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Abstract Fusion of spectral and spatial information is an effective way in

improving the accuracy of hyperspectral image classification. In this paper, a novel

spectral–spatial hyperspectral image classification method based on K nearest

neighbor (KNN) is proposed, which consists of the following steps. First, the

support vector machine is adopted to obtain the initial classification probability

maps which reflect the probability that each hyperspectral pixel belongs to different

classes. Then, the obtained pixel-wise probability maps are refined with the pro-

posed KNN filtering algorithm that is based on matching and averaging nonlocal

neighborhoods. The proposed method does not need sophisticated segmentation and

optimization strategies while still being able to make full use of the nonlocal

principle of real images by using KNN, and thus, providing competitive classifi-

cation with fast computation. Experiments performed on two real hyperspectral data

sets show that the classification results obtained by the proposed method are

comparable to several recently proposed hyperspectral image classification

methods.

Keywords Spectral–spatial hyperspectral image classification � K nearest

neighbor � Optimization � Support vector machines

This article is part of the Topical Collection on Hyperspectral Imaging and Image Processing.

& Shutao Li

shutao_li@hnu.edu.cn

1 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China

123

Sens Imaging (2016) 17:1

DOI 10.1007/s11220-015-0126-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s11220-015-0126-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11220-015-0126-z&amp;domain=pdf


1 Introduction

Hyperspectral sensors capture more than one hundred spectral bands which provide

rich spectral information regarding the physical nature of different materials. For

instance, the Airborne Visible-Infrared Imaging Spectrometer (AVRIS) system can

capture 224 spectral channels with a spectral resolution of around 10 nm, covering

the wavelength from 0.4 to 2.5 lm. The wide spectral coverage and fine resolution

of the hyperspectral data provide the capability to distinguish objects in the image

more accurately. However, it also presents challenges to image classification due to

the high dimensionality of the data. Specifically, traditional image processing tools

for the analysis of gray-level or color images may be not appropriate for

hyperspectral images. For instance, Hughes phenomenon may be produced for

classification due to the well known curse of dimensionality, which means that the

accuracy of classification algorithms may decrease significantly while the dimen-

sionality of the data increases [1]. In order to make full use of the rich spectral

information provided by the high spectral dimension, many different hyperspectral

image classification algorithms have been developed in recent years [2].

In the first beginning, many algorithms were designed to classify each pixel of

the hyperspectral image based on its spectrum only [2]. These methods are known

as pixel-wise methods which can be divided into two categories: spectral feature

extraction and spectral classification. The spectral feature extraction process only

aims at reducing the spectral dimension of the data using linear and nonlinear

transformations such as principal component analysis (PCA) [3] and independent

component analysis (ICA) [4]. In addition to spectral feature extraction, spectral

classification methods such as Bayesian estimation techniques [5], neural networks

[6], decision trees [7], and genetic algorithms [8] also have been investigated to

learn the class distributions in high-dimensional spaces by inferring the no-linear

boundaries between classes in feature space. Among these methods, support vector

machines [9] has shown robust classification performances when a limited number

of training samples is available.

In recent years, it is found that the integration of spectral and spatial information

in the image analysis can further improve the classification results. Specifically, a

hyperspectral pixel is classified based on both the feature vector of this pixel and

feature values extracted from the pixel’s neighborhood. Morphological filters [10,

11] and other types of local filtering approaches [12–15] have been investigated to

develop novel spatial feature extraction and classification methods. Zhang et al. [16,

17] investigated several frameworks which aim at combing multiple features to

improve the classification accuracy. These methods have been demonstrated to

show promising results in terms of classification accuracies. However, local

processing techniques such as the recently proposed edge-preserving filtering based

method [15] only consider the local neighborhoods. Although the local neighbor-

hoods can be defined using different scales of filtering operations, this kind of

methods cannot make full use of the deep and global spatial correlations among

hyperspectral pixels.
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Another approach which can make full of the spatial information is based on

image segmentation [18]. Segmentation based classification usually consists of the

following two steps: First, the hyperspectral image is segmented into non-

overlapping homogeneous regions. Then, the classification result is obtained based

on the pixel-wise classification, followed by major voting within the segmented

regions. To make this approach applicable, accurate and automatic hyperspectral

image segmentation is required. Different techniques have been successfully applied

for hyperspectral image segmentation, such as watershed [19], partitional clustering

[20], and hierarchical segmentation [21]. Although these approaches can usually

lead to an improvement of classification accuracy, the segmentation algorithm may

be time consuming.

In this paper, a novel spectral–spatial hyperspectral image classification method

is introduced based on KNN searching in a novel feature space [22]. The main

contributions of the paper are twofold: The first contribution is the extension of

KNN searching for the non-local filtering of images which can make full use of the

spatial correlation among adjacent pixels. The second contribution is the extension

of the KNN based filtering algorithm to spectral–spatial hyperspectral image

classification. Specifically, the KNN based filtering algorithm is used to refine the

initial probability maps obtained by pixel-wise classifier. The resulting classification

map is obtained by assigning each pixel with the label which gives the highest

probability. This probability optimization based scheme is similar to our previous

works which optimize the probabilities by using edge-preserving filtering [15] and

extended random walkers [23] (a global optimization method). In comparison with

the two methods, the major advantage of the proposed KNN method is that it can

make full use of the non-local spatial information of the hyperspectral image while

does not need to solve a global energy optimization problem. In this work, it is

shown that such a KNN based non-local filtering scheme is able to improve the

classification accuracies effectively. Experiments performed on two real hyper-

spectral data sets demonstrate the effectiveness of the proposed method.

The rest of this paper is organized as follows. Section 2 describes the proposed

KNN based image filtering algorithm. Section 3 introduces the proposed KNN

based spectral-spatial classification method in detail. Section 4 gives the results and

discussions. Finally, conclusions are given in Sect. 5.

2 KNN Based Non-local Image Filtering

The k-nearest-neighbor (KNN) classifier is one of the simplest and most widely

used nonparametric classification methods. Although it has been successfully used

for hyperspectral image classification, the KNN is usually utilized as a pixel-wise

classifier in these researches which rely heavily on the optimal distance metric and

feature space [24–26]. Different from these works, in this paper, KNN is used to

search similar non-local pixels for image filtering rather than to achieve a direct

classification of each pixel.

Rather than searching the nearest neighbors in the pixel value domain, the

nonlocal principle can be implemented by computing the K nearest neighbors in the
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feature space which includes both pixel value and spatial coordinates. Specifically,

the feature vector F(i) is defined as follows:

FðiÞ ¼ ðIðiÞ; k � lðiÞ; k � hðiÞÞ; ð1Þ

where I(i) refers to the normalized pixel value, l(i) and h(i) refer to the normalized

longitude and latitude of pixel i, respectively. k controls the balance between pixel

value and spatial coordinate in the KNN searching process. In order to do the KNN

searching efficiently, the Fast Library for Approximate Nearest Neighbors

(FLANN) is adopted to compute the K nearest neighbors in the defined feature

space [27].

Generally, the KNN filtering process involves a guidance image I, an input image

P, and an output image O. Both I and P are given beforehand according to the

application. As shown in Fig. 1, P is one of the probability maps estimated with

Support Vector Machines (SVM). I is the first principal component of the

hyperspectral image. Given I and P, the KNN based nonlocal filtering method can

be defined as follows:

OðiÞ ¼
P

PðjÞ
K

; j 2 xi; ð2Þ

where xi refers to the K nearest neighbors of pixel i found in the feature space F(i)

defined in (1), O(i) is the filtering output. As shown in Fig. 1, when k ¼ 0, the

spatial distances between different pixels are not considered in the filtering opera-

tion, and thus, the KNN filtering cannot effectively transfer the spatial structures of

I to P. By contrast, through modeling the spatial coordinates and pixel value in the

same feature space, the spatial structures of the guidance image can be used to refine

the boundaries in the input image (see Fig. 1d). This property makes it possible to

apply the KNN filtering for spectral–spatial hyperspectral image classification.

3 Spectral–Spatial Hyperspectral Image Classification with KNN

In this section,the information about spatial structures defined by the KNN filtering

algorithm mentioned above is used to improve the results of classification of a

hyperspectral image. A probability optimization based spectral–spatial classification

Fig. 1 An example of KNN filtering. a Input image P, b guidance image I, c filtering result O with k ¼ 0,
d filtering result O with k ¼ 3
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scheme is adopted here for hyperspectral images based on KNN filtering. The

schematic of the proposed classification method is given in Fig. 2. Specifically, the

proposed method consists of the following steps:

1. SVM classification: Given a d-dimensional hyperspectral image x ¼
ðx1; . . .; xiÞ 2 Rd�i and s training samples Ts � ðx1; c1Þ; . . .; ðxs; csÞf g 2
ðRd � LCÞs, a pixel-wise classification is performed on the hyperspectral

image with pixel-wise SVM [28], where LC ¼ 1; . . .;Nf g be a set of labels and

N is the number of classes in the hyperspectral image.

2. KNN filtering: In this step, the principal component analysis method is first

adopted to compute a one band representation of the hyperspectral image, i.e., I.

Here, the first principal component is adopted to be the guidance image because

it gives an optimal representation of the hyperspectral image in the mean

squared sense, and thus, contains most of the salience information in the

hyperspectral image (see Fig. 2). Then, based on (2), the proposed KNN

filtering is performed on the the initial probability map Pn for each class n, with

I serving as the guidance image. Finally, the classification result can be easily

obtained by assigning each pixel with the label which gives the highest

probability.

4 Experimental Results and Discussion

4.1 Experiments Performed on the Indian Pines Image

4.1.1 Data Set

In this experiment, the proposed classification algorithm is tested on a hyperspectral

image of a rural area (the Indian Pines image). The Indian Pines image was

Fig. 2 A schematic of the proposed KNN based spectral–spatial hyperspectral image classification
method
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collected by the AVIRIS sensor over the Indian Pines region in Northwestern

Indiana in 1992. This scene, with a size of 145 by 145 pixels, and a spatial

resolution of 20 m per pixel, was acquired over a mixed agricultural area. It is

composed of 220 spectral channels in the wavelength range from 0.4 to 2.5 lm.

Before classification, some spectral bands (no. 104–108, 150–163, and 220) were

removed from the data set due to noise and water absorption, leaving a total of 200

spectral channels to be used in the following experiments. The Indian Pines data

contains 16 classes, which are detailed in Table 1. For illustrative purposes, Fig. 3

shows the three band false color composite and the ground-truth map available for

the scene. In order to test classification performances, 10 % of the samples were

randomly selected from the reference data as training samples in our experiments.

4.1.2 Influence of Parameters to the Classification Performance

In this experiment, the influence of the two parameters k and K to the performance

of the proposed classification algorithm is analyzed. Figure 4 shows the classifi-

cation maps and overall accuracies obtained by the proposed algorithm with

Table 1 Class names, number of training and test samples, global and class-specific classification

accuracies in percentage for the Indian Pines image

Class Samples Classification methods

No. Name Train Test SVM EMP LMLL LBP EPF KNN

1 Corn-no till 10 36 75.01 79.31 95.01 91.31 100 100

2 Corn-min till 90 1338 76.49 84.79 84.13 91.52 97.95 96.39

3 Corn 79 751 77.28 89.31 89.15 87.57 99.11 95.61

4 S-N till 67 170 49.54 83.33 100 100 62.04 81.86

5 S-M till 71 412 92.16 96.58 99.03 98.31 97.87 97.62

6 S-C till 74 656 94.57 97.76 100 99.85 97.75 99.39

7 Alfalfa 10 18 91.67 76.47 100 100 100 100

8 G-pasture 70 408 99.27 100 100 100 100 99.55

9 G-trees 10 10 64.29 76.92 100 100 100 100

10 G-pasture-m 78 894 69.45 80.38 98.42 85.31 87.02 89.76

11 Hay 102 2353 84.54 95.85 88.64 93.98 95.02 96.11

12 Oats 75 518 72.95 84.09 98.66 96.56 93.91 95.72

13 Wheat 68 137 96.43 100 100 100 100 100

14 Woods 81 1184 95.38 99.41 90.23 100 99.39 99.73

15 Bldg-g 76 310 62.11 97.52 100 93.15 87.51 79.85

16 Towers 64 29 95.65 97.83 100 100 97.83 93.55

OA (%) – – 81.47 91.83 92.36 93.61 94.76 95.39

AA (%) – – 81.05 89.97 96.45 96.09 94.71 95.32

Kappa (%) – – 78.84 90.63 91.25 92.64 93.98 94.71

Time (s) – – 7.35 8.81 16.13 95.24 9.43 15.53

Bold numbers refer to the highest accuracies among different methods
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different values of k and K. From Fig. 4a, it can be seen that the result contains

serious ‘‘noise’’and the corresponding accuracy is quite low (OA = 71.19 %) when

the coefficient k is set to be 0. The reason is that the spatial coordinates are not

considered in the KNN filtering operation when k ¼ 0. Furthermore, the classifi-

cation result tends to be oversmoothed and the corresponding accuracy decreases

when k is very large. It means that pixel value and spatial coordinates are both

important factors for the improvement of classification accuracy. The parameter K

has similar influences to the classification result. For example, when K is quite large,

the proposed filtering method may lead to the oversmooth of classification result,

and thus, decreases the accuracy dramatically (OA = 86.94 %). However, when K

is relatively small, it means that only a small number of non-local pixels are

considered in the averaging operation. In this situation, the classification accuracy

Fig. 3 Indian Pines data set: a three-band color composite; b ground-truth classification map; c Color
code of different classes

Fig. 4 Classification results obtained with a k ¼ 0 (OA = 71.79 %), b k ¼ 1 (OA = 94.29 %), c k ¼ 5
(OA = 96.24 %), d k ¼ 100 (OA = 95.44 %), e K ¼ 5 (OA = 89.82 %), f K ¼ 10 (OA = 92.61 %), g
K ¼ 40 (OA = 96.24 %), and h K ¼ 400 (OA = 86.94 %) [K is fixed as 40 for (a–d), and k is fixed as 5
for (e–h)]
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also cannot be effectively improved (OA = 89.82 %). In this paper, K ¼ 40 and

k ¼ 5 are set to be the default parameters which gives the best performance in this

experiment (OA = 96.24 %). In order to ensure the optimal of the two parameters,

an adaptive setting scheme will be researched in the future.

4.1.3 Comparison of Different Classification Methods

Figure 5a–e shows the classification results obtained with the Support Vector

Machinesmethod (SVM) [28], the ExtendedMorphological Profilesmethod (EMP) [11],

the logistic regression and multilevel logistic method (LMLL) [29], the loopy belief

propagationmethod (LBP)method [30], the edge-preserving filteringmethod (EPF) [15],

and the proposed K nearest neighbors based method (KNN), respectively. The SVM

classification is performedwith theGaussian radial basis function (RBF) kernel, using the

LIBSVM library [28]. The optimal parameters C and c were determined by fivefold

cross validation. The default parameters given in [15, 29, 30] are adopted for the

LMLL, LBP and EPF methods. As shown in this figure, all spectral–spatial methods

can reduce significantly the noise in the classification map, resulting in more

homogeneous andmeaningful regions in the classificationmap. For example, with the

proposed KNN method, the classification result of pixel-wise SVM can be improved

significantly, because of the noise reduction. In order to evaluate the improvement

Fig. 5 Indian Pines data set: a–e classification map for the SVMmethod [28] (OA = 81.72 %), the EMP
method [11] (OA = 91.83 %), the LMLL method [29] (OA = 92.88 %), the LBP method [30]
(OA = 92.17 %), the EPFmethod [15] (OA = 95.48 %) and the proposed KNNmethod (OA = 96.23 %)
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more objectively, the number of training and test samples, and the global and

individual classification accuracies of different classificationmethods are presented in

Table 1. Three measures of accuracy are used: (1) Overall accuracy (OA) which

measures the percentage of correctly classified pixels; (2) Average accuracy (AA)

whichmeasures themean of the percentage of correctly classified pixels for each class;

(3) Kappa coefficient (kappa) which measures the percentage of agreement (correctly

classified pixels) corrected by the number of agreements thatwould be expected purely

by chance. Furthermore, the accuracies are calculated as an average after 10 repeated

experiments. Table 1 shows that the proposedmethod can effectively improve theOA,

AA, andKappa of SVM. Furthermore, the individual classification accuracies are also

improved by the proposed KNNmethod for almost all of the classes. For example, the

accuracy of the corn-no till class has been improved from 75.01 to 100 %. Compared

with the EMP, LMLLmethod, LBPmethod, and the EPFmethods, the proposed KNN

method gives a comparable performances for OA, AA, and Kappa. It means that the

proposed KNN method can effectively improve classification accuracy.

4.2 Experiments Performed on the Botswana Image

4.2.1 Data Set

In this experiment, the proposed classification algorithm is tested on a hyperspectral

image of a woodlands area (the Botswana image). The Botswana image was

collected by the NASA EO-1 satellite over Okavango Delta, Botswana in May 31,

2001. This scene, with a size of 1476 by 256 pixels, and a spatial resolution of 30m

Fig. 6 Botswana data set: a three-band color composite; b ground-truth classification map; c color code
of different classes
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per pixel, was acquired to study the impact of flooding on vegetation in this area. It

is composed of 242 spectral channels in the wavelength range from 0.4 to 2.5 lm.

Before classification, uncalibrated and noisy bands that cover water absorption

Fig. 7 Botswana data set: a–e classification map for the SVM method [28] (OA = 91.76 %), the EMP
method [11] (OA = 96.34 %), the LMLL method [29] (OA = 97.37 %), the LBP method [30]
(OA = 97.11 %), the EPF method [15] (OA = 97.13 %) and the proposed KNN method
(OA = 98.81 %)
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features were removed, and the remaining 145 bands were included as candidate

spectral features: [10–55, 82–97, 102–119, 134–164, 187–220]. The Botswana data

consists of 14 identified classes representing the land cover types in seasonal

swamps, occasional swamps, and drier woodlands, which are detailed in Table 1.

For illustrative purposes, Fig. 6 shows the three band false color composite and the

ground-truth map available for the study area. Similar to the experiments performed

on the Indian Pines data set, 10 % of the samples were randomly selected from the

reference data as training samples in our experiments.

4.2.2 Comparison of Different Classification Methods

Figure 7a–e shows the classification results obtained by the SVM, EMP, LMLL,

LBP, EPF, and KNN methods, respectively. Furthermore, the number of training

and test samples, and the global and individual classification accuracies for different

methods are presented in Table 2. The accuracies are calculated as an average after

10 repeated experiments. It can be seen that the proposed method can effectively

improve the OA, AA, and Kappa of SVM. Moreover, the KNN method shows the

best classification performance in terms of OA, AA, and Kappa.

Table 2 Class names, number of training and test samples, global and class-specific classification

accuracies in percentage for the Botswana image

Class Samples Classification methods

No. Name Train Test SVM EMP LMLL LBP EPF KNN

1 Water 23 247 99.61 100 100 100 99.61 99.41

2 Hippo 23 78 95.01 98.73 97.44 100 98.73 100

3 Grasses1 25 226 98.21 100 100 100 100 100

4 Grasses2 23 192 87.79 97.44 100 100 87.67 91.23

5 Reeds1 23 246 88.64 93.09 93.09 91.09 92.17 99.76

6 Riparian 23 246 80.24 93.83 88.21 79.69 98.28 97.32

7 F-scars 23 236 99.13 100 100 100 100 100

8 Island 23 180 97.78 100 100 100 100 100

9 W-lands 23 291 89.46 93.62 99.66 98.97 100 99.38

10 S-lands 23 224 88.84 86.33 100 100 94.12 98.71

11 Grasslands 24 282 94.91 98.48 93.24 93.26 99.26 97.89

12 S-mopane 23 158 93.71 98.67 100 100 100 100

13 M-mopane 23 245 94.31 96.85 100 96.34 99.19 99.88

14 E-soils 23 72 94.74 100 95.83 100 100 99.47

OA (%) – – 92.68 96.34 97.57 96.49 97.64 98.32

AA (%) – – 93.02 96.87 97.37 97.11 97.79 98.43

Kappa (%) – – 92.06 96.03 97.68 96.19 97.44 98.58

Time (s) – – 32.17 41.53 93.42 1569.99 40.91 57.49

Bold numbers refer to the highest accuracies among different methods
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5 Conclusions

Although hyperspectral imaging provides rich spectral information, increasing the

capability to distinguish different objects in a scene, the large number of spectral

channels presents challenges to image classification. Instead of processing each

pixel independently without considering information about spatial structures, the

proposed KNN based image filtering algorithm can incorporate spatial information

into classifier, and thus, the pixel-wise classification accuracies can be improved

significantly, especially in areas where structural information is important to

distinguish between classes. The proposed method has two main contributions:

First, a simple yet effective feature vector construction methodology combining the

values and spatial coordinates of different pixels is applied for the joint filtering of

images. Second, the proposed KNN based filtering algorithm is applied for spectral–

spatial hyperspectral image classification. In the experiments, it was shown that the

proposed spectral–spatial classifier can lead to competitive classification accuracies

when compared to other previously proposed spectral-spatial classification

techniques. In conclusion, the proposed KNN based classification method succeeded

in taking advantage of spatial and spectral information simultaneously.
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