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Abstract
Non-destructive testing is a method of detecting defects in materials or electronic 
components without causing damage to the detected objects. The most commonly 
used detection technology is ultrasonic detection. However, for images generated by 
ultrasonic inspection, manual recognition and traditional image processing methods 
are mostly used for defect identification, which are both inefficient and costly. The 
detection of defects in printed circuit boards (PCB) is a particularly difficult problem 
in the field of industrial inspection, which has strict requirements. We adopt a deep 
learning method to implement intelligent defect detection in our work. To address 
the lack of training data, we collect PCB surface images using a high-resolution 
ultrasonic microscope and create a dataset by annotating the defects in the images. 
The final dataset can be used for defect object detection based on deep learning. 
Furthermore, we propose an improved object detection method for defect detection 
that adopts the four-scale Swin Transformer as the multi-scale feature extraction 
network and uses the decoupled head from YOLOx to output defect categories and 
locations. To better learn the defect features, we pretrain on datasets of PCB images 
obtained using other methods, such as charge-coupled devices and CMOS sensors. 
Subsequently, we transfer to our own created dataset to perform training and testing. 
Experimental results show that our improved model achieves an average precision of 
99.9% on our PCB test dataset, and an average precision of 85.1% on PASCAL VOC 
2007 test dataset while extending to the conventional object detection.
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1 Introduction

Non-destructive testing is a widely used technique in fields such as aerospace, indus-
trial production, and chip processing. Because it does not damage the material, the 
non-destructive detection of possible defects improves the reliability of the produc-
tion and operation of an enterprise and eliminates potential safety hazards. At pre-
sent, commonly used nondestructive testing methods are laser, X-ray, and ultrasonic 
methods. However, among these methods, ultrasonic testing has gradually increased 
in use because it is safe, inexpensive, and has strong penetration. In contrast to other 
detection methods, ultrasound inspection obtains not only the surface image of the 
detected object, but also the internal image. Some of the advantages of ultrasonic 
testing include simple operation, precise defect localization [1] and the ability to 
evaluate the structure of the components according to different acoustic properties 
[2].

Ultrasound is emitted through an ultrasound probe, known as a transducer. The 
propagation speed of ultrasonic waves in different materials is different. Ultrasonic 
waves are very penetrative and can pass through the surface of the detected object. 
However, after they pass through the surface, reflections are generated because of 
the characteristics of the sound waves. According to the reflected signal, we can 
determine which layer the signal is coming from. In addition, different modes of 
data acquisition, A-scans, B-scans, or C-scans, are adopted. It is common to see a 
B-scan created from hundreds of A-scans. A C-scan is a three-dimensional imaging 
scan, and the scan result is a cross-section of the detected object. Other representa-
tions of ultrasonic testing data, such as volume-corrected B-scans [3] and D-scans 
[3], are also frequently used.

In recent years, ultrasound imaging technology has matured, the resolu-
tion of images has increased, and the method of acquiring ultrasonic data has 
become simpler. However, there are very few studies on the further processing 
of the acquired data. For example, when the image of an object to be inspected is 
obtained by an ultrasonic imaging device, manual methods based on the opera-
tor’s experience are used, or traditional image processing methods are used to 
roughly identify defects in the detected objects. However, manual detection can 
lead to false and missed detections, and it requires a large amount of human and 
financial resources. There are still very few studies on automated defect localiza-
tion and identification based on ultrasonic images, which limits the application of 
ultrasonic defect detection. The advent of machine learning has led researchers 
to consider how to implement automatic defect detection. The most commonly 
used method in the field of non-destructive testing is based on the analysis of 
waveform data from reflected ultrasonic waves. The coefficients obtained using 
wavelet, Fourier, or cosine transforms are used as the input to traditional classi-
fiers, such as artificial neural networks [4], support vector machine and decision 
tree, which then determine whether the detected object has defects. The data used 
in these methods are mostly obtained by A-scans. Such data only reflect whether 
the signal at a certain position is abnormal, and the information of the surround-
ing context cannot be referenced, so the detected result is relatively unreliable. To 
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better determine whether the detected object has defects, researchers have begun 
to use images obtained by B-scans. Images from a B-scan contain more spatial 
information than the waveform data from an A-scan.

An artificial neural network framework was proposed by Yuan et al. [5] to iden-
tify the echoes from steel train wheels by B-scans. The whole network is divided 
into two parts: the first part identifies whether the signal is from noise, and the 
second part determines whether the echoes are from defects or not. To solve the 
problem of insufficient ultrasonic data for training, Virkkunen et  al. [3] collected 
ultrasonic data using B-scans, used data augmentation to enhance the limited raw 
data, and then adopted a deep convolutional neural network (CNN) to detect flaws 
from phased-array ultrasonic data, which proved that deep learning methods could 
detect defects. Posilovi et al. [6] collected ultrasonic images by B-scan from steels, 
and used YOLOv1 [7] and single shot multibox detector (SSD) [8] independently to 
detect defects in images, which obtained high mean average precision. Their results 
proved that typical object detection algorithms could be used to detect defects. 
As a result, Medak et al. [9] further compared the performance of different object 
detection algorithms for defect detection in ultrasonic images, and the EfficientDet 
[10] series of methods were found to outperform the other deep learning models 
YOLOv3 [11] and RetinaNet [12]. Meng et al. [13] developed a CNN network for 
the automation of ultrasonic signal classification from C-scan signals in a carbon 
fiber reinforced polymer structure. However, almost no researchers have imple-
mented defect detection based on deep learning for ultrasonic C-scan images.

In our work, we choose printed circuit boards (PCBs) as the detection target, 
mainly because PCB defect detection is in high demand in the industry. Since the 
images obtained by charge coupled devices (CCDs) are easily affected by problems 
such as light and angle changes, image acquisition using a high-resolution ultra-
sonic microscope can completely solve these issues. However, there is currently no 
research on PCB defect detection based on deep learning for ultrasonic images. To 
address the lack of ultrasonic training data for defect detection based on deep learn-
ing, we use PCB test samples to collect surface images by C-scans, annotate them 
and construct an ultrasonic dataset. We also use the current state-of-the-art object 
detection model—YOLOx [14]—which outperformed the YOLO series in 2021, 
and further improve the defect detection capability of the model by replacing the 
feature extraction network with the four-scale Swin Transformer [15]. Experimental 
results show that our improved defect detection model achieves an average precision 
of 99.9% on our PCB test dataset, much higher than the compared models, includ-
ing Faster R-CNN [16], EfficientDet [10], YOLOv3 [11] and YOLOv4 [17]. While 
extending to the conventional object detection, our model also achieves better detec-
tion results on PASCAL VOC 2007 test dataset, compared with the existing state-of-
the-art models. In summary, our contributions can be summed up as follows:

• We use a high-resolution ultrasonic microscope, which is also the equipment 
independently developed by our laboratory, to inspect the PCB surface by 
C-scan, generate a batch of raw ultrasonic images, and annotate them. To com-
pensate for the lack of training data for deep learning, we collect a total of 200 
original images and expand them to 4320 images through data augmentation. 
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They are divided into training and test datasets to provide both a public dataset 
and a benchmark for future research in the field of PCB defect detection.

• We replace the original feature extraction network in YOLOx with a Swin 
Transformer pretrained on ImageNet to enhance the feature expression ability 
and multi-scale feature fusion ability of the network. Instead of the three scales 
of YOLOx, we adopt four-scale Swin Transformer while retaining the YOLOx 
decoupled head to output the prediction results of defect categories and loca-
tions, enhancing the capability of detecting small defect objects.

• To further address the lack of data, we also pretrain the model on the public PCB 
datasets collected using other methods, such as CCDs and CMOS sensors, to 
prevent over-fitting and improve generalization. We then continue training the 
above pretrained model on our ultrasonic PCB dataset.

2  Methodology

The architecture of the proposed defect detection model is shown in Fig. 1. As can 
be seen in the figure, our model is an end-to-end model that adopts Swin Trans-
former as the feature extraction network. The decoupled heads from YOLOx output 
the prediction results corresponding to different scales, and we concatenate them as 
the final prediction results.

2.1  A Brief View of Object Detection Methods

At present, there are many conventional object detection methods based on deep 
learning, and they are divided into two main categories: one-stage and two-stage 
object detection methods. In one-stage object detection methods, it is not necessary 

Fig. 1  Architecture of our model with four-scale Swin Transformer. We fuse multi-scale features from 
four scales, instead of three scales. A CBL block from YOLOx is composed of a convolutional layer, 
batch normalization layer and leaky-relu activation function. A SPP block is composed of a CBL block 
and multiple maximum pooling, the outputs of which are concatenated at the end. A BConv represents 
a convolutional layer to implement downsampling. The fused features from four scales are input into the 
decoupled heads, respectively
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to obtain a proposed bounding box. Usually, the image is divided into dense grids 
and each grid is responsible for determining whether it includes an object. Then, the 
category probability and position coordinates of the object are directly generated. 
In this way, the final detection result is obtained after a single detection. The speed 
of such object detection methods is generally faster than that of the two-stage algo-
rithms, but the accuracy is relatively lower. Typical one-stage detector algorithms 
include YOLOv1, YOLOv2 [18], YOLOv3, YOLOv4, and YOLOx. In addition to 
YOLO series models, other object detection algorithms have been proposed, such 
as SSD and EfficientDet [10] which is a series models that balance accuracy and 
speed. In two-stage object detection methods, the first stage focuses on determin-
ing where the object appears, obtaining the proposed bounding box using a region 
proposal network (RPN) [16], and ensuring sufficient accuracy and recall, and the 
second stage focuses on classifying the object in the proposal box and determining 
more precise locations. Such object detection methods are usually more accurate, 
but slower. Typical two-stage detector algorithms include R-CNN [19], SPP-Net 
[20], Fast R-CNN [21] and Faster R-CNN [16].

2.2  Main Architecture of the Network

We consider existing object detection algorithms and select YOLOx to implement 
defect detection. YOLOx has achieved state-of-the-art performance with respect 
to both inference speed and prediction accuracy. That is why we choose YOLOx 
as our backbone. However, CSPDarkNet [14] used in YOLO series is a multi-layer 
CNN, which can not take contextual information into account well, and contextual 
information is crucial for determining the properties of an object in an image. Under 
the premise of only considering the accuracy, we use Swin Transformer to replace 
CSPDarkNet as the feature extraction network. Swin Transformer is based on ViT 
[22] by introducing priors such as hierarchy, locality and translation invariance, and 
achieves better performance in visual tasks. In addition, its design, which incorpo-
rates a shifted window, means its complexity is linearly related to the image size, 
and its computational efficiency is very good. Swin Transformer consists of four 
similar stages, each of which has different numbers of Swin Transformer blocks. A 
Swin Transformer block [15] consists of a shifted window-based multi-head self-
attention module, followed by a two-layer multilayer perception with a GELU acti-
vation function between them.

First, we use an image of size H ×W × C
� as the input, where H, W and C′ repre-

sent height, width and channels, and then divide it into equal-sized patches by patch 
partition. We can get the original features with a size of H

4
×

W

4
× 16C

� . After patch 
embedding, the size of the feature map becomes H

4
×

W

4
× C . Each time a stage after 

the initial stage is passed, the height H and width W are halved, and the number of 
channels C is doubled. After processed by four stages, we can get four feature maps, 
the sizes of which are H

4
×

W

4
× C , H

8
×

W

8
× 2C , H

16
×

W

16
× 4C and H

32
×

W

32
× 8C , 

respectively. Instead of the three scales used by YOLOx, we use four scales by 
additionally adding the output of the first high-resolution stage. We do this mainly 
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because the size of a defect is usually small, and one more high-resolution scale 
helps us better obtain defect information.

First, we adopt the same design to fuse different-scale features from top to down 
to build a feature pyramid network (FPN). Here, we use Xi to represent the output 
of the i-th stage, and Di to represent the input of the i-th decoupled head, which is 
defined as follows [14]:

where a CBL block [14] from YOLOx represents a convolutional layer, batch nor-
malization layer and leaky-relu activation function, and a SPP block [14] from 
YOLOx is composed of a CBL block and multi max-pooling, the outputs of which 
are concatenated at the end. After that, we implement the feature fusion from bottom 
to up to build a path-aggregation network (PANet). We use Pi to represent the input 
of the i-th decoupled head, which is defined as follows:

where BConv represents a convolutional layer to implement downsampling. The 
fused feature of each scale is then processed by a decoupled head [14], as shown 
in Fig. 1, which can be decoupled into three types of information: classes, objects, 
and boxes. At last, the outputs of four decoupled heads are concatenated as the final 
output.

2.3  Training

To address the problem of insufficient ultrasonic image data, we use a high-resolu-
tion ultrasonic microscope, as shown in Fig. 2, and the C-scan method to scan the 
surface of the two-layer PCB with no solder joints. Most PCB traces are less than 
1 mm in width. Currently, available ultrasonic frequencies in our laboratory are 30 

(1)
Di = 5 ∗ CBL(Concat(Xi, Upsampling(CBL(Di+1))))

D4 = 2 ∗ CBL(SPP(2 ∗ CBL(X4)))

(2)Pi = 3 ∗ CBL(Concat(Di, BConv(Pi−1)))

Fig. 2  High-resolution ultra-
sonic microscope, which is 
the equipment independently 
developed by our laboratory



1 3

Sensing and Imaging           (2024) 25:10  Page 7 of 16    10 

MHZ, 50 MHZ, and 180 MHZ. In our experiment, a 30 MHZ probe is used, the con-
stant temperature of distilled water is 25 ◦ C, the speed of sound in water is 1480 m/s, 
the speed of sound in copper is 4700 m/s, and the time resolution is 0.001 μ s. We 
use 20 different PCBs as samples, and scan five locations on each board: the four 
corners and the center region, resulting in five different images of 800 × 800 pix-
els. Finally, we obtain 200 original ultrasonic images, the details of which are listed 
in Table  1. Because there are few defects in the natural state, we artificially add 
some common defects according to the practice in [23]. The PCB defects include 
five classes (mouse bite, open circuit, short, spur and spurious copper), as shown in 
Fig. 3. We randomly crop our images into 640 × 640 . Then, we use data augmenta-
tion to expand our dataset, including flip, rotation, blur and noise. Additional details 
are listed in Table 2. According to the ratio of 8:2, we randomly split our dataset 
into training and test dataset, obtaining 3456 images for training and 864 images for 
testing.

Since Transformer has less inductive bias than CNN, it has poor performance 
when the dataset is small. To enhance the feature extraction capability of our 
improved model and its generalization, it is necessary to introduce pretraining 
and transfer learning. Our model with the pre-trained Swin Transformer on Ima-
geNet-22k dataset [24] that we use as the feature extraction network firstly is pre-
trained on MSCOCO 2017 dataset [25]. Although there exists almost no research 
in the field of defect detection on PCB ultrasonic images, a few studies related to 

Fig. 3  Example of defects



 Sensing and Imaging           (2024) 25:10 

1 3

   10  Page 8 of 16

PCBs are based on images collected by CCDs or CMOS, such as the public data-
set created by Huang et al. [26], and another public dataset created by Tang et al. 
[27]. Because the defects in these PCB datasets are almost the same as those in 
ours, we continue to pre-train the above obtained model on these CCD-based and 
CMOS-based PCB datasets and then transfer to our ultrasonic dataset for training. 
Figure 4 compares example images from our ultrasonic dataset with those from 
the other two datasets. As can be seen in the figure, these images are very similar 
in nature, and that is why pretraining is performed on CCD-based and CMOS-
based PCB datasets. Furthermore, to evaluate the performance of our improved 
model on the conventional object detection, we also train our model on PASCAL 
VOC 2007 and 2012 dataset after pretrained on MSCOCO 2017 dataset, and then 
test its performance on PASCAL VOC 2007 test dataset.

Fig. 4  Comparison of our ultrasonic dataset with the other two datasets scanned from CCDs and CMOS 
sensors. The left CMOS-based example is from Huang et  al. [26], the middle CCD-based example is 
from Tang et al. [27] and the right is ours

Table 1  Original dataset 
overview

Table Number of detects Number 
of images

Mouse bite 105 78
Open circuit 115 81
Short 129 97
Spur 228 129
Spurious copper 104 85
Total 681 200

Table 2  Augmented dataset 
overview

Table Number of detects Number 
of images

Mouse bite 2214 1800
Open circuit 2430 1890
Short 2712 2280
Spur 4788 3030
Spurious copper 2202 1986
Total 14,346 4320
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For data preprocessing, we adopt the data augmentation used in YOLOx, including 
Mosaic [11] and Mixup [28], which have been proven to efficiently improve perfor-
mance, especially the performance of small object detection. In addition, we continue 
to use SimOTA [14, 29] used in YOLOx for positive sample screening. For the loss 
function, a multi-task loss composed of three losses is used, which include coordinate 
regression loss, object loss, and classification loss. The object loss is responsible for 
determining whether the target box is an object, and based on that information, the 
classification loss is responsible for determining which class the object belongs to. The 
above two losses both adopt binary cross-entropy (BCE) loss function, which is defined 
as follows:

where � is a hyperparameter, y is the ground truth, � is the model parameter, and p
�
 

is the output of the model. Usually, the above activation function adopts sigmoid. 
For the coordinate regression loss, the intersection over union (IoU) is adopted, 
which is defined as follows:

where GT represents ground truth and BB represents the predicted results.

3  Experiments and Results

3.1  Dataset

In order to implement defect detection, we adopt our own collected dataset to train our 
model, where 3456 images are used for training and 864 images for testing. Before that, 
we conduct pretraining twice. First, we pretrain our model on MSCOCO 2017, which 
includes 118,287 images for training, 5000 images for validation and 40,670 images for 
testing. Then, we continue to pretrain the above model on the following two PCB data-
sets from CCDs and CMOS: the one dataset made by Huang et al. [26], which includes 
8534 images for training and 2134 images for testing, and the other dataset made by 
Tang et al. [27], which includes 1000 images for training and 500 images for testing.

To further prove the performance of our improved model on the conventional object 
detection, we train and test our model on PASCAL VOC 2007 dataset, which includes 
5011 images for training and validation and 4952 images for testing, and PASCAL 
VOC 2012 dataset, which includes 11540 images for training and validation and 10,991 
images for testing.

3.2  Experimental Settings

The mean average precision metrics is used for the performance evaluation, as given 
in the later versions of PASCAL VOC (2010-2012) [30], which is the commonly 

(3)LossBCE = −�[y log p
�
+ (1 − y) log(1 − p

�
)]

(4)LossIoU = − log
BB

⋂

GT

BB
⋃

GT
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used evaluation metrics for object detection. Here, AP50 indicates average precision 
when the value of the IoU is set to 0.5. AP indicates the average precision using IoU 
values ranging from 0.5 to 0.95 with a step size of 0.05.

We set the number of stages in Swin Transformer to 4, and patch size to 4. The 
window size is set to 20, and each window of the high-resolution feature map is 
80 × 80 pixels on the original image, which is enough to cover small defects. The 
pretrained model of Swin Transformer we select is pretrained on the image size 
of 384 × 384 . Since our image size is 640 × 640 which mismatches the pretrained 
image size, we use geometric interpolation to solve this problem. In addition, since 
the number of images in our dataset is limited, we set a maximum of 300 epochs for 
training to prevent over-fitting. The augmentation of Mosaic and MixUp remains 
open until the last 15 epochs [14]. We set the batch size to 8, and adopt half-preci-
sion training. We adopt stochastic gradient descent as the optimizer with an original 
learning rate of 0.00125, and the cosine learning mechanism is adopted. We set the 
momentum parameter to 0.9 and weight decay to 5 × 10−4.

3.3  Ablation Study

To evaluate the effect of our model improvements, we conduct ablation experi-
ments. First, we compare the difference between YOLOx and our improved model 
before and after pretraining. The results of ablation study are presented in Table 3. 
When our improved model uses Swin Transformer with three scales, the prediction 
accuracy after pretraining is 99.8% AP50 and 82.0% AP, which is 1.7% AP50 and 
2.0% AP higher than that before pretraining. It proves that when there are insuf-
ficient data, pretraining can improve the model performance to a certain extent. As 
shown in the table, the prediction accuracy of our improved model with four-scale 
Swin Transformer achieves 99.9% AP50 and 83.1% AP, higher than models with 
CSPDarkNet and three-scale Swin Transformer, which proves that one more high-
resolution scale can help to improve the accuracy of small defect detection. Further-
more, we continue to conduct ablation study on PASCAL VOC 2007 test dataset, as 
shown in Table 4, and the comparison results further prove the effect of our model 
improvements. These results also prove that integrating the Swin Transformer into 
the YOLOx model improves the model’s performance, although this requires a large 
number of data for training and the inference speed is slightly slower than that of 
the original YOLOx. In some cases where the accuracy required for defect detection 

Table 3  Ablation study of 
different backbones, scales 
and training methods on our 
ultrasonic dataset

The bold indicates the best performance

Pretraining Backbone Scales AP
50

 (%) AP (%)

No CSPDarkNet 3 98.8 80.8
Yes CSPDarkNet 3 99.3 81.6
Yes CSPDarkNet 4 99.4 81.8
No Swin Transformer 3 98.1 80.0
Yes Swin Transformer 3 99.8 82.0
Yes Swin Transformer 4 99.9 83.1
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is high, a YOLOx model using the Swin Transformer is a suitable solution. When 
high speed defect detection is required, we can use the original YOLOx, which also 
provides a good level of prediction accuracy. All the following experiments adopt 
four-scale Swin Transformer.

3.4  Performance Comparison

First, to evaluate the performance of our proposed method using the Swin Trans-
former, we train and test some typical object detection algorithms on our dataset, 
including Faster R-CNN [16], EfficientDet [10], YOLOv3 [11] and YOLOv4 [17], 
which all have once been proved to be efficient in the field of defect detection. Then, 
we compare our proposed model with the above models. For fair comparison, all 
the compared models are trained for 300 epochs. The results of performance com-
parison are presented in Table 5. As these results reveal, YOLOx with CSPDarkNet 
surpasses the other models on the evaluation metrics of both AP50 and AP. We note 
that the inference speed of YOLOx with CSPDarkNet, which has been evaluated, is 
faster than the inference speed of the other compared models, and the average infer-
ence time of our method is 17ms per image, which is slightly slower than 14.7ms 
of YOLOx and viable for on-line testing. However, without considering inference 
speed, our improved model with Swin Transformer achieves the state-of-the-art per-
formance, obtaining 99.9% AP50 and 83.1% AP, which is 0.6% AP50 and 1.5% AP 
higher, respectively, than the performance of YOLOx with CSPDarkNet. Figure 5 
presents some visual examples of defect detection in the PCB ultrasonic images 
obtained by our model with the Swin Transformer. As is shown in the figure, our 
proposed model can precisely locate the defect and determine its category.

Table 4  Ablation study of 
different backbones and scales 
on PASCAL VOC 2007 test 
dataset

The bold indicates the best performance

Backbone Scales AP
50

 (%) AP (%)

CSPDarkNet 3 83.9 64.1
Swin Transformer 3 84.8 65.5
Swin Transformer 4 85.1 65.9

Table 5  Performance 
comparison on our ultrasonic 
test dataset

The bold indicates the best performance

Model Backbone Size AP
50

 (%) AP (%)

Faster R-CNN ResNet 101 [31] 640 94.5 57.9
EfficientDet-D0 EfficientNet-B0 [32] 640 97.1 72.3
EfficientDet-D7 EfficientNet-B7 [32] 640 98.5 80.1
YOLOv3 DarkNet-53 [11] 416 97.3 78.8
YOLOv4 CSPDarkNet-53 416 98.2 79.6
YOLOx CSPDarkNet-53 640 99.3 81.6
Ours Swin Transformer 640 99.9 83.1
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To further evaluate the conventional object detection performance of our pro-
posed method, we train our model on PASCAL VOC 2007 and 2012 dataset [30], 
and then compare the performance of our improved model with that of the existing 
state-of-the-art models: HSD [33], Localize [34], EEEA-Net [35], and MViT [36]. 
All the compared models are tested on the PASCAL VOC 2007 test dataset. The 
comparison results are listed in Table 6. Because the integration of the Transformer 
into the model increases its complexity, reducing the corresponding inference speed, 
we only compare the prediction accuracy. As can be seen in the table, our improved 
model with four-scale Swin Transformer, pre-trained on MSCOCO, achieves the 
highest scores of 85.1% AP50 and 65.9% AP on PASCAL VOC 2007 test dataset, 
which is 1.2% AP50 and 1.8% AP higher, respectively, than the performance of 
YOLOx with CSPDarkNet. In addition, although MViT also achieves high average 
precision values, it is also composed of multi-modal ViT, which has lower inference 

Fig. 5  Examples of detected defects on our dataset by our model

Table 6  Performance 
comparison on PASCAL VOC 
2007 test dataset with SOTA 
models from the leaderboard

The bold indicates the best performance

Model Backbone Size AP
50

 (%) AP (%)

HSD VGG16 [37] 320 81.7 –
HSD VGG16 [37] 512 83.0 –
Localize RFBNet [38] 320 81.5 –
EEEA-Net YOLOv4 320 81.8 –
MViT ViT [22] 512 84.2 64.5
YOLOx CSPDarkNet-53 640 83.9 64.1
Ours Swin Transformer 640 85.1 65.9
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speed than YOLOx with CSPDarkNet. Moreover, our improved model with four-
scale Swin Transformer outperforms MViT with respect to both AP50 and AP. Fig-
ure 6 presents some visual examples of objects detected by our improved model on 
PASCAL VOC 2007 test dataset.

4  Conclusion

Defect detection based on ultrasonic images is still dominated by manual detection, 
which is a time-consuming and labor-intensive process, and prone to human error. 
Implementing the automated detection of defects is a very meaningful work. In our 
work, to address the serious shortage of PCB ultrasonic image data, we scan PCB 
using a high-resolution ultrasonic microscope, and create a PCB dataset based on 
ultrasonic images for deep learning model training and testing to implement the 
automated defect detection. These data can support and act as a benchmark for sub-
sequent research in the field of PCB defect detection. Moreover, we demonstrate 
that pretraining on similar datasets can address the problem of insufficient training 
data to a certain extent and improve the performance of the model. We find that the 
YOLOx model can efficiently and accurately detect defects in ultrasonic images, and 
the accuracy of PCB defect detection has reached 99.3% AP50 . This also proves the 
feasibility of deep learning methods in defect detection for ultrasonic images. With-
out considering the complexity of the model, we use four-scale Swin Transformer 
instead of CSPDarkNet in YOLOx, and the accuracy of PCB defect detection has 
reached 99.9% AP50 and 83.1% AP. In the next step of our research, we will con-
tinue to collect data to expand our dataset, and then use our equipment and algo-
rithms to implement internal defect detection.
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Fig. 6  Examples of detected objects on PASCAL VOC 2007 by our model
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