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Abstract Hyperspectral data processing typically demands enormous computa-

tional resources in terms of storage, computation, and I/O throughputs. In this paper,

a compressive sensing framework with low sampling rate is described for hyper-

spectral imagery. It is based on the widely used linear spectral mixture model.

Abundance fractions can be calculated directly from compressively sensed data with

no need to reconstruct original hyperspectral imagery. The proposed abundance

estimation model is based on the sparsity of abundance fractions and an alternating

direction method of multipliers is developed to solve this model. Experiments show

that the proposed scheme has a high potential to unmix compressively sensed

hyperspectral data with low sampling rate.

Keywords Compressive sensing � Hyperspectral imagery � Unmixing � Abundance

estimation � Sensing matrix

1 Introduction

During the last several decades, hyperspectral imagery processing has been

exploited extensively in remote sensing for versatile applications such as

environmental monitoring, mineral exploration and food safety. Hyperspectral

imagery makes use of as many as hundreds of contiguous spectral bands covering

the visible, near-infrared, and shortwave infrared spectral bands (in the range
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0.3–2.5 lm [1]) to expand the capability of multispectral sensors. Hyperspectral

data analysis has become a valuable technique and a powerful tool for extracting the

rich information provided in the spectra for the imaged areas.

In hyperspectral imagery, Due to the relatively coarse spatial resolution of

imaging spectrometers and mixing effects in surfaces, a single pixel is generally

mixed by the scattered energy of several different material substances present in the

scene [2]. Hyperspectral unmixing refers to any process that separates hyperspectral

imagery into a collection of constituent spectra or spectral signatures (called

endmembers) with a set of fractional abundances for the endmembers for each pixel

in the image. The endmembers are generally assumed to represent the pure materials

present in the image and the set of abundances, or simply abundances at each pixel

to represent the percentage of each endmember that is present in the pixel [1].

Usually, both the spectra of the pure materials as well as their abundances in each

pixel are considered unknown. Decomposing a mixed pixel into endmember

signatures labeled as endmember extraction and the corresponding abundance

fractions labeled as unmixing or abundance estimation is a challenging task

underlying many hyperspectral imagery applications.

Depending on the mixing ways at each pixel, two models have been proposed in

the past to describe such mixing activities. The first is the linear mixing model and

the second is called the intimate spectral mixture, which uses a nonlinear mixing of

materials [3]. Most spectral unmixing algorithms start from the linear mixing

assumption, or the assumption that an observed spectrum is a linear combination of

a limited number of endmember spectra and the linear coefficient of each

endmember is its abundance. Consequently, only a linear spectral mixture model

(LSMM) will be considered in this paper.

Hyperspectral unmixing based on LSMM is referred to as linear spectral

unmixing (LSU). LSU require a priori knowledge of the signatures of materials

present in the image scene, which can be obtained from a spectral library (e.g.,

ASTER and USGS) or codebook. Algorithms can also be used to determine

endmember in a scene, such as N-FINDER [4], VCA (vertex component analysis)

[5], SGA (simplex growing algorithm) [6]; NMF-MVT (nonnegative matrix

factorization minimum volume transform) [7], MVSA (minimum volume simplex

analysis) [8] and SISAL (simplex identification via split augmented Lagrangian) [9].

Most of these algorithms are mainly concerned with endmember extraction. Once

the endmembers have been found, the estimation of the abundances requires the

inversion of the linear mixing equation and since one only has the data points and

the endmembers available, and one would like to estimate the linear coefficients (the

abundances) [10]. The constrained sparse unmixing by variable splitting and

augmented Lagrangian (C-SUnSAL) [11] is one of the state-of-the-art algorithms

for abundance estimation. C-SUnSAL employs the alternating direction method of

multipliers (ADMM) as a variable splitting procedure followed by the adoption of

an augmented Lagrangian method to solve the constrained basis pursuit problem

and the constrained basis pursuit denoising problem. When estimating abundance

fractions and solving linear inversion, two constraints are often employed for the

abundances of materials in a pixel: (1) abundance sum-to-one constraint (ASC) and
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(2) abundance nonnegativity constraint (ANC). In this paper, we focus exclusively

on estimating the abundance fractions of given endmembers.

A hyperspectral imagery can be thought of as a 3D array. The first two

dimensions correspond to standard spatial coordinates, and the third dimension

corresponds to wavelength. Because of the their enormous volume, hyperspectral

data processing typically demands enormous computational resources in terms of

storage, computation, and I/O throughputs, especially when real-time processing is

desired. Abundance estimation directly using hyperspectral data cubes may be

difficult in real-time or near real-time. However, hyperspectral data are highly

compressible with two-fold compressibility: (1) each spatial image for each

wavelength is compressible, and (2) the entire cube, when treated as a matrix, is of

low rank. To fully exploit such rich compressibility, some image compression

algorithms and dimensionality reductions methods can be applied to hyperspectral

cubes, such as PCA (principal component analysis) [12], ICA (independent

component analysis) [13, 14] and CS (Compressive Sensing) [15–18]. In this paper

we estimate abundance fraction of hyperspectral imagery acquired by means of

compressive sensing with low sample rate.

During the past few years, compressive sensing (CS) [19] theory has been

introduced as a new approach to replace the Shannon’s sampling theorem. The

theory of CS shows that, when the signal is sparse enough, it can be accurately

recovered from its compressive measurements. For hyperspectral imagery, the

sparse representation of signal structure is different on each of its different

dimensions or coordinates. The reflectivity values at a given spectral band

correspond to an image, which is often sparse or compressible in a wavelet basis.

Additionally, the spectral signature of a given pixel is usually smooth or piecewise

smooth and often sparse or compressible in the Fourier basis, depending on the

spectral range and materials present in the observed area. Previous works on the CS

of hyperspectral datacube [15–18] has exploited on the correlations across the

channels to further decrease the number of the compressive measurements and a

variety of algorithms are proposed to reconstruct the original data. Three

Dimensional Compressive Sampling (3DCS) [20] constructed a generic 3D sparsity

measure to exploit 3D piecewise smoothness and spectral low-rank property in

hyperspectral CS and explored sparsity prior, total variation knowledge and low-

rank property to recover signal. A key enabler of CS for recovering signal is the well

known convex regularizer, ‘1 norm. However, the ‘1 norm of abundance fractions,

that is the sum of absolute value, is a constant in terms of ASC as described in Sect.

2. Therefore, two solutions are shown here. The first uses ‘1/2 norm as sparsity

constraint, with the second solution using sparsity in the wavelet domain, which is

equivalent to the ‘1 norm of the weight abundance.

In this paper, we present a scheme which estimate abundance fractions directly

from compressively sensed hyperspectral data with no need to reconstruct full

hyperspectral imagery, we term our scheme as compressed abundance estimation

(CAE). The proposed scheme is composed of three parts: (1) spatial-spectral

compressive sensing, (2) ‘1/2 norm sparsity constraint of abundance fractions in the

wavelet domain and (3) efficient algorithm based on ADMM. The potential of the

proposed scheme to unmix compressively sensed hyperspectral data is demonstrated

Sens Imaging (2017) 18:23 Page 3 of 19 23

123



by experiments using synthetic and real hyperspectral data. The contribution of this

paper is to provide an abundance estimation scheme from compressed data collected

by a compressive sampling camera. Here, the traditional abundance estimation

method cannot be employed, since it is only applicable to uncompressed data.

This paper is organised as follows: Section 2 focuses on formulating our

abundance fractions estimating model, Sect. 3 specializes the ADMM algorithm to

solve the proposed abundance fractions estimating model, Sect. 4 presents

experimental results, and Sect. 5 ends the paper with conclusions.

2 Problem Formulation

In this section, we first briefly review the LSMM, which is widely used in

hyperspectral unmixing. Next, we introduce our Spatial-spectral Compressive

Sensing (SSCS) of hyperspectral data. Finally, we address to the problem

formulation of abundance fractions estimation model of hyperspectral data cubes

acquired by means of compressive sensing.

2.1 Linear Spectral Mixture Model

Assuming a linear mixing scenario, the observed data in the hyperspectral imagery

can be expressed as linear combination of some pure materials (endmembers) and

their fractional proportions (abundances) as follows

X ¼
Xp

i¼1

siei þ N ¼ SEþ N ð1Þ

where X is an N 9 L matrix representing the hyperspectral imagery (N is the

number of pixels, L is the number of bands). E � ½e1; e2. . .; ep�T is a p 9 L matrix

containing p endmember signatures (ei denotes the ith endmember signature and p is

the number of endmembers present in the mixing scenario). The notation (�)T stands

for vector or matrix transposed. S � ½s1; s2. . .; sp� is an N 9 p matrix containing the

fractions of each endmember (si denotes abundances vector of the ith endmember).

N 9 L dimensional error matrix N models system additive noise. In LSMM, we

consider the term N as zero mean with additive Gaussian noise, which is a rea-

sonable and widely used assumption in designing hyperspectral unmixing

algorithms.

Owing to the physical constraints, the abundances in Eq. (1) have to meet the two

constraints: abundance nonnegativity constraint (ANC) means that the fractional

abundances of a pixel cannot be negative and abundance sum-to-one constraint

(ASC) means that the sum of the fractional abundances of a pixel must be 1. In

short, the hyperspectral data model has the form

X ¼ SEþ N; S1p ¼ 1N ; and S� 0 ð2Þ

where 1p and 1N denote the column vectors of all ones with length p and N. Some

remarks on the negative effects of applying these two constraints are better to
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provide [21]. In the later experiments, we impose these two constraints on synthetic

data, but ignore them for real hyperspectral imagery.

2.2 CS of Hyperspectral Data

Since each slice of the hyperspectral imagery X represents a 2D image

corresponding to a particular spectral band, we can collect the compressed

hyperspectral data by randomly sampling all the columns of X using the same

measurement matrix A. Sensors are collecting n � N linear measurements from

each column of X in a vector. Note that, A can be explicitly expressed by a matrix

A 2 Rn�N . Mathematically, the data acquisition model can be described as

Y ¼ AX ð3Þ

Equation (3) is standard compressive sensing used to compress the hyper-

spectral imagery. Several camera designs have been so far proposed for the

single-channel image compressive acquisition [22, 23]. These designs can easily

be extended to hyperspectral compressive imaging. This can be achieved by

repeating the same acquisition scheme for all spectral bands using an

independent random pattern of sampling per channel, which is referred to as

distributed CS [15]. In this case, the corresponding measurement matrix A would

be a block diagonal matrix of the form

A ¼

A1 0 � � � 0

0 A2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � AJ

2
6664

3
7775 ð4Þ

where Aj 2 Rn�N is the random measurement matrix, which is applied on channel j

independently from the other spectral bands. n denotes the number of compressive

measurements of per channel. In contrast with the single-pixel hyperspectral imager

[24] using a unique random pattern for all spectral bands (i.e.,

A1 ¼ A2 ¼ � � � ¼ AJ), independent blocks shown in Eq. (4) benefit the existing

information diversity across multiple spectral channels. However, the mea-

surement matrix A of Eq. (4) is usually very large and using independent blocks is

not the most effective measurement for spectral information of hyperspectral

imagery.

Standard compressive sensing do not exploit spatial and spectral correlation

of hyperspectral imagery simultaneously during the compressive sampling stage.

Distributed compressed sensing [15, 17, 25] only exploited part of spectral

correlation. In our previous works, Spatial-spectral compressive sensing (SSCS)

[18] was proposed to sense spatial and spectral correlation of hyperspectral

imagery simultaneously. In this paper, we use SSCS to compressive sampling

hyperspectral data cube. The formation of SSCS is written as follows in

mathematics:
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Y ¼ A1XA2 ð5Þ

where A1 is an n 9 N spatial random measurement matrix to sense spatial infor-

mation of hyperspectral imagery, A2 is an L 9 l spectral random measurement

matrix, Y is an n 9 l matrix representing the compressed hyperspectral data. In the

paper, the random measurement matrices A1 and A2 are generated by partial Fourier

transform. With the assumption that endmember spectral signatures are given,

SSCS show an advantage in compressing hyperspectral data cube. Because spectral

compressive measurement is similar to dimension reduction and then l = p, owing

to p � L, the spectral sampling rate (l/L) will be very low and typically less than

0.1.

2.3 Formulation of Abundance Estimation

Combining Eqs. (2) and (5) and neglecting noise term, the SSCS model can be

rewritten as:

Y ¼ A1SEA2; S1p ¼ 1N ; and S� 0 ð6Þ

For now, we assume that the endmember spectral signatures in E are known, our

goal is to find their abundance fractions in S, given the measurement matrix A1, A2

and the compressed hyperspectral data Y. Actually, Eq. (6) can be expressed with

more convenient form using the following transform.

Next, let us simplify Eq. 6. First, aA1 is left multiplied to the second term of

Eq. (6)

aA1S1p ¼ aA11N ð7Þ

where a C 0 is a scale parameter and determines constraint proportion of ASC in

Eq. (6). Now, construct new data matrix ~Y and measurement matrix Ae:

~Y ¼ ½YA11N �; Ae ¼ ½EA2 S1p� ð8Þ

where ~Y is an n 9 (l ? 1) matrix by appending A11N to the right of Y. Similarly,

Ae is an p 9 (l ? 1) matrix by appending S1p to the right of EA2. With these

definitions, Eq. (6) can be written as

~Y ¼ A1SAe; S� 0 ð9Þ

In other words, Eq. (6) can be expressed as a simply form of Eq. (9) by adding

one column on the observed compressed hyperspectral data.

In order to present the above equation in a more general form, Kronecker product

and its properties are applied to Eq. (9). We can draw a conclusion:

b ¼ As; s� 0 ð10Þ

where A ¼ A1 � AT
e is an n(l ? 1) 9 Np dimension measurement matrix. s 2 RNp

is vectorization of S, b 2 Rnðlþ1Þ is vectorization of ~Y. For now, the goal is to find
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abundance vector s when b and A are known. In general, the Eq. (10) is a

underdetermined system, it is necessary to add some prior knowledge of s to find it.

The sparsity priors are well known constraints in compressive sensing

reconstruction. In recent years, there has been an explosion of researches on the

properties of the ‘1 regularizer. However, for many practical applications, the

solutions of the ‘1 norm regularizer are often less sparse than those of the ‘0 norm

regularizer [26–28]. Meanwhile, ‘1 norm regularizer of s is in conflict with ASC. To

find more sparse solutions than ‘1 norm regularizer is imperative. In any case, it is

the reasonable assumption that abundance fractions for each endmember,

corresponding to an image, are mostly and approximately sparse. For highly mixed

abundances, however, the assumption is not exact. Therefore, we propose to recover

the abundance vector s by solving the following unmixing model:

min
s

Wsk k1=2

s.t. b ¼ As; s� 0
ð11Þ

where W 2 RNp�Np is the orthonormal basis and sk k1=2¼
PNp

i¼1 ðs
1=2
i Þ2

denotes ‘1/2

norm. In this paper, we choose wavelet basis as the orthonormal basis.

3 Application of ADMM

In this section, we specialize the ADMM to the optimization problem (11) stated in

Sect. 2. Constrained optimization problem can be converted to unconstrained

optimization problem. So we start by rewriting the Eq. (11) to the equivalent form

min
s

1

2
As	 bk k2

2þl Wsk k1=2 ð12Þ

where l C 0 is a parameter controlling the relative weight between the ‘2 and ‘1/2

terms. Contrast to Eq. (11), the nonnegativity of s is omitted. In the later experi-

ments, we impose this condition on synthetic data with less noise by forcing neg-

ative in s to zero during each iteration, but skip it for synthetic data with

serious noise and real hyperspectral data.

We now introduce auxiliary variables and apply alternating minimization to the

corresponding augmented Lagrangian functions. First, with an auxiliary variable

z 2 RNp, Eq. (12) is clearly equivalent to

min
s;z

1

2
As	 bk k2

2þl zk k1=2 s.t. Ws ¼ z ð13Þ

Equation (13) has an augmented Lagrangian subproblem of the form

min
s;z

1

2
As	 bk k2

2þl zk k1=2þyTðWs	 zÞþ q
2

Ws	 zk k2
2

� �
ð14Þ
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where y 2 RNp is a multiplier and q[ 0 is a penalty parameter. Given ðzk; ykÞ,
ðskþ1; zkþ1; ykþ1Þ can be obtained by applying alternating minimization to Eq. (14).

For z ¼ zk and y ¼ yk fixed, the minimizer of Eq. (14) with respect to s is a least

squares problem and the corresponding normal equation is

ðATAþ qWTWÞs ¼ ATbþ qWTzk 	WTyk ð15Þ

Since W is the orthonormal basis, WTW ¼ I. If ATA ¼ I, the solution skþ1 of

Eq. (15) is given easily by

skþ1 ¼ ðATbþ qWTzk 	WTykÞ=ð1 þ qÞ ð16Þ

But unfortunately, ATA 6¼ I, the solution of Eq. (16) could be costly. In this case,

we take a steepest descent step in the s direction and obtain the following solution

skþ1 ¼ sk þ bkr
k ð17Þ

where rk and bk are given by

rk ¼ ATbþ qWTzk 	WTyk 	 ATAsk 	 qsk and bk ¼
rk; rk
� �

ðATAþ qIÞrk; rk
� �

where h � i denotes inner product.

Now, for s ¼ skþ1 and y ¼ ykþ1 fixed, simple manipulation shows that the

minimization of Eq. (14) with respect to z is equivalent to

min
z

l zk k1=2þ
q
2

Wskþ1 	 zþ yk=q
�� ��2

2

n o
ð18Þ

The solution of Eq. (18) is given explicitly by solving the ‘1=2 regularizer, which

can be transformed into that of a series of convex weighted Lasso with an existing ‘1

regularizer algorithm [26–28]. The p-shrinkage to solve Eq. (18) is given by

zkþ1 ¼ Wskþ1 þ yk=q

Wskþ1 þ yk=qþ t0
�� ��max Wskþ1 þ yk=q

�� ��	 l
q

Wskþ1 þ yk=q
�� ��	1=2

; 0

� �

ð19Þ

where all the operations are performed componentwise and t0 is a lower constant

factor to avoid divide by zero (or very small numbers) conditions. Finally, we

update the multiplier y by

ykþ1 ¼ yk þ qðWskþ1 	 zkþ1Þ ð20Þ

Putting all components together, our algorithm for solving abundance estimation

of compressed hyperspectral data, can be summarized as follows.
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Compressed Abundance Estimation (CAE)
Input data Y , 1A , 2A and E , and penalty parameters μ , ρ .
Preprocess data to obtain b and A by section .C;
Initialize multiplier y and variable s , z .
While “outer stopping criteria” are not satisfied,

update variable s by equation 17;
enforce the negative in s to zero;
update variable z by formula equation 19;
update multiplier y by formula equation 20;

End

4 Experimental Results

In this section, we utilize the synthetic and real hyperspectral data to demonstrate

the performance of the proposed CAE scheme and compare it with C-SUnSAL [11]

and 3DCS [20]. It is worth mentioning that the data to be processed by our CAE

scheme and 3DCS scheme are compressed sample hyperspectral imagery. But the

data applied to C-SUnSAL scheme is full hyperspectral imagery. In other words, the

input hyperspectral data to the C-SUnSAL scheme given in the following

experiments are not compressed, while CAE scheme and 3DCS scheme are

compressed. The 3DCS scheme recovers hyperspectral data first, then estimates

endmember and abundance by VCA (vertex component analysis) [5] and least

squares algorithm. The purpose of the comparison is to prove that the direct

abundance estimation (CAE) scheme of the compressed data is closer to the

uncompressed data (C-SUnSAL).

All numerical experiments reported in this paper were performed on a regular

desktop machine running Windows 7 and MATLAB R2008a (64-bit), equipped

with a 3.4 GHz Intel Core 2 Duo CPU i7-4770 and 8 GB of DDR3 memory.

For the unmixing accuracy assessment, The error between the estimated and the

true fractions can be used as the criterion [29]. However, the true abundances are

unknown for real hyperspectral imagery. So the reconstruction signal-to-noise ratio

(RSNR) is used as the criterion of accuracy assessment. For the synthetic

hyperspectral data, we use the RSNR of abundances to evaluate the quality of

abundance estimation. For the real hyperspectral imagery, we use the RSNR of

hyperspectral data matrix to evaluate the quality of the unmixing methods. The

RSNR is defined as

RSNR ¼ 10 log10

E hk k2
2

h i

E h	 ĥ
���

���
2

2

� 	 ð21Þ

where E �½ � is the expectation operator. h and ĥ are the true matrix and its estimated

matrix.

In all types of experiments, we use partial Fourier transform to generate

measurement matrices A1 and A2. The total sampling rate nl/NL is p/2L when
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n = N/2 and l = p, i.e., the half of ratio between the number of endmembers and

bands. Generally, the total sampling rate will be very low and typically less than

0.05. The multiplier y and variable s, z were always initialized to 0.

5 Results on Synthetic Hyperspectral Data

In the first experiment, the synthetic data sets are created as linear mixtures of a set

of spectra with synthesized abundance maps. The spectral signatures are selected

from the mineral spectra in United States Geological Survey (USGS) digital spectral

library, which consists of 420 spectras with 224 bands. Figure 1 shows three of

these endmember signatures. An approximate color image of abundance maps

corresponding to 3 endmembers is shown in Fig. 2 with a spatial resolution of

256 9 256, which is mixed by three hyperspectral imagery according to the ANC

and ASC. Figures 1 and 2 give the ‘‘true’’ E and S respectively. Then we generated

an observation data Y ¼ A1XA2 for some measurement matrices A1 and A2 from

synthetic hyperspectral data X ¼ SE. Here, the total sampling rate p/2L is about

0.0067.

First, we test the sensitivity of penalty parameters l and q. When testing l, we let

q equal to 10-3, and similarly, When testing q, we let l equal to 10-3. The test

results are shown in Table 1. As can be seen from Table 1, the CAE algorithm is

more sensitive to the parameter l, and slightly less sensitive to the parameter q. The

best reconstruction performance is obtained when the parameters l and q are all

10-3. In later experiments, therefore, the parameters l and q are set to 10-3.

Fig. 1 Endmember-spectral selected from USGS library
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In order to simulate the possible errors and sensor noise, zero mean Gaussian

random noise measured by signal-to-noise ratio (SNR) is added to the synthetic

scenes. In order to test sensitivity to noise of these schemes, we change the SNR

from 25 to 50 dB.

Figure 3 shows the RSNR of abundances for three schemes with different noise

levels. It can be seen that C-SUnSAL has prefect unmixing results and our

scheme has acceptable results with adding low noise, however, the 3DCS has poor

results. With the decrease of SNR, our scheme and C-SUnSAL algorithm perform

worse, but the 3DCS stay the low RSNR since the reconstruction hyperspectral data

distorted seriously and have no useful signal. Compared with C-SUnSAL algorithm,

the result of our scheme is much worse. However, our scheme only use 0.67% of the

data, while C-SUnSAL algorithm using 100% of the data. Particularly, our

scheme will be an appropriate choice when compressed hyperspectral data is

collected by CS imaging device such as Single-Pixel camera [24] and CS camera

[30]. At this point, the C-SUnSAL algorithm cannot accurately estimate abundance

fractions, because the original data collected by the CS camera is compressed and it

is difficult to reconstruct the data with low sampling rate.

The second experiment compares CAE and C-SUnSAL schemes using synthesis

data of 5 endmembers, since the 3DCS scheme is almost impossible to effectively

Fig. 2 Synthetic abundance map (RGB channels corresponding to three hyperspectral imagery)

Table 1 RSNR (dB) of abundances for different parameter values

10-1 10-2 10-3 10-4 10-5 10-6

l (q = 10-3) 18.21 24.03 25.25 15.36 15.66 15.62

q (l = 10-3) 6.62 15.00 25.25 24.97 24.91 24.91
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estimate the abundance at low sampling rates. The C-SUnSAL scheme requires

colleting 100% of the hyperspectral data, however, the CAE scheme requires only

1.12% of the data. The 5 endmembers are randomly selected USGS. The simulated

image consists of a set of 5 9 5 squares of 10 9 10 pixels each one, for a total size

of 90 9 90 pixels. The first row of squares contains the endmembers, the second

row contains mixtures of two endmembers, the third row contains mixtures of three

endmembers, and so on. The true abundance maps of 5 endmembers in the synthetic

hyperspectral data are shown in Fig. 4. Zero-mean Gaussian noises are added to the

synthetic scenes in with SNR changed from 25 to 50 dB.

Figure 5 shows the RSNR of CAE and C-SUnSAL schemes with different noise

levels. The change trend of RSNR curve of Fig. 5 is similar to that of Fig. 3.

Reconstruction performance of C-SUnSAL scheme is better than CAE. Since the

synthetic hyperspectral data of experiment 2 is sparser than that of experiment 1, the

RSNR of CAE in experiment 2 are higher than experiment 1 with different noise

levels. This is because the CAE scheme is based on the assumption that the signal is

sparse. The sparser the signal is, the better the reconstruction is.

Fig. 3 RSNR (dB) of abundances for three schemes with different noise levels. Sampling rate of
C-SUnSAL is 100%, 3DCS and CAE are only 0.67%

Fig. 4 True abundance maps of 5 endmembers in the synthetic hyperspectral data
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The estimated abundance maps of all endmembers for the previous two synthetic

experiments are shown in Fig. 6, where the white is high and black is low. From the

visual comparisons of Fig. 6, there is no obvious difference between the CAE and

C-SUnSAL. For the first synthetic scene, due to the complexity of scene, the

estimated abundance map of the third endmember for CAE is slightly noisy.

5.1 Results on Real Hyperspectral Imagery

Here, we generated compressed observed data Y by applying data acquisition model

(5) to two real hyperspectral data to illustrate proposed scheme performance. One is

the publicly available Low Altitude hyperspectral data collected by airborne visible/

infrared imaging spectrometer (AVIRIS) [31] sensor, which contained 224 bands in

a range from 0.41 to 2.45 mm with a 10-nm bandwidth. The other is Hengdian

hyperspectral data collected by push-broom hyperspectral imaging (PHI) of

shanghai institute of technical physics of the Chinese academy of sciences, which

contained 124 bands. The spatial resolutions of the two hyperspectral imagery used

in this paper are 256 9 256. The images at band 30 of the two data are shown in

Fig. 7.

Unlike the synthetic data set, the endmember signatures in this area are unknown.

In our experiment, we assumed the number of endmembers p = 4 and employed

VCA [5] method to find endmember signatures for the two data. Now, the total

sampling rate p/2L is about 0.0089 and 0.0179. Because of the lack of true

abundance maps, we only use the RSNR of hyperspectral data to evaluate the

unmixing results of three schemes. Table 2 shows the quantitative results and the

running time of three schemes for two hyperspectral data. From the running time of

Fig. 5 RSNR (dB) of CAE and C-SUnSAL schemes with different noise levels. Sampling rate of
C-SUnSAL is 100%, CAE is only 1.12%
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Table 2, we can see that the runtime of our scheme has the same order of magnitude

as C-SUnSAL algorithm. Although the reconstruction speed of our scheme is not

faster than C-SUnSAL algorithm, but due to the low amount of data collected by

CS, the time of data transmission is far less than that of C-SUnSAL. The runtime of

3DCS algorithm is of two orders of magnitude higher than our scheme. This is

because the reconstruction object of our scheme is abundance matrix and the

reconstruction object of 3DCS is the whole hyperspectral data matrix. The amount

of data processing of our scheme has greatly reduced. From the RSNR of

hyperspectral data in Table 2, we can see that 3DCS algorithm fails to achieve high

recovery accuracy and the RSNR of C-SUnSAL algorithm is higher 10 dB than our

scheme. However, the amount of data of our scheme is only about 1% of the

C-SUnSAL algorithm.

The estimated abundance maps of endmember 1 are shown in Figs. 8 and 9,

where the white is high and black is low. Our unmixing results with 0.89 and 1.79%

of the data are shown in Figs. 8b and 9b. Although, either for qualitative or

Fig. 6 Estimated abundance maps of each endmember on two synthetic scenes. The top two maps are
the results of CAE, and the bottom two maps are the results of C-SUnSAL
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quantitative analysis, our scheme is worse than abundance estimation from 100% of

the data. However, when hyperspectral data is collected by CS, our scheme is an

appropriate choice. Since abundance estimation from reconstructing data matrix is

Fig. 7 Band 30 of the hyperspectral imagery used. Left Low Altitude data. Right Hengdian data

Table 2 RSNR of data matrix and the runtime of three schemes for two hyperspectral data

Low Altitude Hengdian

RSNR(dB) Runtime(s) RSNR(dB) Runtime(s)

3DCS 0.1855 322.94 0.3469 206.90

CAE 18.91 3.75 30.10 3.27

C-SUnSAL 29.19 1.58 40.57 1.06

Sampling rate of C-SUnSAL is 100%, CAE for Low Altitude and Hengdian are respectively 0.89 and

1.79%

Fig. 8 Estimated abundance maps of endmember 1 for Low Altitude hyperspectral data a 3DCS, b CAE,
c C-SUnSAL
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practically impossible with very low measurements and scarcely any useful signals

are show in Figs. 8a and 9a.

Figure 10 shows the numbers of endmember of two hyperspectral dataset

influence the reconstruction performance of CAE and C-SUnSAL schemes. From

Fig. 10, we can see that the RSNR of C-SUnSAL schemes increases with the

increase of the numbers of endmember, while the RSNR curves of CAE schemes up

and down. When the numbers of endmember is low, the reconstruction performance

of CAE is better. This means that our CAE scheme is difficult to be applied to the

scene with rich spectral information of the ground objects.

From the synthetic and the real hyperspectral imagery experiments, we can see

that the computational cost of CAE almost the same as C-SUnSAL and the

estimation accuracy of CAE slightly worse than C-SUnSAL. The significant

Fig. 9 Estimated abundance maps of endmember 1 for Hengdian hyperspectral data a 3DCS, b CAE,
c C-SUnSAL

Fig. 10 The influence of numbers of endmember for two hyperspectral dataset, L low altitude dataset,
H Hengdian dataset
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advantage of the proposed CAE is that CAE can be applied to the abundance

estimation of the CS camera. However, the C-SUnSAL algorithm is only applicable

to the conventional hyperspectral imaging spectrometer. If the data is collected by

CS camera [30], the C-SUnSAL algorithm will not be able to estimate abundance.

6 Conclusion and Future Work

In this paper, a scheme to perform abundance fractions estimation is developed for

compressively sampled hyperspectral data. The scheme estimates abundance

fractions directly without reconstructing hyperspectral imagery. The proposed

scheme consists of two major parts: data acquisition by spatial-spectral compressive

sensing and abundance fractions estimating by solving a compressed unmixing

model with sparse prior.

In the first-part, we have collected hyperspectral data by spatial-spectral

compressive sensing and considered that the spectral signatures of the endmembers

are either precisely or approximately known. The experimental results on the

synthetic and real hyperspectral imagery showed that our scheme is an appropriate

choice when hyperspectral data is collected by compressive sensing.

In the second-part, we employ ‘1/2 norm of abundance fractions in the wavelet

domain to avoid the contradiction between ‘1 norm minimization and sum-to-one

constraint of abundance fractions. At the same time, an efficient algorithm has been

constructed for solving a compressed unmixing model based on the alternating

direction method of multipliers.

In future research efforts, there are two aspects worthy to be investigated.

Initially, the reconstruction abundance fractions from compressively sensed

hyperspectral data are far worse than from full data. In further work, we will

seek for the combination regularization using more prior knowledge such as

sparsity, total variation, and simplex projection to improve unmixing accuracy.

Next, in more practical situations, knowledge about endmember spectral signatures

is either very rough or even totally missing. We will investigate a more difficult task

to blindly unmix from compressively sensed hyperspectral data.
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