
Vol.:(0123456789)

Sensing and Imaging (2019) 20:3
https://doi.org/10.1007/s11220-018-0224-9

1 3

ORIGINAL PAPER

Recognition of Weld Penetration During K‑TIG Welding 
Based on Acoustic and Visual Sensing

Tao Zhu1,2 · Yonghua Shi1,2 · Shuwan Cui1,2 · Yanxin Cui1,2

Received: 12 July 2018 / Revised: 22 October 2018 / Published online: 2 January 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In the field of welding process control, on-line monitoring of welding quality based 
on multi-sensor information fusion has attracted more attention. In order to recog-
nize the penetration state of the Keyhole mode Tungsten Inert Gas welded joint in 
real time, an acoustic and visual sensing system was established in this paper. The 
acoustic and visual features that characterize the penetration state of the welded 
joints in 34 dimensions were extracted and the variation of the acoustic signal and 
the keyhole geometry were analyzed. In addition, the weighted scoring criterion 
based on the Fisher distance and the maximum information coefficient (Fisher–
MIC) and Support Vector Machine (SVM) model based on cross-validation (CV) 
are designed as the feature selection method. The feature selection method can eval-
uate the penetration recognition accuracy of different feature subsets. The experi-
ment results show that the maximum recognition accuracy was 97.1655%, which 
was performed by the 10-dimension optimal feature subset and the CV–SVM model 
with particle swarm optimization (PSO–CV–SVM). It is proved that the selected 
acoustic and visual features can well characterize the penetration state of the welded 
joints, and the feature selection method and PSO–CV–SVM model have superior 
performance.
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1 Introduction

K-TIG welding is a new deep penetration welding method which can form a key-
hole. The keyhole achieves dynamic equilibrium under large arc pressure that is 
formed by high current (300–1000  A), liquid metal static pressure and surface 
tension in the keyhole. K-TIG welding can weld plates of 3–16 mm in a single 
pass with double-sided forming. However, because of the effect of the thermal 
accumulation and the errors of machining and assembly, it is difficult to ensure 
good penetration of all welded joints in an actual welding environment. There-
fore, the quality of the welded joints can be better guaranteed only when the pen-
etration state of the welded joints was recognized in real time.

In order to monitor welding quality in real time, the primary task is to obtain 
features characterizing the welding quality. Therefore, various sensors are used to 
capture welding process signals, such as voltage sensors [1], vision sensors [2–4], 
spectral sensors [5, 6], acoustic sensors [7–9], etc. For the above mentioned sen-
sors, the application of acoustic sensing or visual sensing for penetration control 
and defect detection has attracted wide attention. During K-TIG welding, the arc 
acoustic signal has advantages of good real-time performance, which can reflect 
the internal changes of the arc and molten pool, but it is susceptible to electro-
magnetic interference and the influence of the workpiece deformation. It is espe-
cially suitable for real-time monitoring of welding quality. Although the visual 
sensor can directly reflect the geometry of the keyhole, it is susceptible to arc, 
electromagnetic interference. Tarn et al. has proved that acoustic and visual sig-
nals are complementary and the combination of them has a great significance to 
realize intelligent welding [10]. But so far, studies on K-TIG welding have only 
been limited to the welding process and keyhole stability [11–13], and there is no 
study on the recognition of weld penetration. The strong arc light and electromag-
netic interference during K-TIG welding bring great challenges to extracting pen-
etration features. Therefore, recognizing weld penetration during K-TIG welding 
is worthy of further study.

Considering that the welding process is time-varying and single-sensing mode 
can only obtain local information, acoustic and visual information were fused 
in this paper to obtain intrinsic feature subsets that characterize the penetration 
state, thereby improving the reliability of the sensing system and penetration state 
recognition accuracy. At present, multi-sensor information fusion is widely used 
in robotics [14], intelligent transportation [15], factory monitoring [16] and other 
fields. In the field of welding quality control, Chen et al. [17–19] used fusion the-
ories of D-S evidence theory and weighted average coefficient theory to fuse vari-
ous sensing information in pulsed TIG welding, realizing penetration identifica-
tion of joints. Lee et al. [20]. integrated various information in ultrasonic welding 
to characterize the quality of welded joints. However, most studies in this field 
have strong subjectivity in feature selection, and have not investigated the char-
acterization and recognition capabilities of different feature types and quantities 
for penetration states. Therefore, the feature selection theory in pattern recogni-
tion was introduced to study the influence of the dimension of feature subsets on 
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the accuracy of penetration recognition, and as low dimensions of feature subsets 
as possible were used to reasonably characterize the penetration state of welded 
joints.

In this paper, acoustic and visual sensing were combined to construct a practical 
dual sensing system. The acoustic and visual features were extracted from multiple 
perspectives and the variations in the acoustic and visual signal during K-TIG weld-
ing were analyzed. Feature selection method was used to find the optimal feature 
subset and reduce the feature redundancy. The PSO–CV–SVM model was proposed 
to automatically recognize the penetration state of welded joints and then the high-
est accuracy was obtained on the optimal feature subset. The results show that the 
penetration state of welded joints can be well characterized and recognized by using 
feature selection and penetration modeling. In addition, a higher recognition accu-
racy can be obtained by fusing multiple sensing information than that of single sens-
ing information.

2  Experimental Setup

As shown in Fig. 1, the experimental system consists of four modules: a robot mod-
ule, a K-TIG welding module, a control module and a sensing module. The sens-
ing module is mainly composed of a CCD and a microphone. The CCD camera 
is equipped with a narrow-band pass filter whose central wavelength is 810  nm, 
bandwidth is 40 nm, and transparency is about 80%.The observation is toward the 
rear of the weld pool, and the viewing angle is set to 35°. The distance from the 
center of the camera lens to the object plane is around 200 mm. The microphone is 
omnidirectional capacitance MP201 microphone, which has the frequency response 
from 20 Hz to 20 kHz. It was fixed with the angle of 80° over the backside of the 
workpiece, 100 mm away from the center of the back weld. Meanwhile, the NC1004 

3580Welding 
Machine

 Water 
Tank

Signal
Conditioner

Acquisition Card

v

y
x

PC

Microphone CCD

KUKA
Robot

Gas

Fig. 1  Dual sensing system for K-TIG welding
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signal conditioner is used as an auxiliary equipment. Acoustic and visual signal 
acquisition is triggered synchronously by an industrial control unit, and the acquisi-
tion frequency is 42 kHz and 14 f/s, respectively.

Workpieces of 304 stainless steel with dimensions of 300 × 200 × 11.8  mm 
were used in the experiments. The butt joint gap was 1 mm without a groove, as 
shown in Fig. 2. A large number of experiments were carried out to obtain differ-
ent penetration states by changing welding current generated by a welding power 
source whose output current is continuous DC. According to the width of the back-
side bead of the workpiece, the penetration state of welded joints can be divided 
into three categories, namely, partial penetration (width < 1  mm), full penetration 
(1 mm ≤ width <2.5 mm) and excessive penetration (width ≥2.5 mm), as shown in 
Fig. 3. It was found that the partial penetration occurred as the welding current was 
500A. When the welding current increased to 580A, the molten pool was easy to 
collapse, which led to excessive penetration. Therefore, the range of welding current 
selected in this investigation was between 500 and 580 A. Experimental parameters 
are shown in Table 1.

3  Feature Extraction and Analysis

As depicted in Fig.  4, 28 acoustic features and 3 visual features were extracted 
respectively. Considering that the time sequence and heat accumulation have effects 
on the welding process, the first-order difference of the three visual features were 
seen as new features and a 34-dimension feature set was finally obtained.

1 mm

Fig. 2  Schematic diagram of the weld groove

widthwidthwidth

(a) (b) (c)

Fig. 3  Schematic diagram of penetration states. a Partial penetration. b Full penetration. c Excessive 
penetration
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3.1  Acoustic Feature Extraction

3.1.1  Preprocessing of Acoustic Signals

The acoustic signal is a non-stationary random signal. Every 3000 sampling 
points of the acoustic sequence were recorded as one frame to meet the require-
ment of processing accuracy, and the corresponding analysis duration and weld 
length were 0.0714  s and 0.2500  mm, respectively. The sample points corre-
sponding to the acoustic signals, which changed drastically during the arcing and 
extinction phases, were discarded. The effective acoustic signal was obtained as 
shown in Fig. 5a. It can be seen that the amplitude of the sound increases as the 
welding current increases. For a better analysis of the acoustic signal frequency, 
the DC offset was removed according to Eq. (1). Figure 5b shows the signal after 
removing the DC offset.

Table 1  Welding parameters

Test No. Joint type Welding cur-
rent (A)

Welding speed 
(mm/min)

Shielding gas Shielding gas 
flow rate (L/
min)

1 Butt 500 210 99.99% Ar 15
2 Butt 540 210 99.99% Ar 15
3 Butt 580 210 99.99% Ar 15

Start

End
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Fig. 4  Flow chart of feature extraction
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where xi and x′

i
 are the values of each frame before and after the removing DC offset, 

n is the total number of data in each penetration state.
In order to filter out noises, FFT spectrum was firstly calculated with the 

results shown in Fig. 6. According to statistics results, the first 95% of the total 
amplitude is within 0–18 kHz. And several obvious spectral lines are included in 
the spectrum, which proves that there is a definite periodic oscillation signal in 
the acoustic signals during K-TIG welding. Although the spectrum of the acous-
tic signals contains a large number of components with small amplitude, which 
may be related to the welding equipment, shielding gas flow and environmental 
noises, it has no effect on the characteristic analysis of the arc acoustic signals 
[21, 22].

According to the above analysis, a method combining sliding median filter-
ing of 1 × 5 rectangular window and Butterworth low-pass filtering with a stop 
frequency of 18 kHz is designed. The acoustic signal after denoising is shown 
in Fig. 7. Compared with Fig. 5b, it can be seen obviously that some high-fre-
quency mutation points have been filtered out by using this method.

3.1.2  Feature Extraction

In order to overcome the subjectivity and blindness during the process of feature 
extraction, a variety of possible related features were extracted. Some features in 
the time domain were extracted, such as the mean, root mean square (RMS), vari-
ance and kurtosis. They were selected to characterize the mean amplitude, effec-
tive value, intensity of change and distribution characteristics, respectively. And 
the analysis of frequency spectrum for acoustic signal in different penetration states 
was carried out. Figure 8 shows the FFT spectrum and partially amplified spectrum 

(1)x
�

i
= xi −

1

n

n∑

i=1

xi

Fig. 5  Acoustic signal before and after removing DC offset. a The effective acoustic signal. b Acoustic 
signal after removing DC offset
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within 0–2 kHz for the acoustic signals. It can be seen that under different pene-
tration states, the low-frequency components gradually change from a multi-peak 
pattern to a single peak pattern. However, the characteristic frequency of high-fre-
quency components gradually increases. This is mainly because the energy is con-
centrated on high frequencies when the penetration state changes. In addition, the 
characteristic frequencies with obvious spectral line family are mostly concentrated 
in 0–2 kHz, 2–4 kHz and 6–8 kHz. Therefore, FFT amplitude spectrum was divided 
into 6 segments: 0–2 kHz, 2–4 kHz, 4–6 kHz, 6–8 kHz, 8–14 kHz and 14–20 kHz. 
And then the mean, RMS, variance and kurtosis were calculated in each segment. 
Figure 9 shows RMS corresponding to different frequency bands, which indicates 
that different frequency bands have different changing trends for the same penetra-
tion state. The first four segments are sensitive to changes in the penetration state. 

Fig. 6  FFT spectrum of the acoustic signal

Fig. 7  Acoustic signal after denoising
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Fig. 8  FFT spectrums corresponding to different penetration states. a Partial penetration. b Full penetra-
tion. c Excessive penetration
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And only frequency bands within 2–4 kHz and 4–6 kHz corresponding to RMS can 
be used to clearly distinguish three kinds of penetration state. 

3.2  Image‑Based Keyhole Feature Extraction

In the acquired images, the keyhole is approximately oval in shape, and the gray 
values of the pixels directly below the keyhole are very similar to those of the key-
hole, which is caused by the tail flame of plasma gas. In order to comprehensively 
characterize the variations of the keyhole, the area of the keyhole, eccentricity and 
exit deviation [23] were extracted to characterize the size, shape and location of the 
keyhole. A camera calibration experiment was performed to obtain the mapping 
relation between image pixels and real distance, where Kx = 0.0200 mm/pixel and 
Ky = 0.0385 mm/pixel.

According to the characteristics of the gray image of the keyhole, a 5 × 5 disc-
shaped structural element was used to perform the morphological erosion in the 
fixed ROI. And then multi-level threshold segmentation method was adopted to 
obtain the binary image of the keyhole. The method was implemented by Eq.  (2) 
and Eq. (3),

where f(x, y) denotes the gray value of the original image, h(x, y) and g(x, y) denote 
the gray value at the image coordinate (x, y) after two segmentation, T1 = 240 , T2 is 
the threshold calculated by the Otsu method for h(x, y).

The Otsu method can be expressed as Eq. (4),

(2)h(x, y) =

{
0, f (x, y) < T1

f (x, y), f (x, y) ≥ T1

(3)g(x, y) =

{
0, h(x, y) < T2
1, h(x, y) ≥ T2

Fig. 9  RMS corresponding to different frequency bands with the two dotted green vertical lines denoting 
current transition points (Color figure online)
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where T  is the threshold of segmentation, �0(T) and �1(T) are the ratio of the target 
pixels and background pixels to the number of pixels whose gray value is greater 
than 0 in h(x, y); u0(T) and �1(T) are the average gray values of the target pixels 
and the background pixels, respectively, μ is the average value of pixels whose gray 
value is greater than 0 in h(x, y).

The optimal threshold T2 is obtained by the maximum �2
B
(T) and the seg-

mented image is shown in Fig.  10b. After the above steps, the keyhole image 
is accurately segmented from the background. Finally, the complete keyhole 
edge was extracted by fitting an ellipse to the binary image using a least-squares 
method, and three features were extracted in the last step, such as area, eccen-
tricity and deviation.

(4)𝜎
2
B
(T) = max

T1≤T<255

{
𝜔0(T)

[
u0(T) − μ

]2
+ 𝜔1(T)

[
𝜇1(T) − μ

]2}

Fig. 10  The procedure of the keyhole image processing. a ROI. b Multi-level threshold segmentation. c 
Ellipse fitting (Color figure online)

Fig. 11  Keyhole images under different currents. a 500A. b 540A. c 580A (Color figure online)
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The procedure of keyhole image processing and keyhole images under differ-
ent currents are shown in Figs. 10 and 11, respectively. In Figs. 10c and 11, the 
red asterisks denote the boundary points of keyhole images obtained by scan-
ning binary images every 15 lines, and the green curves denote the fitted ellipse 
whose centers are denoted as blue asterisks. At the same time, in Fig.  11, the 
arrow with the label of v indicates the welding direction.

3.3  Analysis on Variation of the Acoustic and Visual Signals

In Fig. 12, the two dotted green vertical lines denote current transition points. It can 
be seen that the two kinds of signal have the same trend, but the former changes more 
sharply with the different penetration and is more sensitive to current. At the same 
time, the keyhole area can better distinguish partial penetration and full penetration, 
but it is not suitable to distinguish the first two classes from the third one because of its 
instability during excessive penetration, while the acoustic signal is just the opposite. 
It indicates heterogeneous signal combinations from different sensors have some com-
plementarity to better distinguish all penetration states. In order to further analyze the 
similarity between the keyhole area and the acoustic signal, cross-correlation analysis 
was performed on the acoustic signal, the keyhole area and the differential signals of 
the two, and four cross-correlation coefficients were obtained. For each coefficient, the 
cross-correlation coefficient between the keyhole area and acoustic signal is the largest. 
As shown in Fig. 13, the maximum value of 0.8581 appears at the zero delay, indicat-
ing that the two signals are almost synchronous and changing in the same direction.

As the welding current increases, the area of the keyhole increases, and the 
amplitude of the acoustic signal increases synchronously. The mechanism of this 
phenomenon may be qualitatively analyzed by Eq. (5),

Fig. 12  Keyhole area and acoustic signal
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where I is the amplitude of the acoustic signal, p is the arc plasma pressure, ρ is the 
air density, v is the velocity of the acoustic signal in the air.

As the current increases, the amount of heat input into the keyhole increases, 
leading keyhole area becoming larger [24], which indirectly increases the volume 
of metal vapor and plasma jetting into the air from the backside of the workpiece. 
Then we expect the I to increase as well when the other variables are substantially 
unchanged.

Studying the frequency distribution of the acoustic signal as shown in Fig.  8, 
within 0–2 kHz, it seems that there are little changes in partial penetration and full 
penetration, but the spectral characteristics change from multi-peak to single-peak 
and the maximum amplitude of the characteristic frequency becomes significantly 
larger when excessive penetration. And within 2–20 kHz, there are not so much fre-
quency shift or magnitude change of characteristic frequency.

4  Feature Selection and Penetration Recognition

In pattern recognition, high-dimension features can easily cause “dimensional disas-
ters”. And most scholars qualitatively analyze the correspondence between features and 
penetration states, subjectively selecting some relevant features or fusing all extracted 
features, which will inevitably reduce the versatility and robustness of the algorithm 
[25, 26]. Therefore, the incorporated filtering and packaging methods were used to find 
the optimal feature subset in order to recognize the penetration state. The normalized 
Fisher distance and MIC of the 34-dimension feature were calculated, and the weighted 
scores with corresponding weights assigned to 0.8 and 0.2 were obtained and sorted 

(5)I =
p2

�v

Fig. 13  Cross-correlation analysis
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from high to low. Based on the CV–SVM model, the correspondence between different 
feature subsets and recognition accuracy was obtained. Finally, using the optimal fea-
ture subset as the input of PSO–CV–SVM model, penetration recognition and model 
validation were performed. And the process of feature selection was shown in Fig. 14.

4.1  Feature Selection Based on Weighted Scoring Criteria and CV–SVM

Fisher distance is a feature subset evaluation criterion that is universally used. The 
maximum and normalized Fisher distance of 3 Fisher distances for each feature was 
taken as the Fisher distance. Apart from the divisibility of samples, the relevance of 
features and categories are also considered. Traditionally, mutual information is used to 
evaluate correlation, and its definition is shown in Eq. (6),

where x and y are two related random variables, p(x, y), p(x) and p(y) are the corre-
sponding probabilities, respectively.

(6)Ix;y = ∫ p(x, y) ⋅ log2
p(x, y)

p(x)p(y)
dxdy

Start

j=0;
k=0;

j++;
Wrapping top j 
feature subset

Training and 
testing SVM model

Saving mean accuracy 
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end
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Fig. 14  Flow chart of feature selection
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However, this calculation has higher time complexity and lower accuracy. Therefore, 
MIC was introduced as an improved method [27], the definition of which is shown in 
Eq. (7),

where I(X; Y) is obtained by dividing the entire X and Y axis into sections as the 
approximate value of I(x; y), B is the maximum number of sections in the X and Y 
axis.

The ranking results of the top 15 features are shown in Table 2. It can be seen 
that different features have different sensitivity to the change of the penetration state. 
The features with high scores mainly focus on the features of the acoustic signal 
in time domain and the features within 0–2  kHz and 8–14  kHz in the frequency 
domain. Compared with mean amplitude, RMS and variance, kurtosis is not suit-
able for characterizing the penetration states of the welded joints. Because it mainly 
describes the distribution characteristics of the acoustic waveform. It is known that 
the acoustic waveform changes a lot during the welding process, especially at the 
time of partial penetration and excessive penetration, so kurtosis fails to character-
ize the real welding process. Therefore, it is required that the selected features are 
not only sensitive to the change of the penetration state, but also have consistent 
stability.

After feature sorting, it was still impossible to evaluate the relationship between 
the dimension of feature subsets and the accuracy of penetration recognition. 
Therefore, the multiple features were fused for further subset selection based on 
the CV–SVM model. The search strategy of “Sequential Forward Selection” was 
adopted, namely, new features were selected one by one from the sorted features 
to form a new feature subset. As shown in Fig. 15, the mean accuracy of 10-fold 

(7)MIC(X;Y) = max
|X||Y|<B

I(X;Y)

log2 min(|X|, |Y|)

Table 2  Partial feature scores 
and ranking

Rank Meaning of feature Fisher distance MIC Final score

1 FFT1_variance 1.0000 0.8815 0.9763
2 frame_mean 0.9720 0.8812 0.9538
3 FFT1_RMS 0.9099 0.8819 0.9043
4 frame_variance 0.7812 0.8813 0.8012
5 area 0.7313 0.8246 0.7499
6 frame_RMS 0.7155 0.8813 0.7487
7 FFT1_kurtosis 0.1276 0.8813 0.2783
8 FFT1_mean 0.0580 0.8395 0.2143
9 frame_kurtosis 0.0363 0.8727 0.2036
10 FFT5_RMS 0.0288 0.8452 0.1921
11 FFT5_mean 0.0259 0.8262 0.186
12 FFT5_variance 0.0165 0.7691 0.167
13 FFT3_mean 0.0218 0.7401 0.1654
14 FFT3_RMS 0.0169 0.7385 0.1612
15 eccentricity 0.0108 0.7448 0.1576
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cross-validation was used as the evaluation criterion to analyze the sensitivity of dif-
ferent feature subsets. From the figure, with the increase of the dimension of feature 
subset, on the one hand, the recognition accuracy may decrease due to the corre-
lation between features; on the other hand, the processing time and feature redun-
dancy are increased. When the dimension is 10, the highest recognition accuracy 
is 89.7959% without optimized. And when the dimension is 7–14, more than 85% 
of the recognition accuracy can be obtained. Therefore, the dimension of the fea-
ture subset is not as high as possible, but there is an ideal dimension window, i.e., 
7–14. At the same time, it can be concluded that higher classification accuracy can 
be obtained by fusing two kinds of sensing information.

4.2  Recognition of Penetration

In order to accurately recognize the penetration state of welded joints, a recognition 
model based on PSO–CV–SVM was established by applying acoustic and visual 
features. There are four main steps:

1. Acquiring training and testing dataset

Referring to Fig. 15, the top 10 features in Table 2 was finally selected as inputs. 
Experiments were sequentially performed on the same workpiece according to the 
parameters of Table  1, and the bead appearances of the welds were obtained as 
shown in Fig. 16. During the whole welding process, the penetration state is from 
partial penetration to full penetration and then to excessive penetration. At the begin-
ning of welding, the current is small, the back weld width is small and the penetra-
tion state is partial penetration and discontinuous. As the welding current increases, 
the back weld width increases slowly and the middle section of the weld is fully pen-
etrated. However, at the end of the welding, due to the excessive current, the back 
weld width increases significantly and the weld is excessively penetrated. A total 
of 980 valid samples were extracted, and the numbers of partial penetration, full 
penetration, and excessive penetration samples were 294, 392 and 294, respectively, 

Fig. 15  Recognition accuracy at different subset dimensions
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which were donated by category labels “1”, “2” and “3”. Each cycle of ten cycles, 
882 samples in the whole sample set were randomly selected as training samples, 
and the remaining 98 were used as testing samples.

2. Preprocessing training and testing dataset

Since the input and output have different dimensions and ranges, normalization 
processing is required. All features are linearly normalized to [0, 1] according to 
Eq. (8),

where xoriginand xnew are the features before and after normalization, xmaxand xmin are 
the maximum and minimum values of each feature.

3. Model parameters selection and optimization

As an intelligent modeling method, SVM model shows many advantages in 
finding globally optimal solutions for problems with small training samples, high 
dimension and non-linearity. For a multiclass problem, the kernel function is usu-
ally used to map data into high-dimension space. The radial basis function (RBF), 
which is flexible and widely used, was employed here as the kernel function, and its 
expression is shown in Eq. (9),

(8)xnew =
xorigin − xmin

xmax − xmin

Fig. 16  Bead appearances of the welds. a–c the front side, d–f the back side
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where x is any point in space, xc is the center of the kernel function, σ is the ampli-
tude of Gaussian function.

For RBF kernel, c and σ are two most important parameters, which deter-
mine the performance of the SVM model. In this paper, PSO was used to quickly 
select c and σ, and 10-fold cross-validation method was used to then obtain pen-
etration accuracy with more robustness. The accuracy obtained by CV–SVM in 
the training set was used as the fitness function value of PSO, the population and 
individual speeds in the particle swarm were continuously updated. The param-
eters of PSO were set as shown in Table 3. And then, the value of c and σ with 
the highest test accuracy on the respective subsets were determined. Finally, the 
PSO–CV–SVM model was built by using the optimal parameters.

4. Recognition results

The test accuracy of CV–SVM model was 89.7959%. After PSO iterative 
optimization, the accuracy of 97.1655% was obtained, and the parameters of 
PSO–CV–SVM model were: c = 4.7682, σ = 1.4134. The testing and PSO results 
are shown in Figs. 17 and 18, respectively. The results show that the model can 
effectively recognize and classify the penetration state of the welded joints. At 
the same time, the classification accuracy of partial penetration and full penetra-
tion is lower, mainly because some features in the state of partial penetration 
and full penetration overlap largely during state transition.

4.3  Model Verification

Using the dataset obtained in Sect.  4.2.1, principal component analysis (PCA) 
and CV–SVM model were respectively compared with the methods proposed 
in this paper, respectively, verifying the effectiveness of Fisher–MIC and PSO 
method.

1. PCA was performed on the 34-dimension feature set, and the accumulated con-
tribution rate of the first nine principal components reaches 99.9998%. The fea-
ture dimension selected by the Fisher–MIC method was 7–14. The compari-
son between PCA and Fisher–MIC was shown in Table 4. It is obvious that the 

(9)K
(
x, xc

)
= e

−
(x−xc)

2

2�2

Table 3  The parameters of PSO

Param-
eters

Initial 
population

Max popu-
lation

Speed update 
coefficient

Population update 
coefficient

c σ

Value 20 200 0.8 1 [0.1, 100] [0.01, 
1000]
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Fisher–MIC method can achieve better recognition performance, mainly because 
PCA is unsupervised and can obtain better results only in large samples.

2. As shown in Fig. 19 and Table 5, compared with the CV–SVM model, the recog-
nition accuracy and stability of PSO–CV–SVM model are better, indicating that 
PSO has a significant optimization effect on the SVM model. The main reason is 
that optimized parameters of PSO–CV–SVM model can better control the trade-
off between accuracy and generalization ability than that of default parameters.

Fig. 17  Testing results

Fig. 18  PSO results

Table 4  Comparison of two feature selection methods

Method Dimension Max accuracy(%) Mean accuracy(%) SD of accuracy

Fisher–MIC 1–14 89.7959 84.2494 5.3126
PCA 1–9 86.8980 81.6826 7.2414
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5  Conclusions

1. An acoustic and visual sensing system was established to acquire acoustic and 
visual information, and then the 34-dimension feature characterizing the pen-
etration state of welded joints were designed by fusing the acoustic and visual 
information.

2. Through experiments and analysis, changes in the penetration state of welded 
joints during K-TIG welding lead to regular variations of features that characterize 
acoustic and visual signals. In particular, frequency shift and magnitude changes 
of characteristic frequency in the spectrum of the acoustic signal were found in 
this investigation.

3. In view of the limitation of the traditional feature selection methods, a weighted 
scoring criterion based on Fisher–MIC and CV–SVM model was proposed. The 
34-dimension feature subset was reduced to a 10-dimension subset, which not 
only reduced the redundancy of the feature subset, but also improved the rec-
ognition accuracy. In addition, it was proved that the feature selection method 
proposed in this paper was better than the traditional PCA, which may provide a 
reference to the feature selection in other welding processes.

4. PSO–CV–SVM model was proposed to improve the performance of the pen-
etration state recognition, and the highest recognition accuracy in this study is 
97.1655%, which means that this model can be used in online penetration control.

Fig. 19  Comparison of accuracy before and after PSO

Table 5  Comparison of two models

Model Max accuracy (%) Mean accuracy (%) Standard 
deviation of 
accuracy

CV–SVM 89.7959 83.2722 3.4765
PSO–CV–SVM 97.1655 94.6461 4.6504



 Sensing and Imaging (2019) 20:3

1 3

3 Page 20 of 21

Acknowledgements This project was finically supported by the Science and Technology Planning Pro-
ject of Guangdong Province (Grant No. 2015B010919005), Science and Technology Planning Project of 
Guangzhou City (Grant No. 201604046026), and National Natural Science Foundation of China (Grant 
No. 51374111).

References

 1. Zhang, S. B., & Zhang, Y. M. (2001). Efflux plasma charge-based sensing and control of joint pen-
etration during keyhole plasma arc welding. Welding Journal, 80(7), 157s–162s.

 2. Luo, M., & Shin, Y. C. (2015). Estimation of keyhole geometry and prediction of welding defects 
during laser welding based on a vision system and a radial basis function neural network. Interna-
tional Journal of Advanced Manufacturing Technology, 81(1–4), 263–276.

 3. Cui, S. L., Liu, Z. M., Fang, Y. X., Luo, Z., Manladan, S. M., & Yi, S. (2017). Keyhole process in 
K-TIG welding on 4 mm thick 304 stainless steel. Journal of Materials Processing Technology, 243, 
217–228.

 4. Liu, Z., Wu, C. S., & Gao, J. (2013). Vision-based observation of keyhole geometry in plasma arc 
welding. International Journal of Thermal Sciences, 63(63), 38–45.

 5. Han, G. M., Yun, S. H., Cao, X. H., & Li, J. Y. (2004). Acquisition and pattern recognition of 
spectrum information of welding metal transfer. Chinese Journal of Mechanical Engineering, 24(3), 
699–703.

 6. Zhang, Z., Chen, H., Xu, Y., Zhong, J., Lv, N., & Chen, S. (2015). Multisensor-based real-time qual-
ity monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding. 
Mechanical Systems and Signal Processing, 60–61, 151–165.

 7. Lv, N., Xu, Y., Zhang, Z., Wang, J., Chen, B., & Chen, S. (2013). Audio sensing and modeling of 
arc dynamic characteristic during pulsed Al alloy GTAW process. Sensor Review, 33(2), 141–156.

 8. Pal, K., Bhattacharya, S., & Pal, S. K. (2010). Investigation on arc sound and metal transfer modes 
for on-line monitoring in pulsed gas metal arc welding. Journal of Materials Processing Tech, 
210(10), 1397–1410.

 9. Čudina, M., Prezelj, J., & Polajnar, I. (2008). Use of audible sound for on-line monitoring of gas 
metal arc welding process. Metalurgija, 47(2), 81–85.

 10. Tarn, J., & Huissoon, J. (2005). Developing psycho-acoustic experiments in gas metal arc weld-
ing. In IEEE International Conference on Mechatronics and Automation, 2005 (pp. 1112–1117 Vol. 
1112).

 11. Feng, Y., Luo, Z., Liu, Z., Li, Y., Luo, Y., & Huang, Y. (2015). Keyhole gas tungsten arc welding of 
AISI 316L stainless steel. Materials and Design, 85, 24–31.

 12. Liu, Z. M., Fang, Y. X., Cui, S. L., Yi, S., Qiu, J. Y., Jiang, Q., et al. (2017). Keyhole thermal behav-
ior in GTAW welding process. International Journal of Thermal Sciences, 114, 352–362.

 13. Cui, S., Shi, Y., Sun, K., & Gu, S. (2017). Microstructure evolution and mechanical properties of 
keyhole deep penetration TIG welds of S32101 duplex stainless steel. Materials Science and Engi-
neering A, 709, 214–222.

 14. Ma, J., Susca, S., Bajracharya, M., Matthies, L., Malchano, M., & Wooden, D. (2012). Robust multi-
sensor, day/night 6-DOF pose estimation for a dynamic legged vehicle in GPS-denied environments. 
In IEEE International Conference on Robotics and Automation (pp. 619–626).

 15. Sattar, F., Karray, F., Kamel, M., Nassar, L., & Golestan, K. (2016). Recent advances on context-
awareness and data/information fusion in ITS. International Journal of Intelligent Transportation 
Systems Research, 14(1), 1–19.

 16. Sung, W. T. (2010). Multi-sensors data fusion system for wireless sensors networks of factory moni-
toring via BPN technology. Expert Systems with Applications, 37(3), 2124–2131.

 17. Chen, B., Wang, J., & Chen, S. (2010). Prediction of pulsed GTAW penetration status based on 
BP neural network and D-S evidence theory information fusion. International Journal of Advanced 
Manufacturing Technology, 48(1–4), 83–94.

 18. Zhang, Z., & Chen, S. (2017). Real-time seam penetration identification in arc welding based 
on fusion of sound, voltage and spectrum signals. Journal of Intelligent Manufacturing, 28(1), 
207–218.



1 3

Sensing and Imaging (2019) 20:3 Page 21 of 21 3

 19. Chen, B., & Chen, S. (2010). A study on applications of multi-sensor information fusion in pulsed-
GTAW. Industrial Robot, 37(2), 168–176.

 20. Lee, S. S., Kim, T. H., Hu, S. J., Cai, W. W., Li, J., & Abell, J. A. (2012). Characterization of joint 
quality in ultrasonic welding of battery tabs. Journal of Manufacturing Science and Engineering, 
135(2), 2186–2199.

 21. Wang, J. F., Chen, B., Chen, H. B., & Chen, S. B. (2009). Analysis of arc sound characteristics for 
gas tungsten argon welding. Sensor Review, 29(3), 240–249.

 22. Tam, J. (2008). Methods of characterizing gas-metal arc welding acoustics for process automation. 
Waterloo: University of Waterloo.

 23. Liu, Z. M., Fang, Y. X., Cui, S. L., Luo, Z., Liu, W. D., Liu, Z. Y., et al. (2016). Stable keyhole 
welding process with K-TIG. Journal of Materials Processing Technology, 238, 65–72.

 24. Wu, D., Huang, Y., Chen, H., He, Y., & Chen, S. (2017). VPPAW penetration monitoring based 
on fusion of visual and acoustic signals using t-SNE and DBN model. Materials and Design, 123, 
1–14.

 25. Wang, J. F., Yu, H. D., Qian, Y. Z., Yang, R. Z., & Chen, S. B. (2011). Feature extraction in welding 
penetration monitoring with arc sound signals. Proceedings of the Institution of Mechanical Engi-
neers Part B Journal of Engineering Manufacture, 225(9), 1683–1691.

 26. Zhang, Y. M., & Zhang, S. B. (1999). Observation of the keyhole during plasma arc welding. Weld-
ing Journal, 78(2), 53S–58S.

 27. Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., Mcvean, G., Turnbaugh, P. J., et al. 
(2011). Detecting novel associations in large data sets. Science, 334(6062), 1518.


	Recognition of Weld Penetration During K-TIG Welding Based on Acoustic and Visual Sensing
	Abstract
	1 Introduction
	2 Experimental Setup
	3 Feature Extraction and Analysis
	3.1 Acoustic Feature Extraction
	3.1.1 Preprocessing of Acoustic Signals
	3.1.2 Feature Extraction

	3.2 Image-Based Keyhole Feature Extraction
	3.3 Analysis on Variation of the Acoustic and Visual Signals

	4 Feature Selection and Penetration Recognition
	4.1 Feature Selection Based on Weighted Scoring Criteria and CV–SVM
	4.2 Recognition of Penetration
	4.3 Model Verification

	5 Conclusions
	Acknowledgements 
	References




