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Exponential dispersion models, which are linear exponential families with a dispersion parameter,
are the prototype response distributions for generalized linear models. The Tweedie family comprises
those exponential dispersion models with power mean-variance relationships. The normal, Poisson,
gamma and inverse Gaussian distributions belong to the Tweedie family. Apart from these special
cases, Tweedie distributions do not have density functions which can be written in closed form.
Instead, the densities can be represented as infinite summations derived from series expansions. This
article describes how the series expansions can be summed in an numerically efficient fashion. The
usefulness of the approach is demonstrated, but full machine accuracy is shown not to be obtainable
using the series expansion method for all parameter values. Derivatives of the density with respect to
the dispersion parameter are also derived to facilitate maximum likelihood estimation. The methods are
demonstrated on two data examples and compared with with Box-Cox transformations and extended
quasi-likelihoood.
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1. Introduction

An exponential dispersion model (EDM) is a two-parameter
family of distributions consisting of a linear exponential family
with an additional dispersion parameter. EDMs are important in
statistics because they are the response distributions for general-
ized linear models (McCullagh and Nelder, 1989). EDMs were
established as a field of study in their own right by Jørgensen
(1987, 1997), who undertook a detailed study of their properties.

Any EDM can be characterized by its variance function V (),
which describes the mean-variance relationship of the distribu-
tion when the dispersion is held constant. If Y follows an EDM
distribution with mean µ, variance function V () and dispersion
φ, then the variance of Y can be written

var(Y ) = φV (µ).

Of special interest are the class of EDMs with power mean-
variance relationships for which V (µ) = µp for some p. Fol-
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lowing Jørgensen (1987, 1997), we call these Tweedie models.
The class of Tweedie models includes most of the important dis-
tributions commonly associated with generalized linear models
including the normal (p = 0), Poisson (p = 1), gamma (p = 2)
and the inverse Gaussian (p = 3) distributions. Although the
other Tweedie model distributions are less well known, Tweedie
models exist for all values of p outside the interval (0, 1). Apart
from the four well-known distributions already mentioned, none
of the Tweedie models have density functions which have ex-
plicit analytic forms. The purpose of this article is to provide
fast, accurate computation of these densities.

The Tweedie models for p > 2 are generated by stable dis-
tributions and have support on the positive reals. The Tweedie
model distributions for 1 < p < 2 can be represented as Pois-
son mixtures of gamma distributions and are mixed distibu-
tions with mass at zero and with support on the non-negative
reals. These distributions have been called “compound Poisson”
by Bar-Lev and Stramer (1987), Feller (1968, Section 12.2),
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Jørgensen and Paes de Souza (1994) and Smyth and Jørgensen
(2002) and “compound gamma” by Johnson and Kotz (1970).
In this article we call them Poisson-gamma distributions as in
Smyth (1996) in recognition of their relationship to both dis-
tributions. All Tweedie distributions with p > 1 have strictly
positive means, µ > 0. Jørgensen (1987) showed that Tweedie
model distributions with p < 0 have µ > 0 but support for y
on the whole real line. We do not give attention to these dis-
tributions in this article as they seem to have limited potential
application.

Apart from applications of the four special Tweedie distri-
butions listed above, Tweedie distributions have been used in
such diverse fields as actuarial studies (Haberman and Ren-
shaw 1996, Renshaw 1994, Jørgensen and Paes de Souza 1994,
Haberman and Renshaw 1996, 1998, Millenhall 1999, Murphy,
Brockman and Lee 2000, Smyth and Jørgensen, 2002), assay
analysis (Davidian 1990, Davidian, Carroll and Smith 1988),
survival analysis (Aalen 1992, Hougaard, Harvald and Holm
1992, Hougaard 1986), time spent splicing telephone cables
(Nelder 1994), money spent on hiring outside labour (Jørgensen
1987), and ecology (Perry 1981). Generalized linear models with
Tweedie model responses have also been used by Gilchrist and
Drinkwater (1999) to analysis alcohol consumption in British
teenagers and by Smyth (1996) to analyse medical and metere-
ological data.

The densities of Tweedie distributions for p = 0, 1, 2 and
3 can be written in closed form. For other values of p, evalu-
ation of the density requires some numerical process such as
the inversion of the cumulant generating function, involving
evaluation of an infinite oscillating integral, or evaluating an
infinite summation. Since there are generally no closed forms
for the Tweedie densities, full likelihood analysis is very diffi-
cult. This does not prevent the use of Tweedie distributions in
generalized linear models since the fitting algorithm requires
knowledge only of the first two moments of the response dis-
tribution. The likelihood function is very useful however be-
cause it enables efficient estimation of the parameters p and φ

as well as diagnostic checking of the response distribution using
techniques such as the quantile residuals of Dunn and Smyth
(1996).

Dunn (2001) considers two broad strategies for evaluating
Tweedie densities, one based on numerical inversion of the
characteristic function and the other based on series expansions
obtained from an analytic approach to the inversion integral.
Both strategies have advantages and the two strategies are to
some extent complementary; they each work best in different re-
gions of the parameter space. The numerical inversion approach
requires lengthy technical development and will be published
elsewhere. This article focuses on the series expansion method
for the case p > 1. We describe how the series expansions
can be implemented in an numerically efficient fashion. The
usefulness of the series expansions is demonstrated, but full
machine accuracy is shown not to be obtainable using the
series expansion method for all parameter values. It would be
possible to take a similar approach to develop expressions for

the densities for the case p < 0, but these EDMS are likely to
be of far less practical importance.

Previously, Smyth (1996) and Gilchrist and Drinkwater (1999)
have examined the series expansion of the Tweedie densities for
1 < p < 2 using a simple summation of terms in the series.
Seigel (1979, 1985) discusses series evaluation of a special case
of the Tweedie distributions with p = 1.5. Jørgensen (1997)
discusses the series themselves in detail but not the actual eval-
uation of the series.

In the next section, the Tweedie densities are discussed and
their properties introduced. Section 3 gives the infinite series ex-
pansions. Section 4 addresses the issue of selecting which terms
in the summation must be summed for a fast and accurate answer.
Section 5 examines the computation complexity and accuracy
of the numerical summation. Section 6 considers some issues
of maximum likelihood estimation. In Section 7, the problem
of evaluating derivatives of the density with respect to φ is con-
sidered. Section 8 discusses a particular problem that emerges
with evaluating the densities for 1 < p < 2 as φ → 0, while
Section 9 considers two data examples. Brief conclusions follow
in Section 10.

2. Tweedie densities

EDMs have density functions or probability mass functions of
the form

f (y; θ, φ) = a(y, φ) exp

[
1

φ
{yθ − κ(θ )}

]
, (1)

for suitable known functions κ() and a() (Jørgensen, 1997). The
domain of the canonical parameter θ is an open interval satisfy-
ing κ(θ ) < ∞ and the dispersion parameter φ is positive. The
function κ() is called the cumulant function of the EDM because,
if φ = 1, the derivatives of κ give the successive cumulants of
the distribution. In particular, the mean of the distribution is
µ = κ̇(θ ) and the variance is φκ̈(θ ).

The mapping from θ to µ is invertible, so we may write κ̈(θ ) =
V (µ) for a suitable function V (µ), called the variance function
of the EDM. In this article we are interested in EDMs with
variance functions of the form V (µ) = µp for some p. These
families are called Tweedie models because the underlying linear
exponential families were first studied systematically by Tweedie
(1984). Jørgensen (1987) showed that Tweedie EDMs exist for
all values of p outside the interval (0, 1). The notation Y ∼
EDp(µ, φ) is used to indicate that Y is distributed as a Tweedie
EDM with mean µ, dispersion φ and variance function V (µ) =
µp. Tweedie models are the only EDMs which are closed under
re-scaling of the response variable: if Y ∼ EDp(µ, φ) then cY ∼
EDp(cµ, c2−pφ) (Jørgensen, 1997, Section 4.1.1). This makes
Tweedie EDMs an obvious choice for modeling data when the
unit of measurement is arbitrary.

The cumulant function and mean can be found for Tweedie
EDMs by equating κ̈(θ ) = dµ/dθ = µp and solving for µ and
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κ . Setting the arbitrary constants of integration to zero gives

θ =



µ1−p

1 − p
p �= 1

log µ p = 1

and

κ(θ ) =



µ2−p

2 − p
p �= 2

log µ p = 2
.

The remaining factor in the density, a(y, φ), is more difficult to
derive. The numerical evaluation of a(y, φ) is the focus of the
remainder of this article.

3. Series expansions

If Y ∼ EDp(µ, φ) with 1 < p < 2, then Y can be represented
as

Y = X1 + X2 + · · · + X N

where N has a Poisson distribution and the Xi are independent
gamma random variables. Let λ be the mean of N and let −α

and γ be the shape and scale parameters of the Xi , with −αγ

and −αγ 2 the mean and variance of Xi respectively. Note that
α is chosen negative so that the notation agrees with that used
elsewhere in this paper. Then the parameters are related by

λ = µ2−p

φ(2 − p)

α = (2 − p)/(1 − p)

γ = φ(p − 1)µp−1.

From this or otherwise it can be shown that

P(Y = 0) = exp

{
− µ2−p

φ(2 − p)

}

and for y > 0 that

a(y, φ) = 1

y
W (y, φ, p)

with W (y, φ, p) = ∑∞
j=1 Wj and

W j = y− jα(p − 1)α j

φ j(1−α)(2 − p) j j!�(− jα)
. (2)

See Jørgensen (1997, p. 141) and Smyth (1996) for details.
Tweedie (1984) has identified W (y, φ, p) as an example of
Wright’s (1933) generalized Bessel function. It cannot be ex-
pressed in terms of more common Bessel functions. For p = 1.5
the distribution is the non-central χ2 distribution of zero degrees
of freedom, studied by Seigel (1979, 1985).

A similar series expansion exists for p > 2 and is given
in various forms by Aalen (1992), Bar-Lev and Enis (1986),
Hougaard (1986) and Jørgensen (1997, p. 141). For p > 2 we

have

a(y; φ) = 1

πy
V (y, φ, p) (3)

with V = ∑∞
k=1 Vk and

Vk = �(1 + αk)φk(α−1)(p − 1)αk

�(1 + k)(p − 2)k yαk
(−1)k sin(−kπα). (4)

Note that 0 < α < 1 for p > 2. Jørgensen (1997, p. 137,
141) shows that the series expansions with terms (2) and (4) are
related though a reflection formula.

Note that terms W j are all positive while the Vk are both
positive and negative. This will limit the numerical accuracy
that is obtainable in summing the second series.

4. Which terms to include?

The functions W (y, φ, p) and V (y, φ, p) are evaluated in this
paper by directly summing the infinite series. A method is needed
for determining which terms need to be included in the sum-
mation to achieve acceptable accuracy. The naı̈ve approach of
starting at index 1 and adding more terms can result in a very
large number of unnecessary terms. The approach of summing
a fixed number of terms, even if this number is large, may sum
negligible terms and miss those terms that make important con-
tributions. The number of necessary terms can be arbitrarily
large and these terms can occur very far from an index of 1.

The strategy used here is to establish where the terms that
contribute to the sum of the series are located in terms of the
index and sum the necessary terms of the series in that region.
Stirling’s approximation is used to approximate the gamma func-
tions and then the index of summation is treated as continuous.
This enables the approximate terms in the series to be differ-
entiated and the location (in terms of the index of summation)
of the maximum value of terms in the summation to be found.
To then find the lower and upper limits of the index necessary
for accurate evaluation, the approximate terms either side of the
maximum are evaluated until the contributions are negligible.
The exact terms are then summed over these values of the index.

4.1. Size of summands for 1 < p < 2

To evaluate the infinite summation for W (y, φ, p), the value of
j is determined for which W j reaches a maximum. To do this,
j is treated as continuous and W j is differentiated with respect
to j and the derivative set to zero.

Write

log W j = j log z − log �(1 + j) − log �(−α j)

where

z = y−α(p − 1)α

φ1−α(2 − p)
.

Replacing the gamma functions with Stirling’s approximation
(Abramowitz and Stegun 1965) and approximating 1 − α j with



270 Dunn and Smyth

−α j gives

log W j ≈ j {log z + (1 − α) + α log(−α) − (1 − α) log j}

− log(2π ) − 1

2
log(−α) − log j. (5)

This approximate is asymptotically accurate for j large and,
as it turns out, not bad for j small either. Note that α < 0
for 1 < p < 2 so the logarithms have positive arguments.
Differentiating with respect to j gives

∂ log W j

∂ j
≈ log z − 1

j
− log j + α log(−α j)

≈ log z − log j + α log(−α j), (6)

since the term 1/j can be ignored for j large. Note that this
derivative is monotonically decreasing in j for j ≥ 0, so the
sequence log W j is unimodal in j . Solving ∂W j/∂ j = 0 for j
gives the unique solution

jmax = y2−p

(2 − p)φ
. (7)

This approximation is surprisingly accurate. It is easy to con-
firm numerically that jmax is always within one of the exact index
j of the maximum W j , i.e., the approximation is good for small
as well as large values of j . The approximate maximum value
of W j can be found by substituting jmax from (7) into (5) giving

log Wmax = jmax(α − 1) − log(2π ) − log jmax − 1

2
log(−α). (8)

4.2. Size of summands for p > 2

A similar approach can be taken with the series for p > 2. It
should be noted however that the terms (4) involve factors (−1)k

and sin(−kπα) which are of changing sign. To proceed as in the
previous section, we need to work with the envelope of the terms
rather than individual terms themselves. The envelope is defined
as Vk without the (−1)k and sin terms, so that,

Venv(k) = zk�(1 + αk)

�(1 + k)
(9)

where

z = (p − 1)αφα−1

yα(p − 2)
.

The definition ensures that |Vk | ≤ Venv(k) for all k. The proce-
dure is then the same as for 1 < p < 2. Stirling’s approximation
is used to approximate the gamma functions giving

log Venv(k) ≈ k[log z + (1 − α) − log k

+α log(αk)] + 1

2
log α. (10)

Treating k as continuous,

∂ log Venv

∂k
≈ log z + α log α + (α − 1) log k. (11)

Equating to zero and solving for k gives the unique maximum

kmax = y2−p

φ(p − 2)
. (12)

Note that kmax > 0 since p > 2. The similarity with the solution
for the case 1 < p < 2 in (12) is obvious.

An upper bound for the maximum of |Vk | over k can be found
by substituting (12) into (10) to give

log Vmax = (1 − α)kmax + 1

2
log α. (13)

4.3. Evaluating the series

Our aim is to approximate W (y, φ, p) with

W̃ (y, φ, p) =
jU∑

j= jL

W j

and V (y, φ, p) with

Ṽ (y, φ, p) =
kU∑

k=kL

Vk

where jL , jU and kL , kU are suitably chosen limits. The fact
that ∂ log W j/∂ j is monotonic decreasing implies that log W j is
strictly convex as a function of j and hence that the W j decay
faster than geometrically on either side of jmax. The approxima-
tion error can therefore be bounded by geometric sums,

W (y, φ, p) − W̃ (y, φ, p) < W jL−1
1 − r jL−1

L

1 − rL
+ W jU +1

1

1 − rU

where

rL = exp

(
∂ log W j

∂ j

)∣∣∣∣
j= jL−1

and

rU = exp

(
∂ log W j

∂ j

)∣∣∣∣
j= jU +1

The same sort of bound can be constructed for V (y, φ, p) −
Ṽ (y, φ, p) in terms of Venv(k). In practice these geometric
bounds are very conservative so we simply choose jL < jmax

and jU > jmax such that W jL and W jU are less than εWmax and
kL < kmax and kU > kmax such that Venv(kL ) and Venv(kU ) are
less than εVmax. Here ε = 10−16 would ensure double precision
accuracy in 64-bit floating point arithmetic. In practice we use
ε = exp(−37) ≈ 8 × 10−17, simply searching away from jmax

for 1 < p < 2 until the saddlepoint approximation (5) is less
than log Wmax −37 or away from kmax for p > 2 until (10) is less
than log Vmax − 37. If jmax < 1 or if log W1 > Wmax − 37, then
we set jL = 1. Similarly if kmax < 1 or if log V1 > Vmax − 37,
then we set kL = 1.

To avoid the possibility of floating point overflow, we compute
W̃ (y, φ, p) and Ṽ (y, φ, p) on the log-scale and standardize the
individual terms to have maximum value unity. Specifically, we



Series evaluation of Tweedie exponential dispersion model densities 271

compute

log W̃ (y, φ, p) = log Wmax + log
jU∑

j= jL

w j

where w j = exp(log W j − log Wmax) and

log Ṽ (y, φ, p) = log Vmax + log
kU∑

k=kL

v j

where vk = exp(log Vk − log Wmax).
The simple summation strategy used in this section for com-

puting the densities lends itself well to vectorized arithmetic
such as that found in S-Plus, R or MATLAB. When densities
are computed simultaneously for a vector of response values yi ,
we have found it useful for fast computation to choose a common
jL for all the yi to be the minimum of the jL for the individual yi

and a common jU to be the maximum of the jU for the individ-
ual responses. This means that unnecessary terms are summed
for some values of yi but this is more than compensated usually
by the ability to undertake the summations in parallel. Similar
comments apply to kL and kU .

5. Accuracy and limitations

For the case 1 < p < 2, the terms in the summation are always
positive and so a simple summation can compute the density
to machine accuracy. The interest therefore is in the number of
terms required and the potential limitation is that the number
of terms may be prohibitive for some parameter values. Table 1
shows the number of terms necessary to reach machine precision
for 1 < p < 2. It can be seen that the number of terms necessary
for accurate evalution becomes large for p near 2, y large or φ

small. In fact the number of required terms increases without
bound at these limits. This qualitative behavior was expected

Table 1. The number of terms required to reach machine accuracy for
a Tweedie density for various φ and 1 < p < 2. The value of µ does
not affect the required number of terms

y

p φ 0.001 1 5 10 100 1000

1.01 1.00 3 4 8 10 22 58
1.01 0.10 3 10 16 22 58 170
1.01 0.01 3 22 42 58 174 532
1.5 1.00 7 16 25 29 54 100
1.5 0.10 11 54 84 100 173 310
1.5 0.01 29 173 262 310 547 970
1.9 1.00 34 46 50 53 60 68
1.9 0.10 118 166 180 186 208 232
1.9 0.01 368 520 564 584 652 732
1.999 1.00 546 546 548 548 548 550
1.999 0.10 1718 1724 1726 1726 1728 1730
1.999 0.01 5422 5442 5446 5448 5454 5460

from the form for jmax given in (7) which is unbounded for p
near 2, y large or φ small.

In the case p = 1.5, our series expansion gives identical
numerical results to the expressions published by Seigel (1979,
1985).

For p > 2 there are positive and negative terms in the
series expression. Machine accuracy is not generally achiev-
able because subtractive cancellation in floating point arithmetic
will overcome precision if the summation converges sufficiently
slowly. To evaluate the accuracy of the numerical summation
in the one case where an exact analytic expression is available,
we compare the series summation for p = 3 with the density of
the inverse Gaussian distribution (Table 2). Arbitrary but typical
values µ = 1.4 and φ = 0.74 were used for the comparison.
The inverse Gaussian case presents special problems for the al-
gorithm for small y. For p = 3 we have α = 1/2 so the terms
Vk involve the factor (−1)k sin(−kπ/2) which is zero for k even
and alternate in sign for k odd. For very small y, the Vk terms
for k odd are large and of alternating sign. The numerical dif-
ficulties experienced by the algorithm as evidenced in Table 2
are the result of subtractive cancellation of very large but almost
equal quantities of opposite sign. On the other hand, the series
expansion performs well for y > 0.1 where the absolute relative
error is less than 10−14.

The number of terms in the series approximation is shown
in Table 3 for various p > 2. For most parameter values the
summation is easily manageable. However for p close to 2 or y
or φ small, the number of terms required becomes large and the
series evaluation becomes slow and inaccurate.

The results of this section and the previous are invariant under
scale transformation of the distribution. The terms jmax and kmax

and other results on accuracy and computational complexity
depend on y, µ and p only through p, µ2−p/φ and y2−p/φ, all
of which are invariant under re-scaling of the distribution.

6. Maximum likelihood estimation

This section considers maximum likelihood estimation of the
parameters of a Tweedie model, especially φ and p. The estima-
tion of φ and p has been considered previously by Smyth (1996)
and Gilchrist and Drinkwater (1999) for the case 1 < p < 2.

Our interest is EDMs is motivated by their applications to
generalized linear models. A generalized linear model can be
defined as follows. Independent responses Y1, . . . , Yn are ob-
served such that

Yi ∼ ED(µi , φi/wi )

where the wi are known prior weights. The means µi are related
to linear predictors through a known monotonic link function g,

g(µi ) = xT
i β

where xi is a vector of covariates and β is a vector of unknown
regression parameters. Let q be the dimension of β. To avoid
unnecessary complications, we assume here that the design ma-
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Table 2. Comparing the exact and series expansion densities for the inverse Gaussian distribution, p = 3 with µ = 1.4 and φ = 0.74. The
comparison is excellent for y > 0.1 but fails for y near zero

Exact Series Relative No. terms
y density density error in Series

0.001 1.39037 × 10−289 2.149 × 10284 −∞ 895
0.002 2.58550 × 10−143 0 1 633
0.005 7.04450 × 10−56 0 1 399
0.01 5.49261 × 10−27 0 1 280
0.05 0.0001447812 0.0001446184 0.001 112
0.10 0.0432617075 0.0432617076 −5 × 10−10 79
0.50 0.7504127835 0.7504127835 −3 × 10−15 41
1.00 0.4388738851 0.4388738851 −4 × 10−16 33
2.00 0.1540992189 0.1540992189 −5 × 10−16 27
3.00 0.0665051333 0.0665051333 0 24
4.00 0.0323731652 0.0323731652 0 22
5.00 0.0169737124 0.0169737124 −2 × 10−16 21
6.00 0.0093555852 0.0093555852 −4 × 10−16 20
7.00 0.0053446845 0.0053446845 −3 × 10−16 20
8.00 0.0031365974 0.0031365974 0 19
9.00 0.0018797070 0.0018797070 −6 × 10−16 19

10.00 0.0011455103 0.0011455103 −2 × 10−16 18
15.00 0.0001137801 0.0001137801 −5 × 10−16 17
20.00 1.3334 × 10−5 1.3334 × 10−5 −2 × 10−15 16

Table 3. The number of terms required to reach nominal machine ac-
curacy for a Tweedie density for various φ and p > 2

y

p φ 0.01 1 5 10 100 1000

2.01 0.01 1774 1732 1718 1714 1694 1674
2.01 0.10 562 550 546 544 538 532
2.01 1.00 180 176 174 172 172 168
2.5 0.01 945 299 200 166 84 49
2.5 0.10 299 84 57 49 32 23
2.5 1.00 84 32 25 23 17 13
3.0 0.01 2435 241 96 70 31 19
3.0 0.10 771 70 38 31 19 13
3.0 1.00 241 31 21 19 13 11
4.0 0.01 21075 190 50 35 17 11
4.0 0.10 6667 67 29 23 13 9
4.0 1.00 2107 35 19 17 11 9

trix X with rows xT has full column rank.
For p fixed, the maximum likelihood estimator β̂ of β can

be computed using the well known iteratively reweighted least
squares algorithm proposed by Nelder and Wedderburn (1972).
This iteration uses working weights given by

wi

V (µi )ġ(µi )2

where in our case V (µi ) = µ
p
i . Knowledge of φ is not required

to compute β̂.
In the normal and inverse Gaussian cases, the maximum like-

lihood estimate of φ is the mean-deviance estimator

φ̂ = 1

n

n∑
i=1

wi d(yi , µ̂i )

where d(·, ·) is the unit deviance. In the gamma case, φ̂ can be
found using the results given by Smyth (1989). In other cases,
the unit deviances are not sufficient for φ and the maximum
likelihood estimator of φ must be computed iteratively from
the full data. In the next section of this paper we discuss com-
putation of the derivatives ∂ log f/∂φ and ∂2 log f/∂φ2 in or-
der to facilitate estimation of φ̂ using Newton-type methods.
In our implementation of maximum likelihood estimation for
φ we actually use a BFGS-type quasi-Newton optimizer which
uses first but not second derivatives of the densities with re-
spect to φ (Byrd et al., 1995). Higher order derivatives for φ

are slightly more difficult to compute accurately than the like-
lihood function itself and we have not found the second deriva-
tives to result in a worthwhile speeding of the convergence of
the algorithm. Nevertheless we give them here for complete-
ness. Gilchrist and Drinkwater (1999) have developed an alter-
native iterative scheme in which derivatives are evaluated with
respect to 1/φ rather than φ. Smyth (1996) used the derivative-
free Nelder-Mead algorithm to estimate φ and p.

Estimation of p is a more difficult problem than estimating
β or φ. Most authors using Tweedie densities have taken p to
be specified apriori. Jørgensen (1987), in analysing the amount
of money spent by Amazonian peasants hiring outside labour,
chooses p = 1.75 and explicitly states the choice is somewhat
arbitrary. Likewise, Nelder (1994) arbitrarily sets p = 1.5 when
analysing the time spent splicing cables. Given the ability to
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compute the maximum likelihood estimator φ̂ conditional on p,
the maximum likelihood estimate of p and an approximate con-
fidence interval can obtained by evaluating the profile likelihood
for p on a grid of values followed by a univariate optimization.
A similar approach was used by Gilchrist and Drinkwater (1999)
and Smyth (1996) to estimate p. A special problem that arises
in the estimation of p is the possibility that recording of the
responses yi to a limited number of decimal places can cause
the profile likelihood for p to be bimodal with a spurious max-
imum at p = 1. This potential problem is discussed further in
Section 8.

It is well known that maximum likelihood estimators of vari-
ances tend to be biased down if the number of parameters in the
mean model is large. This affects the estimation of φ and p if q is
not very small compared to n. The maximum likelihood estima-
tor of φ tends to underestimate φ while the maximum likelihood
estimator of p may be biased up or down depending on whether
the fitted values µ̂i are greater or less than one. For this reason
it is of interest to consider also modified profile estimators of φ

and p. Since the coefficients β are orthogonal to the variance
parameters φ and p, approximately unbiased estimators of φ and
p can be obtained by maximizing with respect to φ and p the
adjusted profile likelihood (Cox and Reid, 1987), which in this
case is

�(y; β̂, φ, p) + q

2
log φ − 1

2
| log X T DX |.

Here � is the log-likelihood function, β̂ is the maximum like-
lihood estimator for β conditional on φ and p, and D is the
diagonal matrix of working weights from the generalized linear
model evaluated at β = β̂. Computing modified profile esti-
mators is a straightforward extension of the methods that we
develop in this paper.

The most commonly used estimators for φ in generalized
linear models are the mean deviance estimator

φ̃ = 1

n − q

n∑
i=1

wi d(yi , µ̂i )

and the Pearson estimator

φ̄ = 1

n − q

n∑
i=1

wi (yi − µ̂i )2

V (µ̂i )
.

The Pearson estimator is approximately unbiased but is more
variable than estimators based on the deviances or the likelihood.
The mean deviance estimator coincides with the modified profile
estimator of φ in the normal and inverse-Gaussian cases. For
other values of p, φ̃ is an biased estimator of φ. The size of this
bias has been investigated by Dunn (2001).

7. Derivatives with respect to φ

Series expansions were given for evaluating the Tweedie density
functions in Section 4. Similar series expressions are now used
to evaluate derivatives of the density with respect to φ.

7.1. The case 1 < p < 2

Differentiating the log-density with respect to φ gives

∂ log f

∂φ
=




µ2−p

φ2(2 − p)
for Y = 0

yµ1−p

φ2(p − 1)
+ µ2−p

φ2(2 − p)
+ ∂W/∂φ

W
for Y > 0

(14)

where W = ∑∞
j=1 W j for W j given in (2).

The evaluation of the derivative ∂W/∂φ. is similar to the eval-
uation of the actual series W = ∑∞

j=1 W j itself. Differentiating
the W j terms shows

∂W

∂φ
=

(
α − 1

φ

) ∞∑
j=1

jW j . (15)

It can be deduced from (6) that

∂ log( jW j )

∂ j
≈ log z − log j + α log(−α j).

This is exactly the expression used to solve for jmax for the series∑
j W j , since in (6) the 1/j term was ignored for large j . Thus,

the value of j at which the series terms in (15) reach a maximum
occurs is approximated by

jmax = y2−p

φ(2 − p)

as in the series W = ∑
j W j itself. The actual implementation

is very similar to that of the density. Simply, search either side
of the value of jmax to find the values of j over which to sum,
and then perform the summation on the exact terms.

The maximum value of the terms jW j can also be deduced
from (8) to be

log( jW )max ≈ jmax(1 − α) − log(2π ) − 1

2
log(−α). (16)

In general, mth order derivatives with respect to φ require
computation of

∑∞
j=1 jνW j for ν = 1, . . . , m. These can all be

computed using the ideas presented above. The number of terms
required generally increases slightly with increasing m.

7.2. The case p > 2

The details for this case are very similar to the case 1 < p <

2. It becomes necessary to evaluate ∂V/∂φ = ∑∞
k=1 ∂Vk/∂φ.

Differentiating the terms Vk with respect to φ gives

∂V

∂φ
=

(
α − 1

φ

) ∞∑
k=1

kVk .
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Table 4. Comparing the exact and series first derivatives for the inverse Gaussian distribution, with p = 3, µ = 1.4 and φ = 0.74. The comparison
is excellent for y > 0.1 but fails for small y

No. Terms:

Exact first Series first Relative for for
y derivative derivative error

∑
Vk

∑
kVk

0.001 911.095634 −927.644712 2 895 895
0.002 454.558482 −509.162138 2 633 633
0.005 180.637308 156.319402 0.1 399 399
0.01 89.332113 85.265128 0.05 280 280
0.05 16.304729 16.356116 −0.003 112 112
0.10 7.197269 7.197269 1 × 10−9 79 79
0.50 0.079009 0.079009 3 × 10−14 41 41
1.00 −0.601139 −0.601139 −1 × 10−15 33 33
2.00 −0.591822 −0.591822 −6 × 10−16 27 27
3.00 −0.278146 −0.278146 −1 × 10−15 24 24
4.00 0.111619 0.111619 3 × 10−15 22 22
5.00 0.531820 0.531820 4 × 10−16 21 21
6.00 0.967239 0.967239 −3 × 10−16 20 20
7.00 1.41153 1.411353 2 × 10−16 20 20
8.00 1.860903 1.860903 1 × 10−16 19 19
9.00 2.314076 2.314076 2 × 10−16 19 19
10.00 2.769786 2.769786 0 18 18
15.00 5.068624 5.068624 0 17 17
20.00 7.382679 7.382679 4 × 10−16 16 16

Proceeding as before, the maximum occurs at

kmax ≈ µ2−p

φ(p − 2)
,

as with the series
∑

k Vk itself.
The procedure is then the same: search on either side of this

maximum to find where the series terms are negligible relative
to the maximum value of the kVk terms. Then the series can be
summed over these values of k that contribute to the sum.

The maximum value of kVenv(k) can be deduced from (13) to
be

log(kVmax) ≈ (1 − α)kmax + 1

2
log α + log kmax. (17)

In general, nth order derivatives require computing∑∞
k=1 kνVk for ν = 1, . . . , m. These can all be computed us-

ing the ideas presented above. The number of terms required
generally increases slightly with increasing m.

7.3. Selection of terms

In implementing the series expansions of
∑

j jW j and
∑

k kVk ,
the numerical aspects of the implementation are similar to that of
the density. The upper and lower limits of the index of summation
are found by determining when the individual summation terms,
jW j or kVk , are such that log jW j < ε log jWmax (or log kVk <

εk log Vmax) where ε = exp(−37) ≈ 8 × 10−17.
To reduce the number of situations where overflow may occur,

the log-scale is used in calculations. In practice (where the case

1 < p < 2 is used as an example, but the same procedures follow
for the case p > 2), the logarithm of the terms to be summed is
determined, log jW j = j z + log j − log �(1 + j) − log �(α j),
and then the largest value of this quantity, say log( jW )max, is
found. Then the jW j terms less this maximum value are used
to avoid overflow, defining log jW ′

j = log jW j − log( jWmax).
Then, the summation itself is reconstructed using

∑
jW =∑

jW ′
j exp{log( jWmax)}.

7.4. Accuracy and limitations

As with the density itself, it is difficult to make definitive state-
ments about the accuracy of the algorithms since exact values
are not generally available. However comparisons can be made
with the case p = 3, the inverse Gaussian distribution, for which

∂ log f

∂φ
= − 1

2φ
+ (y − µ)2

2φ2µ2 y
. (18)

The comparison is made in Table 4. The relative accuracy of
the series expansion is excellent again for y > 0.1 while the
effects of subtractive cancellation become apparent for small
y. The number of terms necessary for evaluating

∑∞
j=1 W j and∑∞

j=1 jW j in this example are almost always the same. As with
the density evaluation, the accuracy is poor and the number of
terms needed increases without bound for y near 0. The accuracy
is excellent for y ≥ 0.50.
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8. Multimodal densities

In this section we derive a condition for the Tweedie density
function to be unimodal. We also address a technical complica-
tion which arises from the fact that responses yi are generally
recorded to only a limited precision, for example to a limited
number of decimal places.

When p is close to one, the density f p(y; µ, φ) is multimodal,
reflecting the fact that the Poisson limit at p = 1 is a discrete
distribution. For p very near one, the random variables Xi de-
fined in Section 3 have very small standard deviations and the
density of Y has multiple modes corresponding to distinct val-
ues of the Poisson count N . The modes occur at the values
E(

∑n
i=1 Xi ) = −nαγ = n(2 − p)φµp−1 for n = 1, 2, . . . . The

density will have multiple modes near y = −nαγ if the standard
deviation of

∑n
i=1 Xi is much smaller than the spacing −αγ be-

tween the successive modes. The ratio of the standard deviation
to the spacing is (−nαγ 2)1/2/(−αγ ) = (−nα)1/2. Inserting for
n the maximum of E(N ) = λ and one, a condition for the density
to be multimodal is that

(
−λ ∨ 1

α

)1/2

=
[{

µ2−p

φ(2 − p)
∨ 1

}
p − 1

2 − p

]1/2

be less than about 0.5. Figure 1 shows then Tweedie density for
µ = 1 and φ = 0.1. For p small the density will have modes at
multiples of 0.1. For p = 1.02 we have (−λ/α)1/2 = 0.46 and
the density is is multimodal. For p = 1.05 we have (−λ/α)1/2 =
0.74 and the multiple modes are gone. A conservative condition
to ensure that the density be unimodal for most values of µ and
φ is (−1/α)1/2 > 0.5, i.e., p > 1.2.

The multimodality of the density for small p causes a tech-
nical problem for maximum likelihood estimation with rounded
data. If the observations yi are rounded to d decimal places
say, then the likelihood is unbounded as p ↓ 1 and φ ↓ 10−d .
This limit models the data as discrete on the lattice n10−d for
n = 0, 1, . . . . If the yi are rounded observations sampled from
EDp(µ, φ) with p > 1, then the likelihood will usually have two
local maxima, one infinite at p = 1 and one finite for p > 1, and
it is usually the latter which is required. This phenomenon has
been noted by Jørgensen and Paes de Souza (1994), Gilchrist
and Drinkwater (1999) and by Burridge in the discussion of
Jørgensen (1987). Gilchrist and Drinkwater (1999) constrain
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Fig. 1. Densities of Tweedie distributions with µ = 1 and φ = 0.1.
The density is multimodal with p = 1.02 but unimodal with p = 1.05
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Fig. 2. Profile likelihood for 100 random deviates from the Tweedie
distribution with µ = 2, φ = 1 and p = 1.5. The maximum likelihood
estimate is p̂ = 1.41. Rounding the data decreases the estimate value
of p and introduces a spurious likelihood peak at p = 1

p > 1.1 while Jørgensen and Paes de Souza (1994) similarly
try to avoid small values of p. We prefer to avoid the spurious
singularity in the likelihood by requiring that the density not
have multiple modes corresponding to the rounding accuracy.
This can be achieved by constraining

−(λ ∨ 1) αγ 2 =
{

µ(2−p)

φ(2 − p)
∨ 1

}
(2 − p)(p − 1)φ2

µ2−2p
> 10−2d .

In most relevant cases we will have λ > 1 so the above condition
is

−λαγ 2 = (p − 1)φµp = (p − 1)var(Y ) > 10−2d ,

i.e.,

p > 1 + 10−2d

var(Y )
.

In this paper we do not apply such a constraint explicitly, but
simply inspect the profile likelihood as a function of p.

As an example, 100 random deviates were generated from
the Tweedie distribution with µ = 2, φ = 1 and p = 1.5. The
maximum likelihood estimate of p is 1.41. Rounding the data to
two decimal places introduces an infinite peak in the likelihood
at p = 1, although the likelihood is effectively unchanged for
larger values of p; see Fig. 2. Rounding the data to one decimal
place decreases the location of local peak to 1.3. Rounding the
data to the nearest integer loses the peak of interest altogether
— the likelihood is now monotonically decreasing for p > 1.

9. Examples

Enabling likelihood calculations for Tweedie models with ar-
bitary p opens up many potential applications. Two small data
examples are given here to hint at possibilities, the first featuring
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Fig. 3. Log-sample variances versus log-sample means for the poison
data. The plot is almost linear with slope close to 4

data with positive support where we expect p > 2 and the sec-
ond featuring mixed data with mass at zero where we expect
1 < p < 2.

9.1. Sensitivity to poison

Box and Cox (1964) give the results of a 3 × 4 factorial experi-
ment in which the survival times of animals were recorded after
exposure to poisons. There are two factors: the type of poison
with three levels and the type of treatment with four levels. Each
of the twelve factor combinations was applied to four randomly
allocated animals for a total of 48 observations. The data are
available fromhttp://www.statsci.org/data/general/-
poison.html. Box and Cox defined what is now known as the
Box-Cox transformation,

yω =
{

(yω − 1)/ω ω �= 0

log y ω = 0.

They analysed the data assuming the reponses to be normal after
a reciprocal transformation, i.e., assuming the yω to be normal
with ω = −1.

A plot of the log of sample variances against the log of the
sample means for each poison–treatment combination is shown
in Fig. 3. The plot is almost linear with slope 3.95 showing that
a power mean-variance relationship V (µ) = µp with p close to
4 is appropriate for this data. There is a rough correspondence
between Box-Cox transformations and power variance functions
in that the Box-Cox transformation with ω = 1 − p/2 is to first
order the variance stabilizing transformation for V (µ) = µp.
The reciprocal transformation is the variance-stabilizing trans-
formation for V (µ) = µ4, so our observation that p ≈ 4
for this data matches the transformation chosen by Box and
Cox (1964).

Rather than having to transform the response variable, we
entertain the possibility of modeling the survival times directly

on their original scale using a Tweedie generalized linear model.
Comparison of likelihoods gives a means to compare the fit of
the Tweedie and Box-Cox models for this data. For each value
of p we fit a generalized linear model with variance function
V (µ) = µp allowing for interactions between the poison and
treatment explanatory factors. Similarly for each p we consider
a normal linear interaction model for the transformed responses
yω with ω = 1 − p/2. Figure 7 plots Tweedie and Box-Cox
profile likelihoods on the same scale and shows that the Tweedie
likelihood is somewhat higher for any given value of p. The
Tweedie log-likelihood peaks at 56.8 while the maximum Box-
Cox log-likelihood is 55.5. The Tweedie and Box-Cox models
are not nested hypotheses so comparing the log-likelihoods in
this way does not constitute a formal hypothesis test comparing
the two models without further work (Cox 1961, 1962; Pereira,
1977), Nevertheless, this does show that the Tweedie model is
at least as acceptable as the transformation model. The Tweedie
log-likelihood is defined here as

�Tw(y;β, φ, p) =
n∑

i=1

log f p(y; µ, φ),

where f p(y; µ, φ) is the Tweedie distribution density function,
evaluated using the algorithms in this paper. Under the Box-
Cox model, the log-likelihood function is that assuming yω,i ∼
N (µ, σ 2) for ω = 1 − p/2, i.e.,

�BC(y;β, σ 2, p)

= −1

2

n∑
i=1

{
log(2πσ 2) +

(
yω,i − µi

σ

)2

+ p log yi

}
.

In Fig. 4 the log-likelihoods have been maximised over β, φ and
σ 2 for given values of p. The maximum likelihood estimates for
the Tweedie parameters are p̂ = 3.85 and φ̂ = 0.151. The 95%
confidence interval for p computed from the profile likelihood is
(2.87, 4.88). For the Box-Cox model, the maximum likelihood
estimate of ω is equivalent to p̂ = 3.64.
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Fig. 4. Poison data. Profile log-likelihoods for p under the Tweedie
(solid lines) and Box-Cox models (dotted lines). Horizontal lines indi-
cate 95% likelihood regions. The peaks occur at similar values of p for
the Tweedie and Box-Cox models but the Tweedie likelihood is higher
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Fig. 5. Poison data. Mean survival time by treatment and poison

Now consider the effects of the explanatory factors on sur-
vival time. An appealing advantage of the Tweedie model over
the Box-Cox transformation is that it makes sense to summa-
rize responses using sample means. Under the Tweedie model,
sample means follow the same distribution as the individual ob-
servations except that the dispersion parameter is divided by the
sample size, i.e., Yi ∼ EDp(µ, φ) implies Ȳ ∼ EDp(µ, φ/n)
where n is the sample size. (This generalizes the corresponding
result for the normal distribution.) Figure 5 plots the mean sur-
vival time for each poison–treatment group. The effects of poi-
son and treatment appear approximately multiplicative, except
that the relative changes between the treatments are somewhat
less for poison 3, which also has the shortest survival times.

Finally we consider link functions for the generalized linear
model, and it is natural to consider link functions in the power
family, g(µ) = µr . Another advantage of the Tweedie model
approach is that the variance and link functions can be chosen
separately. We assume a power variance function. For conve-
nience, we fix p = 3.85 from this point so that covariate and link
model selection can be undertaken using standard generalized
linear model methods. Although convenient, this is not strictly
necessary. In principle, p could be left unknown in which case
all model selection would be undertaken comparing likelihoods
rather than comparing deviances.

The residual mean deviance allowing for poison–treatment
interaction is 0.199 on 36 degrees of freedom, unchanged by
the choice of link function. The mean deviance for interaction
is on 6 degrees of freedom and is low and non-significant for a
range of link functions. It is 0.28 for the reciprocal link r = −1
and 0.33 for the log-link r = 0, with a minimum of 0.21 at
r = −0.6. Any of these link functions could be used, as the
interaction remains non-significant, but the log-link seems the
most intuitively appealing as it treats the poison and treatment
effects as multiplicative. The slight deviation from additivity on
the log-scale could be explained by an initial survival period
before the poison starts to take effect. If a small constant is sub-

tracted from all the survival times, the times become very closely
additive on the log-scale. Using the log-link, the mean deviances
for the poison and treatment main effects are significant at 14.6
and 5.66 respectively, both highly significant according to the
usual generalized linear model methods.

9.2. Root length density of apple trees

The root length density data of de Silva et al. (1999),
also available from http://www.statsci.org/data/oz/
fineroot.html, provides an example of data with exact ze-
ros. The data concerns the underground root system of eight
separate apple trees. Three different root stocks are considered
(Mark, MM106 and M26) and two plant spacing (4 × 2 metres
and 5×3 metres). Soil core sampling units taken were classified
as belonging to an inner or outer zone relative to each plant.
The response variable is the density of fine roots, also called the
root length density, RLD (in cm/cm3), which can have zeros as
well as continuous positive values. There are 511 observations,
of which 193 or 38% have a zero response.

The design is not a full factorial design: plants 1 and 2 are
Mark root stock at 5 × 3 spacing; plants 3 and 4 are Mark root
stock at 4 × 2 spacing; plants 5 and 6 are MM106 root stock at
5 × 3 spacing; and plants 7 and 8 are M26 root stock at 4 × 2
spacing. The Mark root stock is therefore tested at both plant
spacings but the MM106 only at 5 × 3 and M26 only at 4 × 2.

No transformation to normality is likely to be successful for
this data because of the large number of exact zeros, so we
investigate a Tweedie generalized linear model with 1 < p < 2.
Since zone is the only variable which varies within plant, the
mean structure of the responses is fully described by a plant-
zone model allowing for plant by zone interactions. For each p a
generalized linear model is fitted to the data allowing for plant-
zone effects and the profile log-likelihood function is shown in
Fig. 6. The maximum likelihood estimates for p and φ are 1.406
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Fig. 6. Root length density data. Profile log-likelihood for p. The peak
is at p = 1.406 with 95% likelihood region from 1.363 to 1.452
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Fig. 7. Root length density data. Observed versus predicted proportion
of exact zeros in each zone of each plant. The line of equality is also
plotted

and 0.3118 respectively. The 95% likelihood confidence interval
for p is tight, from 1.363 to 1.452.

A primary issue when modeling data with exact zeros is to
accurately model the probability of exact zeros. One question is
whether the occurence of zeros needs to be modeled separately to
the distribution of the positive values, perhaps through a logistic
regression model. Figure 7 plots the observed proportion of zeros
for each plant and each zone versus the probability of zeros
exp(−λ̂) derived from the maximum likelihood Tweedie model.
Although the proportion of zeros is somewhat less than expected
at the lowest probabilities, the model appears to predict well the
observed pattern of zeros. The Tweedie approach of modeling
the zeros and the positive observations together appears to be
perfectly adequate here.

We can now use generalized linear model methods to answer
some of the experimental questions of interest. The parameter p
is orthogonal to µ and φ in the Tweedie model, implying that the
estimator of p changes relatively slowly as µ̂ and φ̂ change. As a
first approximation therefore, we can hold p fixed in our analyses
in which case the Tweedie model reduces to an ordinary gener-
alized linear model with a power variance function. By analogy
with normal theory, an approximately unbiased estimator of φ

is obtained by scaling the maximum likelihood estimator up by
the ratio of the number of observations to the residual degrees
of freedom,

φ̃ = n

n − q
φ̂ = 511

511 − 16
0.3118 = 0.3219

This is slightly lower than the residual mean deviance for the
plant-zone interaction model, which is 0.360 on 495 degrees of
freedom.

The mean RLD is greater in the inner than the outer zone for
every plant, the difference being greater for some plants than
others. Let us first test the significance of these differences. It
seems natural to use a log-link to preserve positivity of µ for
any linear predictor, although in fact an ordinary linear additive

Table 5. Root length density data. Mean RLD by root stock and zone

Zone

Stock Inner Outer

M26 0.123 0.079
Mark 0.078 0.015
MM106 0.115 0.076

fit is just as good as the log-linear additive fit for this data.
The mean deviance for differences between plants is 2.8 on 7
df. The sequential mean deviances for Zone and Plant×Zone
interactions are 16.6 on 1 df and 1.4 on 7 df respectively. All
of these give highly significant F-statistics when compared to
φ̃ on 495 degrees of freedom. We conclude that the inner zone
gives greater RLD than the outer zone, but that this effect differs
between plants.

This analysis can be done in S-Plus or R by

fit <- glm(RLD Plant*Zone,family=tweedie
(var.power=1.406,link.power=0))

anova(fit,test="F",dispersion=0.3219)

using our function tweedie().
Now consider the between-plant factors of Stock and Spacing.

The main effects for Stock and Zone are highly significant (p =
2×10−10) and (p = 2×10−13) as is the Stock by Zone interaction
(p = 2 × 10−5). After allowing for these effects, there is no
significant effect for Spacing or Plant by Zone interaction and
only a marginally significant main effect for Plant (p = 0.02).
A table of mean RLD by Stock and Zone allows us to interpret
the effects for Stock and Zone (Table 5). We see that stocks M26
and MM106 are very similar and have greater RLD that Mark
stock. The Inner zone shows greater RLD than the outer for
all stocks, however the relative difference is greatest for Mark
stock. A more complete treatment of this data might include
fitting a generalized linear mixed model with plant as a random
effect. Such an analysis is beyond the scope of this paper and
would be unlikely to change our qualitative conclusions since
the differences between plants are not too large.

We finish this example by comparing maximum likelihood
with another strategy which has been suggested for estimat-
ing parameters in a generalized linear model variance function,
namely the extended quasi-likelihood (EQL) proposed by Nelder
and Pregibon (1987). For exponential dispersion models, EQL is
equivalent to using the saddlepoint approximation to the density

f (y; µ, φ) ≈ [2πφV (y)]−1/2 exp

{
− 1

2φ
d(y, µ)

}
{1 + O(φ)}

(Jørgensen 1997, Smyth and Verbyla 1999). The saddlepoint
approximation as given above is not defined at zero for power
variance functions but Nelder and Pregibon (1987) suggest using
V (y + 1/6) in place of V (y) to allow evaluation at y = 0.
While this strategy has proved effective for count data, it seems
inappropriate here with a partially continuous response and no
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quantum gap between exact zeros and positive obvervations. In
the root length density data, some of the positive responses are
as small as 0.003008. We have experimented with estimating
φ and p from the EQL using V (y + c) in place of V (y) and
with various values of c. The estimators turn out to be extremely
sensitive to the choice of c—the estimated value for p can be
made to be anything from near 0 to nearly 2 by varying c between
0 and 1/6. The most sensible estimates for φ or p are obtained
when c is somewhat smaller than the smallest positive value of y,
say c = 0.003/3 or c = 0.003/6. It seems inappropriate though
to make c depend on the observed data, so we conclude that EQL
is not well suited to this type of mixed data with exact zeros. The
Tweedie model approach is invariant to a change in the unit of
measurement, apart from an obvious rescaling of the µ and φ,
while transformations which involve y + c for a pre-specified
constant c are not.

10. Conclusion

This paper has considered the numerical computation of proba-
bility densities for Tweedie models. The motivation has been to
extend the range of response distributions for which generalized
linear model-type analyses can be done. Apart from the ap-
pealing power mean-variance relationship, Tweedie EDMs are
natural candidates for modeling quantitative data on arbitrary
measurement scales because they are the only EDMs which are
closed under scale transformations, i.e., changes in the unit of
measurement. The ability to compute densities facilitates maxi-
mum likelihood estimation of the variance function and disper-
sion parameter as well as diagnostic checking of the response
distribution.

Numerically efficient strategies have been developed for eval-
uating series expansions for the density functions and their
derivatives when p > 1. The series are evaluated only for those
terms that make a contribution to the final result. The method
shows excellent relative accuracy for a wide range of parameter
values. However we have also shown that the number of terms
necessary can increase without bound for certain parameter val-
ues and, even more serious, that full accuracy is not obtainable
in floating point arithmetic for certain parameter values when
p > 2 regardless of the number of terms evaluated.

The Tweedie models have closed form characteristic func-
tions. The series expansions for the density functions arise from
an analytic approach to the inversion integral for the density
function in terms of the characteristic function. Dunn (2001) has
also investigated a more direct numerical approach to inverting
the characteristic function based on numerical integration meth-
ods for oscillating functions. The numeric inversion method pro-
vides a means to evaluate the Tweedie densities when the series
approach fails, and this work will be published elsewhere.

The saddlepoint approximation has been shown to perform
poorly for the root length density data of Section 9.2. This agrees
with the rule of thumb given in Smyth and Verbyla (1999) for
judging whether the saddlepoint approximation will be adequate,

which rules out saddlepoint approximations for data sets with
exact zeros. On the other hand, the saddlepoint approximation
is judged adequate for the poison data of Section 9.1.

The software package “tweedie” has been developed for the
R (R Development Core Team 2004) programming environ-
ment to implement the methods developed in this paper. The
package includes functions for the Tweedie density, distribution
function, quantile function and random number generation us-
ing both the series expansion and numeric inversion methods.
It is available from http://www.sci.usq.edu.au/staff/-
dunn/twhtml/home.html. The generalized linear model
family function tweedie(), which does not in itself re-
quire likelihood calculations, is in the “statmod” package,
also written by the authors of this paper, available from
http://www.statsci.org/r/.
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