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Abstract  Deep convolutional neural network (DCNN) has achieved great suc-
cess in the classification of natural images, but it requires numerous labelled data 
for training. In the absence of a large number of optical satellite images and labelled 
data, how to guarantee the effect of classification of the optical satellite images with 
DCNN? In this case, this paper has discussed how to fine-tune a pre-trained DCNN 
in a layer-wise manner by transfer learning. In our experiment, DCNN is pre-trained 
with ImageNet which is a large labelled dataset of natural images, and then optical 
remote sensing images are used to fine-tune the learnable parameters of pre-trained 
DCNN. The experimental results show that transfer learning is feasible to deal with 
the above problem. In the process of transfer training, if the second half of the lay-
ers are fine-tuned, compared with the fine-tuning of the entire network, the almost 
same accuracy can be achieved, but the convergence is more rapid. The experimen-
tal results provide a solution for how to achieve the incremental classification per-
formance in practical applications.
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1  Introduction

In recent years, the neural networks which simulate the human brain to analyze 
and learn has become one of the research focuses and has achieved great success 
in the fields including speech recognition, natural language and image processing.

In the field of image processing, Deep Convolutional Neural Network 
(DCNN), which has forward and backward passes, has already outperformed 
other approaches in natural image classification [1, 2], natural image segmenta-
tion [3], and object detection [4], etc. If DCNN is applied to the classification of 
optical remote sensing images, what will happen? And what can we do to achieve 
good results?

Training models from scratch in DCNN requires a great deal of labelled train-
ing data, because the limited availability of labelled data may lead to an undesir-
able local minimum for the cost function. Some remote sensing images are scarce 
to obtain and expensive to be labelled. If only a few thousand images are input 
to train DCNN from scratch, it would easily yield a overfitting. Transfer learning 
is proposed as the solution. More specifically, a DCNN should be pre-trained in 
classification on a very large dataset, such as ImageNet which is a natural image 
dataset. Then the weights of the pre-trained DCNN is used as an initial value of a 
new network, in other word, the pre-trained DCNN is regarded as a new network. 
This means through transfer learning, the pre-trained models are applied to new 
task as a feature generator. The new network is trained by remote sensing images 
unceasingly and Back Propagation algorithm (BP) is used to adjust its weights, 
until the new network can classify remote sensing images accurately. The primary 
reason for success of this approach is that the low-level features can be preserved 
from one dataset to another and reused without training from scratch, even when 
the final classification object is different [5].

There are additionally two advantages in this case:

•	 It saves some cost for manual label. The approach of DCNN is supervised 
learning, which requires manual label of data, but transfer learning with fine-
tuning uses the pre-trained classifier to train a new classifier and the useful 
information of the source data is effectively utilized, so the demand for new 
label is reduced.

•	 It greatly accelerates the convergence speed and saves the training time.

How can you achieve better performance through fine-tuning in the transfer learn-
ing process? The papers [5, 6] propose that the features transferred from different 
tasks are better than random weights for initializing network weight, even when the 
features are transferred from distant objects. The above factor is considered in the 
design of our experiment. Unlike the experiment in the paper [5] in which part of 
the layers are initialized randomly, in our experiment, the weights of all layers are 
initialized by the features transferred from other tasks instead of random weights. 
And then, the pre-trained DCNN is fine-tuned in a layer-wise manner for optical 
remote sensing image classification until the best performance is found.
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Contributions of this paper are shown as follows:

•	 The paper discusses how to classify remote sensing images in the absence of a 
great deal of labelled data.

•	 The experiment finds a way to fine-tune a pre-trained DCNN in a layer-wise 
manner to obtain incremental performance.

2 � Related Work

2.1 � Remote Sensing Image Classification

The resolution of the optical remote sensing image has become higher and higher, 
carrying rich information. Many researchers extract the features by the traditional 
machine learning method, and identify them by the classifier [7], such as Linear 
regression, neural network [8], Bayesian network, fuzzy clustering [9], SVM based 
on statistical learning [10],etc. For example, Zhu et  al. [10]extracted the Local 
Binary Pattern (LBP), shape and the gray-scale distribution feature, and used the 
support vector machine (SVM) to classify the ships.

DCNNs have been applied to remote sensing image classification [11–13] and 
object detection [14, 15] , which has achieved a certain success. Chen et  al. [11] 
“present a new all-convolutional networks (A-ConvNets), which only consists of 
sparsely connected layers, without fully connected layers being used”, “and achieve 
an average accuracy of 99% on classification of ten-class targets”. Luus et al. [12] 
propose that “ The end-to-end learning system learns a hierarchical feature represen-
tation with the aid of convolutional layers to shift the burden of feature determina-
tion from hand-engineering to a deep convolutional neural network (DCNN).” “ It is 
shown that a single DCNN can be trained simultaneously with multiscale views to 
improve prediction accuracy over multiple single-scale views.”

DCNN has been applied to remote sensing image classification as mentioned 
above. We focus on how to classify the optical remote sensing images through 
transfer learning and  with the lack of a great deal of labelled data. Currently, few 
research results were published in this area, concerning remote sensing images.

2.2 � Deep Convolution Neural Network

The excellent performance of DCNN in image processing can be attributed to its 
capability of extracting a set of discriminating features on multiple levels. “The kth 
output feature map Y

k
 can be computed as: Y

k
= f(W∗

k
x) , where the input image is 

denoted by x; the convolutional filter related to the kth feature map is denoted by W
k
 ; 

the multiplication sign in this context refers to the 2D convolutional operator, which 
is used to calculate the inner product of the filter model at each location of the input 
image; and f() represents the nonlinear activation function” [2, 16].

DCNN has four obvious advantages for image processing as follows:
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Firstly, The neurons in the receptive field are not fully connected. In addition, 
weight with a convolution filter in the same layer is shared.Receptive field and 
parameter sharing can reduce the number of training parameters. Consequently, the 
dimension disaster is minimized [17].

Secondly, The alternation of the convolution layer and the pooling layer makes 
the DCNN sensitive to the local small features [17].

Thirdly, ReLu is an activation function defined as the positive part of its argu-
ment: f(x) = max (0,x) ,where x is the input to a neuron. ReLu can alleviate gradient 
diffusion in the DCNN, and it can make the output of the network have high sparsity 
[18].

Finally, the optimization methods about network weights can greatly improve the 
neural network performance.For example, the model of MBGD(Mini-batch gradi-
ent descent) update frequency is higher than BGD (Batch gradient descent). The 
batched updates of MBGD provide a computationally more efficient process than 
SGD(Stochastic gradient descent). Furthermore, Konecny et al. [19] proposed mini-
batch semi-stochastic gradient descent and they prove that they can “reach any pre-
defined accuracy with less overall work than without mini-batching.”

2.3 � Transfer Learning and Fine‑Tuning

The traditional machine learning assumes that the training dataset and the testing 
dataset obey the same data distribution. But in many cases, the assumption of same 
distribution is not valid. The goal of transfer learning is to learn the knowledge from 
a dataset to facilitate the learning tasks in the new dataset. Therefore, it is not neces-
sary to make assumption of same distribution for transfer learning.

At present, transfer learning can be divided into three categories according to 
whether there are labelled data in the source dataset and the target dataset [20]: 
inductive transfer learning [21], transductive transfer learning [22], and unsuper-
vised transfer learning [23, 24].

Transfer learning strategies depend on various factors, but the two most impor-
tant ones are the size of the new dataset, and its similarity to the original dataset. For 
the optical remote sensing images that we want to classify and the optical images of 
ImageNet, the low-level features of the two kinds of images share very strong simi-
larity, which helps to transfer. We mainly consider the size of the dataset.

For different database sizes, the pre-trained DCNN has two approaches to apply 
the pre-trained model to the new tasks of image classification.

•	 The first approach: If the new dataset is small, the pre-trained DCNN weights is 
used as a fixed feature extractor wherein the network remains the same [25, 26]. 
It extracts the feature vector before the last layer of fully-connected layers and 
then trains a linear classifier for classification.

•	 The second approach: If the new dataset is relatively large, we fine-tune pre-
trained DCNN with the new dataset [27], and the Back Propagation algorithm is 
used to fine-tune the weights again. Finally the DCNN is updated to solve a new 
problem [28, 29], and the accuracy can be higher than that of the first approach.
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This paper aims to seek for the best fine-tuning method, so the second approach is 
adopted.

Fine-tuning refers to the process in which parameters of a model must be adjusted 
very precisely. Fine-tuning is regarded as one of the tricks in machine learning. In 
the experiment of the paper [5] about DCNN fine-tuning, there are two datasets 
named dataset A and dataset B. The first n (n ranges from 1 to 7) layers are cop-
ied from dataset A and frozen. The left higher layers are initialized randomly and 
trained by dataset B. The paper points that “the extent to which transfer is successful 
has been carefully quantified layer by layer.”

3 � Experiments

3.1 � Samples

There are a total of 2100 remote sensing satellite images in UC Merced Land Use 
Dataset, Specifically, which include 21 categories of remote sensing satellite images, 
and each category has 100 pictures. This dataset has some characteristics that are 
not good for image classification, because some images from different categories are 
very similar, as shown in Figs. 1 and  2, but some images in the same category are 
quite different, as shown in Figs. 3 and 4.

With the number of images in UC Merced Land Use Dataset, if the network is 
trained from scratch, it will certainly yield a serious overfitting. Even if we adopt the 
approach of pre-training and transfer learning, the data still need to be augmented, 
so we quadrupled UC Merced Land Use Dataset by means of horizontally flipping, 
color jittering(adjusting the image brightness, saturation or contrast), random crop, 
shift and so on.

Fig. 1   Mobile Home Park 10
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3.2 � Network Architecture and Parameters

Deep convolutional neural network has several typical network structures. AlexNet 
is one of the most famous convolutional neural networks. It is designed by Geof-
frey Hinton and Alex Krizhevsky and wins the championship in 2012. It is used for 
ImageNet classification and almost halved the error rate of best algorithm, so it has 
attracted the attention of computer vision community. AlexNet consists of 5 convo-
lutional layers and 3 fully connected layers. In order to adapt to the classification 

Fig. 2   Buildings 25

Fig. 3   Storage Tanks 73
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task, we modify the last full connected layer to 21 nodes, each of which represents a 
category in the image dataset.

The experimental network and parameters are shown in the Fig.  5. For each 
layer, the upper part of the Fig. 5 represents the input, the middle part represents the 
parameters, and the lower part represents the output.

It must be noted that the learning rate for the last layer is 0.01, the learning rate 
for the rest fine-tuned layers is 0.001, the learning rate for the frozen layer is 0, and 
learning_rate_decay is 0.95.

3.3 � Experimental Approach

The 80% of the dataset is used as the training set, and 20% is the testing set. All of 
the image chips taken from the same wide area image are included in the same train-
ing or test set. Five-fold cross-validation is used ten times, and the average value of 
accuracy of the results is calculated as the evaluation criterion.

The experiment differs from [25, 26] wherein the network remains the same and 
serves as a feature generator. It differs from [28] wherein the entire network was 
fine-tuned at once. It also differs from [5] wherein the first n layers are transferred 
from other network and the left higher layers are initialized randomly. In our exper-
iment, the weights of all layers are transferred from AlexNet pre-trained by Ima-
geNet, because the features transferred from different task are better than random 
weights for initializing network weight. We have conducted eight rounds of experi-
ments after AlexNet is pre-trained. In the first round, the parameters of the last layer 
of pre-trained AlexNet is trained with UC Merced Land Use Dataset until conver-
gence while freezing all the parameters in the previous layers, and the accuracy is 
calculated in this case. Similarly, in the second round, we train the last two layers 
of pre-trained AlexNet and freeze all the parameters of other layers in the update 

Fig. 4   Storage Tanks 97
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process. Next, the training incrementally includes one more layers in the update pro-
cess. In this way, finally the entire network undergoes fine-tuning at once. Overall, 
the network is fine-tuned in a layer-wise manner after AlexNet is pre-trained by the 
natural images.

3.4 � Experimental Results

For an image, AlexNet shows its possibilities of belonging to each of the 21 catego-
ries. With our statistics, the Fig. 6 shows the classification accuracy of images in 
each category in five typical cases. The five typical cases are training from scratch 
without transfer learning (called “Training from Scratch”), transfer learning without 
fine-tuning(called “Transfer Learning without Fine-tuning”), the fine-tuning of the 
last two layers in AlexNet (called “Fine-tuned AlexNet: fc7 - fc8), the fine-tuning 
of layers from fc8 to conv5 (called “Fine-tuned AlexNet:conv5-fc8”), and the fine-
tuning of the entire network (called “Fine-tuned AlexNet:conv1-fc8”).

Fig. 5   Network architecture
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The horizontal axis of Fig.  6 is the image category of UC Merced Land Use 
Dataset, and the vertical axis is the accuracy.

In Fig. 6, tenniscount, denseresidential, golfcourse, mediumresidential, and stora-
getanks are the categories with low classification accuracy in our experiment. Over-
all, for all categories, the accuracy of training from scratch is 74.86%, the accuracy 
of transfer learning without fine-tuning is only 59.19%, the accuracy of “Fine-tuned 
AlexNet: fc7 - fc8” is 82.38%, the accuracy of “Fine-tuned AlexNet:conv5 - fc8” 
is 93.62%, and the accuracy of “Fine-tuned AlexNet:conv1 - fc8” is 93.86%. The 
data show that transfer learning with fine-tuning is feasible, because the accura-
cies of “Fine-tuned AlexNet:conv5 - fc8” and “Fine-tuned AlexNet:conv1 - fc8” 
are both high. The accuracies of “Fine-tuned AlexNet:conv5 - fc8” and “Fine-
tuned AlexNet:conv1 - fc8” are very similar, and the accuracy of “Fine-tuned 
AlexNet:conv1 - fc8” is 0.24% higher.

4 � Discussion

4.1 � Why Is AlexNet Chosen as Experimental Network?

There are three reasons why we choose AlexNet as the experimental network:

Fig. 6   Classification accuracy
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•	 A large number of experiments show that it has excellent classification effect.
•	 A pre-trained AlexNet model was available in the Caffe library.
•	 AlexNet has more layers than networks such as LeNet and CompactNet, which 

are too shallow to obtain sufficient image features. Of course, there are still 
GoogleNet and VGGNet with deeper network structure, but they are slow to con-
verge. The purpose of our experiment is to find the appoach of fine-tuning to 
obtain incremental performance on the pre-trained network, so AlexNet is a rea-
sonable choice.

4.2 � Setting Up the Learning Rate

Setting up the learning rate is a key point in the experiment. In order to have better 
performance for gradient descent, we need to set the learning rate in an appropriate 
range. If learning rate is too small, the algorithm takes a long time to converge. On 
the contrary, the excessive learning rate will lead the object function to oscillate near 
the lowest point.

In the process of training in AlexNet, we find that when the loss oscillates in a 
certain area but does not converge, if we lower the learning rate by one order of 
magnitude, the loss will drop in the one or two epoch, the accuracy will change dra-
matically at this moment. To perform statistical comparisons,in our experiment, the 
learning rate of the last layer is 0.01, the learning rate of the other fine-tuned layers 
is 0.001, the learning rate of frozen layer is 0, and learning-rate-decay is 0.95.

4.3 � Analysis for Experimental Results

We train the AlexNet on the large dataset to get the pre-trained model and then con-
duct feature-based transfer learning. According to the experimental results, transfer 
learning with fine-tuning is feasible, because no matter which method of fine-tun-
ing is adopted, pre-trained AlexNet with fine-tuning performs much better than the 
AlexNet trained from scratch and the transfer learning without fine-tuning. By com-
parison, we find that the pre-trained model has some advantages over the randomly 
initialized model. For example, the pre-trained model clearly extracts the high-level 
features of images, such as the edge features and shape features, and removes the 
background of objects. The randomly initialized model only simply smooth the 
image to a certain extent, and the background is still prominent.

We analyzed the experimental results of fine-tuning, and the 4096 dimension fea-
ture extracted from fc7 of AlexNet is analyzed by means of dimension reduction. 
We find that the categories of lower accuracy, such as tenniscount, denseresidential, 
mediumresidential and storagetanks, are close to each other, in other words, the dis-
tance is small between categories, so it is difficult to distinguish.

We then analyzed the classification accuracy of various fine-tuning approaches. 
The accuracies are almost the same for “Fine-tuned AlexNet:conv5-fc8” and “Fine-
tuned AlexNet:conv1-fc8”. The reason is that the initial layers describe the general 
features of the image, such as color and edge. The last few layers, such as the last 
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fully connected layers, describe the high order features which are related to image 
classification task. Thus the fine-tuning for the first few layers of the AlexNet is not 
absolutely necessary, but the fine-tuning for the last few layers of the AlexNet is 
very important.

4.4 � Limitations of The Experiment

Finally, we discuss the limitations of the experiment. Because we use pre-training 
network, the model architecture is limited slightly. When we fine-tune the DCNN in 
Caffe, the network structure should be consistent with pre-training model to ensure 
the parameters are correctly loaded, so we can not remove the layer of pre-training 
network arbitrarily.

5 � Conclusion

The experiment shows that transfer learning with fine-tuning is feasible to classify 
optical remote sensing images in the absence of a large number of labelled images. 
In the experiments of fine-tuning a pre-trained DCNN in a layer-wise manner to 
get good performance, we find that the optimal solution is to freeze the first half 
of layers and fine-tune the second half of layers. The performance of “Fine-tuned 
AlexNet:conv5-fc8” is almost the same with that of “Fine-tuned AlexNet:conv1-
fc8”, but the former takes shorter training time. Our experiment provides the solu-
tion for how to achieve the good classification performance in practical applications.
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