without extra costs, one of the two expensive inner itera-

tions for the location parameters and for σ 2 were replaced by

full-space DE-MC steps, because these parameters already

did well in DE-MC (Table 4). With these optimisations, one

generation of block DE-MC with N = 9 could be done in the

same time as one generation of DE-MC with N = 86. Table

4 shows the results of block DE-MC with γ = 2.38/
√

(2db),

with db the number of parameters in the block (1, 3 or 43). All

100 runs were successful. Compared to full-space DE-MC,

all variance parameters, lKe and σ 2 have the same or lower

RMSE; lKa and lCl have up to a factor of 2.5 higher RMSE.

The RMSEs of block DE-MC were all lower than those of

WinBUGS. With 50% burn-in, the RMSEs were all ∼20%

worse than those reported in Table 4.

The improvement in convergence of block DE-MC

over WinBUGS and full-space DE-MC was even more

pronounced when the intervals for the τ -parameters in the

2 Two inner iterations (that is, two consecutive updates of a particular
block before updating the next block) maximise the acceptance proba-
bility per unit of the computing cost if the acceptance rate per update is
between ca. 0.18 and 0.41; for lower acceptance rate, the maximum is
at three or more inner iterations.
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initial population were widened to [0.01, 0.5]. This leads to

many unlikely initial values for the patient-specific param-

eters. Nevertheless, block DE-MC in this setup converged,

whereas WinBUGS and full-space DE-MC did not.

In the example each variance component could have been

drawn directly from its full conditional distribution but, for

illustration of the power and flexibility of DE-MC, only DE-

MC updates were used. In general, it seems natural to exploit

conjugacy (particularly multivariate conjugacy) where pos-

sible and to use DE-MC as a Metropolis-within-Gibbs step

otherwise.

5.2. Simulated tempering and annealing variants

DE versions for simulated annealing and simulated temper-

ing are obtained by introducing a temperature ladder (Liang

and Wong, 2001). Figure 2 shows a simple version in which

the temperature ladder depends only on generation. For sim-

ulated annealing and tempering, the temperature runs from

a large value to 0 and 1, respectively, according to a particu-

lar cooling schedule (Schmitt, 2004). An interesting feature

of these DE-MC variants is that the proposals automatically

become less variable with lower temperature.

6. Discussion

DE-MC as proposed in this paper is one of the simplest adap-

tive MCMC methods, yet attains high efficiency with respect

to the normal jump Metropolis algorithm (Table 1). The scale

and orientation of the jumps in DE-MC (2) automatically

adapt themselves to the variance-covariance matrix of the

target distribution (Section 2.4). It is precisely this that each

point in the population learns in DE-MC from the others,

nothing more and nothing less. Neither the location nor the

fitness of the other points is used in the proposal scheme.

The optimal value of γ suggested by analogy with normal

jump Metropolis with normal target worked well with the

Student target and in the examples. Apparently the differ-

ences in (2) bear out the increased roughness of the Student

target, even though the differences themselves are no longer

Student distributed, as the Student distribution is not closed

under subtraction. In the nonlinear mixed-effects model, γ

needed to be decreased somewhat to get an optimal accep-

tance rate. The suggested default value of γ = 2.38/
√

(2d)

performed well in bock updating (Table 4). If blocks are

strongly correlated, γ may need to be decreased.

DE-MC worked well also for bimodal distributions, albeit

with the adaptation of the use of γ = 1.0 every 10th gener-

ation. This property of DE-MC is expected to generalize to

multimodal distributions; as soon as one point is in a modal

region (a large N and wide initial population will make this

more likely), more points can jump into it if γ = 1. Any point

xi can jump into the modal region by proposal (2) if one of

xR1 and xR2 is into it and the other is close to xi (Fig. 1b). On

the other hand, if the initial population covers just a single

modal region, there is no chance that other modes that are far

away can be reached. It is perhaps better to set γ slightly less

than 1, e.g. γ = 0.98. This doubles3 the number of possi-

ble trial vectors compared to γ = 1, (Lampinen and Zelinka,

2000). These observations plead for choosing the initial pop-

ulation not too small in size and not too narrow in distribution

when multimodality is a possibility. But also note that each

point of the initial population needs time to move to likely

values. Large populations thus require more computer time

to converge than small ones. The advice is thus to choose

N = 2d or 3d for simple unimodal targets and N = 10d to

20d when the target is more complicated.

Parallel adaptive sampling (Gilks et al., 1994; Roberts and

Gilks, 1994) also uses proposals of the form of equation (2),

with e = 0. The treatment of γ forms the difference with

DE-MC. Parallel adaptive sampling continues with Gibbs

sampling of γ , whereas DE-MC does a Metropolis step with

a fixed value of γ . In practice the conditional distribution

required for Gibbs sampling γ will often not be available in

closed form or it will not be easy to sample from directly, so

that the Gibbs sampling step must be replaced by one or more

Metropolis-Hasting steps. DE-MC is thus a form of parallel

adaptive direction sampling with the Gibbs sampling step

replaced by one Metropolis step with a pre-chosen value of

γ . This is close to optimal as the vector differences contain

much information on the scale of the target.

After submission, we learned that Strens et al. (2002)

also explored the combination DE and MCMC in a com-

parison of seven MCMC algorithms for sampling a multi-

modal density. DE-MC, in their paper alternated with one-

dimensional Metropolis updates, came out best. Strens et al.
(2002) chose γ random with log(γ ) ∼ N (0, log(4)). We ex-

tend Strens et al. (2002) in providing theory for the optimal

choice of γ . In early simulations that we did (not shown),

a random γ calibrated to an acceptance rate of 0.23 always

lowered the efficiency of DE-MC compared to a fixed γ

yielding this acceptance rate. Strens et al. (2002) did not

consider crossover. Our simulations and applications con-

firm once more the power of DE-MC.

Our computer experiments show that the rate of conver-

gence of DE-MC is comparable to or higher than that of

RWM. When started from an overdispersed initial popula-

tion, DE-MC starts with large jumps so that it is expected to

reach the centre of the distribution more quickly than fixed

jump Metropolis. Both samplers converged quickly for Nor-

mal targets but quite slowly for Student targets. This rate

difference is known for Metropolis from Mengersen and

3 When γ = 1, xi + γ (xR1 − xR2) = xR1 + γ (xi − xR2), so that two
otherwise distinct combinations of vectors become equal.
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Tweedie (1996). A theoretical analysis of the rate of con-

vergence of DE-MC is much desired. Monitoring of conver-

gence with the convergence diagnostic R̂ of Gelman et al.
(2004) worked well in practice.

Gibbs sampling dominates in Bayesian data analysis, (a)

because of the availability of excellent software (WinBUGS),

(b) because it is efficient if components are independent

and (c) because the alternatives are more cumbersome to

use. Poor mixing is a general problem in Gibbs samplers

despite clever tricks to improve it (Gelman et al., 2004,

Section 11.8). Outside the generalized linear model context

WinBUGS is limited to one-dimensional updates. In con-

trast, DE-MC does simple and efficient multidimensional up-

dates. By applying DE-MC in small blocks, the population

size can be kept small. With its multidimensional updates,

block DE-MC with N = 9 outperformed WinBUGS in the

example of a nonlinear random effects model. The exam-

ple showed the usefulness of DE-MC in a multi-chain Gibbs

sampler.

Laskey and Myers (2003) envisioned population MCMC

versions that come close to independence sampling by gener-

ating proposals from a semi-parametric model of the current

population. Being a nonparametric version of RWM, DE-

MC is not such a greedy algorithm. This is an advantage

for exploration of the space to find otherwise easily missed

modes, but a disadvantage in terms of speed of convergence.

The challenge is to find greedier variants of DE-MC that re-

tain the robustness and simplicity of the version presented

here.
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