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Kernel density estimation is a commonly used approach to classification. However, most of the
theoretical results for kernel methods apply to estimation per se and not necessarily to classification.
In this paper we show that when estimating the difference between two densities, the optimal smoothing
parameters are increasing functions of the sample size of the complementary group, and we provide
a small simluation study which examines the relative performance of kernel density methods when
the final goal is classification.

A relative newcomer to the classification portfolio is “boosting”, and this paper proposes an algo-
rithm for boosting kernel density classifiers. We note that boosting is closely linked to a previously
proposed method of bias reduction in kernel density estimation and indicate how it will enjoy sim-
ilar properties for classification. We show that boosting kernel classifiers reduces the bias whilst
only slightly increasing the variance, with an overall reduction in error. Numerical examples and
simulations are used to illustrate the findings, and we also suggest further areas of research.

Keywords: cross-validation, discrimination, nonparametric density estimation, simulation,
smoothing

1. Introduction

Consider data x1, . . . , xn , as a realization of a random sample,
and let an element of the set { f j (x), j = 1, . . . , J } be the density
associated with xi . Let π j , j = 1, . . . , J be the classes’ prior
probabilities, i.e. π j = P

(
xi ∈ � j

)
where � j denotes the j th

class. Then, using Bayes’ Theorem, the posterior probability of
the observation xi being from the j th class, is:

P(xi ∈ � j | xi = x) = π j f j (x)
∑J

j=1 π j f j (x)
.

According to Bayes’ rule, we allocate an observation to the
class with highest posterior probability. Usually the values
π j , j = 1, . . . , J are estimated via the respective sample rel-
ative frequency, π̂ j = n j/n with

∑
j n j = n, associated with

each class. As a consequence, the discrimination problem is
essentially that of (jointly) estimating the probability density
functions f j (x), j = 1, . . . , J .

There is a wide variety of approaches to discrimination, from
parametric, normal-theory based linear and quadratic discrim-

ination to neural networks; see Hastie et al. (2001). A flexible
method uses kernel density estimation of f j (x) (Hand 1982).
Given a random sample X1, . . . , Xn from an unknown density
f , the kernel density estimator of f at the point x ∈ R is (see,
for example, Wand and Jones 1995, Ch. 4):

f̂ (x ; h) = 1

n

n∑

i=1

Kh (x − Xi ) (1)

where h is a bandwidth or smoothing parameter, Kh(x) =
1
h K ( x

h ), and the function K : R → R, called a kth-order kernel,
satisfies the following conditions:

∫
K = 1 and

∫
x j K �= 0, ∞

only for j ≥ k.
The use of plain kernel density estimators has been shown to

work well in a wide variety of real-world discrimination prob-
lems (see Habbema et al. 1974, Michie et al. 1994, Hall et al.
1995, Wright et al. 1995). Nevertheless, we note that in kernel-
based classification problems we are not primarily interested in
density estimation per se, but as a route to classification. We be-
lieve that the methodological impact of this different perspective
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has not yet been fully explored, although there are a few contri-
butions; see, for example, Hall and Wand (1988).

It is worth considering the extent to which we should adapt
the standard methodology of density estimation when applied to
discrimination problems. An obvious difference is that density
estimation usually considers Mean Integrated Squared Error,
denoted as

MISE( ˆf ) = E

∫
( f (x) − ˆf (x))2 dx,

as a measure of the estimate’s accuracy, whereas classification
problems are more likely to use expected error rates. For ex-
ample, many researchers avoid using higher-order kernels in
density estimation because: the estimate is not itself a density;
and, for moderate sample sizes, there is not much gain. However,
for some classification problems, at least, the first reason may
not be an obstacle.

In this paper we focus on the univariate case with two classes,
i.e. J = 2; some multivariate extensions are contained in Di
Marzio and Taylor (2004b). The information at hand is given
in the bivariate dataset (xi , Yi ) , i = 1, . . . , n It will often be
convenient to relabel the two classes 1, 2 as −1, 1 and in this
case Yi : xi → {−1, 1} is an indicator of class membership. Our
goal is to define a mapping δ : R → {−1, 1}, called a classifi-
cation rule. If j ∈ {−1, 1}, the point x ∈ � j will be correctly
classified if δ (x) = j , misclassified if δ (x) �= j . If �1 and �2

are connected sets, then we all we require is an estimate of x0

such that:

δ (x) =
{ −1 if x < x0

1 otherwise.

We use the above framework for the sake of simplicity, but note it
can be early generalized if J > 2 or more complicated partitions
of R occur. Extending some of the methods to higher dimensions
is also straightforward.

Machine learning deals with automatic methods that, once
trained on the basis of available data, are able to make predic-
tions or classifications about new data. This subject, originating
from artificial intelligence and engineering, has many intersec-
tions with statistics. Thus, in the last decade, it has gained a
large amount of popularity among statisticians. Nowadays, many
prominent researchers incorporate Machine Learning, several
traditional statistical techniques related to classical regression
and classification, and new computational procedures, into a
superset known as statistical learning. Hastie et al. (2001) go
deeply into this taxonomy. Boosting is a learning technique that
has recently received a great deal of attention from statisticians;
see Friedman et al. (2000), Friedman (2001) and Bühlmann and
Yu (2003).

Di Marzio and Taylor (2004b) have shown that boosting kernel
classifiers can lead to a reduction in error rates for some real
multivariate datasets. The main result of this paper is to explain
why boosting kernel classifiers should be so successful. We firstly
discuss some theory on bandwidth selection for standard kernel
classification, and then propose a suitable implementation of

boosting for the discrimination problem. We show that boosting
is effective through an L2 view of estimation in a neighbourhood
of x0.

This paper is organized as follows. Section 2 analyzes the stan-
dard case of kernel discrimination and deals with the joint selec-
tion of the smoothing parameters. Section 3 introduces boosting
and considers how it may be adapted for use with kernel density
discrimination. Section 4 makes a connection between boosting
and a multiplicative bias reduction technique previously pro-
posed in kernel density estimation, and we independently indi-
cate why boosting should reduce the bias in kernel discrimina-
tion. In Section 5 we give some simulation and experimental
results which illustrate the theory, make comparisons of boost-
ing with simple kernel methods, and investigate the role of some
of the parameter selections. A final section contains some con-
cluding remarks, as well as a range of outstanding issues which
may inform future research.

2. Estimating the difference between
two densities

In this section we consider the goal of estimating a difference
between two densities, say g(x) = f2(x) − f1(x). In the case
that π1 = π2, this would then lead to the classifier given by
δ(x) = sign ĝ(x). The reason for considering this is that it is
similar to previously adopted implementations of kernel dis-
crimination, and our objective is to indicate the effect on the
choice of smoothing parameters when we estimate the differ-
ence between two densities.

2.1. A L2 risk function

We are interested in solutions to g(x) = 0 given by x0 such that
f1(x0) = f2(x0) = f (x0), say. For simplicity here we suppose
that π1 = π2 = 1/2, but we do not require equal sample sizes.
Suppose the same kernel function K is used to estimate both f1

and f2; moreover let these standard assumptions hold (see, for
example, Wand and Jones 1995, pp. 19–20):

(i) f ′′
j is continuous and monotone in (−∞, −M) ∪ (M, ∞),

M ∈ R;
∫

( f ′′
j )2 < ∞;

(ii) limn→∞h = 0 and limn→∞nh = ∞;
(iii) K is bounded and K (x) = K (−x).

Starting from the usual theory (see Wand and Jones 1995, p. 97),
we obtain

Eĝ(x) = f2(x) − f1(x) + µ2 (K )

(
h2

2

2
f ′′
2 (x) − h2

1

2
f ′′
1 (x)

)

+ o
(
h2

1 + h2
2

)

and

Var ĝ(x) = R (K )
2∑

j=1

f j (x)

n j h j
+ o

{
2∑

j=1

(n j h j )
−1

}
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where, for a real valued function t, R(t) = ∫
t(x)2 dx , µk(t) =∫

xkt(x) dx , and hi is the smoothing parameter used in the es-
timation of fi (x). Hence the mean squared error (MSE) of our
estimate of the point x0 such that g (x0) = 0, is:

MSE {ĝ(x0)} = AMSE {ĝ(x0)} + o

{
2∑

j=1

h4
j + (n j h j )

−1

}

where

AMSE {ĝ(x0)} = µ2 (K )2

{
h2

2

2
f ′′
2 (x0) − h2

1

2
f ′′
1 (x0)

}2

+ R (K )
2∑

j=1

f j (x0)

n j h j
(2)

is the asymptotic MSE, the usual large sample approximation
consisting of the leading term in the expanded MSE. By inte-
grating the pointwise measure in equation (2) we obtain a global
measure, the asymptotic integrated mean squared error:

AMISE {ĝ(·)} = µ2 (K )2 R

(
h2

2

2
f ′′
2 − h2

1

2
f ′′
1

)

+ R (K )
2∑

j=1

(n j h j )
−1. (3)

2.2. Pointwise estimation

If we differentiate equation (2) with respect to hi , i = 1, 2 and
equate to zero we can solve to obtain:

h5
1 = f (x0)

/(
N1 f ′′

1 (x0)2 − (N1 f ′′
1 (x0))5/3 N−2/3

2 f ′′
2 (x0)1/3

)

(4)

h5
2 = f (x0)

/(
N2 f ′′

2 (x0)2 − (N2 f ′′
2 (x0))5/3 N−2/3

1 f ′′
1 (x0)1/3

)

(5)

where N j = n jµ
2
2(K )/R(K ). The solution for one of the h j s

will be negative in the case that f ′′
1 (x0) f ′′

2 (x0) > 0; this may
give insight into a similar phenomenon noted by Hall and Wand
(1988). In this case we can reduce the bias by taking a larger h j

and the asymptotic solution which minimizes the mean-squared
error will need to use the next term (O(h4)) in the Taylor series
expansion.

Note that each h j , j = 1, 2 depends on both sample sizes n1

and n2, as well as both densities and that they have the following
relationship:

h1 = h2

(−n2 f ′′
2 (x0)

n1 f ′′
1 (x0)

)
1/3 (6)

Note that, by inspecting the second term in the denomina-
tor of equation (4), when n1 is fixed we find h1 increases
with n2, i.e. when n1 is fixed and n2 → ∞, h1 increases to
h1 = { f (x0)/(N1 f ′′

1 (x0)2}1/5, which is the usual asymptotic for-
mula for a single sample. That the optimal smoothing parameters

are increasing functions of the sample size of the complemen-
tary group may seem counter-intuitive at first, but it happens in
this case because the sign of the bias is related to the sign of
f ′′(x0).

2.3. Global estimation

If we use a Normal kernel and a Normal plug-in rule for separate
estimation to minimize integrated mean squared error, then h5

j =
4σ 5

j /(3n j ), j = 1, 2; see, for example, Silverman (1986, p. 45).
Differentiating equation (3), we thus obtain the equations:

3h5
1n1

4σ 5
1

− 2h3
1h2

2n1γ − 1 = 0 (7)

3h5
2n2

4σ 5
2

− 2h2
1h3

2n2γ − 1 = 0 (8)

where

γ = D2 + 3V 2 − 6DV

(2V 9)1/2
exp

(
− D

2V

)
,

with D = (µ1 − µ2)2 and V = σ 2
1 + σ 2

2 .
Although it is possible to find numerical solutions of equa-

tions (7) and (8) for hi , i = 1, 2, we have been unable to obtain
a simple closed form. So we now give an approximate solu-
tion which gives an indication of the difference of global joint
estimation. As a first approximation for our joint estimation,
let h5

j = 4σ 5
j (1 + α j )/(3n j ), j = 1, 2. Expanding the resulting

equations in a Taylor series in α j and considering only first order
terms we then have an approximate solution given by:

α1 = − β2
(
β1 − 15n2/5

1

)

(
β1 − 9n2/5

1

)(
β2 − 9n2/5

2

) − 36n2/5
1 n2/5

2

(9)

α2 = − β1
(
β2 − 15n2/5

2

)

(
β1 − 9n2/5

1

)(
β2 − 9n2/5

2

) − 36n2/5
1 n2/5

2

(10)

where β1 = 8γ σ 2
1 σ 3

2 n2/5
2 and β2 = 8γ σ 3

1 σ 2
2 n2/5

1 . Given two
samples, it would be quite straightforward to calculate the sam-
ple mean and variances and use the above equations (9) and
(10) to derive a plug-in rule more suited to discrimination prob-
lems. We note that these adjustments (α j ) do not tend to zero
as the sample sizes tend to ∞; in fact, if n1 = n2 then α j do
not depend on the sample size. The largest magnitude of α j for
the case n1 = n2 is when D = V (5 − 101/2) = 1.838 V and
the ratio max σ j/ min σ j ≈ 1.324. The corresponding smooth-
ing parameters will differ from the independent case by about
8–10%.

We conclude this section noting that being able to evaluate the
bias and variance of ĝ(x) near the solution g(x0) = 0 is not the
final goal. All these calculations deal with a vertical discrepancy
rather than a horizontal discrepancy between x0 and an estimator
of it, say x̂0, i.e.: x̂0−x0. However, in a small simulation study we
did find that the joint pointwise selection given in equations (4)
and (5) were close to the pair (h1, h2) which minimized the
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Fig. 1. For n1 = 50, and samples from N(0,42), N(4,1) the optimal h1

(using the asymptotic equations) is shown for various criteria, as a
function of the sample size n2 = cn1. The points show the values of h1

to minimize (over pairs h1, h2) the average (over 20,000 simulations)
squared error ( ˆf 1(x0) − ˆf 2(x0))2, where x0 = 2.243

misclassification rate. See Fig. 1 for a related example which
illustrates the sample size dependence in equation (6), and the
solutions to (7) and (8).

3. A boosting algorithm for kernel
density discrimination

A boosting algorithm (Shapire 1990) repeatedly calls a “weak
learner”, which is essentially a crude classification method, M
times to iteratively classify re-weighted data. The first weighting
distribution is uniform, i.e. w1(i) = 1/n, i = 1, . . . , n, whilst
the mth distribution {wm(i), i = 1, . . . , n} with m ∈ [2, . . . , M]
is determined on the basis of the classification rule, say δm−1(xi ),
resulting from the (m −1)-th call. The final sequence of decision
rules, δm (x) , m = 1, . . . , M is summarized into a single pre-
diction rule which should have superior standards of accuracy.

The weighting distribution is designed to associate more im-
portance to currently misclassified data through some loss func-
tion. Consequently, as the number of iterations increases the
‘hard to classify’ observations receive an increasing weight.
Moreover, a simple majority vote criterion (Freund 1995), such
as the sign of

∑M
m=1 δm(x), is commonly used to combine the

‘weak’ outputs. Finally, we note that, at present, there is no con-
solidated theory about a stopping rule, i.e. the value of M . This
does not seem a particularly serious drawback because boosting
is often characterized by some correlation between the training
and test error.

Evidently, designing a boosted kernel classifier algorithm in-
volves two main choices: (i) the weighting strategy, i.e. the way

to ‘give importance’ to misclassified data; (ii) the version of
boosting. Other issues, which will affect the accuracy, are: the
existence of a kernel estimator and/or a bandwidth selector that
are specifically suitable for boosting.

Concerning the weighting strategy, due to its nonparametric
nature, kernel discrimination lends itself to several solutions.
Two obvious criteria are: (i) locally adapting the bandwidths;
and (ii) locally adapting the mass of the kernels by associating a
weight to each observation. These correspond to undersmooth-
ing and increasing the probability mass of kernels, respectively,
for misclassified data.

A practical consideration can be helpful. Undersmoothing has
the tendency to generate artificially numerous partitions of the
feature space, especially if, as it usually happens, the data are
sparse; in this case further investigation, to define an ad hoc
bandwidth selector, is needed. Instead, varying the mass of the
kernel seems a directly applicable solution. In this case, the
traditional kernel estimator, that gives all observations the same
mass, corresponds to the weak learner for m = 1.

Concerning an appropriate choice of boosting, we note that
initial implementations of boosting used discrete decision rules,
in our case: δm (x) : R → {−1, 1} (Shapire 1990, Freund
and Shapire 1996), whilst recently Shapire and Singer (1998)
and Friedman et al. (2000) suggest more efficient continu-
ous mappings. In particular, Friedman et al. (2000) propose
Real AdaBoosting in which the weak classifier yields mem-
bership probabilities, in our case δm(x) ∝ pm(x ∈ � j ) =
ˆf 2,m(x)/{ ˆf 1,m(x) + ˆf 2,m(x)}, for a fixed class � j . Its loss sys-

tem gives xi a weight proportional to

Vi =
{

min (p(xi ∈ �1), p(xi ∈ �2))

max (p(xi ∈ �1), p(xi ∈ �2))

}1/2

if xi is correctly classified, and proportional to V −1
i if xi is mis-

classified. Besides, it is to be noted that a continuous strong
hypothesis is generated, preserving the analytical advantages
of a kernel density estimate. Because kernel methods estimate
densities in order to classify, Real AdaBoost seems the natural
framework for boosting kernel discrimination , whereas discrete
mappings do not employ the whole information generated by a
kernel discrimination, but only the resulting sign.

Our pseudocode for Real AdaBoost kernel discrimination
(BoostKDC) is given in Algorithm 1.

Algorithm 1 BoostKDC

1. Given {(xi , Yi ), i = 1, . . . , n}, initialize w1(i) = 1/n, i =
1, . . . , n.

2. Select h j , j = 1, 2.
3. For m = 1, . . . , M (the number of boosting iterations)

(i) Obtain a weighted kernel estimate using

ˆf j,m (x) =
∑

i :Yi = j

wm (i)

h j
K

(
x − xi

h j

)
for j = 1, 2.
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(ii) Calculate

δm (x) = 1

2
log {pm(x)/(1 − pm(x))} .

where pm(x) = ˆf 2,m(x)/( ˆf 1,m(x) + ˆf 2,m(x))
(iii) Update:

wm+1(i) = wm(i) ×
{

exp (δm(xi )) if Yi = 1

exp (−δm(xi )) if Yi = 2

4. Output

H (x) = sign

{
M∑

m=1

δm (x)

}

Note that ˆf j,m(x) does not integrate to 1 even for m = 1; so
in effect we are considering π j f j (x), with π j = n j/n, in our
estimation. Note also that we do not need to renormalize the
weights because we consider the ratio ˆf 2,m(x)/ ˆf 1,m(x) so any
normalization constant will cancel.

Considering the accuracy of the method we need to explore
the overfitting phenomenon in boosting. A weak learner over-
fits data when it concentrates too much on a few misclassi-
fied observations, i.e. heavily bases the fitting on them, be-
ing unable to correctly classify them. Thus, after a value M∗,
consecutive overfitted decision rules δM∗+1 (x) , δM∗+2 (x) . . .

can worsen the performance of the final classifier. A sim-
ple and general approach to prevent overfitting is cross-
validation: M∗ is estimated by observing the corresponding
loss function when the boosting algorithm is carried out on a
subsample.

However, if a flexible base learner is employed, we would
expect small values of M∗. An illuminating description of this
phenomenon is provided by Ridgeway (2000): on a dataset where
a ‘stump’ works reasonably well, a more complex tree with four
terminal nodes overfits from M = 2. Here the decision boundary
is efficiently estimated in the first step, the other steps can only
overfit misclassified data without varying the estimated bound-
ary, so degrading the general performance. In order to reduce
the risk of overfitting, a low variance base learner is suggested,
so

. . . Each stage makes a small, low variance step,
sequentially chipping away at the bias.

Obviously a kernel discrimination is a flexible base learner,
whatever its formulation is. Then, in a first approximation we
can adopt the criterion suggested by Ridgeway (2000) by signif-
icantly oversmoothing, using as a bandwidth a multiple of the
optimal value as obtained from classical methods.

Another regularization strategy, adopted to restrict the vari-
ance inflation due to high values of M , is to reduce the con-
tribution of δm (x) to H (x). This philosophy is proposed by
Friedman (2001) for a different boosting algorithm where the
contribution of each step is reduced by 94%. Observing experi-
mental evidence, he finds an inverse relation between M∗ and the

‘Learning Rate Parameter’ (LRP), and suggests a very low LRP
and a very high M . Friedman can’t justify the good practical
performances of this strategy, considering the phenomenon to
be ‘mysterious’. In Real AdaBoost we can follow this approach
identifying as LRP the exponent of the probabilities ratio in the
loss function. Then, a strategy could be to replace the value 1/2
in step 3(ii) by a value 1/T with T > 2. For larger values of T
the less aggressive will be the algorithm, becoming similar to
discrete AdaBoost as T → ∞.

4. The first boosting step (m = 2)

In this section we firstly point out an an interesting link be-
tween boosting kernel discrimination and previous work on bias
reduction in density estimation. This work was totally indepen-
dent of the boosting paradigm. Then we derive the bias of the
difference estimator ĝ(x) = ˆf 1(x) − ˆf 2(x), involved in H (x),
at the point x0 such that f1(x0) = f2(x0) = f (x0), and show
that while it is initially O(h2)- biased (standard kernel method),
boosting reduces the bias to O(h4) in the special case when
h1 = h2.

4.1. Relationship to previous work

The final classifier output by Algorithm 1 is of the form

H (x) = sign

{
M∑

m=1

δm(x)

}

= sign

[
M∑

m=1

1

2
log

{
ˆf 2,m(x)
ˆf 1,m(x)

}]

.

For M = 2 we see the decision boundary is defined by points x
such that

2∑

m=1

δm(x) = 0

which is equivalent to

˜f 1(x)
∑

w1 K

(
x − xi

h1

)
= ˜f 2(x)

∑
w2 K

(
x − xi

h2

)

where

w1 =
( ˜f 2(xi )

˜f 1(xi )

)1/2

w2 =
( ˜f 1(xi )

˜f 2(xi )

)1/2

and ˜f j , j = 1, 2 are the initial density estimates for the two
groups. Thus the classification boundary can be seen as the in-
tersection points of two multiplicative kernel estimators.

Note that this is very similar to the variable-kernel density
estimator of Jones et al. (1995):

ˆf (x) = ˆf b (x)
1

n

n∑

i=1

ˆf −1
b (xi )

1

h
K

(
x − xi

h

)
, (11)
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where ˆf b is the classical estimator with the bandwidth b. We
can see that equation (11) is simply the product of an initial
estimate, and a (re-)weighted kernel estimate, with the weights
depending on the first estimate. This is of the same form as
the boosted classifier at m = 2. The idea behind (11) is that
the leading bias in ˆf b(x) should cancel with the leading bias in
ˆf (xi ) and their paper showed that this was an effective method of

nonparametric density estimation. In its simplest form, b = h. A
recent semiparametric modification of this method was proposed
by Jones et al. (1999).

Di Marzio and Taylor (2004a) showed that kernel density
estimates could be directly boosted by defining a loss function
in terms of a leave-one-out estimate (see Silverman 1986, p. 49),
and they established a link between this version of boosting and
the bias-reduction technique of Jones et al. (1995).

4.2. Boosting reduces the bias

In order to gain some insights into the behaviour of boosting we
consider a population version: this corresponds to the situation
in which there is an infinite amount of data, but the smoothing
parameter is bounded away from 0. We examine the weights and
classifiers for learners which are “weak” in the sense that our
estimate of f (x) is given by:

ˆf j,m (x) ∝
∫

1

h j
K

(
x − y

h j

)
w j,m(y) f j (y) dy for j = 1, 2.

The first approximation in the Taylor series expansion (which
we use for the initial estimate, when m = 1) is

ˆf (x) = f (x) + h2 f ′′(x)/2 (12)

for some h > 0. So the initial classifier then uses

δ1(x) ∝ 1

2
{log ˆf 2,1(x) − log ˆf 1,1(x)}

= 1

2

[
log

{
f2(x)

f1(x)

}
+ h2

2 f ′′
2 (x)

2 f2(x)
− h2

1 f ′′
1 (x)

2 f1(x)
+ O

(
h4

1

)

+ O
(
h4

2

)
]
.

Thus at x0 we have a bias given by:

�1(ĝ(x0)) = h2
2 f ′′

2 (x0) − h2
1 f ′′

1 (x0)

4 f (x0)
. (13)

which is of order O(h2).
We then obtain, for m = 2

ˆf 1,2 (x) ∝
∫

1

h1
K

(
x − y

h1

) ( ˆf 2,1(y)
ˆf 1,1(y)

)1/2

f1(y) dy (14)

ˆf 2,2 (x) ∝
∫

1

h2
K

(
x − y

h2

) ( ˆf 1,1(y)
ˆf 2,1(y)

)1/2

f2(y) dy (15)

By substituting equation (12) into equations (14) and (15), ex-
panding in a Taylor series and making the change of variable

we eventually obtain an approximation up to terms of order
h2

i , i = 1, 2:

ˆf 1,2 (x) = ( f1(x) f2(x))1/2

[
1 +

{
f ′′
2 (x)

4 f2(x)
+ f ′

1(x) f ′
2(x)

4 f1(x) f2(x)

− ( f ′
2(x))2

8 f 2
2 (x)

− ( f ′
1(x))2

8 f 2
1 (x)

}
h2

1 + f ′′
2 (x)

4 f2(x)
h2

2

]

ˆf 2,2 (x) = ( f1(x) f2(x))1/2

[
1 +

{
f ′′
1 (x)

4 f1(x)
+ f ′

2(x) f ′
1(x)

4 f1(x) f2(x)

− ( f ′
1(x))2

8 f 2
1 (x)

− ( f ′
2(x))2

8 f 2
2 (x)

}
h2

2 + f ′′
1 (x)

4 f1(x)
h2

1

]
.

From this we can compute up to terms of order h3
j , j = 1, 2:

δ2(x) = 1

2

[(
h2

1 − h2
2

)

8

{
f ′
1(x)

f1(x)
− f ′

2(x)

f2(x)

}2

+
(
h2

2 + h2
1

)

4

{
f ′′
1 (x)

f1(x)
− f ′′

2 (x)

f2(x)

} ]

which gives an updated classifier which uses δ1(x)+δ2(x). Thus
at x0 we have bias given by

�2(ĝ(x0)) = �1(ĝ(x0))

2
+ h2

2 f ′′
1 (x0) − h2

1 f ′′
2 (x0)

8 f (x0)

+ (
h2

1 − h2
2

) (
f ′
1(x0) − f ′

2(x0)

4 f (x0)

)2

If we now set h1 = h2 we see that �2(ĝ(x0)) = O(h4) so boost-
ing gives bias reduction. That boosting reduces the bias comes
as no surprise, but it is somewhat counter-intuitive that the bias
reduction is enhanced by taking equal smoothing parameters.

Simple closed form expressions for the variance have eluded
us, but we believe that, in common with other applications of
boosting, the variance will increase rather slowly with M .

5. Numerical and simulation experiments

We will not address the issue of automatic bandwidth selection
for kernel classification. Even in the regular (non-boosting) sit-
uation, this is not straightforward. Cross-validation could be a
possible solution to finding good pairs (h1, h2), but in our simple
experiments, the surface often has local minima, in which the
loss, given by the number misclassified observations, is a dis-
crete function. However, it is worth reiterating that the automatic
or data-based choices of smoothing parameter that have been de-
veloped for density estimation (Jones and Signorini 1997) are
unlikely to be optimal in the classification setting.

Our case studies consist of four simple discrimination prob-
lems. The models are: two gaussian cases, with equal or different
variance (M1, M2); a limited support case (M3) and a heavy-
tailed case (M4). In particular: M1 := N (0, 42), N (4, 12),
M2 := N (0, 32), N (4, 32), M3 := N (4, 12), exp(2) and M4 :=
N (4, 12), t(2).
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As our loss function we will consider the root mean squared
error of the estimator x̂0 = x : ˆf 1(x) = ˆf 2(x), calculated on B
samples with equally sized groups (with n1 = n2):

̂RMSE (x̂0) =
{∑B

b=1 (x̂0,b − x0)2

B

}1/2

.

The reasons for focussing on x̂0 are twofold. Firstly, the above
risk criterion allows us to examine the behaviour of the two
contributions: namely the bias and variance of the estimator
x̂0. Secondly, it re-enforces the fact that the source of inflated
error rates is due to poor estimation of the decision boundaries.
Connections between x0 and the error rate are further explored
in Friedman (1997).

The secondary solutions for x0, where they existed, contribute
very little to the error rate, and so were simply ignored for sim-
plicity. Note that in some cases the secondary solution was such
that f ′′

1 (x0) f ′′
2 (x0) > 0 which requires special attention; see

equation (13) and the discussion in Section 2.2. A further po-
tential problem is that, particularly for small choice of h, we
could get multiple solutions to ˆf 1(x) = ˆf 2(x) in the vicinity
of x0. However, for the values of h considered here, this never
occurred in any of our simulations.

In our simulation studies two main aspects are explored. In
Section 5.1 we consider using separate estimation, a simple
benchmark for kernel density discrimination. Obviously, a dis-
crimination based on independent estimations uses J indepen-
dent estimates which leads to a partition of R generated on the
basis of the x0s as defined above. The performance of a number
of current estimators are compared. Here the end is threefold:
firstly investigating if there is an estimator that behaves better
than others in classification (as opposed to density estimation);
secondly, to establish whether the bias-reduction properties of
higher-order bias kernel methods transfer to the estimation of
x0; thirdly, benchmark accuracy values are established for the
subsequent analysis. Figure 2 shows the relationship between
the intersection point and the error rate for the models used
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Fig. 2. Relationship between the error rate and the estimate of x0 for
the four models considered

in the simulations. It appears that the intersection point will
give more sensitivity in assessing the performance of our meth-
ods. In Sections 5.2 and 5.3 we investigate the performance of
the BoostKDC algorithm. In Section 5.2 we numerically inves-
tigate the empirical behaviour to check what we formally found
for M = 2. In Section 5.3 the consequences of various tuning
choices of parameters, such as the bandwidths and the number
of iterations to be carried out, are explored.

5.1. Separate estimation

We have compared the performances of five estimators: the lin-
ear discriminant (LD), the classic kernel estimator (CK) given by
equation (1), two adaptive estimators: the algorithms by Abram-
son (1982) (AB) and Jones et al. (1995) (JLN), and finally the
jackknifed higher order kernel (HO). JLN was discussed in Sec-
tion 4; a brief description of AB and HO follows.

Consider the general formulation

ˆf (x) = 1

n

n∑

i=1

1

h (xi )
K

(
x − xi

h (xi )

)
,

where there is a different bandwidth for every sample element.
Due to verified practical performance and some optimal ana-
lytic properties, a good choice is to take h(xi ) proportional to
˜f (xi )−1/2, where ˜f is a pilot estimator of f (Abramson 1982).

This estimator has been closely studied and some theoretical
drawbacks have been found (Terrell and Scott 1992, Hall and
Turlach 1999); however Abramson’s solution is still very ap-
pealing for its simplicity and effectiveness. A higher order ker-
nel estimator uses a kernel with order k > 2. Since k is the
order of bias, there are obvious theoretical reasons to use k > 2.
Concerning the order of the kernel, there is general agreement
that good improvements can often be obtained with k = 4. One
of the principal reasons why they do not have a greater usage
in practice is because they take negative values, so the resul-
tant estimate is not itself a density. In a discrimination setting,
this defect is not particularly serious, because we are not pri-
marily interested in a density estimate. In fact, our goal is to
determine whether f1(x) > f2(x) for given x . However, other
drawbacks, such as a difficult choice of bandwidth and the poor
enhancements for reasonably sized samples (Marron and Wand
1992, Jones and Signorini 1997), could be still valid in a dis-
crimination framework. Following Jones and Signorini (1997),
we consider the generalized-jackknife estimator given by

ˆf (x) = 1

n

n∑

i=1

1

h
K(4)

(
x − xi

h

)
,

with

K(4)(u) = (µ4(K ) − µ2(K )u2)K (u)

(µ4(K ) − µ2(K )2)

where µ j (K ) = ∫
x j K (x) dx .

Concerning the implementation details, we have used two
step versions of AB and JLN. This is because in both cases the
second step affects the major bias deletion, while the residual
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Table 1. Accuracy values for 5 separate estimations of x0 such that f1(x0) = f2(x0) with ni = 50, i = 1, 2. The models for the fi are: M1
N (0, 42), N (4, 12); M2 N(0, 32) ,N(4, 32); M3 N(4, 12), exp (2); and M4 N(4,12), t(2)

M1 M2

LD CK HO AB JLN LD CK HO AB JLN

bias −.1943 −.1630 −.0793 −.0174 .0161 .0315 .0033 .0073 .0101 .0011
s.d. .3055 .2354 .2332 .2346 .2390 .3116 .5443 .5349 .5183 .5457
RMSE .3620 .2863 .2463 .2353 .2396 .3132 .5443 .5350 .5184 .5457

M3 M4

bias .4570 .0148 .0553 .0713 .0865 .0685 .0899 .1355 .1069 .1184
s.d. .1598 .1603 .1583 .1686 .1736 .2471 .1718 .1812 .1854 .1909
RMSE .4841 .1610 .1677 .1831 .1940 .2564 .1939 .2263 .2140 .2246

bias is slowly reduced across the successive steps at the expense
of a significant variance inflation. Moreover we have used a
normalized version of JLN.

We have used the simple normal scale rule h = 1.06σ̂n−1/5

for two reasons. From a population point of view, we have almost
always unimodal symmetric populations, the only exception be-
ing the exponential population that, however, is not particularly
concentrated near the boundary. From the estimator’s point of
view, AB and JLN, because of their iterative nature, are robust
to the bandwidth selection step, moreover, higher order kernel
theory is not particularly developed for bandwidth selection.
We use small sample sizes to indicate the effectiveness of the
asymptotic arguments with real datasets.

The bias, s.d. and RMSE of the x̂ ′
0s for ni = 50, i = 1, 2,

and B = 500 are reported in Table 1. In problem M1 the O(h4)-
biased estimators perform drastically better than CK. A large
bias reduction (around 90%) is obtained without a variance in-
flation. AB and JLN exhibit very similar accuracy values, while
HO reduces the bias more modestly (around 51%) but exhibits
the smallest variance. In the estimation of problem M2 there
is not a bias problem, but AB is a little more stable than the
other estimators, note that JLN has the smallest bias and the
biggest variance. As expected, LD gives the smallest RMSE
since it is optimal for such distributions. Curiously, in problem
M3 and M4 CK gives the best results. In problem M3, AB and
JLN perform so poorly because their pilot estimation is O(h)
biased near zero, HO performs similarly to CK. In problem M4,
due to the sparseness of the data in the tails of the t distribu-
tion, larger sample sizes are required in order to make effective
the properties of O(h4)-biased estimators. However, it should
be noted that in the models M3 and M4 there is a nearly sym-
metric pattern in a wide neighbourhood of x0. Obviously LD
performs very poorly when the population variances are quite
different.

5.2. Two boosting iterations

In this subsection we have implemented BoostKDC using the
standard kernel density estimator, given by equation (1), and the
normal scale rule to select h = 1.06σ̂n−1/5. This very simple

automatic choice, which is well-known to oversmooth, should
make clear the effect of boosting and should satisfy the require-
ments of a “weak learner” especially since the normal scale rule
tends to oversmooth for non-normal data. Our objective was
to observe the reduction in bias, theoretically derived in Sec-
tion 4.2, and to confirm that a common smoothing parameter
(h1 = h2 = h) was asymptotically superior to separate smooth-
ing parameters. So two bandwidth selection strategies were
adopted: the separate and the common strategy. Two BoostKDC
estimators result: one using separate bandwidths, with first step
a classical kernel (CK), and second step referred to as 2KBs; a
second estimator where the same bandwidth hKB = (h1 ×h2)1/2

is employed to estimate both f1 and f2 (1KBc and 2KBc). We
have chosen the selector hKB for its simplicity and because it
will again weaken the learner by oversmoothing. However, in the
light of theory of Section 4 we note that the bandwidth selection
task should not be crucial for 2KBc, provided that the unique
bandwidth employed is able to control the effects of higher order
bias terms. Actually, we observed numerical evidence to support
this hypothesis.

The numerical experiment consists of the estimation of mod-
els M1–M4 and the three sample sizes: 50, 100, and 500. The
accuracy values of CK, 2KBs, 1KBc and 2KBc are contained
in Table 2.

We expect that data from model M1 will generate heavily
biased estimates because f1 and f2 exhibit quite different cur-
vatures near x0. However, in correspondence of each sample
size our boosting algorithms are clearly less biased than CK.
Comparing boosting algorithms, we note that 2KBc increases
its accuracy values faster than 2KBs as n increases. Specifi-
cally, comparing the bias magnitudes at n = 50, we have −80%
for 2KBc and −75% for 2KBs; while for the sd respectively
−65% versus −59%.

In model M4, because of the presence of a heavily tailed
distribution, the bias of CK does not decrease for large samples,
boosting shows an even more marked ability to reduce it. Here
2KBc is substantially unbiased, while 2KBs is decidedly less
biased than CK, in fact the bias ratios are 0.40 for n = 50 and
0.27 for n = 500. Moreover, for n = 500 2KBc appears more
stable than CK.
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Table 2. Bias of (i) the classical estimator (CK) and the second boosting step of BoostKDC with separate (2KBs) bandwidths and (ii) common
bandwidth selection with one (1KBc) and two iterations (2KBc) of BoostKDC. Different sample sizes for each of models M1–M4

M1 M2

n j CK 2KBs 1KBc 2KBc CK 2KBs 1KBc 2KBc

50 −.1630 −.1103 −.3973 −.1588 .0003 −.0084 .0062 .0014
100 −.1040 −.0530 −.3057 −.0948 −.0219 −.0358 −.0174 −.0268
200 −.0904 −.0469 −.2437 −.0646 .0165 .0154 .0261 .0164
500 −.0651 −.0265 −.1756 −.0323 .0252 .0275 .0263 .0285

M3 M4

50 .0152 −.0306 −.0408 .0044 .0899 −.0359 −.0583 .0001
100 .0027 −.0351 −.0500 −.0082 .0888 −.0374 −.0609 −.0017
200 .0033 −.0248 −.0417 −.0039 .0921 −.0224 −.0518 .0041
500 .0058 −.0135 −.0291 .0009 .0873 −.0232 −.0469 −.0020

Fig. 3. Effect of number of boosting iterations and the smoothing parameter on bias and variance of estimation of x0. Left: Bias; Right: Standard
deviation for m = 1, . . . ,13 as a function of h. The points, which are shown on both panels, are the optimal (over h) root mean squared error values
for each choice of m

Fig. 4. Effect of number of boosting iterations and the smoothing parameter on the root mean squared error (RMSE) of estimation of x0. Points
show minima for each M. Left: Model M3; Right: Model M4 as a function of h
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Concerning models M2 and M3, in the previous section we
observed the substantial unbiasedness of CK for n = 50 because
of the perfect or approximate symmetry exhibited near x0. As
a consequence, we expect our boosting will not help. Anyway,
for this latter reason M2 and M3 constitute a good benchmark
in order to measure the overfitting of our two-step algorithms.

Overall, comparing Tables 1 and 2, we can see that boosting
does have a bias-reduction property which, in some cases, mim-
ics those of the higher-order kernel methods. On the whole, if
boosting CK works well, then the use of a common bandwidth
seems preferable. Finally, an impressive feature of BoostKDC is
that it appears robust to non-regular shapes of the populations.

5.3. More boosting iterations

In this subsection we explore the performance of boosting when
more than two iterations are carried out. According to the boost-
ing principles we expect an initial progressive bias reduction
and a modest variance inflation. We expect that after a number
of steps both variance and bias will start to increase and from
around there we will observe overfitting.

Our objective is to explore the way in which the optimal choice
of smoothing parameter varies as the number of iterations in-
creases, and to investigate how many boosting iterations are ef-
fective. As noted, boosting cannot work for problem M2 since the
distributions are symmetric and so there is no bias. In this equal
variance Normal setting a linear discriminant x̂0 = (x̄1+ x̄2)/2 is
optimal and this could be approximately achieved by using very
large h. So we present results for M1, M3 and M4. For each
distribution we simulate 500 samples with n1 = n2 = 50 and
for common smoothing parameters (h1 = h2) in an appropriate
range we calculate x̂0 for m = 1, 2, . . .. Based on these 500
numbers we then estimate the bias and variance which would
be achieved for each combination of m and h. Results for data
model M1 are shown in Fig. 3, in which we show the bias-
variance trade-off. We can see that the bias continues to reduce
by boosting for 4 iterations or more, and then a larger value of
h can be used to reduce the variance. In terms of RMSE, there
is little improvement beyond 7 iterations, after which these val-
ues are almost entirely dominated by the variance component.
The RMSE results for models M3 and M4 are shown in Fig. 4
and the behaviour is somewhat similar in each: as the number
of boosting iterations increases the optimal choice of smooth-
ing parameter also increases. Whereas for model M1 the RMSE
corresponding to this optimal choice of h continued to decrease
slowly up to m = 13 iterations, for models M3 and M4 the
optimal choices of m were m = 2 and m = 5, respectively.

6. Conclusions

The goal of this paper was to consider some theoretical aspects
and solutions in kernel density discrimination. Concerning the
algorithm BoostKDC, we have demonstrated the utility of boost-
ing in kernel density classification both theoretically and for

finite samples. However, obtaining explicit formulae for the vari-
ance has proved elusive, and it is not theoretically clear the way
in which the bias reduction works for more than two steps.

In many situations, the intersection point x0 will not be unique,
and, since the estimation at such x0 is critical, adaptive smooth-
ing parameters are likely to perform much better than global
smoothing parameters. In particular, if f ′′

1 (x0) f ′′
2 (x0) > 0 then a

much larger smoothing parameter is required; see equation (13).
In practical applications, it would be necessary to obtain a rule
to enable an appropriate data-based choice of smoothing param-
eter h and a regularization technique (appropriate choice of M)
should also be a matter for concern. In general, it appears that
the larger the choice of M , the larger is the optimal smoothing
parameter.

A further issue which requires more investigation is the Learn-
ing Rate Parameter 1/T (= 1/2 in step 3(ii)) of our boosting
algorithm. We have used T = 2, but a larger value makes the
learning process slower, reducing the overfitting phenomenon.
In fact, values of T a little larger than 2 often generate much
more efficient estimates. A further method to ameliorate over-
fitting would be to use shrinkage (Bühlman and Yu 2003). A
final methodological point is establishing if the use of boosting
weights {wi,m, i = 1, . . . , n, m = 1, . . . , M} could be incor-
porated into the calculation of the bandwidth, so achieving a
step-adaptive bandwidth.

The simple nature of BoostKDC allows a straightforward ex-
tension to the multidimensional case which is examined by Di
Marzio and Taylor (2004b) who show the effectiveness of boost-
ing in reducing the error rate on both simulated and real data.
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