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Abstract
With the rapid development of Industry 4.0 and the expansion of its application 
fields, it has been successfully applied in various industrial applications like aero-
space, defense, material manufacturing, etc. For quality control, nondestructive test-
ing and evaluation (NDT&E) will become nondestructive testing and evaluation 
(NDE) 4.0 to seamlessly connect with Industry 4.0. NDE 4.0 focuses on deploy-
ing artificial intelligence in the quality inspection of different industrial products, 
including composites, steel slabs, polycrystalline solar wafers, etc. This paper pro-
poses an artificial neural network (ANN) based sub-surface defect detection modal-
ity for exploring subsurface defects using Gabor filter features with improved resolu-
tion and enhanced detectability. Considering the desirable characteristics of spatial 
locality and orientation selectivities of the Gabor filter, we design filters for extract-
ing sample features from the local image. The effectiveness of the proposed method 
is demonstrated by the experimental results on glass fiber reinforced polymer 
(GFRP) composite sample using digitized frequency modulated thermal wave imag-
ing. We experimentally evaluate the proposed model on a benchmark and achieve a 
fast detection result with high accuracy, surpassing the state-of-the-art methods. For 
quantification, signal to noise ratio (SNR) is considered as a figure of merit.
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1 Introduction

The world is beginning a new technological revolution based on industry 4.0 
technologies such as artificial intelligence, robotics, and the internet of things. 
As an essential part of product quality control, NDT&E will become NDE 4.0 to 
connect with Industry 4.0 effortlessly. Therefore, it is essential to develop inno-
vative NDT&E methods and techniques for NDE 4.0 [1, 2]. Although there are 
many facets of NDE 4.0, intelligent thermal nondestructive testing and evaluation 
(iTNDT&E) can be considered a technical core of NDE 4.0. TNDT&E is cru-
cial in many industries to guarantee the quality of the manufactured component. 
It contributes to dependable system performance and evaluates the component’s 
health monitoring, preventing catastrophic failure. Typically, production or in-
service manufacturing flaws will impair the operation of the components. Thus, 
to maintain its integrity, a thorough testing and evaluation procedure is required, 
preferably using a particular iTNDT&E process. It allows for inspecting, assess-
ing, or examining a test structure without compromising its continued service-
ability. It is essential in various industries, including the electrical, mechanical, 
civil, aerospace, automotive, and building sectors [3, 4]. Therefore, we propose 
developing the iTNDT&E technique to detect voids or hidden flaws in the Glass 
Fiber Reinforced Polymer (GFRP) composite material.

Due to the adequate specific strength, lightweight, resistance to corrosion, lon-
gevity, and ease of servicing as a building material for aircraft structures, GFRP 
composites have grown in popularity. Defects can change the structure’s tough-
ness, so NDT&E plays an integral role in monitoring and determining the con-
dition of material components. Timely monitoring and inspection of the com-
ponents are required using a rapid and easy inspection technique to limit costs. 
Therefore, it is essential to construct automatic, fast, remote practices and proce-
dures to analyze the recorded data to obtain the quantitative characterization of 
defects. TNDT&E provides attributes suitable for investigating almost all types 
of materials irrespective of their physical properties [5–11]. It is a remote, easily 
automatable method, and the testing time is shorter than other traditional, well-
established NDT techniques such as X-Ray, Ultrasound, etc. Both passive and 
active TNDT&E techniques are possible. Without applying any induced thermal 
stimulus, the thermal response over the test structure is observed with a thermal 
camera under ambient conditions in passive TNDT&E. However, inexpensive, 
straightforward, extrinsic influences such as surface emissivity variations and 
environmental thermal reflections impact the measured heat distribution over the 
test sample. Due to these variables, the passive technique is unreliable in terms of 
its usefulness for TNDT&E. Also, it is difficult to detect the voids with smaller 
sizes and those found more profound in the test sample with better resolution. 
Thus, to find minor and deeper flaws, active thermography is preferred. Actively 
maps the temperature distribution over the test component while being influenced 
by a predetermined, controlled external thermal source [5–15]. It aids in turning 
it into a quantitative method of locating the test sample’s lesser and deeper flaws. 
The relevant active TNDT&E technique classifies as either pulse-based (pulse 
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thermography (PT) [6] and pulse phase thermography (PPT) [11] or modulated 
thermography (lock-In thermography (LT) [12], linear frequency modulated ther-
mal wave imaging (LFMTWI) [16–18], digitized frequency modulated thermal 
wave imaging (DFMTWI) [19, 20], depending on the shape of the external ther-
mal signal. These techniques use a volumetric heat source to stimulate the testing 
sample’s surface and analyze the thermal data response over the component’s sur-
face. The common feature, standard with all the TNDT&E techniques, is that the 
defect in the material inducing different thermophysical properties will also yield 
a flaw during thermal diffusion of the thermal waves and temperature gradients 
over the component’s surface. These techniques identify areas of varying thermal 
responses related to the flaw. This work is based on thermal-physical properties 
involved in thermal wave diffusions, such as the density of the material, the spe-
cific heat at constant pressure, and thermal conductivity.

The proposed work presents an advantageous DFMTWI with high-depth-
resolved pulse compression for GFRP material defect detection. The high peak-
power heat source requirement in pulsed thermography and limited depth resolu-
tion of lock-in thermography due to the fixed modulating frequency of sources 
are overcome by the proposed technique using appropriately digitally modulated 
excitation signal, limited both in time duration and frequency bandwidth. Using 
relatively low peak power heat sources with adequate experimentation time, 
DFMTWI confirms improved detection resolution and sensitivity. DFMTWI 
utilizes a digitized frequency-modulated evoking signal imposed over the test 
structure with frequencies and harmonics varying within a pre-defined band with 
almost equivalent energies [19–21]. Resultant thermal waves diffuse into the sam-
ple structure and produce a similar time-varying thermal distribution. Defects 
inside the sample alter the heat flow resulting in thermal gradients over the sur-
face. This resultant thermal response over the sample surface is recorded and fur-
ther processed using pulse compression analysis to construct pulse-compressed 
thermograms. Pulse compression concentrates the total supplied energy into a 
localized instant, improving depth resolution [22–25]. Additionally, this work 
proposed an algorithm for the automated detection of subsurface defects in GFRP 
composite material using pulse-compressed (PC) thermograms.

Further, the PC thermogram is convolved with Gabor filters by multiplying the 
thermogram by Gabor filters in the frequency domain. To save time, they have 
been saved in the frequency domain. Features are a cell array containing the result 
of the convolution of the thermogram with each of the forty Gabor filters [26–28]. 
This work aims to implement a classifier based on neural networks (Multi-layer 
Perceptron) for defect detection. The ANN is used to classify defect and non-
defect patterns [29, 30]. The effectiveness of the proposed method is validated 
using the experimental GFRP sample with voids as the defects. The obtained 
findings unmistakably demonstrate the suggested scheme’s potential for automati-
cally detecting sub-surface defects. At last, in order to quantify the defects detect-
ability of materials, mean of defective and non-defective area as well as standard 
deviation of non-defective region are calculated and further signal to noise ratio 
of each defect is compared with respect to depth and diameter.
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2  Theory

This section describes the theoretical analysis of the DFMTWI and the various 
post-processing methods adopted in this work for automated detection of the 
defects present in the GFRP sample structure.

2.1  Digitized Frequency Modulated Thermal Wave Imaging

Theoretically, the one-dimensional (1-D) heat equation to the homogeneous and 
semi-infinite medium with no heat sink or source present is examined to deter-
mine the thermal gradient profile over the test structure’s region. Equation  (1) 
represents the 1-D thermal equation [19–21]:

where TD stands for thermal diffusivity, (TD = λ/ρ⋅cp); ρ, cp., λ are the test structure’s 
density, specific heat, and thermal conductivity, respectively, and Th(z,t) denotes the 
surface’s thermal distribution profile. ‘z’ stands for diffusion direction, and ‘t’ stands 
for time.

Equation  (2) represents the Digitized Frequency Modulated (DFM) heat flux 
(S):
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polynomial. Further, the zero mean thermal distribution data is processed using 
pulse-compression. Pulse-compression data (TPC(τ)) is obtained using:

where ‘ ⊙ ’ denotes the circular convolution operator, and TRef(x,y,t) is a chosen refer-
ence zero mean thermal signal. It is computed using complex multiplication in the 
frequency domain [24, 25, 31–33].

2.3  Gabor Feature Extraction

When the input data is too large or suspected to be redundant, the input data will 
be transformed into a reduced representation set (features). The process to obtain 
this vector of features is feature extraction. Consider that we have different defect 
images of different defects. In defect detection, we mainly highlight those parts 
of the defects common for all the defects. We need features that can successfully 
distinguish different defects from each other. Gabor features are generally used 
for both purposes. Gabor features are simply the coefficients of the response of 
Gabor filters. Gabor filters are related to Gabor wavelets; Each Gabor wavelet is 
formed from two components; a complex sinusoidal carrier placed under a Gauss-
ian envelope. Thus, apart from the Gaussian envelope in each 2D Gabor wavelet, 
the sinusoidal carrier has a frequency and orientation of its own, and the system 
is similar to those of the human visual system, known as the Visual cortex. Gabor 
filtering is done by convolving images with Gabor kernels. Each window con-
taining a Gabor wavelet is a Gabor kernel, and the size of the kernel are always 
odd pixels. After creating all the required kernels, which are about 40, each ker-
nel convolves with the window. Gabor filters, modeling the responses of simple 
cells in the primary visual cortex, are simply plane waves restricted by a Gaussian 
envelope function [11]. The Gabor wavelet can represent a thermogram transform 
allowing the description of both the spatial frequency structure and spatial rela-
tions. Convolving the PC thermogram with complex, Gabor filters with five spa-
tial frequency (v = 0,…,4) and eight orientation (ϕ = 0,…,7) captures the whole 
frequency spectrum, both amplitude, and phase [26–28, 31]. Once the image has 
been convolved with the Gabor filter bank, various statistical and mathematical 
operations can be applied to the filtered images to extract relevant features. The 
extracted features from all the filtered images are often concatenated to form a 
feature vector. The feature vector represents the thermal characteristics at various 
orientations and scales. This feature vector can be used for defect detection.

2.4  Artificial Neural Network (ANN): Multi‑layer Feed‑Forward Neural Network

The Artificial Neural Network (ANN) has been widely used to classify informa-
tion regarding subsurface characteristics qualitatively. This contribution focuses on 
qualitatively assessing the subsurface anomalies using classification-based modality 

(4)TPC(τ) = Thzeromean
(
xi, yj, t

)
⊙ TRef (x, y, t)
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using ANN. The simplest form of the neural network is called perceptron. In Multi-
layer feed-forward neural network, it is just several layers of single-layer perceptron 
neurons bonded to one another. The term ‘feed-forward’ means that any neuron’s 
output will be recurrent to the previous layers of the network. The input to the neu-
ral network is always a vector, even if it is as simple as a single-layer perceptron. 
For the proposed system, multi-layer perceptron (MLP) with feed-forward learning 
algorithms is chosen because of its simplicity and capability in supervised pattern 
matching [34, 35]. Our problem is suitable with the supervised rule since the input-
output pairs are available.

In multi-layer feed-forward neural networks, we can change the transfer functions 
and set them for each layer separately and independently of the other layers. In the 
proposed network, we can be sure that no matter what the input, the output of the 
neural network is bounded between 1 and − 1 and can be as close as to them but 
can only be 1 and − 1 in the infinity or–infinity. Since it can hardly reach 1 or − 1, 
it is better to choose our desired outputs as 0.9 and − 0.9 for defect and non-defect. 
Because we will have better and faster convergence in the training phase, we can see 
0 as our training error. However, if we choose our desired output, for instance, as 1, 
then it means the input of the transfer function should go as far as infinity to meet 
our desired output, which is problematic in some cases, and in other cases, it may 
never be feasible. Further, once we have created a neural network, we should initial-
ize all its weights and bias values to random real numbers because the first moment 
we create a network, every weight is zero. So, no matter what the input, to help 
the training with the input, to help the training value of the weights should be uni-
formly spread. So, after creating the neural network, we should always randomize 
the weights.

2.5  Training the Network

The Multi-layer perceptron with the training algorithm of feed propagation is a 
universal mapper, which can, in theory, approximate any continuous decision 
region arbitrarily well. However, the convergence of feed-forward algorithms is 
still an open problem. It is well known that the time cost of feed-forward training 
often exhibits remarkable variability. It is, in most cases, the rapid restart method 
can prominently suppress the heavy-tailed nature of training instances and 
improve the computation efficiency. For training the network, we used the classi-
cal feed-forward algorithm. The training phases are like changing the weights and 
bias of the neural network and testing it on our training set. Then it adds small 
corrections to the initialized weights and again tests it. This work applies ‘scaled 
conjugate gradient back propagation (trainscg)’. It is the best and fastest train-
ing method for our purpose. It is an iterative training algorithm and uses much 
less memory than other training methods. The learning rate is fixed at 0.8, and 
the correction amount to weights from each iteration to the next. The maximum 
number of training iterations (also called epochs) is 400. After that, the training 
phase stops. Another parameter is the ‘goal’ parameter. Here, we kept it as 1e−3. 
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It means that the training stops whenever the value of our choice falls below this 
value. Further, we have chosen mean square error (MSE) as the performance 
function. Furthermore, we have chosen 1e−7 for the goal. It means that after the 
network has been trained, if we test each pattern of our training set and compute 
the MSE between the desired output and the actual output for each pattern and 
get the absolute value of the results in a way that none of the parameters have 
negative, the average absolute error becomes less than 1e−7. Figure  1. shows 
the training of the neural network. Figure 2. illustrates the flowchart showing the 
training and testing procedure.

2.6  Generating the Train Sets

To generate the train sets, we created two folders (‘defect’ and ‘non-defect’). 
There are several images with PNG format in each of them. These images are the 

Fig. 1  Training neural network
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training sets that we have generated. All the image dimensions are 27 × 18. We 
got some of the defect images and put them in the folder. We added some more 
defect images to the folder. Finding defects was not the hard part. Finding non-
defect images was usually strange because a defect is defined, but a non-defect 
can be anything. To do this, we started with 5 or 6 random non-defect images. 
Initially, we trained the neural network for the first time and tested it over an 
image without any defects. Tested means to cut every possible 27 × 18 patch from 
the thermogram and converted them into a vector format. Then we gave each vec-
tor to the input of the trained neural network. We got a high response for some of 
them during testing patches, let us say over 0.9. In those cases, we got them and 
put them in the non-defect folder. Then we trained the network the second time 
and did the same procedure again. Our training set should always have a balance 
between the number of defects and the number of non-defects. Every non-defect 

Fig. 2  Flowchart illustrating the training and testing procedure
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image we add to the training set will lower the effect of detecting defect images. 
So it can be considered a challenging task.

2.7  Defect Detection System

This section discusses the proposed approach to detect defects from a PC thermo-
gram using a multi-layer feed forward neural networks and Gabor wavelets as its 
feature extraction method.

2.8  Experimentation

Consider a rectangular shaped (35 mm × 36.5 mm) GFRP sample with thickness 
6.95  mm having 9 flat bottom holes corresponding to three different diameters 
(2 mm, 4 and 6 mm). Each row has 3defects that are spaced at different depths 
from the top surface of the material. Figure 3 show the schematic detail of the test 
material.

The material front surface is exposed to a digitized frequency modulated heat 
flux with fundamental frequencies varying from 0.01 to 0.1  Hz for duration of 
100 s using two halogen lamps of 1 kW each. The lamps are kept at a distance 
of 1  m from the test material and at an inclination angle of 45°  normal to the 
surface. The resultant thermal distribution on the surface of the material is thus 
monitored and recorded using an mid-infrared camera (3–5 μm range) with a spa-
tial resolution of 320 × 240 at a frame rate of 25 (frames per sec). Figure 4 shows 
the experimental setup.

2.9  Results and Discussions

The flowchart showing the steps followed is as shown in Fig. 5. The mean rise 
in temperature during active heating has been removed by fitting the captured 
thermal data using an appropriate polynomial fit. Further, the pulse compression 

Fig. 3  Schematic detail of 
the experimental GFRP test 
material
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is applied onto the mean zero thermal profile and the corresponding single pixel 
thermal distribution profile.

The 3-D representation of reconstructed pulse compressed thermogram 
obtained at a time instant of 13.2 s is as shown in Fig. 6.

2.10  Pre‑selection

To have the initial guess of the location of the defects or to avoid inspecting 
every location, spatially cross-correlate a defect-like sub-image (template) of size 
27 × 18 with the input pulse-compressed thermogram. In this work, we use two 
template defects, one with a bright background and the second with a dark (black) 
background.

2.11  Defects Searching

In the pre-selection stage, we recorded the location of all the pixels that should 
be checked in an image-like matrix called cell.state. The word ‘state’ comes from 
each pixel containing a 1 or a 0 as its value. The ON pixels, which have 1 as 
their value, are the location of the center of the 27 × 18 windows that should be 
checked. Now we should ensure that when the algorithm finishes, the values of 
all the pixels are − 1. During this phase, the value of some pixels may change. 
According to defined rules, some pixels may change their values from − 1 to 1. 
Other pixels may change their values to − 1.

If the result of the neural network is less than − 0.95 (it is pretty much near 
− 1), it means that according to our trained network, there is no way for a defect 
near this location. To save some time, we made sure that none of the pixels in the 

Fig. 4  Experimental setup



1 3

Sensing and Imaging (2023) 24:38 Page 11 of 16 38

Fig. 5  Flow chart representing 
the steps used
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neighborhood of 3 city blocks needed to get checked. We deliberately delete all 
the ones around them and put − 1 in cell.state. This region we consider a black dot 
region.

If the result of the neural network is over − 0.95 but is still a negative value less 
than a pre-specified threshold (− 0.5), it still does not contain any defect, but we do 
not change anything around. This region we consider a pink dot region.

According to our network, if the returned value is over 0.95, that location defi-
nitely contains a defect. So, if the prophecy is true, any window around this location 
cannot contain any other defect. So, we ensure that in the area equal to 27 × 18, there 
will not be another pixel with state 1. This region we consider a blue dot region.

Suppose the returned value is between 0.5 and 0.95. It probably contains a defect, 
but it is better to search around it for a better match and consider it a green dot 
region. Suppose the returned value is between − 0.5 and 0.5, this area probably does 
not contain a defect, considered a red dot region. After that, we do the same proce-
dure for all the 9 adjacent pixels, but with one difference. If the pixel was already 
checked, we leave it alone. If the pixel was in the blue zone, we mark all the 27 × 18 
pixels around as checked, so that we are never going to check it again by changing 
their states to − 1. If the pixel was in the green zone, we mark it for the next iteration 
by changing its state to 1. All these steps make sure that we check every single pixel 
around our original candidate points to the extent that the neural network cannot find 
any other defects around the region.

2.12  Defect Marking

From this point forward, we have the neural network responses for most of the can-
didate locations. There is only a matter of deciding which locations to choose as 
defects. We first threshold it, with our pre-defined threshold value of 0.85. Then 
we dilate a disc structure element to avoid discontinuity. It sometimes happens 
and forces duplicate rectangles around the defect area. Figure 7 shows the marked 
defects.

Fig. 6  3-D representation of a 
pulse-compressed thermogram 
obtained at a time instant of 
13.2 s
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2.13  Quantitative Analysis

Further, to quantify the defects detectability of materials, mean of defective and non 
defective area as well as standard deviation of non defective region are calculated 
and further signal to noise ratio of each defect is compared with respect to depth 
and diameter. For each detected defect, the Signal to Noise Ratio is calculated. It 
helps us assess how distinct and reliable the identified defects are compared to the 
surrounding material properties. A higher SNR indicates a stronger and clearer 
defect signal relative to the background variations. A lower SNR suggests that the 
defect signal may be less distinguishable from background variations. SNR is cal-
culated considering 3 × 3 matrix across the centre of each defect using the equation 
described as [36, 37]

Figures 8 and 9 shows the plot of SNR (dB) of defects varying with diameter (φ) 
for fixed depths and varying with depths for fixed diameter respectively.

3  Conclusion

This paper proposed an ANN-based defect detection method for exploring sub-
surface defects using Gabor filter features with improved resolution and enhanced 
detectability. The classification network based on the improved hierarchical resid-
ual module with a simplified network structure can reduce the training parameters, 
shorten the training time, and improve the training stability. The effectiveness of the 
proposed method is demonstrated by the experimental results on GFRP composite 
sample using digitized frequency modulated thermal wave imaging. Further, pulse-
compressed thermogram analysis improved testing sensitivity and depth resolution. 
For quantification, SNR is considered a figure of merit. Variation of SNR with depth 

SNR = 20Log

(
mean of defective area − mean of nondefective area

standard deviation of nondefective area

)

Fig. 7  Marked defects
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and diameter is shown. The graphs show that as depth increases, SNR decreases, 
and SNR increases as diameter increases.
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