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Abstract A main challenge in computerized tomography consists in imaging

moving objects. Temporal changes during the measuring process lead to inconsis-

tent data sets, and applying standard reconstruction techniques causes motion

artefacts which can severely impose a reliable diagnostics. Therefore, novel

reconstruction techniques are required which compensate for the dynamic behavior.

This article builds on recent results from a microlocal analysis of the dynamic

setting, which enable us to formulate efficient analytic motion compensation

algorithms for contour extraction. Since these methods require information about

the dynamic behavior, we further introduce a motion estimation approach which

determines parameters of affine and certain non-affine deformations directly from

measured motion-corrupted Radon-data. Our methods are illustrated with numerical

examples for both types of motion.
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1 Introduction

In computerized tomography, a X-ray source is rotated around the investigated

object while illuminating the specimen. The measured data correspond to integrals

along straight lines of a function f, describing the X-ray attenuation coefficient of

the object. In two dimensions, the operator that maps f into the set of its line

integrals is the Radon transform

Rf ðu; sÞ ¼
Z
R2

f ðxÞ dðs� xThðuÞÞ dx; u 2 ½0; 2p�; s 2 R; ð1Þ

with hðuÞ ¼ ðcosu; sinuÞT and the delta-distribution d. To recover f from its

measured Radon data g, the inverse problem Rf ¼ g has to be solved.

Since the rotation of the source takes a certain amount of time, the data

acquisition is time-dependent. Temporal changes of the object during this period

lead to inconsistent data, i.e. g is not in the range of R. Thus, the application of

standard reconstruction methods like filtered backprojection, iterative methods etc.

[14] leads to motion artefacts in the images which can severely impede visual or

numerical image evaluation for the diagnostic analysis. This occurs in medical

imaging, for example due to respiratory or cardiac motion, as well as in non-

destructive testing, e.g. while imaging driven liquid fronts.

Several methods have been proposed to reduce the motion artefacts. In the

special case of periodic deformations like respiratory or cardiac motion, gating

methods can be applied [2, 15]. A more general approach is based on incorporating

the object’s dynamic behaviour within the reconstruction method [1, 3, 4, 7, 8].

However, many of these approaches are only valid for a specific type of

deformation, especially affine deformations.

In this article, we propose to exploit recent results from the microlocal analysis of

the dynamic setting [5] which leads to methods extracting the contours of the

objects without motion artefacts. Although no exact inversion formula is known so

far in the general dynamic case, our discussion and numerical results reveal that this

framework can also provide good approximations to the exact density.

In general, the dynamic behaviour is a priori unknown and, hence, has to be

extracted from the measured data. In [13], the parameters of a global linear scaling

are determined by detecting traces of nodal points in the sinogram. For global

rotations and translations, an estimation procedure using data consistency conditions

is provided in [18]. Iterative procedures are, for example, based on edge entropy [9],

or perform estimation and reconstruction steps simultaneously [17]. In this article,

we extend the idea of [13] to more general types of deformations. At the example of

affine and certain non-affine deformations, respectively, we illustrate how their

parameters can be efficiently determined such that the derived motion information

can be utilized to compensate for the motion.

The article is organized as follows. In Sect. 2, we introduce the mathematical

model of dynamic computerized tomography. On the assumption that the motion is

known, we develop a strategy for contour extraction from dynamic Radon data as

well as a regularization scheme in Sect. 3. Section 4 is devoted to the derivation of a
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motion estimation procedure. Its feasibility is illustrated at numerical examples

combining our motion estimation and compensation strategies in Sect. 5.

2 The Mathematical Framework

2.1 Computerized Tomography with Moving Objects

The time-dependent step of the data acquisition in computerized tomography is the

rotation of the X-ray source since X-ray beams from only one source position are

emitted at the same time. Thus, each source position can be uniquely identified by a

time instance t and vice versa. Concerning the Radon transform (1), the source

position is parameterized by the angle u 2 ½0; 2p�. Its relation to a time instance tu is

given by u ¼ tu/ with the constant angular velocity / of the radiation source.

Therefore, in our notation, u is interpreted as time instance and ½0; 2p� as time

interval, respectively.

The dynamic behavior of the specimen is considered to be due to particles which

change position in time in a fixed coordinate system of R2. This physical

interpretation allows the following mathematical description:

Let f denote the X-ray attenuation coefficient of the specimen at the beginning of

the scanning, i.e. at time instance u ¼ 0. We call f reference function throughout the

article. Without loss of generality, we consider f 2 L2ðV1ð0ÞÞ with the unit circle

V1ð0Þ [14]. The object’s state at a time instance u is then described by fu with

fuðxÞ :¼ f ðCuxÞ: ð2Þ

Within this model, the diffeomorphic motion function Cu denotes which particle is

at coordinate x at time u, with C0 being the identity map. Conversely, the inverse

C�1
u x denotes the position of the particle initially at coordinate x at time instance u.

Especially, the mapping

trx : ½0; 2p� ! R2

trxðuÞ ¼ C�1
u x

describes the trajectory of a fixed particle (the one initially at coordinate x) over

time. In many (medical) applications, the evolution of the specimen is smooth in

time. Therefore, we consider

C : ½0; 2p� � R2 ! R2; Cðu; xÞ :¼ CuðxÞ

to be smooth with respect to u. Such motion models are commonly used in the

literature, see e.g. [1, 8].

In this article, we consider deformations Cu; u 2 ½0; 2p�, which further fulfill the

following properties:

(i) For each u, the map
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x 7!
Hðu; xÞ

DuHðu; xÞ

� �
ð3Þ

is one-to-one, with Hðu; xÞ :¼ ðC�1
u xÞThðuÞ and Du the gradient with

respect to u.
(ii) It holds

det
DxHðu; xÞ

DxDuHðu; xÞ

� �
6¼ 0 8 x;u: ð4Þ

Basically, these conditions ensure that the object’s motion does not result in

trivial sampling schemes for f. A detailed interpretation of these properties is given

in [5].

The measured data g for a moving object correspond to

gðu; sÞ ¼ Rfuðu; sÞ:

Incorporating the relation (2) yields the following dynamic forward operator

RCf ðu; sÞ :¼
Z
R2

f ðCuxÞ dðs� xThðuÞÞ dx:

The change of variables z :¼ Cux reveals, that this operator integrates f along the

curves

Cðu; sÞ ¼ x 2 R2 : ðC�1
u xÞThðuÞ ¼ s

n o
:

The trajectory of a fixed particle x in the measured data is therefore given by

sx : ½0; 2p� ! R

sxðuÞ ¼ ðC�1
u xÞThðuÞ:

We denote the backprojection operator by Rt
C and define it as

Rt
CgðxÞ ¼

Z 2p

0

j detDxC
�1
u xj g u; ðC�1

u xÞThðuÞ
� �

du; ð5Þ

see [5] for details.

The overall goal is to stably recover f from measured dynamic data g ¼ RCf with

unknown motion maps Cu; u 2 ½0; 2p�. In Sect. 4, we present a procedure which

determines information about Cu directly from g without knowledge of f. This

shows that the two tasks estimation of C and reconstruction of f can be decoupled.

Therefore, we first address the recovery of f from g ¼ RCf with known motion C. In
this context, pseudodifferential operators will arise. Thus, we now give a short

introduction to this class of operators.
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2.2 Pseudodifferential Operators

The concept of pseudodifferential operators (wDOs) can be seen as an extension of

partial differential operators via the Fourier transform.

Here, we introduce the formal definition of a wDO P acting on a function or

distribution g with domain ½0; 2p� � R. For the general definition, see [6, 10, 16]

Throughout the article, the Fourier transform of g is defined as

bgðu; rÞ :¼ ð2pÞ�1=2

Z
R

gðu; sÞe�isr dr:

Definition 1 Let X � R be an open interval, and let ½0; 2p� � X be the domain of g.

A pseudodifferential operator of order m is an operator of the form

Pgðu; sÞ ¼ ð2pÞ�1

Z
eirðs�sÞ pðs; s; rÞ gðu; sÞ ds dr;

where the symbol p satisfies the following properties:

(i) pðs; s; rÞ 2 C1ðX� X� R n f0gÞ,
(ii) For every compact set K � X and index a; b; c 2 N,

(a) there is a constant C ¼ CðK; a; b; cÞ such that

jDa
sD

b
sD

c
rpðs; s; rÞj �Cð1þ krkÞm�jcj; for jrj[ 1;

(b) and p is locally integrable for s; s 2 K and jrj � 1.

The operator P is elliptic of order m if for each compact set K � X, there is a

constant CK [ 0 such that for s; s 2 K and jrj �CK

jpðs; s; rÞj �CKð1þ jrjÞm:

According to this definition, P acts only on the second variable of g. Therefore,

we can consider p depending on u as well. In this case,

Pgðu; sÞ ¼ ð2pÞ�1

Z
eirðs�sÞ pðu; s; s; rÞ gðu; sÞ ds dr

is a wDO if p satisfies the above properties for each u 2 ½0; 2p�.
If the symbol pðu; s; rÞ is independent of s, this representation simplifies to

Pgðu; sÞ ¼ ð2pÞ�1=2

Z
pðu; s; rÞ bgðu; rÞ eisr dr: ð6Þ
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3 Artefact Reduction Strategies for Known Motion

3.1 A Motion Compensation Approach

In [5], the authors proved the following property of the dynamic forward operator.

Theorem 1 RC is a Fourier Integral Operator

RCf ðu; sÞ ¼
Z

f ðxÞ aðu; s; x; ; rÞ eiUðu;s;x;rÞ dxdr

with phase function

Uðu; s; x;rÞ ¼ rðs� ðC�1
u xÞThðuÞÞ

and amplitude

aðu; s; x; rÞ ¼ ð2pÞ�1j detDxC
�1
u xj:

From the theory of Fourier Integral operators, we known that this kind of

operators encode the singularities of f in a unique way. Formally, singularities of a

distribution are defined as the elements in the complement of the largest open set on

which the distribution is C1 smooth. In imaging applications, singularities typically

constitute the contours of a piecewise smooth object. Therefore, we focus in the

following on the contour extraction as motion compensation strategy.

Using the mathematical theory of microlocal analysis, the authors in [5] derived

the following property.

Theorem 2 Let Cu; u ¼ ½0; 2p� satisfy the conditions (3), (4), and let L be the

operator defined by

Lf :¼ Rt
CPRCf ð7Þ

with an elliptic pseudodifferential operator P.
Then, L preserves the contours of f which are ascertained in the measured data.

Proof The statement of the theorem follows directly from Theorem 26 in [5]. h

Interpretation of Theorem 2: By computing

Lf ¼ Rt
CPg

from the measured dynamic data g ¼ RCf , we are guaranteed to obtain the contours

of f, as far as encoded in the data, without motion artefacts.

Therefore, in the following, we propose to exploit this property (which can be

interpreted as an approximate inversion formula) to develop an analytic recon-

struction procedure eliminating motion artefacts.
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Remark

(i) Under the conditions (3) and (4) on C, a singularity x0 is ascertained in the

measured data if and only if there exists an integration curve Cðu; sÞ passing
through x0, whose tangent at x0 is perpendicular to the normal vector n0 of
the contour at x0. This is illustrated in Fig. 1 and derived in detail in [5].

In the static case, this property is fulfilled for all singularities x0 if Radon

data for the complete angular range ½0; 2p� are available. However, the

dynamic behavior of the object can cause that the above condition is no

longer fulfilled for all singularities x0 and hence leads to limited data. In this

case, the information about such a singularity is not contained in the

measured data, even if the radiation source completes one turn around the

object. Especially, no reconstruction algorithm will be able to return this

information without additional knowledge.

(ii) According to Theorem 2, Lf will not show motion artefacts. However, some

additional artefacts might occur if the motion is non-periodic. They would

be caused by singularities ascertained at the beginning and the end of the

scanning, and they would spread along the respective integration curve.

These additional artefacts have been studied in detail in [5].

Please note that both scenarios are intrinsic due to the nature of the dynamic

problem.

3.2 An Example for Choosing the Pseudodifferential Operator P

For g with domain ½0; 2p� � R, the Riesz potential I�1 is defined by

dI�1gðu; rÞ :¼ jrj bgðu; rÞ:
According to Definition 1, I�1 is an elliptic wDO with symbol pðrÞ ¼ jrj.

In the static case, i.e. Cu corresponding to the identity for all u, (7) with P ¼ I�1

and the inversion formula for the Radon transform [14] yields

Lf ¼ RtI�1g ¼ 4pR�1g ¼ 4p f ;

x0 ξ0

Fig. 1 Illustration of an
ascertained singularity
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and hence, we can obtain the exact values of the attenuation coefficient.

For certain affine deformations Cu :¼ Auxþ bu; Au 2 R2�2; bu 2 R2; u 2
½0; 2p�, it holds the exact inversion formula [3]

f ¼ 1

4p
Rt

C j detAuj2 jhðuÞjI�1RCf
� �

with

hðuÞ :¼ ðA�1
u ÞThðuÞ

� �
1

o

ou
ðA�1

u ÞThðuÞ
� �

2
� ðA�1

u ÞThðuÞ
� �

2

o

ou
ðA�1

u ÞThðuÞ
� �

1
:

Thus, by choosing P as the motion-dependent wDO with symbol

pðu; rÞ :¼ j detAuj2 jhðuÞj ð4pÞ�1 jrj;

(7) can provide the exact density values as well.

For general deformations, no inversion formula is known so far and it remains an

open problem on how P has to be choosen such that L equals the identity operator.

However, utilizing P ¼ I�1 provides at least a reconstruction which preserves all

encoded contours of f. Moreover, our numerical results in Sect. 5 illustrate that this

choice can actually provide a very good approximation to the exact attenuation

coefficient.

3.3 Regularization Scheme

For the stable recovery of Lf from the measured data g, a regularization is required

due to the ill-posed nature of the problem. Based on (7) and a certain class of

pseudodifferential operators, we derive a regularization scheme in analogy to the

filtered backprojection in the static case.

Let P be a wDO whose symbol pðu; rÞ is independent of s and s. In this case, Lf
of form (7) with g ¼ RCf is given by

Lf ðxÞ ¼
Z 2p

0

j detDxC
�1
u xj Pgðu; ðC�1

u xÞThðuÞÞ du

¼ ð2pÞ�1=2

Z 2p

0

j detDxC
�1
u xj

Z
R

pðu; rÞ bgðu; rÞ eiðC�1
u xÞTrhðuÞ drdu;

where we used the integral representations (5) and (6) for Rt
C and P, respectively.

According to our previous discussion, wDOs related to Riesz potentials represent

a suitable choice. For such wDOs, however, the symbol p tends to infinity as

r ! 	1, and hence, the high frequencies of the data are amplified. A regularized

version ðLf Þc is therefore obtained by inserting a low-pass filter FcðrÞ, i.e.
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ðLf ÞcðxÞ

¼ ð2pÞ�1=2

Z 2p

0

j detDxC
�1
u xj

Z
R

pðu; rÞFcðrÞ bgðu; rÞeiðC�1
u xÞTrhðuÞ drdu:

With bwcðu; rÞ :¼ ð2pÞ�1=2
pðu; rÞFcðrÞ, the convolution property of the Fourier

transform results in

ðLf ÞcðxÞ ¼ Rt
Cðwc 
 gÞðxÞ;

and hence an algorithm of type filtered backprojection for the dynamic case.

The filter wc is independent of the data, and therefore can be precomputed. It is

further independent of the dynamic behavior, if this is the case for the symbol p.

Especially, choosing P with pðu; rÞ ¼ jrj, i.e. as the Riesz potential, shows that any
reconstruction kernel known from the static case can be used for the reconstruction

from dynamic data as well. Further, within the respective reconstruction procedure,

only the inverse motion functions C�1
u ; u 2 ½0; 2p� are required (and not Cu as well).

A more general regularization approach is based on the approximate inverse [11],

where a smoothed version of Lf is computed by evaluating linear functionals of the

data and a precomputed reconstruction kernel. In general, the contour extraction can

increase the degree of ill-posedness. The approximate inverse for feature

reconstruction, developed in [12], provides an efficient and robust method by

recovering the features directly from the data.

4 A Motion Estimation Procedure

The proposed motion compensation method requires a priori information about the

dynamic behavior in form of suitable motion functions C�1
u . However, in

applications, the deformation is unknown and has to be estimated from the

measured motion-corrupted CT-data as well. To this end, we present now a method

to estimate parameters describing the inverse motion functions from the dynamic

data g ¼ RCf .

The dynamic operator RC maps a particle x on a sinusoidal curve

Sdynx ¼ ðC�1
u xÞThðuÞ ¼: sxðuÞ; u 2 ½0; 2p�

n o
; ð8Þ

see also Fig. 2. In the following, we assume that there are several nodal points xi,

i.e. particles within the object with high density value, such that their trajectories

sxiðuÞ could be detected from the sinogram g ¼ RCf .

Remark

(i) In applications, it is not possible to resolve a single particle x. Instead, we

can consider a marker, i.e. a very small symmetric object, centered at x,

which creates a narrow sinusoidal streak in the sinogram. Detecting the

centerline of this streak then corresponds to the trajectory of the nodal point

x, see Fig. 3 .
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Such markers can be generated e.g. by injecting a contrast agent or by

attaching gold particles to the surface of the investigated object.

(ii) The initial position x ¼ ððxÞ1; ðxÞ2Þ
T 2 R2 of a nodal point might be

unknown, especially if it is placed in the object’s interior. Since C0

corresponds to the identity, it holds however

sxð0Þ ¼ xThð0Þ ¼ ðxÞ1;

i.e. the component ðxÞ1 of x is provided by the detected trajectory. Further,

it holds

DusxðuÞ ¼ cosðuÞ o

ou
ðC�1

u xÞ1 � sinðuÞðC�1
u xÞ1

þ sinðuÞ o

ou
ðC�1

u xÞ2 þ cosðuÞðC�1
u xÞ2:

For u in a vicinity of zero, C�1
u corresponds approximately to the identity,

leading to

Dusð0Þ � ðxÞ2:

Thus, the marker position x can be detected from the measured data.

Fig. 2 Trajectory sx of a
single particle at position

x ¼ ð0:415;�0:665ÞT

Fig. 3 Sinogram of a circle
with radius 0.03 centered at

x ¼ ð0:415;�0:665ÞT with its
centerline (white)
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Based on the detected values sxiðuÞ; u 2 ½0; 2p� for several nodal points

xi; i ¼ 1; . . .M, (8) yields the following system of equations

sxiðuÞ ¼ C�1
u xi

� �T
hðuÞ; i ¼ 1; . . .;M ð9Þ

from which the unknown parameters of C�1
u can be extracted for each time instance

u.

4.1 Affine Deformations

In the following, we study the case of affine motion models in more detail, i.e. for

each u 2 ½0; 2p�, it holds

C�1
u x ¼ Auxþ bu;

with unknown matrix Au 2 R2�2 and unknown translation vector bu 2 R2. The goal

is to determine Au and bu for each u 2 ½0; 2p� from the system of equations (9).

To this end, we consider a parametrization of Cu; u 2 ½0; 2p� which turns out to

be suitable for the problem of motion compensation.

Let a1u; a
2
u 2 R2 be the columns of the unknown matrix A. Since fhðuÞ; hðuÞ?g

forms an orthonormal basis on R2, there exists a unique representation of the vectors

a1u; a
2
u and bu in this basis:

a1u ¼ v1;uhðuÞ þ w1;uhðuÞ?; v1;u;w1;u 2 R;

a2u ¼ v2;uhðuÞ þ w2;uhðuÞ?; v2;u;w2;u 2 R;

bu ¼ v3;uhðuÞ þ w3;uhðuÞ?; v3;u;w3;u 2 R:

For time instance u, the dynamic operator RC integrates along the curves

x 2 R2 : ðC�1
u xÞThðuÞ ¼ s

n o
; s 2 R:

With our representation of Cu, it holds

ðC�1
u xÞThðuÞ ¼ xTðAT

uhðuÞÞ þ bTuhðuÞ

¼ xT
a1u

T
hðuÞ

a2u
T
hðuÞ

 !
þ bTuhðuÞ

¼ xT
v1;u

v2;u

� �
þ v3;u:

ð10Þ

Thus, the integration curve at time instance u depends only on the components of

Cu in direction hðuÞ. If eCu denotes an affine motion function with parameters
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~a1u ¼ v1;uhðuÞ þ q hðuÞ?; q 2 R

~a2u ¼ v2;uhðuÞ þ s hðhÞ?; s 2 R

~bu ¼ v3;uhðuÞ þ mhðuÞ?; m 2 R;

then

ðeC�1
u xÞThðuÞ ¼ ðC�1

u xÞThðuÞ:

Hence, eCu and Cu lead to the same data set RC ¼ ReC : Therefore, to compensate

for the object’s motion, it is sufficient to know the parameters v1;u; v2;u; v3;u 2 R

for each u 2 ½0; 2p�.
For each nodal point xi; i ¼ 1; . . .;M and for each u, combining (10) and (9)

leads to the equation

ðxiÞ1 ðxiÞ2 1
� � v1;u

v2;u

v3;u

0
B@

1
CA ¼ sxiðuÞ:

For M� 3 nodal points, this results for each u in the linear system of equations

X1 X2 1ð Þ
v1;u

v2;u

v3;u

0
B@

1
CA ¼ SðuÞ;

with

1 :¼ ð1; . . .; 1ÞT 2 RM; SðuÞ :¼ ðsx1ðuÞ; . . .; sxM ðuÞÞ
T ;

the latter comprising the detected trajectory values, and

X1 :¼ ðx1Þ1; . . .; ðxMÞ1
� �T

; X2 :¼ ðx1Þ2; . . .; ðxMÞ2
� �T

being the vectors containing the first and second component of the nodal points,

respectively.

From the parameters v1;u; v2;u; v3;u, we obtain motion functions eCu suitable for

motion compensation via

eC�1
u x :¼

v1;uðhðuÞÞ1 � qðhðuÞÞ2 v2;uðhðuÞÞ1 � sðhðuÞÞ2
v1;uðhðuÞÞ2 þ qðhðuÞÞ1 v2;uðhðuÞÞ2 þ sðhðuÞÞ1

� �
xþ v3;uhðuÞ:

ð11Þ

The free parameters s; q 2 R should be chosen such that the determinant of the

matrix, i.e. jsv1;u � qv2;uj, is larger than zero in order to ensure the diffeomorphism

property of eCu. A suitable choice is, e.g., given by s :¼ v1;u and q :¼ �v2;u.

Further, the location of the nodal points can ensure the linear independency of the

matrix X1 X2 1ð Þ as well as an optimal condition number.
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4.2 Extension to Certain Nonlinear Deformations

The above described procedure can be extended to non-linear deformations

Cu; u 2 ½0; 2p�, of the form

C�1
u x ¼ bu þ

XN
j¼1

AðjÞ
u xj ð12Þ

with A
ðjÞ
u 2 R2�2; bu 2 R2. The j-th power of a vector x ¼ ððxÞ1; ðxÞ2Þ

T
is consid-

ered componentwise, i.e.

xj :¼
ðxÞj1
ðxÞj2

 !
; j ¼ 1; . . .;N:

Remark For general non-linear deformations which are N-times differentiable,

such a representation could be obtained by formally approximating C�1
u compo-

nentwise by Taylor polynomials around zero of order N.

With such a representation, we obtain

ðC�1
u xÞThðuÞ ¼ bu þ

XN
j¼1

AðjÞ
u xj

 !T

hðuÞ ¼
XN
j¼1

ðAðjÞ
u xjÞThðuÞ þ bTuhðuÞ

¼
XN
j¼1

ðxjÞTðAðjÞ
u

T
hðuÞÞ þ bTuhðuÞ:

Thus, in analogy to the affine case with v
ðjÞ
1;u; v

ðjÞ
2;u denoting the components of the

columns of AðjÞ in direction hðuÞ, and v3 :¼ bThðuÞ, we obtain

ðC�1
u xÞThðuÞ ¼

XN
j¼1

v
ðjÞ
1;ux

j
1 þ v

ðjÞ
2;ux

j
2

� �
þ v3;u:

ForM� 2N þ 1 nodal points, this leads together with (9) for each time instance u to

the linear system of equations

X1 . . . XN
1 X2 . . . XN

2 1
� �

v
ð1Þ
1;u

..

.

v
ðNÞ
1;u

v2;u

..

.

v
ðNÞ
2;u

v3;u

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼ SðuÞ:
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The set up of the estimated motion function eC�1
u occurs in analogy to (11).

5 Numerical Results

We evaluate our methods at two numerical phantoms with affine and non-affine

dynamic behavior, respectively. In both cases, the Radon data are computed with

P ¼ 300 directions, covering the upper half circle, and 451 detector points.

5.1 Affine Deformations

We consider the chest phantom in Fig. 4, whose respiratory motion during the data

collection is modelled by affine motion functions Cux ¼ Auxþ bu with

Au :¼ diagðzðuÞ; zðuÞ�1Þ; bu ¼ ð0:44ð1� zðuÞÞ; 0ÞT

and

zðuÞ ¼ 0:05 cosð0:042 � uP=pÞ þ 0:95:

To illustrate the motion compensation property of our reconstruction approach,

we use the regularization scheme described in Sect. 3.3 with P ¼ I�1, the Dawson

filter [12]

wcðsÞ ¼ 1

2p2c2
1�

ffiffiffi
2

p
s

c
D

sffiffiffi
2

p
c

� �� �
;

where D denotes the Dawson’s integral

DðsÞ ¼ expð�s2Þ
Z s

0

expðt2Þ dt;

and the exact motion parameters. The result in Fig. 5 shows that the motion

Fig. 4 Chest phantom. Left reference state (t ¼ 0, state before inhale). Right state before exhale
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artefacts are actually eliminated, compared to the reconstruction result with a

standard filtered backprojection algorithm from the static case, see Fig. 6. Fur-

ther, the cross-sections in Fig. 5 reveal that we even obtain a good approxi-

mation to the exact density values. The actual contours of the specimen can be

obtained, e.g., by choosing P with symbol pðu; rÞ ¼ i signðrÞr2ðcosðuÞþ
sinðuÞÞ, see Fig. 7.

To estimate the motion parameters, we add three external markers, represented

by small circles of radius 0.03 at positions ð�0:64; 0ÞT ; ð0; 0:85ÞT and

ð0:415;�0:665ÞT , respectively. The centerlines of their trajectories are estimated

directly from the respective Radon data, see Fig. 8. The reconstruction of the

reference function with the estimated parameters still provides a good visualization

of the original phantom, see Fig. 9. The stability of the presented method is

illustrated in Fig. 10, where motion estimation and compensation are performed on

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

reconstructed values
exact density values

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

Fig. 5 Dynamic reconstruction with exact motion parameters, and its cross-sections along the ðxÞ1-axis
(top right) and ðxÞ2-axis (bottom right)

Fig. 6 Reconstruction with
filtered backprojection from the
static case
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a data set disturbed by a sample of noise uniformly distributed in ½�0:02; 0:02�. A
comparison of the estimated motion parameters from noisy data and the respective

exact values is displayed in Fig. 11.

Fig. 7 Direct reconstruction of
the contours from dynamic data

Fig. 8 Sinogram of the three
nodal points for the chest
phantom with detected
trajectories

Fig. 9 Dynamic reconstruction
with estimated motion
parameters from exact data
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5.2 Non-affine Deformation

To evaluate our methods for non-affine deformations, we consider the phantom in

Fig. 12, whose dynamic behavior is given by C�1
u x ¼ ððC�1

u xÞ1; ðC�1
u xÞ2Þ,

Fig. 10 Dynamic
reconstruction with estimated
motion parameters from noisy
data

90◦ 180◦

−1

−0.5

0

0.5

1

exact motion parameter
estimated parameter

90◦ 180◦

0

0.2

0.4

0.6

0.8

1

90◦ 180◦

−0.03

0

0.03

Fig. 11 Exact motion parameters v1;u; v2;u; v3;u (from left to right, solid lines) and estimated motion

parameters from noisy data (dotted lines)

Fig. 12 Reference state of the second phantom (left) and its state at the end of the data collection (right)
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C�1
u x

� �
i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5aiðuÞðxÞi þ 15

p
aiðuÞ

� 1; aiðuÞ ¼
2

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
miðuÞ
miðpÞ

4

s
; i ¼ 1; 2

with m1ðuÞ ¼ sinð0:015u=pÞ; m2ðuÞ ¼ sinð0:021u=pÞ. Computing its inverse

ðCuxÞi ¼ ðxÞi
X4
j¼0

ð~aiðuÞðxÞiÞ
j

reveals that this deformation represents a nonlinear scaling in each component.

Although our motion compensation algorithm with P ¼ I�1 and the Dawson

filter is not based on an exact inversion formula, the reconstruction result displayed

in Fig. 13 with exact motion parameters illustrates that it nevertheless provides a

good approximation to the true density values.

To obtain a representation of type (12) and to estimate C�1
u from the measured

data, we approximate each of its components by a Taylor polynomial around zero of

order 3. By analytic calculation of the Taylor series, one can show that the phantom

is at each time step compactly supported in VRð0Þ with R being the radius of

convergence. Thus, in our example, the proposed approximation of C�1
u x is

mathematically justified.

To determine the 7 unknown parameters of our approximated motion functions in

each time step, we use the trajectories of 7 nodal points. In applications, these have

to be extracted from measured Radon data, but for simplicity, we calculate the

trajectories directly via the exact motion functions. However, to provide realistic

numerical results, the exact trajectory values are distorted by a Gaussian noise with

standard deviation 1:5 � 10�3 in order to account for errors arising during the

detection from noisy measured data, see Fig. 14. Employing the respective

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

reconstructed values
exact density values

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

Fig. 13 Dynamic reconstruction with known motion (left) and cross-sections along the x1-axis (top right)
and x2-axis (bottom right)
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estimated motion parameters within the reconstruction step from noisy data

provides the result shown in Fig. 15. We can conclude that we still obtain a good

visualization of the original phantom with significantly reduced motion artefacts,

especially compared to the static reconstruction, Fig. 16.

Fig. 15 Dynamic
reconstruction from noisy data
with estimated non-linear
motion parameters

Fig. 16 Reconstruction with
filtered backprojection from the
static case

Fig. 14 Trajectories used for the non-linear motion estimation
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6 Conclusion

In this article, we presented a motion compensation strategy, which guarantees a

correct reconstruction of the contours of an object (provided they were encoded in the

measured Radon data). Its regularized version leads us to an algorithm of type filtered

backprojection for the dynamic case.We further illustrated at numerical examples that

using a standard filter from the static case and the dynamic backprojection operator can

provide a good approximation to the exact density values.

Nevertheless, a priori information about the dynamic behavior are essential for a

successful, artefact-free reconstruction. Therefore, we further introduced an

approach to estimate information about the dynamic behavior directly from the

measured data, and combined motion estimation and compensation step. Our

numerical results illustrate the good performance of our methods for both affine and

non-affine deformations.
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