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In this paper, we introduce non-centered and partially non-centered MCMC algorithms for stochastic
epidemic models. Centered algorithms previously considered in the literature perform adequately
well for small data sets. However, due to the high dependence inherent in the models between the
missing data and the parameters, the performance of the centered algorithms gets appreciably worse
when larger data sets are considered. Therefore non-centered and partially non-centered algorithms
are introduced and are shown to out perform the existing centered algorithms.
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1. Introduction

Non-centering parameterisations and their corresponding
MCMC algorithms were introduced in Papaspiliopoulos
et al. (2003). They provide effective alternatives to hierarchi-
cal or centered parameterisations particularly when observed
data is relatively uninformative about missing data. Motivated
by the need to develop compromises between centered and
non-centered methods, that paper also introduces partially non-
centered parameterisations, a continuum of parameterisations
with centered and non-centred at the extremes. In the hierarchi-
cal Gaussian linear model case, exact theoretical analysis pro-
vides strong support for the use of partial non-centering. Fur-
thermore, in much more realistic problems with similar hierar-
chical structure, empirical evidence also supports the use of the
methodology (see, for example, the spatial GLMM methodology
of Christensen et al. (2003)).

However non-centering methodology remains largely
untested on more complex, structured missing data problems.
The aim of this paper is to investigate non-centering methods on
two such problems arising from inference for partially observed
stochastic epidemics. These applications are particularly appro-
priate for two reasons. Firstly, practical use of these models on
real data is inevitably complicated by considerable missing data.
Secondly, datasets for epidemics can be very large (for example,

the foot and mouth epidemic, see Keeling et al. (2001)) and
MCMC methods are well-known to deteriorate for these models
for large populations, as dependence between parameters and
missing data grows. Furthermore, we see this fundamental
work on parameterisations for epidemic models as being of
considerable applied interest, and applications of this work in
modelling the foot and mouth and other livestock epidemics
and the spread of aquatic disease between UK fish farms, are
currently the subject of ongoing work by the authors.

Many stochastic epidemic models are by now well-understood
from a probabilistic view point (see, for example, Bailey (1975),
Ball et al. (1997) and Andersson (1999)). They offer plausible
and relatively parsimonious stochastic models for the macro-
scopic progress of an epidemic, which in turn lead to consider-
ably more realistic models for epidemic final size distributions
than their deterministic model counterparts. However, inference
for these models is normally complicated by the fact that the
data is only partially observed. Therefore it is often difficult to
write down the likelihood for the observed data, necessitating
the use of complicated data augmentation schemes. However,
it is well-known that MCMC algorithms which involve the im-
putation of large sets of missing data can converge very slowly
(see, for example, Meng and van Dyk (1997)).

This paper is concerned with epidemics where limited tempo-
ral data is available. Specifically, we assume that removal times
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of infective individuals are observed. Thus the times when infec-
tions occur are not observed and need to be imputed. Typically
this is the case where very limited knowledge about infected in-
dividuals is available. Often the data consists solely of the time
at which the first (or last) signs of the disease upon the individual
are noted. Where more informative information is available, the
inference often becomes much more straightforward, see, for
example, Neal and Roberts (2004).

We shall apply the non-centered methodology of Pa-
paspiliopoulos et al. (2003) to two models with observed re-
moval times: the general stochastic epidemic (GSE) (and its
extensions) and the Bernoulli random graph general stochas-
tic epidemic (BGSE). For both these models, we find that non-
centering techniques assist the MCMC mixing with minimal
extra computational costs. The BGSE example involves the use
of a state-space expansion technique. However, even with the
computational costs taken into account, the non-centered algo-
rithms are shown to out perform the existing centered algorithms
over a range of examples.

The terminology centered and non-centered parameterisa-
tions is borrowed from the hierarchical modelling literature,
and a fuller description can be found in Papaspiliopoulos
et al. (2003). The terms centered and non-centered parame-
terisations refer to the mechanisms by which the missing data
(infection times) and the model parameters are updated, a de-
tailed description of which will be given in Section 4. The con-
nection between the relative performance of centered and non-
centered methods and statistical information is well-understood
in simpler models (Meng and van Dyk (1997), Papaspiliopoulos
et al. (2003)). Here we are able to exploit the information gained
from these simpler models, in order to design samplers that are
robust to the information content in the specific data set ob-
served. In particular, we introduce a novel partially non-centered
parameterisation which is shown to be particularly effective in
Sections 5 and 6. Furthermore, the partially non-centered pa-
rameterisation we introduce is very natural and was seen to out
perform a partially non-centered parameterisation based on the
approach taken in Papaspiliopoulos et al. (2003), Section 4.

The paper is structured as follows. We briefly outline non-
centering methods in general in Section 2. Then in Section 3,
the epidemic models are described, and the non-centering meth-
ods we shall be using on these models are introduced in Section
4. The GSE and its extensions are considered in Sections 5 and
6, respectively, and the benefits of the partially non-centered ap-
proach are demonstrated. In Section 7, we turn our attention to
the BGSE where the non-centered algorithm is particularly ef-
fective. Finally in Section 8, we make some concluding remarks
and outline some possible avenues for future research.

2. Centering and non-centering

In this short section we shall briefly describe and motivate non-
centering in a general context. This description follows the work
of Papaspiliopoulos et al. (2003).

Fig. 1. A hierarchical model and its centered parameterisation

A centered parameterisation of a hierarchical model essen-
tially parameterises in terms of the different layers of the hierar-
chy. For example, consider the hierarchy given by the graphical
model in Fig. 1. Here we assume that θ is a parameter of interest
and that X is a vector of missing data, with Y being the observed
data.

The obvious centered parameterisation therefore is (θ, X). It
has the advantages that it is statistically natural and the inherent
conditional independence (e.g. θ ⊥ Y | X) makes the im-
plementation of appropriate MCMC algorithms simpler. On the
other hand, if Y contains little information about X, then the
apriori dependence in the model implied by the link between θ

and X is likely to lead to very poor convergence of MCMC. This
problem is exacerbated when X is high-dimensional and the de-
pendence between θ and X can then be particularly strong. In a
limited set of simple examples such as the hierarchical Gaussian
linear model, this effect can be analysed and quantified explicitly.

A natural alternative suggested by this discussion is to repa-
rameterise X̃ = h(X, θ ) in order to make θ and X̃ independent.
We call the parameterisation (θ, X̃) a non-centered parameteri-
sation. Whilst this parameterisation gives independent compo-
nents in the absence of data, informative data renders X̃ and θ

highly dependent. Thus its dependence properties are in some
sense opposite to those of the centered parameterisation.

It should be noted that identification of the function h above
can be rather complicated in many situations. Furthermore, there
is clearly no unique non-centered parameterisation even for the
simple hierarchical structure described by Fig. 1. Moreover, for
more complex hierarchical structures (such as those with time-
series structure as in the epidemic models of this paper) centering
and non-centering can often only be described for certain param-
eters. However, the basic principle of non-centering remains the
same—the breaking of an apriori dependence between parame-
ter(s) and missing data.

For the purposes of MCMC algorithms, for instance for the
hierarchical model in Fig. 1, weak data suggests the use of non-
centered algorithms, whereas, strong data suggests using the
centered specification. Therefore for most datasets, one would
suspect that an improved parameterisation on both these ex-
tremes might be available as some kind of compromise between
the two. This is the motivation behind partial non-centering.
The idea is to define a continuum of parameterisations with
the centered and non-centered as extremes. In the hierarchical
Gaussian model, the benefits of partial non-centering methods
can be investigated explicitly, and empirical evidence from other
examples (see, for example, Christensen et al. (2003)) strongly
support the use of the methodology.
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3. The epidemic models

Both the GSE and the BGSE are examples of the most widely
studied class of epidemic models, namely SIR epidemics (see,
for example, Bailey (1975), Andersson (1999), O’Neill and
Roberts (1999), and O’Neill and Becker (2001)). That is, at
any point in time an individual is in one of three states; suscepti-
ble, infected or removed. The only transitions in state which we
allow are; from susceptible to infected and; from infected to re-
moved. The terms susceptible and infected are self-explanatory,
in that, susceptible individuals are those who don’t have the dis-
ease but are susceptible to infection, whilst infected individuals
are infectious with the disease and are able to infect susceptible
individuals. We assume that at the end of an individual’s infec-
tious period he becomes removed, either by death or recovery
followed by immunity to further infection. Thus the individual
may well remain a member of the community but is removed in
the sense that he plays no further part in the epidemic process.
We shall further assume that the population N of N individu-
als is closed and that there are initially a infectious individuals
whilst the rest of the population is initially susceptible. Note that
any individuals who are initially in the removed state play no part
in the epidemic and can therefore be ignored. The assumption
that the population is closed is reasonable, in that, many epi-
demics occur over relatively short time periods when compared
with usual population demographics.

The infectious life history (Qi , {Wi j ; 1 ≤ j ≤ N }) of an
infective, i say, comprises the length of individual i’s infectious
period, Qi , and Wi j (1 ≤ j ≤ N ) the point of time, relative to
individual i’s infection, at which he makes an infectious contact
with individual j .

For the GSE, the {Qi ; 1 ≤ i ≤ N } are independent and
identically distributed according to Q ∼ Exp(γ ) and the
{Wi j ; 1 ≤ i, j ≤ N } are independent and identically distributed
according to W ∼ Exp(β). The epidemic’s course can be con-
structed from (Qi , {Wi j ; 1 ≤ j ≤ N }) (1 ≤ i ≤ N ) as follows.
Start with the initial infectives infectious at time 0. Then let Ii

denote the time at which individual i becomes infected, then
Ri = Ii + Qi denotes the time at which individual i becomes
removed. If Wi j < Qi , individual i makes an infectious contact
with individual j at time Ii +Wi j . If individual j is susceptible at
time Ii + Wi j , individual j becomes infected, otherwise nothing
happens. We continue the above process until the epidemic has
ceased, i.e. there are no infectives remaining in the population.
In Section 6, we study an extension of the GSE where Q is an
arbitrary, but specified non-negative random variable.

For our second example, we shall consider the BGSE. Here
let G be a Bernoulli random graph on N vertices, that is, for
each pair of vertices i and j there exists, independently of the
remainder of the graph, an edge between vertices i and j with
probability, p say. For 1 ≤ i, j ≤ N , let Gi j = 1, if there exists
an edge between vertices i and j in the graph G and Gi j = 0,
otherwise. We employ the convention that Gii = 0 (1 ≤ i ≤ N ).
We then say that individuals i and j are acquaintances in the

population N if there exists an edge between vertices i and j
in the graph G (i.e. Gi j = 1). Therefore for the BGSE, the
{Qi ; 1 ≤ i ≤ N } are independent and identically distributed
according to Q ∼ Exp(γ ) and, the {Wi j ; 1 ≤ i, j ≤ N } are
assumed to be independent with Wi j ∼ Exp(β), if Gi j = 1 and
Wi j = ∞, otherwise.

Thus the GSE is a homogeneously mixing epidemic, while for
the BGSE, an infective, i say, can only make infectious contacts
with a subset of the population N , namely his acquaintances
Ai = { j ; Gi j = 1}.

The model parameters of interest are β and γ for both the GSE
and BGSE, and an additional parameter p for the BGSE. The
temporal data are assumed to comprise just the removal times of
each individual ultimately infected. For simplicity, we assume
that the epidemic has ceased, so that the final size of the epidemic
m is known. We also assume, for clarity in presentation of the
results, that there is only one initial infective (i.e. a = 1). Let
0 = R1 ≤ R2 ≤ · · · ≤ Rm = T denote the observed removal
times, and write R = (R1, R2, . . . , Rm). Let I = (I1, I2, . . . , Im)
denote the unobserved infection times, where for 1 ≤ j ≤ m,
the infection time I j corresponds to the infection time of the
individual removed at time R j . Label the initial infective κ , so
that Iκ < I j for all j �= κ .

4. Centered and non-centered
parameterisations for the GSE

Here, we shall introduce centered and non-centered parameteri-
sations that we shall consider for the GSE. The prior dependence
link to be broken by non-centering in our method will be that
between Ri − Ii and γ .

For the GSE, we have the observed data R, the unobserved
data I and the model parameters (β, γ ). We can then implement
the following (centered) MCMC algorithm (the details will be
given in Section 5).

1. Update the parameters β and γ from π (β | γ, I, R)
and π (γ | β, I, R) with the Gibbs sampler, respect-
ively.

2. Update one (or more) of {Ii : 1 ≤ i ≤ m} using
a Metropolis-Hastings step by proposing a
replacement infection time Ri − I ′

i ∼ Exp(γ ).

The centered parameterisation alternates between updating
the model parameters (β, γ ) and the missing data I. By contrast,
the non-centered parameterisation we introduce updates the
model parameters and the missing data together. For 1 ≤ i ≤ m,
let Ui = γ (Ri − Ii ) (i.e. Ii = Ri − 1

γ
Ui ). Note that apriori

Ui ∼ Exp(1) (1 ≤ i ≤ m). Then for the non-centered pa-
rameterisation we have a change in variables from (R, I, β, γ )
to (R, U, β, γ ). We can then implement the following (non-
centered) MCMC algorithm.

1. Update the parameters β from π (β|γ, I, R) using
the Gibbs sampler.
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2. Update γ using RWM (Random-walk Metropolis)
with proposal distribution N (γ, σ 2

γ ).
(Note that updating γ involves updating the missing
infection times I, since for 1 ≤ i ≤ m, I ′

i = Ri − 1
γ ′ Ui .)

3. Update one (or more) of {Ui : 1 ≤ i ≤ m} using
a Metropolis-Hastings step by proposing a
replacement infection time U ′

i ∼ Exp(1).

Therefore the key difference between the two parameteri-
sations is the following. For the centered algorithm the infec-
tion times I remain fixed when updating γ , whilst for the non-
centered algorithm new infection times I′ are proposed when
updating γ . As mentioned in Section 2, it is shown in Pa-
paspiliopoulos et al. (2003), using a simple hierarchical model
as an example, that when there is strong (weak) dependence
between the model parameters and the missing data then a non-
centered (centered) parameterisation is preferable. For epidemic
models the strength of dependence between the model parame-
ters and the missing data is important in choosing which parame-
terisation to use. However, there are other serious considerations,
in particular, it is important that the MCMC algorithm updates
the missing data (I for the GSE and (I,G) for the BGSE) in
an efficient manner. This suggests that a partially non-centered
MCMC algorithm might be a sensible compromise, and this is
particularly useful for the GSE. The strategy we employ for the
partial non-centering parameterisation is as follows. At each it-
eration, we choose to center or non-center each infection period,
independently, with probability µ, for some 0 ≤ µ ≤ 1. That
is, when updating γ some of the infection times remain fixed
whilst the other infection times change with γ .

For the BGSE, the centered parameterisation updates p and
G separately. Whilst for the non-centered parameterisation the
updating of p involves updating the graph G also.

5. General stochastic epidemic

5.1. The partially non-centered parameterisations

Let Xt and Yt denote the number of susceptibles and infectives
in the population at time t . Then

f (R, I | β, γ ) ∝
∏

i �=κ

{
βYIi −

}
exp

(
− β

∫ T

Iκ

Xt Yt dt

)

×
m∏

j=1

{γ exp(−γ (R j − I j ))}, (5.1)

where the notation Ii− denotes the left hand limit, so for
example, YIi − denotes lims↑Ii (Ys). Note that, at time, t say,
there are Yt infectives attempting to infect Xt susceptibles.
Therefore

∫ T
Iκ

Xt Yt dt denotes the total number of person-to-
person units of infectious pressure exerted during the course
of the epidemic. Let A = ∫ T

Iκ
Xt Yt dt , then we can rewrite

A = ∑m
j=1

∑N
k=1{(R j ∧ Ik) − (I j ∧ Ik)} with I j = ∞ for

j = m + 1, m + 2, . . . , N . The likelihood (5.1) is in agree-

ment with the first equation on page 101 of O’Neill and Becker
(2001).

Due to the memoryless property of the exponential distribu-
tion, there is a natural alternative to the model setup described
in Section 3. Instead of associating infection times with removal
times, let I = (I1, I2, . . . , Im) denote the sequential order of
times at which infections occur within the epidemic, so for
1 ≤ j < k ≤ m, I j ≤ Ik . The model setup thus has the likeli-
hood function given by O’Neill and Roberts (1999), (3.1). We
use the original model setup, since the association of each infec-
tion time with a removal time allows us to implement partially
non-centered reparameterisations.

We follow O’Neill and Roberts (1999) in assuming that apri-
ori β and γ are independent. The prior distributions for β and
γ are Gam(νβ, λβ) and Gam(νγ , λγ ), respectively. It is then
straightforward to integrate β and γ out of (5.1), giving

f (R, I) ∝
{

∏

i �=κ

YIi −

}
(λβ + A)−(m+νβ−1)

×
(

λγ +
m∑

i=1

(Ri − Ii )

)−(m+νγ )

. (5.2)

We then have the following (centered) MCMC algorithm based
on (5.2).

1. Update the parameter γ from π (γ | β, I, R) using
the conditional distribution.

2. Update one of {Ii : 1 ≤ i ≤ m} using a Metropolis-
Hastings step by proposing a replacement infec-
tion time Ri − I ′

i ∼ Exp(γ ).

β values can be generated from the resultant sample of (R, I, γ )
values since π (β | γ, R, I) ∼ Gam(m + νβ − 1, λβ + A).

Using the terminology of Papaspiliopoulos et al. (2003), we
introduce a γ -partially-non-centered MCMC algorithm (γ pNC
algorithm). We partition the set of individuals whom are ulti-
mately infected into two groups C and U . Let IC and IU denote
the infection times of the individuals in groups C and U , respec-
tively. Let Ui = γ (Ri − Ii ) (i ∈ U) and we propose a change in
variables from (R, IC, IU , β, γ ) to (R, IC, UU , β, γ ). Note that if
U = ∅, then we have the centered model described above. Let
ω = |U |, then the Jacobian for the transformation is γ −ω. Using
(5.1) and integrating out the parameter β, gives

g(R, IC, UU , γ )

∝
{

∏

i �=κ

YIi −

}
(λβ + A)−(m+νβ−1)γ νγ −1 exp(−λγ γ )

×
∏

i∈C
{γ exp(−γ (Ri − Ii ))}

∏

i∈U
exp(−Ui ) (5.3)

where Ik = Rk − 1
γ

Uk (k ∈ U).
We now describe how the resulting γ pNC algorithm was

implemented using (5.3).
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For 1 ≤ i ≤ m and 0 ≤ µ ≤ 1, let

Zi =
{

1 with probability µ,

0 with probability 1 − µ.
(5.4)

Then set C = {i : Zi = 1} and U = {i : Zi = 0}.
1. Update Z, and hence C and U, using (5.4).
2. Update γ using RWM with proposal distribution

N (γ, σ 2
γ ).

Note that unless U = ∅, it is extremely difficult to sample γ

directly from the conditional distribution.
3. Draw j uniformly at random from {1, 2, . . . , m}.

Then if j ∈ C ( j ∈ U) update I j (U j ) using
a Metropolis-Hastings step by proposing
R j − I ′

j ∼ Exp(γ ) (U ′
j ∼ Exp(1)).

Then β values can be generated from the resultant sample of
(R, I) values as before.

An alternative partially non-centered algorithm based on Pa-
paspiliopoulos et al. (2003), is to partially non-center each in-
fectious period. As mentioned in the introduction, this algorithm
did not perform as well as the non-centered algorithm outlined
above, hence the details are omitted.

5.2. Results

We compare the γ pNC algorithm with both the centered (C E)
algorithm outlined above and the O’Neill and Roberts (O R) al-
gorithm (see, O’Neill and Roberts (1999)). Note that both the
C E and O R algorithms are examples of fully (100%) centered
algorithms, however, as observed above they differ in their con-
struction and as consequence have different efficiencies. The
comparison is done using a simulated data set 1 (population size
200 of whom 82 are ultimately infected; true model parameters
β = 0.001 and γ = 0.15) and a smallpox data set which sees an
outbreak of size 30 in a closed population of size 120 (see, for
example, Bailey (1975), O’Neill and Roberts (1999) and O’Neill
and Becker (2001)). For both data sets, we consider a range of
partial non-centerings, in particular for j = 0, 1, . . . , 10, we ran
the γ pNC algorithm with µ = 0.1 j . In each case the algorithm
was run for a burn-in period of 10000 iterations followed by
10000 further iterations. The acceptance rate for γ was mon-
itored over the further 10000 iterations. If the acceptance rate
was less than 20% or greater than 40%, we adjusted σγ and ran
the algorithm for a further 10000 iterations, again monitoring
acceptance rates. We continue this process until we have an ac-
ceptance rate between 20 and 40%. We then fixed σγ since an
acceptance rate between 20 and 40% is close to optimal (see,
Roberts and Rosenthal (2001)). The algorithm was then run for
a further 5000000 iterations to obtain a sample of size 500000,
from the stationary distribution, taken after every 10 iterations.
The output was thinned to allow storage of data from longer runs
of the algorithm. In Table 1, we record for both data sets and
each partial non-centering, the value of σγ and the acceptance
rate over the 5000000 iterations used to obtain the sample. In

Table 1. σγ and the acceptance rates for the γ pNC algorithm for the
smallpox and simulated data sets, respectively

Smallpox data set Simulated data set

% Centered σγ % Accepted σγ % Accepted

0 0.050 21.7 0.048 28.3
10 0.050 23.4 0.059 25.1
20 0.050 25.2 0.073 22.0
30 0.050 27.0 0.078 21.8
40 0.050 28.8 0.059 28.3
50 0.050 30.7 0.095 19.8
60 0.050 32.4 0.100 19.8
70 0.050 34.4 0.067 28.8
80 0.050 36.3 0.100 21.3
90 0.050 38.3 0.100 22.4

100 0.106 25.1 0.100 23.5

all cases we set π (β) ∼ Exp(0.001) and π (γ ) ∼ Exp(0.001),
corresponding to weak, uninformative priors.

To compare the efficiency of the algorithms, we use the
integrated autocorrelation function, see, for example, Geyer
(1992). Let γ = (. . . , γ0, γ1, . . .) denote a sample of γ from
the stationary distribution and let Cγ denote the integrated au-
tocorrelation function for γ then Cγ = 1 + 2

∑∞
k=1 ρk where

ρk = corrπ (γ0, γk). Let γ = (γ1, γ2, . . . , γ500000) denote the γ

values from one particular realisation of the algorithm. There-
fore for all k ≥ 1, let tk = 500000 − k and then we have the
following unbiased estimate for ρk from the data

ρ̂k = 1

σ̂ 2
γ

{
1

tk

tk∑

i=1

γiγi+k −
(

1

tk

tk∑

i=1

γi

)(
1

tk

tk∑

i=1

γi+k

)}

where σ̂ 2
γ denotes the estimated (from the data) variance for the

posterior distribution of γ . Then for S > 1, we can estimate Cγ

by Ĉγ = 1 + 2
∑S

k=1 ρ̂k . The choice of S is crucially impor-
tant. If S is too small then important correlation terms ρk might
be ignored, and hence, Ĉγ would be a bad estimate of Cγ . On
the other hand, if S is too large, then it can be hard to distin-
guish between actual correlation and Monte Carlo error and as
consequence Ĉγ can be affected by Monte Carlo error. There-
fore bearing in mind the above observations, and for consistency
across estimates, we have set S = 500 throughout this section.

The results of the MCMC output are recorded for the smallpox
dataset and the simulated data set in Tables 2 and 3, respectively.
The tables include the posterior means of β and γ and calcula-
tions of Ĉβ and Ĉγ for the γ pNC , C E and O R algorithms.

We note that the results obtained for β are qualitatively sim-
ilar to those obtained for γ . Therefore from now on we restrict
attention to the integrated autocorrelation function for the γ

parameter. Similar qualitative results were also obtained using
variance of batch means, Geyer (1992).

Tables 2 and 3 do not take into account the relative speed in
terms of cpu time of the various algorithms. In particular, the C E
algorithm is the fastest whilst theγ pNC algorithm is the slowest.
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Table 2. Summary of MCMC output for smallpox data set

% Centered Mean γ Ĉγ Mean β Ĉβ

0 0.1057 62.308 9.918 × 10−4 17.994
10 0.1051 12.915 9.895 × 10−4 5.073
20 0.1051 7.079 9.891 × 10−4 4.178
30 0.1050 4.636 9.883 × 10−4 3.896
40 0.1050 4.291 9.881 × 10−4 4.088
50 0.1051 4.274 9.863 × 10−4 4.902
60 0.1051 4.839 9.886 × 10−4 5.670
70 0.1052 6.803 9.899 × 10−4 8.020
80 0.1050 8.455 9.878 × 10−4 9.570
90 0.1050 10.295 9.879 × 10−4 10.137

100 0.1053 18.126 9.913 × 10−4 17.337
CE 0.1053 16.769 9.894 × 10−4 16.092
OR 0.1053 8.928 9.908 × 10−4 8.215

Table 3. Summary of MCMC output for simulated data set 1

% Centered Mean γ Ĉγ Mean β Ĉβ

0 0.1760 85.010 1.127 × 10−3 46.402
10 0.1750 25.402 1.122 × 10−3 16.369
20 0.1751 17.698 1.122 × 10−3 15.686
30 0.1757 14.755 1.126 × 10−3 15.870
40 0.1754 16.856 1.124 × 10−3 21.712
50 0.1753 20.274 1.125 × 10−3 24.975
60 0.1749 28.570 1.120 × 10−3 34.638
70 0.1755 37.723 1.125 × 10−3 42.327
80 0.1738 55.717 1.114 × 10−3 59.595
90 0.1760 67.764 1.128 × 10−3 71.317

100 0.1758 105.294 1.126 × 10−3 103.238
CE 0.1758 99.684 1.130 × 10−3 98.472
OR 0.1760 43.173 1.130 × 10−3 43.667

For both data sets, the speed of the γ pNC algorithms was found
to vary by at most 3% over the various partial non-centerings
considered. Therefore we have scaled the results for the γ pNC
algorithms by the mean speed of this algorithm. The efficiency of
an algorithm is measured as the amount of cpu time required to
do 100000 iterations multiplied by the integrated autocorrelation
function for γ . The relative efficiency of the algorithm is then
given by the algorithm’s efficiency divided by the efficiency of
the O R algorithm. Thus a relative efficiency below 1 (i.e. below
the solid line in Figs. 2 and 3) corresponds to an improvement
on the O R algorithm.

For the smallpox data set, the optimal γ pNC algorithm con-
sidered (µ = 0.5) and the O R algorithm are both equally ef-
ficient. Whereas for simulated data set 1, the optimal γ pNC
algorithm (µ = 0.3) has a relative efficiency of approximately
0.75 which is a noticeable improvement on the O R algorithm.
The results of Figs. 2 and 3 demonstrate a trend we see with
other data sets, that is, the larger m (the size of the outbreak) is,
the more non-centered the optimum γ pNC algorithm is and the
greater the gains in efficiency over the O R algorithm. This trend
is also seen in Fig. 4 where we consider a simulated epidemic

Fig. 2. The relative efficiency (R.E.) of the γ pNC (circles), C E
(square) and O R (diamond) algorithms, respectively, for the smallpox
data set

Fig. 3. The relative efficiency (R.E.) of the γ pNC (circles), C E
(square) and O R (diamond) algorithms, respectively, for the simulated
data set

Fig. 4. The relative efficiency (R.E.) of the γ pNC (circles), C E
(square) and O R (diamond) algorithms, respectively, for simulated
data set 2

of size 350 in a population of size 1000 (Simulated data set 2).
Each of the algorithms was run as before for Simulated data set
2 to obtain samples of size 500000.

From Fig. 4 we have that the optimal choice of µ for the
γ pNC algorithm is µ = 0.1. Furthermore this results in an im-
provement on the OR algorithm by almost a factor of 3, and has
a relative efficiency of approximately 0.62. A further explana-
tion of why the optimal choice of µ decreases with m is given
in Section 6.3 below.

For the γ pNC algorithm, we only update one of the Ui ’s or
Ii ’s in each iteration. Alternatively we could do multiple updates
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of the Ui ’s and Ii ’s in each iteration. This can be done by either
repeating step 3 a number of times within each iteration or by
block updating (proposing to update more than one of the Ui ’s
and/or Ii ’s at once). The block updating was found to be very
inefficient, due to the likelihood being discontinuous. Repeat-
ing step 3 a number of times within each iteration did improve
the efficiency of the algorithm but not considerably. The same
approach can be adopted in the C E and O R algorithms and as
a result we get similar results in terms of relative efficiency to
those obtained in Figs. 2–4.

6. Extensions of the general stochastic epidemic

6.1. The partially non-centered parameterisations

There are numerous extensions of the GSE, see for example, Ball
(1986) and O’Neill and Becker (2001). One of the most natu-
ral and easy to implement extensions is to allow more general
infectious periods. That is, let Q be an arbitrary but specified
non-negative distribution. Let gQ(·) denote the probability den-
sity function of Q and let γ denote the parameters governing Q.
Then (5.1) can be rewritten for general infectious period Q,

f (R, I | β,γ) ∝
∏

i �=κ

{βYIi −} exp(−β A)
m∏

j=1

gQ(R j − I j ) (6.1)

where Yt denotes the number of infectives at time t , YIi − =
lims↑Ii (Ys) and A = ∑m

j=1

∑N
k=1{(R j ∧ Ik)−(I j ∧ Ik)} with Ik =

∞ for k = m+1, m+2, . . . , N . In particular, we could consider
Q ∼ Gam(α, δ), that is, gQ(x) = δα

(α) xα−1 exp(−δx) and Q ∼
W eib(α, δ), that is, gQ(x) = αδxα−1 exp(−δxα). Note that for
both the Gamma and Weibull distributions, if we set α = 1 then
we recover the exponential distribution, and hence, the GSE.
Since similar results were obtained for both the Gamma and
Weibull distributions, we shall restrict attention to the Gamma
distribution.

The Gamma distribution is defined by two parameters, the
shape parameter, α, and the scale parameter, δ. We shall focus
attention on the case where the shape parameter α is assumed
to be known although the methodology can be extended to the
case where α is unknown and is therefore a parameter within the
model.

As in Section 5.1, we shall assume that apriori β and δ are in-
dependent. The prior distributions (for conjugacy) for β and δ are
Gam(νβ, λβ) and Gam(νδ, λδ), respectively. It is then straight-
forward to integrate β and δ from (6.1), and construct a centered
MCMC algorithm (CE algorithm) along similar lines to Section
5.1. The procedure alternates between updating δ from its condi-
tional distribution and updating an infection time by proposing
R j − I ′

j ∼ Q.
We introduce a δ-partially-non-centered MCMC algorithm

(δpNC algorithm) for the Gamma distribution. The procedure
is basically the same as for the γ pNC algorithm for the GSE.
Partition the set of individuals into two groups C and U , re-
spectively. For Q ∼ Gam(α, δ), let Ui = δ(Ri − Ii ) (i ∈ U).

We then propose a change of variable from (R, IC, IU , β, α, δ)
to (R, IC, UU , β, α, δ). Then using (6.1) and integrating out the
parameter β, gives

f̂ (R, IC, UU , δ | α)

∝
{

∏

i �=κ

YIi −

}
(λβ + A)−(m+νβ−1)δνδ−1 exp(−λδδ)

×
∏

i∈C

{
δα

(α)
(Ri − Ii )

α−1 exp(−δ(Ri − Ii ))

}

×
∏

i∈U

{
1

(α)
Uα−1

i e−Ui

}
.

We are now in a position to describe the δpNC algorithm. For
1 ≤ i ≤ m and 0 ≤ µ ≤ 1, let

Zi =
{

1 with probability µ,

0 with probability 1 − µ.
(6.2)

Then set C = {i : Zi = 1} and U = {i : Zi = 0}.
1. Update Z, and hence C and U using (6.2).
2. Update δ using RWM with proposal distribution

N (δ, σ 2
δ ).

3. Draw j uniformly at random from {1, 2, . . . , m}.
Then if j ∈ C ( j ∈ U) update I j (U j ) using
a Metropolis-Hastings step by proposing
R j − I ′

j ∼ Gam(α, δ) (U ′
j ∼ Gam(α, 1)).

Then β values can be generated from the resultant sample of
(R, I) values as before.

6.2. Results

We compare the δpNC algorithm with the C E algorithm. The
comparison is done using a simulation study and a compari-
son of the integrated autocorrelation function for the various
algorithms. The parameters used for the Gamma distribution
simulation study are presented in Table 4.

For each of the data sets, we consider a range of partial non-
centerings, in particular for j = 0, 1, . . . , 10, we ran the δpNC
algorithm with µ = 0.1 j . Samples of size 500000 were ob-
tained in exactly the way as in Section 5.1. We choose un-
informative priors for β and δ, in particular, we set π (β) ∼

Table 4. Simulation study for Gamma distribution

Simulated
data set Gamma 1 Gamma 2 Gamma 3 Gamma 4

True α 0.2 0.5 2 5
True δ 0.1 0.25 1 2.5
True β 0.007 0.007 0.007 0.007
n 100 100 100 100
m 61 57 49 61
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Gam(0.001, 0.001) and π (δ) ∼ Gam(0.001, 0.001). To com-
pare the efficiency of the algorithms we restrict attention to the
integrated autocorrelation function for δ, Cδ . As before we es-
timate Cδ by Ĉδ = 1 + 2

∑500
k=1 ρ̂k . We get similar qualitative

results if we were to consider the β parameter instead. The results
of the simulation study are reported in Table 5.

In Table 5, the posterior means for the δ parameter are gen-
erally slightly higher than the parameter values use in the simu-
lations. This is due to the posterior distribution of δ being right
skewed. However, in all cases, it can be seen from posterior den-
sity plots for δ that the posterior mode of δ is very close to the
true parameter value.

Table 5 is very informative about the relative merits of the cen-
tered and non-centered parameterisations in an epidemic con-
text. Note that all the simulated epidemics were of similar sizes
within populations of size 100. This was done so that we could
compare the merits of the algorithms for different values of α.
The results tell us that as α increases, that the optimal partial
non-centered algorithm becomes increasingly non-centered. We
have that for α = 0.2, 0.5, 2.0 and 5.0, the corresponding op-
timal non-centered algorithms have µ = 0.7, 0.5, 0.3 and 0.1,
respectively. The table also demonstrates the vast difference be-
tween the best and worst partial non-centered algorithms for
a particular data set. Note that if anything the table undersells
these differences since the estimates of Ĉδ > 100 are conserva-
tive (for example, in the worst case, data set Gamma 1 and the
fully non-centered algorithm (µ = 0.0), ρ̂501 = 0.173 which is
far from being insignificant).

However, Table 5 does not take into account the relative speed,
in terms of cpu time, of the two algorithms with the C E algo-
rithm being just over two times faster than the δpNC algorithm.
The comparison of relative efficiency of the various partial non-
centerings are done in a similar manner to Section 5.2. The
relative efficiency of the algorithm is given by dividing the algo-
rithm’s efficiency by the efficiency of the C E algorithm. Thus

Table 5. Estimates of the posterior mean of δ and the integrated autocorrelation function of δ, Ĉδ for the Gamma simulation study

Gamma 1 Gamma 2 Gamma 3 Gamma 4

% Centered Mean δ Ĉδ Mean δ Ĉδ Mean δ Ĉδ Mean δ Ĉδ

0 0.1226 406.816 0.3064 157.182 0.9963 36.508 2.591 9.171
10 0.1244 129.828 0.3029 37.685 0.9963 12.616 2.592 7.930
20 0.1218 74.767 0.3016 21.283 0.9966 9.041 2.592 11.774
30 0.1233 41.929 0.3030 13.597 0.9962 7.579 2.586 26.098
40 0.1234 23.928 0.3029 10.270 0.9949 9.126 2.584 47.448
50 0.1234 13.776 0.3024 9.617 0.9964 12.547 2.583 68.359
60 0.1233 9.388 0.3036 9.755 0.9959 16.986 2.592 102.394
70 0.1230 7.915 0.3013 11.845 0.9943 22.219 2.592 145.620
80 0.1235 8.498 0.3022 15.355 0.9962 29.573 2.584 201.295
90 0.1240 10.344 0.3024 24.151 0.9996 40.968 2.639 245.667

100 0.1231 25.644 0.3028 44.056 0.9979 63.916 2.572 320.914
CE 0.1234 21.935 0.3028 35.640 0.9978 55.796 2.551 339.490

Fig. 5. The relative efficiency (R.E.) of the δpNC (circles) and C E
(square) algorithms, respectively, for the Gamma simulation study

a relative efficiency below 1 corresponds to an improvement on
the C E algorithm, which is the natural centered algorithm for
general infectious periods. The relative efficiencies of the vari-
ous partial non-centerings for the simulation study data sets are
given in Fig. 5.

Figure 5 shows the great gain in efficiency that can be de-
livered by the partial non-centered algorithms. In the best case,
(data set Gamma 4 and µ = 0.1), the gain is a factor of approx-
imately 18. Note, by contrast, that in the worst cases the relative
efficiencies for certain values of µ are off the scale given in
the plots. In all cases, the optimal partial non-centered algo-
rithm out performs the C E algorithm. These results clearly hold
for the GSE if we were to compare the γ pNC algorithm with
the C E algorithm rather the O R algorithm which is a special
case (see Figs. 2–4). In other words, the GSE example given in
Section 5 undersells the benefits of the partially non-centered
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parameterisation, since we compare the γ pNC algorithm with
the special O R algorithm rather than the generic C E algo-
rithm. Furthermore, the partial non-centered approach could
prove very useful from a practical point of view. The distribu-
tion of the length of infectious periods of many diseases, such as
measles (see, Neal and Roberts (2004)), can be approximated by
a Gamma distribution with α > 1, and as we have seen the par-
tial non-centered parameterisation is particularly good in such
situations.

Similar observations are made for the Weibull distribution, in
that, as α increases the optimal partially non-centered algorithm
becomes increasingly non-centered.

6.3. Remarks

We proceed by giving an explanation for why the non-centered
parameterisation is to be preferred as m and α increase for
Gamma distributed infectious periods. Suppose that α is fixed
(as above) and that we observe an epidemic of size m. Assign
the improper, uninformative prior, π (δ) ∼ Gam(0, 0) to the pa-
rameter δ. Then for a given value of δ, the sum of the infectious
periods are apriori Gamma distributed

m∑

j=1

(R j − I j ) | α, δ ∼ Gam(mα, δ).

Also the posterior distribution of δ is

π (δ | R, I, α) ∼ Gam

(
mα,

m∑

j=1

(R j − I j )

)
.

Thus for large m and/or α, the parameter δ and the sum of the
infectious periods are apriori heavily correlated. Therefore if we
consider δ and

∑m
j=1(R j − I j ) as the two parameters of interest,

then the centered algorithms alternates between updating each
of these two parameters. It is well known that for the two-state
Gibbs sampler that convergence of the algorithm is linked to
the correlation between the parameters, see Amit (1991). This
suggests that the centered algorithm performs badly when mα is
large. This is accentuated by the fact that we only update one of
the infection periods during each iteration. Clearly, our situation
is far more complicated than a two state Gibbs sampler due to the
interactions between the different removal and infection times.
However, the results of Sections 5.2 and 6.2 support the above
line of argument.

The non-centered parameterisation gets around the above
problem of high correlation by breaking down the dependence
between the infection times and δ. Note that apriori

∑m
j=1 U j |

α, δ ∼ Gam(mα, 1), and so, apriori
∑m

j=1 U j is independent of
δ. However, this does not take account of the intricate relation-
ship between the different infection times I and the parameter δ.

This is obviously not the full story since the updating of the
infection times I in such a way as to explore the full target space is
needed. This is best done using a partial non-centered algorithm,
since the centered algorithm updates only one infection time per
iteration and the fully non-centered algorithm whilst updating

all the infection times when updating δ maintains the ratio of
length between the different infectious periods. Therefore, for
i �= j , it can take many iterations to alter the ratio R j −I j

Ri −Ii
. Thus

the best partial non-centered algorithm from this perspective is
probably µ = 0.5.

Therefore there is an intricate trade-off between many con-
siderations when deciding on the algorithm to use. The results
suggest that except for very small mα, the δpNC algorithm is
preferable to the C E algorithm. The choice of µ is then depen-
dent on m and α with the optimal choice of µ decreasing with
m and α. From a practical point of view, short runs of length
10000 say, with different values of µ give a fair idea of a good
choice for µ. All the results suggest that the choice of µ is fairly
robust, in that, any choice of µ close to the optimal choice of µ

will produce a close to optimal δpNC algorithm.
The above observations hold for the Weibull distribution as

well, and will probably hold for far more general choices of
Q. However, a generalisation of the above argument does not
readily present itself.

6.4. Further extensions

There are a number of further extensions that one could consider
such as the inclusion of a latent period. The most natural exten-
sion of the above work is to consider unknown shape parameter
α. In the case where Q is Gamma distributed, it is possible to
non-center the infectious period with respect to the shape pa-
rameter as well as the scale parameter (see, Papaspiliopoulos
et al. (2003), for details). One would expect to observe similar
results to those given above, that is, when α is large then the
non-centered algorithm for δ is good. However, the situation is
complicated by questions such as whether to center or non-center
with respect to the parameter α, the interaction between the pa-
rameters α and δ and how this affects the choice of algorithm
and whether to update α and δ separately or jointly. There does
not seem to be straightforward answers to these questions and
this is a subject for future work.

7. Bernoulli random graph general stochastic
epidemic

7.1. A non-centering reparameterisation

We now turn our attention to the BGSE. For convenience, we la-
bel the infected individuals 1, 2, . . . , m such that for 1 ≤ j ≤ m,
individual j is removed at time R j . The susceptible individuals
are labelled m + 1, m + 2, . . . , N .

The graph G can be constructed as follows. For 1 ≤ i < j ≤
N , let Ui j ∼ U (0, 1). Then an edge exists between vertices i and
j in the graph G if and only if Ui j ≤ p. Note that Gi j = 1{Ui j ≤p}.
For completeness, set U ji = Ui j (1 ≤ i < j ≤ N ), Uii = 1
(1 ≤ i ≤ N ) and U = {Ui j : 1 ≤ i, j ≤ N }. Let P denote the
infection path, i.e. who infects who. ThenP is a random directed
tree upon the graph G whose root is the vertex corresponding
to the initial infective, κ . We assume that P is unknown, but we
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choose P uniformly at random from all the possible infection
paths given (G, I, R). Note that apriori all the possible infection
paths are equally likely.

Let L = π (I, R | β, γ, p, U,P) and A = ∑m
j=1

∑N
k=1

G jk{(Ik ∧ R j )−(Ik ∧ I j )} with the convention that for k ≥ m+1,
Ik = ∞. Thus as before A denotes the total number of person-
to-person units of infectious pressure exerted during the course
of the epidemic. Then since G, and hence P , can be constructed
from (U, p), it follows from Britton and O’Neill (2002) after
some straightforward algebra, that

L = βm−1 exp(−β A)γ m exp

(
− γ

m∑

j=1

(R j − I j )

)
. (7.1)

In fact, for inference we don’t need the full graph G but the sub-
graph F , {Gi j : 1 ≤ i ≤ m, i < j ≤ N }, since the likelihood
does not depend on whether or not links exist between individu-
als who remain susceptible throughout the epidemic. Similarly,
we only need U∗ = {Ui j : 1 ≤ i ≤ m, i < j ≤ N } rather than U.

We follow Britton and O’Neill (2002) in assigning indepen-
dent priors to the individual parameters, in particular, π (β) ∼
Gam(νβ, λβ), π (γ ) ∼ Gam(νγ , λγ ) and π (p) ∼ Beta(d1, d2).
Thus, by Bayes’ Theorem, we have that

π (p,F,P | I, R) ∝ Lπ (β)π (γ )π (F | p)π (p), (7.2)

where, since F is a subgraph of G, a Bernoulli random graph,

π (F | p) = p|F |(1 − p)K−|F |

and K = ( m
2 ) + m(N − m). Furthermore, we can integrate out

β and γ giving,

π (p,F,P | I, R)

∝ (λβ + A)−(m+νβ−1)

(
λγ +

m∑

j=1

(R j − I j )

)−(m+νγ )

π (F | p)π (p). (7.3)

Therefore we have the following algorithm based on (7.3), which
is an adaption of the Britton and O’Neill (2002) algorithm (ABO
algorithm). The main difference from the Britton and O’Neill
(2002) algorithm, is that, we use the subgraph F instead of the
full graph G. The adaption of the algorithm has been done to
improve mixing.

1. Update p, β and γ , respectively, from the
appropriate conditional distributions.

2. Update {Gi j ; 1 ≤ i ≤ m, i < j ≤ N } one at a
time using a Gibbs sampler (see, Britton and
O’Neill (2002)) and then pick P uniformly at
random from all the possible paths.

Note that for steps 3 to 5, we integrate out
β and γ and use (7.3).

3. Update the components of I one at a time, in
a uniformly random order using a Metropolis-
Hastings step (see, Britton and O’Neill (2002)).

4. Update κ, by proposing a new initial infective
and calculating the acceptance ratio for the move
(see, Britton and O’Neill (2002)).

5. Draw c uniformly from the interval [r−1, r ], where
r > 1 is constant. The value c is then used to
rescale the current set of infection times
as outlined in Britton and O’Neill (2002).
However, since β and γ are integrated out of the
likelihood, we ignore the rescaling of β and γ .

The above centered algorithm updates p conditional upon
the graph F (and I, R) and then updates F conditional upon
p (and I, R). The reparameterised algorithm below utilises the
construction of the graphF given at the beginning of this section
using U∗ and p. The resulting non-centered algorithm updates
the graph F when updating p. The U∗ are updated separately
and this also updates F . Note that

∏
k �=κ{

∑m
j=1 1{I j <Ik≤R j }G jk}

is the number of possible infection paths P given (U∗, p, I, R).
Therefore by Bayes’ Theorem the posterior density of interest,
π (p, U∗ | I, R), is given by

π (p, U∗ | I, R)

∝
∏

k �=κ{
∑m

j=1 1{I j <Ik≤R j }G jk}pd1−1(1 − p)d2−1

(λβ + A)m+νβ−1(λγ + ∑m
j=1(R j − I j ))m+νγ

. (7.4)

We are now ready to outline our non-centered MCMC algorithm
(NC algorithm) which breaks the apriori dependence between p
and the random graph.

1. Update p using logarithmic RWM with proposal
distribution log p′ ∼ N (log p, σ 2

p).
2. Update the components of U∗ one at a time using

a Metropolis-Hastings step by proposing U ′
i ∼

U (0, 1).
3. Update the components of I one at a time,

in a uniformly random order using RWM with
I ′
k ∼ N (Ik, σ

2
I ).

4. Update κ as outlined below.

The procedure we adopt for updating κ is similar to that of
Britton and O’Neill (2002). Suppose that individual i is the initial
infective, so κ = i . Let Ci = {k : Ii < Ik ≤ Ri and Gik = 1}
and let ψi = |Ci |. We select an individual, j say, uniformly at
random from Ci . Now we propose to make κ = j by swapping
the infection times of individuals i and j , so that individual i
becomes infected at time I ′

i = I j and individual j becomes
infected at time I ′

j = Ii . Let C ′
j = {k : I ′

j < I ′
k ≤ Ri and

G jk = 1} and let ψ ′
j = |C ′

j |. Then we accept the move κ = j
with probability,

min

{
1,

∏
k �=κ ′ {∑m

l=1 1{I ′
l <I ′

k≤Rl }Glk}∏
k �=κ{

∑m
l=1 1{Il<Ik≤Rl }Glk}

(
λβ + A

λβ + A′

)m+νβ−1
ψi

ψ ′
j

}
.

β and γ values can be generated from the resultant sample of
(p, U∗, I) values according to their appropriate conditional dis-
tribution.
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Table 6. Detection times of cases of Gastroenteritis, Britton and
O’Neill (2002), Example 3

Day 0 1 2 3 4 5 6 7
Cases 1 0 4 2 3 3 10 5

The NC algorithm involves non-centering the graph G, or, in
particular, the subgraphF . As with the GSE, we could introduce
a partial non-centering for the graph F , updating some of the
edges with p while keeping other edges fixed. However, results
over a number of data sets showed that either the ABO algorithm
or NC algorithm out performed any of the partially non-centered
algorithms. An explanation of why this should be the case is
given in Section 7.3 below. Therefore for clarity in exposition,
we have described the non-centered algorithm rather than the
more complicated partially non-centered algorithm.

7.2. Results

We use Britton and O’Neill (2002), Example 3 to compare the
ABO and NC algorithms. This example concerns an outbreak
of Gastroenteritis in a hospital ward in South Carolina, January
(1996), as reported in Cáceres et al. (1998). We follow Britton
and O’Neill (2002) in restricting attention to the transmission of
the disease through the nursing staff only. As noted by Britton
and O’Neill (2002), the application of the BGSE to this par-
ticular data set is somewhat questionable but since we wish to
compare our methodology with Britton and O’Neill (2002), we
will use this data set and tolerate the less realistic assumptions.
The removal times correspond to the date upon which the onset
of symptoms were detected and the epidemic comprised 28 in-
fectious cases among a population of size 89. The removal times
are given in Table 6.

We shall focus on the parameter p. This is indicative of how
well the MCMC algorithm mixes with respect to β and γ as
well. We shall follow Britton and O’Neill (2002) and use weak,
uninformative priors, namely, νβ = λβ = νγ = λγ = 0.001 and
d1 = d2 = 1. For each of the algorithms, we obtained a sample
of size 100000 taken after every 10 iterations with a burn-in of
10000 iterations.

From Fig. 6, we can see that for this data set the NC algorithm
mixes better than the ABO algorithm. The time series plots sug-
gest that there is a lot of uncertainty concerning p. We note
the estimated posterior mean (standard deviation) for p are 0.55
(0.27) using the ABO algorithm and 0.56 (0.26) using the NC
algorithm. Further, the time series plot for the NC algorithm
suggests that the NC algorithm mixes better for higher rather
than lower values of p. This was also the case in other examples
we considered. We ran the NC algorithm to obtain samples of
size 100000, firstly with log p′ ∼ N (log p, σ 2

p) (logarithmic
RWM) and then with p′ ∼ N (p, σ 2

p) (standard RWM). Then
in Fig. 7 for each batch of 100 observations we plot the batch
mean against the proportion of accepted moves. We can see that

Fig. 6. Time series plots for the first 10000 iterations of p for Britton
and O’Neill (2002), Example 3, with output from the ABO and NC
algorithms, respectively

Fig. 7. Scatterplot of batch mean of p against proportion of accepted
moves for Britton and O’Neill (2002), Example 3, using logarithmic
RWM and standard RWM, respectively

using logarithmic RWM is a big improvement on using standard
RWM.

The choice of prior for p, π (p), is very important since the NC
algorithm performs better for large values of p than for small
values of p. We therefore ran both algorithms with π (p) ∼
Beta(3, 1) and π (p) ∼ Beta(1, 3). These prior distributions
correspond to the prior belief that p is large or small, respectively.
From the MCMC output, the autocorrelation function (acf) can
be estimated, this is summarised in the acf plots in Fig. 8 for the
different choice of priors for p.

The results of Fig. 8 support the observation made earlier that
the real gains in mixing from using the NC algorithm are when p
is large. Even when the underlying graph is fairly sparse (i.e. p
is small) the NC algorithm performs no worse than the ABO
algorithm which appears to perform equally well for all choices
of π (p).

We have not conducted a formal comparison of the computing
costs of the ABO and NC algorithms since the difference in
running time between the algorithms over a range of examples
was negligible.

7.3. Remarks

The following two questions need further explanation, why does
the NC algorithm mix better for large p rather than small p and
why is the non-centered algorithm preferable to the partially
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Fig. 8. Acf plots for p, for both the ABO and NC algorithms with
π (p) ∼ Beta(3, 1) and π (p) ∼ Beta(1, 3), respectively

non-centered algorithm in apparent contradiction to the results
of Sections 5 and 6? Clearly, there is high correlation between p
and the number of possible infection paths since the higher p is,
the more possible infection paths there are. The NC algorithm
performs better when there is a large number of possible infec-
tion paths for the following reasons. If there is a large number
of possible infection paths, a small proposed change in p which
either adds or removes a few edges (and so, creates or deletes a
few infection paths) will have little effect on the likelihood given
in (7.4), and so, most moves will be accepted. On the other hand,
if there are only a few possible infection paths then the addition
or removal of even a few edges can have a dramatic effect on
likelihood given in (7.4), such as removing a crucial link in the
infection chain, and so, considerably more moves are rejected.

The construction of a partially non-centered algorithm is fairly
straightforward. We considered the case, where in each iteration
each edge is non-centered with probability 1 − µ and centered
with probability µ. However, as mentioned in Section 7.1, we
found that such an algorithm performed poorly. In particular,
it was found that for the above data set all values of µ > 0
had worse mixing properties than the fully non-centered (NC)
algorithm and except for values of µ close to 0, the mixing was
considerably worse.

So why for the BGSE is the non-centered algorithm preferable
to the partially non-centered algorithm, whereas for the GSE
the partially non-centered algorithm is the best? There is no
straightforward answer, but an understanding of why this might
be the case can be obtained by considering the two models. For a
BGSE epidemic of size m within in a population of size N , there
is ( m

2 ) + m(N − m) edges to be imputed. (Thus the number of
edges to be imputed is typically O(m2) since we are only usually
interested in major outbreaks of the disease, i.e. N = O(m).)
This leads to a very strong prior dependence between p and
the imputed variables, in particular, if we set d1 = d2 = 0

(corresponding to an uninformative, improper prior on p) then
π (p | F) ∼ Beta(|F |, ( m

2 ) + m(N − m) − |F |). Thus for
the BGSE, the overriding consideration is to breakdown this
dependence between p and the subgraph F which is done by the
non-centering approach. As we have mentioned in Section 6.3,
the non-centered algorithm for the GSE and its extension breaks
the prior dependence between I and the parameters governing the
infectious period distribution. However, in this case the number
of imputed infection times, I, is equal to m. Therefore the prior
dependence is not as strong as for the BGSE, and so, other
considerations become important in the choice of algorithm as
was noted in Section 6.3.

8. Discussion

We have given two examples of models where partially (or com-
pletely) non-centered parameterisations can lead to consider-
ably more rapidly convergent Markov chains than the conven-
tional centered data-augmentation parameterisations. For the
GSE and its extensions, the improved mixing comes at the cost
of marginally increased computing costs, whereas in the BGSE,
there are no extra computational costs associated with the use
of non-centered methodology, despite the need for state-space
expansion techniques.

The non-centered and partially non-centered algorithm be-
come increasingly useful as the size of the epidemic m increases.
The epidemics considered in this paper are generally very small
with m < 100 (the exception being Simulated data set 2 in Sec-
tion 5.2). Thus the results of this paper are of great practical
interest since most epidemics that are of interest have outbreaks
of size 100 or larger.

For both GSE and BGSE, our results find that non-centering
improves algorithm performance, usually substantially. The two
examples reach different conclusions regarding the the extent of
the non-centering required for the optimal algorithm. However,
some explanation for these differences is given in Section 7.3.
For the BGSE the prior link between p and the graph is partic-
ularly strong so that the data is comparatively extremely weak,
and fully non-centered methods are preferred.

These models are very simple although are surprisingly chal-
lenging for modern MCMC methods. However, the methodology
described in this paper could be extended routinely to models
where more complex imputed data needs to be included, for in-
stance with latent periods, more general infectious periods, or
random effects on infectious periods. For such models, we would
expect non-centered methods to be even more advantageous over
centered alternatives, since data are less likely to be able to break
down strong prior dependencies. We have demonstrated this to
a certain extent by considering different infectious periods in
Section 6. It would be particularly interesting to study the case
proposed in Section 6.4 where Q ∼ Gam(α, δ) and both α and
δ are unknown.

The BGSE example raises interesting issues since the data
are more informative for small values of p than for large ones.
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As a result, the non-centered method has a tendency to mix
poorly when visiting small p values. In this context, it is easy to
construct hybrid MCMC strategies to solve this problem.

In conclusion therefore non-centered and partially non-
centered parameterisations have much to offer problems of in-
ference from stochastic epidemics, largely due to the sparsity of
data and the consequent need to do extensive data-augmentation.

Broad conclusions about non-centering more generally can
of course only tentatively be drawn. However the results of
this paper reinforce those of related work on other model
types (for example, in Christensen et al. (2003)), and is con-
sistent with the limited theory available for the methodology
(see, Papaspiliopoulos et al. (2003)). Thus our tentative conclu-
sions would be that provided non-centering is practically im-
plementable in computing time comparable to that of the basic
centred method, then they will usually lead to algorithms with
improved mixing. Fully non-centered methods are likely to be
useful when there is a very strong prior link between missing
data and parameters or where it is difficult to construct sensible
partial non-centering methods.
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