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Abstract
The deaf community relies on sign language as the primary means of communi-
cation. For the millions of people around the world who suffer from hearing loss, 
interaction with hearing people is quite difficult. The main objective of sign lan-
guage recognition (SLR) is the development of automatic SLR systems to facilitate 
communication with the deaf community. Arabic SLR (ArSLR) specifically did not 
receive much attention until recent years. This work presents a comprehensive com-
parison between two different recognition techniques for continuous ArSLR, namely 
a Modified k-Nearest Neighbor which is suitable for sequential data and Hidden 
Markov Models (HMMs) techniques based on two different toolkits. Additionally, 
in this work, two new ArSL datasets composed of 40 Arabic sentences are collected 
using Polhemus G4 motion tracker and a camera. An existing glove-based dataset 
is employed in this work as well. The three datasets are made publicly available to 
the research community. The advantages and disadvantages of each data acquisition 
approach and classification technique are discussed in this paper. In the experimen-
tal results section, it is shown that classification accuracy for sign sentences acquired 
using a motion tracker are very similar the classification accuracy for sentences 
acquired using sensor gloves. The modified KNN solution is inferior to HMMs in 
terms of the computational time required for classification.

Keywords  Arabic sign language recognition · Pattern classification · Feature 
extraction · Motion detectors

1  Introduction

Sign language recognition (SLR) is closely related to speech recognition (SR). 
Therefore, most of the analysis and classification techniques used in SLR have been 
borrowed from the speech recognition literature which has been established decades 
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ago and has reached an adequate level of maturity. SLR, on the other hand, is still a 
relatively new but active area of research. Since sign language is primarily a set of 
gestures, it is similarly affected by the advances in gesture recognition. Nonetheless, 
not all techniques of gesture and speech recognition are adequate for SLR. Accord-
ingly over the years SLR has developed its own literature.

Compared to other gestures, sign language is the most structured one. It has a 
large set of signs where each sign has a specific meaning. The majority of signs are 
associated with words while some are for finger spelling. For instance, American 
sign languages (ASL) has approximately 6000 signs [1].

Data availability is one of the main challenges facing researchers in SLR. The 
number of publicly available datasets is quite limited both in terms of quantity and 
quality. Manually annotated datasets are severely scarce. Moreover, since sign lan-
guage is not universal, some sign languages (e.g., English and Chinese) have more 
datasets available than others (e.g., Arabic). Some publicly available datasets are in 
[2–4].

Another issue in sign language is co-articulation or epenthesis which is also 
encountered in speech recognition. It means that a given sign in a sentence is 
affected by the signs before and after it. It is a well-known problem in speech rec-
ognition, but in sign language it happens over a longer period and affects different 
aspect of the sign at the same time. This poses a lot of troubles in continuous rec-
ognition. Yang and Sarkar [5] used conditional random fields (CRF) to detect co-
articulation in sign language. Other approaches for handling co-articulation can be 
found in [6, 7]. The way in which each person performs signs might be different; this 
is another problem known as signer dependency.

Signs of any given sign language consist of two components: manual and non-
manual components. Manual components are hand position, orientation, shape and 
trajectory. Non-manual components are body movement and facial expressions. 
Most of the information is conveyed through manual components [8], thus most of 
the researches focused only on them [9]. While Non-manual components can form 
signs by themselves, mostly they emphasize the meaning of manual components; 
for example, raising an eyebrow indicates a question. Other popular non-manual 
components include lip shape and head pose are popular non-manual components 
as well.

The two main approaches for SLR are vision-based and sensor-based approaches. 
Vision-based SLR uses cameras only to capture gestures (signs). It has the advan-
tage of user friendliness since the user is not required to wear any devices such as 
data gloves or motion trackers. However, the computational cost is normally high for 
this approach. Moreover, it can be quite sensitive to variations in the background or 
changing illumination conditions. The sensor-based approache makes use of wear-
able devices to accurately capture the signs. Although it might not be as conveni-
ent as the vision-based, it comes with huge improvement in recognition accuracy. 
Gloves and motion trackers are the most popular wearable devices for SLR. A com-
parison between the various gloves available in the market is provided in [10].

The rest of this paper is organized as follows. Section 2 presents a short survey of 
the current state-of-the-art in SLR. A description of the datasets used and their col-
lection procedures is in Sect. 3, followed in Sect. 4 by an explanation of the feature 
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extraction techniques used. Our adopted classification techniques are discussed in 
Sect. 5. Results of our experiments are in Sect. 6. Concluding remarks and future 
works are given in Sect. 7.

2 � Literature Review

A recent and thorough survey of SLR was done by Cooper et al. in [8]. They cov-
ered the key components of SLR, and discussed the pros and cons of the different 
types of data available. The manual and non-manual components of signs were also 
explored, as well as the recent researches in the area. The survey discussed some of 
the current research frontiers such as continuous recognition, signer independency, 
the work towards combining different modalities of sign, and the development of 
unconstrained real-life SLR systems. A more recent survey with a focus on Indian 
sign language (ISL) is found in [11].

Recognition of alphabets is in general easier than recognizing words. Usually 
alphabets are static gestures, this allows the use of conventional classification and 
clustering techniques. Color gloves were used in [12] to collect data of ArSL alpha-
bets from multiple users, where adaptive Neuro-Fuzzy Inference System (ANFIS) 
was the recognition approach. The same data and feature extraction techniques were 
used by Assaleh et  al.  [13], but they used polynomial classier and reported better 
results than the previous ANFIS approach. Depth camera was used as the input 
device for real time recognition of ASL alphabets in [14].

The problem of coarticulation is not present in recognition of isolated gestures, 
which makes it simpler than continuous sign recognition. Nonetheless, isolated ges-
tures involve some motion which makes their recognition more difficult than alpha-
bet recognition. Oz et al. [15] collected a dataset of 50 isolated right handed words 
of ASL. After extracting some global features, artificial neural networks were used 
for classification. The system was tested on multiple users as well as on new words, 
and they reported accuracy of 90%. Different spatio-temporal feature-extraction 
techniques were used in [16] for recognizing isolated ArSL words. Accuracy of 97% 
was reported upon using K nearest neighbor (KNN) classifier. Their proposed fea-
ture extraction and classification yielded results comparable to conventional HMM.

HMMs are the most commonly used classification technique in SLR. For 
instance, Gaussian Hidden Markov Model (GHMM) was used on the SIGNUM 
database in [17]. In addition to appearance-based features extracted directly from 
the videos, multilayer perceptron (MLP) features were used achieving word error 
rate (WER) of 11.9%. Then, Principal Component Analysis (PCA) was used for 
dimensionality reduction. The same group investigated combining different sign 
modalities for the same database in [18]. They studied different combinations of five 
modalities, and were able to decrease WER to 10.7%. A promising approach of end-
to-end embedding of a Convolutional Neural Network (CNN) into an HMM was 
recently proposed in [19]. In [20] HMMs were used to model the hand trajectory for 
large isolated Chinese SLR. They claimed to achieve better performance compared 
to normal coordinate features with HMM.
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In [21] Kong and Ranganath presented promising results in terms of signer inde-
pendency. Their system was tested on new signs as well as new users. Accuracies of 
95.7% and 86.6% respectively were reported. They used a segmentation algorithm 
proposed in their previous work [22]. A major contribution in signer independency 
was done by Koller and colleagues in [23], where they worked on two publicly avail-
able large vocabulary databases representing lab-data (SIGNUM database:25 sign-
ers, 455 sign vocabulary, 19k sentences) and unconstrained real-life sign language 
(RWTH-PHOENIX-Weather database: 9 signers, 1081 sign vocabulary, 7k sen-
tences). The earlier works of Gao et al. [24] and Fang et al. [25] are also examples 
of research on signer independency and large vocabulary. Fang et al. tried to tackle 
co-articulation by modeling the transition between signs using transition-movement 
models (TMMs).

In vision-based SLR, hand tracking is still a challenge especially in unconstrained 
environment where the background is cluttered and illumination conditions vary. 
Several researches have tried to tackle this issue with the use of Kinect [26–29]. 
Kinect simplifies hand tracking by providing depth and color data simultaneously. 
Many depth cameras are now available in the market with a variety of prices and 
accuracies. ZED and Kinect are the most commonly used ones. A team from Micro-
soft research Asia has developed Kinect-based SLR system and has reported very 
promising results [27]. Zafrulla et al. compared their old copycat system which used 
a colored glove and embedded accelerometer to a system based in Kinect in [28].

Until recently Arabic sign language recognition (ArSLR) has not received much 
attention. A survey of the contributions in ArSLR up to 2014 using both sensor-
based and vision-based approaches can be found in [30]. The majority of the lit-
erature is concerned with isolated sign recognition. For instance, a system based 
on adaptive neuro fuzzy inference system (ANFIS) networks was proposed by Al-
Jarrah and Halawani to recognize 30 Arabic alphabets. They managed to achieve 
an accuracy of 93.55% [31]. A vision-based posture recognition called AndroSpell 
was proposed in [32] where the authors made use of a camera phone to recognize 10 
postures with 97% accuracy.

It was not until 2010 that the first continuous ArSLR system was proposed by 
Assaleh et  al. [33]. They used their novel spatio-temporal feature-extraction tech-
nique [16] and reported 6.0% WER on a dataset of 40 sentences. A modified version 
of k-Nearest Neighbor (MKNN) was proposed by Tubaiz et al. in [34] and tested on 
the same dataset but collected using DG5-VHand data gloves instead of the camera. 
Their system achieved 2.0% WER. The data collected in [34] was used by Tuffaha 
et  al. in [35] where modified polynomial classifier with augmented statistical fea-
tures was proposed. The paper reported 85.0% sentence recognition rate.

3 � Data Collection

Two datasets are collected in this work; both of which are composed of 40 Arabic 
sign language sentences created from 80 words lexicon. Each sentence was repeated 
10 times. The list of sentences is shown in Table 1. We also use an existing dataset 
which was collected using DG5-VHand data gloves  [34]. We refer to this dataset 
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henceforth as dataset 1. The DG5-VHand data glove comes with five bend sensors; 
one for each finger. It also has an embedded accelerometer. Dataset 2 is collected 
in this work using two Polhemus G4 motion trackers which provides 6 measure-
ments: the Cartesian position coordinates (x, y, z) and the Euler angles coordinates: 
Azimuth, elevation and roll (a, e, r). Dataset 3 is also collected in this work using 
a camera only; no wearable sensors are used during the collection of this dataset. 
Table 2 summarizes the three datasets and equipment used for collecting each. The 
first two datasets are expected to result in higher recognition accuracy due to the use 
of accurate sensors; the third dataset has the advantage of being more user-friendly 
since the user is not required to wear any device.

Table 1   List of sentences
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In the labeling phase, all the sensor readings belonging to each word in a sen-
tence are labeled accordingly. In continuous SLR, the boundaries between adja-
cent words in a sentence are not clear. For manual labeling in vision-based SLR, 
a human can decide the boundaries by examining the videos visually. However, 
for sensor-based SLR, the word boundaries cannot be determined visually. There-
fore, a camera was used in the data collection phase and it was synchronized with 
gloves and tracker recordings in order to detect word boundaries. Figure 1 shows 
a male user wearing the DG5-VHand data gloves and Polhemus G4 motion track-
ers. The synchronized camera is also shown in the figure.

4 � Feature Extraction

Minimal feature extraction is required for sensor-based datasets. On the other 
hand, vision-based datasets require extensive feature extraction techniques. 
Below is a discussion of the feature extraction techniques used for the sensor-
based datasets (dataset 1 and dataset 2) and the vision-based dataset (dataset 3).

Table 2   Datasets and equipment 
used

Datasets Equipment

Dataset 1 DG5-VHand data gloves
Dataset 2 Two Polhemus G4 motion trackers
Dataset 3 Camera

Fig. 1   Data collection setup
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4.1 � Feature Extraction for Sensor‑Based Datasets

Window-based statistical features extraction techniques are used to compute dis-
tinctive features. Those features are then appended to the raw data to form the 
final feature vectors. The classification systems were tested using both raw data 
and raw data augmented with the extracted statistical features.

Statistical features used in this work include window-based means and standard 
deviations. These features are extracted using a sliding window-based approach. 
The purpose of using a sliding window is to capture contextual information. In 
Sect. 6 we show that such an approach greatly enhanced classification accuracy. 
Equations (1) and (2) show the calculation of the window-based means and stand-
ard deviations respectively for a window size of w.

4.2 � Feature Extraction for Vision‑Based Datasets

Given the raw video, pixel-based difference for successive images is performed 
to detect the motion. The image differences are then converted into binary images 
by applying an appropriate threshold. The threshold is given by (3)

where � is the mean pixel intensity of the image difference; � is the corresponding 
standard deviation; x is a weighting parameter.

x is to be empirically determined based on subjective evaluation whose cri-
terion is to retain enough motion information and discard noisy data. Figure  2 
shows an illustration of performing image difference and thresholding. Next, a 2D 
Discrete Cosine Transform (DCT) is applied to the binary image differences. The 
top left DCT coefficients are zigzag scanned (zonal coding) to form a 1D vector. 
The number of DCT coefficients in the vector is known as the DCT cutoff. The 
feature extraction algorithm is depicted in Fig. 3. In Sect. 6, we experiment with 
different DCT cutoff values. Similar feature extraction techniques were used in 
our previous works as reported in [33, 34].

An illustration of the proposed data collection, feature extraction and labeling 
is shown in Fig. 4.
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5 � Classification

Three different classification approaches are used in this work; modified KNN suit-
able for sequential data and two different HMM toolkits. A brief review of each is 
presented next.

5.1 � Modified KNN

In our previous work, we proposed a modification to the K-Nearest Neighbors 
(KNN) classifier to make it suitable for classifying sequential data [34]. The modi-
fied algorithm was called the Modified KNN or MKNN for short. The core modifi-
cation is to consider the context prior to predicting the label of each feature vector. 

Fig. 2   Thresholded image differences
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Our approach was to replace the predicted label by the most common label in a 
surrounding window of labels. After predicting all labels of a given sentence, each 
label was replaced with the statistical mode of its surrounding labels. For example, 
if the statistical mode window is of size 5 and k (number of nearest neighbors) is 3 
then 5*3 labels are considered in predicting the label of a feature vector. We refer to 
the window size in this case as ModeW. An illustration of the MKNN for ModeW of 
3 and k of 3 is shown in Fig. 5.

Formally, for each class of label L, g(L) is the number of neighbors of the k near-
est neighbors that belong to class L. g(L) can be formulated as in (4).

(4)g(L) =

k∑
i=1

�
(
L, labeli(FVt)

)

Fig. 3   Vision-based feature 
extraction
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where

where FVt is a feature vector acquired at time t.
The class label of the ith neighbor of the feature vector acquired at time t FVt is 

given by (6).

(5)�
(
L, labeli(FVt)

)
=

{
1, if labeli(FVt) = L

0, otherwise.

Fig. 4   Flowchart of data collection, feature extraction and labeling
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where T is a set of labeled training feature vectors.
In our MKNN the class label L∗ is found as in (7).

The k nearest neighbors of the surrounding FVs, in a windows size w, are taken into 
account in the prediction of the class FVt . After predicting a label for each feature 
vector, similar labels are grouped to form a sign language word.

5.2 � Hidden Markov Models (HMMs)

Hidden Markov Models (HMMs) are widely used for sequential data classification 
in general, and for speech recognition in particular. They are also adopted for SLR 
and gesture recognition. The majority of SLR toolkits are developed originally for 
speech recognition then adapted for SLR. CMU Sphinx [36], HTK toolkit [37], 
Julius [38], Kaldi [39] and RASR [40] are all examples of open source speech rec-
ognition toolkits.

Gesture recognition tools are either built from scratch or built based on existing 
speech recognition tools. For instance the Georgia Tech gesture toolkit GT2 K [41] 

(6)labeli(FVt) = argmin
∀i

‖‖FVt − FVi
‖‖,∀FVi ∈ T

(7)L∗ = argmin
L

w

2∑
j=−

w

2

∑
i

�
(
L, labeli(FVt+j)

)

Fig. 5   Modified KNN to accomedate sequential data
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was created based on a popular speech recognition toolkit known as HTK to provide 
tools that support gesture recognition research. Additionally, although RASR toolkit 
was originally developed for speech recognition, it has proved to be flexible and could 
be easily adapted for different applications such as SLR [23, 42] and optical character 
recognition [43]. An example of a toolkit created specifically for gesture recognition is 
the gesture recognition toolkit GRT [44] created by Gillian and Paradiso in 2014 with 
emphasis on real time recognition.

The GT2 K and RASR are selected for our work because they are more suitable for 
SLR and have been used before in similar applications.

The GT2 K toolkit was created based on the HTK to provide tools that support 
gesture recognition. It can be used for training models in both real-time and off-line 
modes. To use the toolkit, the user start by building gesture models, specify appropriate 
grammar and provide labeled examples for training. The tool will then train models for 
each gesture. The trained models are used for recognition of new data. More details and 
examples are available in [41].

The RWTH Aachen University Open Source Speech Recognition Toolkit (RASR) 
on the other hand is an open source version of speech recognition toolkit developed 
by a group from RWTH Aachen University. It comes with comprehensive documenta-
tion, examples and tutorials. RASR proved to be applicable for real-life applications; 
recently it has been used for numerous large vocabulary speech recognition systems by 
research group all over the world [45–48]. The toolkit proved to be suitable for SLR as 
reported in [23, 42].

The toolkit support strict left-to-right HMM topologies. All HMMs have the same 
number of states, except for silence which is modeled by a single state. Gaussian mix-
ture models (GMMs) are used to model the emission probability. It uses the standard 
maximum likelihood estimation as well as discriminative training using the minimum 
phone error (MPE) [49] for Gaussian mixtures estimation. The toolkit itself does not 
have a module for the estimation of language models; nonetheless the decoder supports 
N-gram language models in the ARPA format generated by other toolkits.

Step by step examples, several tutorials and training recipes are available in the wiki 
[50].

6 � Experimental Results

In this section we discuss the classification results achieved using the sensor-based and 
the vision-based datasets. Throughout this section, the results of the three classification 
tools described in Sect. 5 are discussed. Namely, MKNN, GT2 K and RASR. Results 
are reported in terms of word recognition rate and sentence recognition rate. Word rec-
ognition rate is given by (8).

where D is the number of deletions, S is the number of substitutions, I is the number 
of insertions, and N is the total number of words. Sentence recognition rate is the 

(8)Word Recognition Rate = 1 −
D + S + I

N
.
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ratio of correctly recognized sentences to the total number of sentences. A sentence 
is considered to be correctly recognized if and only if all words in this sentence have 
been correctly recognized without any word being inserted, substituted, or deleted.

6.1 � Sensor‑Based Datasets

We start by comparing the performance of two HMM toolkits (RASR and GT2 K) on 
manually labeled datasets. Manually labeled means that word boundaries are manu-
ally annotated by a human. Both datasets (tacker-based and DG5-VHand-based) are 
augmented with the statistical features as explained in Sect. 4. Figures 6 and 7 show 
the classification accuracies for the sensor-based data using the two HMMs toolkits. 
Classification results are presented for both raw data and raw data augmented with 
statistical features. It is apparent from the classification results that RASR perfor-
mance is better than that of the GT2 K. For instance RASR sentence recognition rate 
for the augmented DG5-VHand dataset was 96.7% while it was only 86.0% when 
GT2K is used. We also note that the motion tracker proved to be more accurate than 
the DG5-VHand glove, however classification accuracy pertaining to the augmented 
DG5-VHand FVs surpasses that which uses the augmented tracker FVs. A summary 
of all recognition rates is presented in Table 3. Note that the average of word and 
sentence recognition rates shown in the table also confirms the superiority of RASR 
over GT2K.

The performance of RASR on automatically generated labels has been investi-
gated. Auto labeling refer to the use of a tool to automatically estimate word bound-
aries. This could be done using RASR alignment module which automatically 
assigns each feature vector to a HMM state. This is advantageous because it allows 
the recognition of sentence-level labeled datasets where only sentence boundaries 
are annotated. Automatic labeling is of high practical gain since manual labeling is a 

Fig. 6   Word recognition rates of manually labeled sensor-based datasets
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daunting task. Naturally this gain comes at the expense of lower accuracy as shown 
in Figs. 8 and 9 where manual labeled datasets always result in higher recognition 
rates. The accuracy of the auto labeling depends on the accuracy of the raw sensor 
readings. Since tracker data is highly precise, recognition rates of its manual and 
auto labeled dataset were almost the same, which is around 96% for both.

In the following experiments we compare the results of RASR against MKNN 
classification solution. The core of the MKNN is considering the context prior to 
predicting the label of each feature vector. The algorithm replaces the predicted 
label by the most common label in a surrounding window of labels. The algorithm 
depends on 2 parameters: the number of nearest neighbors called K and the size 
of the window of labels called ModeW. K was set to 3 for all experiments. And 
ModeW was set empirically similar to previous work [34]. Best results have been 
achieved when ModeW is set to 26. RASR generated better word recognition rates 
as shown in Fig.  10. On the other hand, in comparison to existing work, Fig.  11 
shows that the MKNN surpasses RASR in 3 out of 4 tests in terms of sentence rec-
ognition rates which goes up to 97% for both augmented datasets.

Fig. 7   Sentence recognition rates of manually labeled sensor-based datasets

Table 3   RASR and GT2 K 
comparison on manually labeled 
datasets

Dataset RASR GT2K

Word Sentence Word Sentence

Tracker, raw data 96.88 86.67 93.00 67.00
Tracker, augmented data 98.64 95.00 97.00 85.00
DG5-VHand, raw data 94.00 75.80 93.00 69.00
DG5-VHand, augmented data 99.20 96.70 97.00 86.00
Average 97.18 88.54 95.00 76.75
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As mentioned previously, in MKNN, a sliding window is used as a post-pro-
cess to replace each predicted label with the statistical mode of its surroundings. 
For completeness, in Fig.  12 we show the effect of varying this mode window 
(ModW) size on classification accuracy. The figure shows that the increment in 
window size enhances the recognition rate as it captures more contextual infor-
mation. Classification rates decrease rapidly for large window sizes as such win-
dows include FVs belonging to other sign words and will therefore reduce the 
accuracy of the classifier.

Fig. 8   Word recognition rates of auto and manually labeled sensor-based datasets

Fig. 9   Sentence recognition rates of auto and manually labeled sensor based datasets
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The computational time for each classification approach is listed in Table  4. 
Results were recorded from 64-bit PC, 4.00 GB RAM, Intel Core i5, running Ubuntu 
14.04. RASR computational time is 2.03 s, it is closely followed by the GT2 K. How-
ever considering both train and test times, our MKNN is advantageous since it does 
not require any training.

Lastly, to verify the reported results and make sure that they are not user specific, 
we carried out another set of experiments with a second signer. Using Polhemus G4, 
another user performed the 40 sentences with 10 repetitions each. The classification 

Fig. 10   Word recognition rates of MKNN [34] and RASR

Fig. 11   Sentence recognition rates of MKNN [34] and RASR
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results using RASR are shown in Fig. 13. It is apparent that the performance of the 
Polhemus G4 and RASR on both users is close. For the first user, word and sentence 
recognition rates are 96.9% and 86.7% respectively, compared to 95% and 84% word 
and sentence recognition rates for the second user.

Another experiment was performed on the datasets of both users combined. Sev-
enty percent of the combined dataset was used for training using RARS and the rest 
used for testing. The word and sentence recognition results are reported in Table 5. 
The average word recognition rate is 94.5% and the average sentence recognition 
rate is 81.2% using the combined dataset. Although the recognition rates slightly 
decreased, they are still considered very high.

6.2 � Vision‑Based Datasets

This section is devoted for the discussion of recognition results of the third dataset 
which was collected using only a camera.

Fig. 12   Effect of the MKNN mode window size on sentence recognition rate for the Polhemus G4 
tracker dataset

Table 4   Computational time 
comparison

Approach Train time (s) Classifica-
tion time 
(s)

RASR 55.72 2.03
GT2K 60.4 2.42
MKNN – 18.87
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The feature extraction phase, as explained in Sect. 4, depends on two empirical 
parameters that are determined prior to classification. The first one is the DCT cut-
off, which is the number of DCT coefficients to retain in a feature vector. Figure 14 
shows sentence recognition rates achieved using RASR for various DCT cutoffs. 
As expected, the recognition rate increases as the number of coefficients increase. 
This is due to the fact that DCT coefficients are not correlated. Thus increasing the 
number of DCT coefficients increases the information content in the feature vector. 
Nevertheless recognition rates in general decrease as the dimensionality of the fea-
ture vector increases beyond a certain threshold; thus there is normally a point after 
which any increment in the DCT cutoff will cause the recognition rates to decrease 
. In our case, the best classification rate is achieved with 100 DCT coefficients as 
shown in Fig. 14

The second parameter to be determined empirically is the weighting parameter 
x of Eq. (3). Figure 15 shows its effect on word recognition rate using MKNN. The 
highest rate achieved was with a value of x = 1.

We start by forming feature vectors using DCT coefficients of raw images instead 
of image differences. We apply 2D DCT transformation to raw images and retain the 
top left DCT coefficients using zigzag scanning. The feature vectors are then fed to 
the three classification approaches; MKNN, RASR and GT2 K. The word and sen-
tence recognition rates are shown in Table 6. It is shown that the highest classifica-
tion results are attained by RASR.

Fig. 13   Word and sentence recognition results for two signers using G4 tracker and RASR

Table 5   RASR Classification 
results on 2 users with features 
collected using Polhemus G4

User 1 User 2 combined

Word Sentence Word Sentence Word Sentence

96.90 86.70 95.00 84.00 94.50 81.20
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The last set of experimental results examine the effect of computing 2D DCT 
on thresholded image differences [33]. Comparing Tables  6 and 7 we notice the 
improvement as a result of using the thresholded image differences. Recognition 
rates of all approaches used had increased. For instance RASR sentence recogni-
tion rate increased from 80.8 to 85.0%. This is due to the motion between successive 
frames being emphasized by the thresholded image differences approach.

To summarize, we list the best recognition rates of sensor and vision based data-
sets in Tables 8 and 9. It is shown that MKNN always achieves the best sentence 

Fig. 14   DCT cutoff versus sentence recognition rate

Fig. 15   Values of weighting parameter versus recognition rate
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recognition rate. On the other hand, in terms of word recognition rates, RASR 
yields the best rates. Additionally, the summarized results reveal that data acquisi-
tion through motion trackers on their own could be very useful for sign language 
recognition. This is an interesting finding taking into account that no data gloves are 
needed. Lastly, the results in Tables 8 and 9 confirm that sensor-based data acquisi-
tion results in higher recognition rates in comparison to the camera-based approach.

7 � Conclusion

This paper examined various data acquisition approaches and various classification 
techniques for Arabic sign language recognition. Two datasets are introduced using 
motion detectors and a camera. A third data set is acquired using data-gloves which 
is reused from previous work. Three tools are used for classification; MKNN, RASR 
and GT2 K. The paper also used various feature extraction approaches including win-
dow-based statistical features and 2D DCT transformation. The experimental results 
revealed that our adopted feature extraction techniques enhanced the recognition 
rates for both sensor and vision-based datasets. The results also revealed that RASR 

Table 6   Recognition rates of 
raw vision data

MKNN RASR GT2K

Word Sentence Word Sentence Word Sentence

82.50 77.20 94.18 80.80 93.10 73.00

Table 7   Recognition rates of 
thresholded image difference

MKNN RASR GT2K

Word Sentence Word Sentence Word Sentence

91.60 89.17 95.60 85.00 94.00 80.00

Table 8   Best word recognition 
rates

Dataset Approach Rate

[Tracker � �] RASR 98.64
[DG5-VHand � �] RASR 99.20
Vision RASR 95.60

Table 9   Best sentence 
recognition rates

Dataset Approach Rate

[Tracker � �] MKNN 97.00
[DG5-VHand � �] MKNN 97.78
Vision MKNN 89.17
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is superior to GT2 K in terms of word and sentence recognition rates and computa-
tional time. The modified KNN achieved the best sentence recognition rates for all 
datasets exceeding both HMM toolkits. Additionally, sensor-based data turned out 
to be more precise than vision-based data. Although Polhemus G4 motion tracker 
only measures hand position and orientation, it achieved higher recognition rates 
than DG5-VHand data gloves, which measure both hand position and configuration. 
We conclude that motion trackers could be very useful for SLR.
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