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Abstract An efficient method and system for distributed compressive sensing of

hyperspectral images is presented, which exploit the low rank and structure simi-

larity property of hyperspectral imagery. In this paper, by integrating the respective

characteristics of DSC and CS, a distributed compressive sensing framework is

proposed to simultaneously capture and compress hyperspectral images. At the

encoder, every band image is measured independently, where almost all computa-

tion burdens can be shifted to the decoder, resulting in a very low-complexity

encoder. It is simple to operate and easy to hardware implementation. At the

decoder, each band image is reconstructed by the method of total variation norm

minimize. During each band reconstruction, the low rand structure of band images

and spectrum structure similarity are used to give birth to the new regularizers. With

combining the new regularizers and other regularizer, we can sufficiently exploit the

spatial correlation, spectral correlation and spectral structural redundancy in

hyperspectral imagery. A numerical optimization algorithm is also proposed to

solve the reconstruction model by augmented Lagrangian multiplier method.

Experimental results show that this method can effectively improve the recon-

struction quality of hyperspectral images.
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1 Introduction

Hyperspectral images (HSI) are a collection of hundreds of images which are

acquitted simultaneously in narrow and adjacent spectral bands, and have a high

spectral resolution. HSI are widely applied in terrain classification, mineral

detection, environmental monitoring, military surveillance. HSI provide such high

spatio-spectral resolution at the cost of extremely large data size. The HSI

acquisition is confronted with the challenge for storage and transmission on limited

resource platform. The low-power, low-complexity HSI compression algorithm is

crucial.

Compressive sensing (CS) [1, 2] is one of the recent emerging areas in signal and

image processing. This new technology can exploits the sparsity of a signal to

perform sampling at a smaller rate compared to the Nyquist rate. If the signal is

sparse or sparse in some transform domain, then the signal can be sufficiently

reconstructed from a limited number of measurements with very high probability.

The value of CS in hyperspectral imaging is that computational burden would shift

from a resource-constrained sensor device to a reconstruction process implemented

on a more powerful receiving device. Thus, the application of CS to hyperspectral

imaging has the potential for significantly reducing the sampling rate, which is

benefit for reducing memory storage and computational complexity.

In distributed source coding (DSC) [3, 4], every band of hyperspectral image is

encoded independently, which can obtain the same low sample ratio with

combination coding. Combining DSC and CS, Baron [5] firstly proposed distributed

compressive sensing (DCS), which defines three joint sparsity model. HSI are

simultaneously imaging for the same ground feature, which have the strong

correlation and distributed feature. Therefore, DCS is suitable for hyperspectral

imagery.

2 Compressive Sensing Theorem

Consider the image signal x 2 RN has sparse representation over a fixed dictionary

W 2 RN�P (i.e. DWT basis), and we typically assume that W is redundant, it means

that P[N. So the image signal x can be denoted as x ¼ Wa; where a 2 RP and

ak k0� N: The l0-norm used here simply counts the nonzero elements in a. Based
on CS theory, we can denote N-dimensional vector x by a M-dimensional vector y

projecting on the measurement matrix U with U 2 RM�N and M\N. In detail,

y ¼ Ux: Based on above analysis, y can be rewritten as equation.

y ¼ UWa ð1Þ

The original signal x can be reconstructed from the measurement vector y by

exploring its sparse representation and seek the sparsest expression among all

possible a that satisfy y ¼ UWa: The reconstruction requires the solution of the well

known underdetermined problem with sparsity constraint [1]:
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min ak k0 s:t: y ¼ UWa ¼ Da ð2Þ

where ak k0¼ supðaÞj j ¼ fj : aj 6¼ 0g and D ¼ UW is defined as equivalent dic-

tionary. We can observe that the reconstruction problem can be considered as an l0
minimization problem [2]. Unfortunately, the l0 minimization problem has been

proved to be N P-hard, and cannot be used in practical applications. Donoho and

Candes Point out that if the measurement matrix D satisfies the so-called restricted

isometry property (RIP) with a constant parameter, l1 optimization can take place of

l0 optimization. The l1 minimization problem can be described as follows:

min ak k1 s:t: y ¼ UWa ¼ Da ð3Þ

3 Distributed Hyperspectral Compressive Sensing

HSI are simultaneously imaging for the same ground feature, which have the strong

correlation and distributed feature. Each band of HSI can seem to be the related signal

source. Therefore, the correlation can be used in hyperspectral combination

reconstruction. A distributed compressive sensing of HSI frame is proposed. At the

encoder, every band image is measured independently, where almost all computation

burdens can be shifted to the decoder, resulting in a very low-complexity encoder. It is

simple to operate and easy to hardware implementation. At the decoder, each band

image is reconstruction by the method of total variation norm minimize. During each

band reconstruction, the low rand structure of band images and spectrum structure

similarity are used to give birth to the new regularizers as the side information. With

combining the new regularizers and other regularizer, we can sufficiently exploit the

spatial correlation, spectral correlation and spectral structural redundancy in hyper-

spectral imagery.The hyperspectral compressive sensing scheme is as follows inFig. 1.

HSI can be represented by three-dimension cube m� n� K; where K is the

number of spectral bands; m and n are the number of horizontal and vertical pixels,

respectively, in one band image. The hyperspectral cube is changed to represent for

the 2-dimension matrix X ¼ x1; . . .xi; . . .xK½ �. xi corresponds to the ith band image,

HSI

Structure  similarityLow rank 
constraint 

Reconstruction HSITV model CS 
reconstruction algorithm 

Random 
measurement

Encode Decode

Side information

Fig. 1 Distributed hyperspectral compressive sensing frame
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reshaped in a vector, whose number is N ¼ mn: Then X is N � K matrix. In the HSI

distributed compressive acquisition process, every sensor respectively collects

M(M � N) linear measurements in a vector yi 2 RM from the band image xi 2 RN

by the random projection matrix U 2 RM�N : For the ith band image, projection

process is yi ¼ Uxi: Then, we get

Y ¼ UX ð4Þ

where Y ¼ y1; . . .yi; . . .yK½ �. The sample rate is M=N.
In CS, the signal reconstruction is a inverse problem, which can not be directly

solved. We can use the regularization theorem to solve this problem. By increasing

some constraint conditions, we solve the underdetermined function to reconstruct

hyperspectral image from measurements Y .

3.1 Total Variation Regularization

Rudin et al. [6] proposed the total variation (TV) model based on the piecewise

smooth property in image. Therefore, TV regularization makes reconstructed

images sharper by preserving the edges or boundaries more accurately. As a result,

TV regularization has recently attracted numerous research activities in CS for

image processing [7]. Each band image of HSI has the piecewise smooth property

and significant structure information. The hyperspectral image can be reconstructed

by using the TV norm on each band

TVðXÞ ¼
XK

i¼1

xik kTV ¼
XK

i¼1

Dhxik k1þ Dvxik k1
� �

¼ DhXk k þ DvXk k
ð5Þ

where Dh;Dvð Þ respectively represent the finite horizontal vertical gradient opera-

tors in 2D spatial domain.

3.2 Low Rank Constraint

TV model only consider the spatial correlation in image, which is widely applied in

the 2D image. However, HSI collect the different spectral information for the same

ground feature, which has strong spectral correlation. Therefore, we bring the

spectral low rank property in the hyperspectral image reconstruction to wipe out the

spectral correlation.

As the hyperspectral data matrix X 2 RN�K is low rank, we consider the recovery

of HSI as a low rank matrix recovery. Current theoretical results indicate that a low

rank matrix can be perfectly recovered from its linear measurements. Based on

DCS, hyperspectral low rank property is considered as the side information to be

applied in hyperspectral reconstruction, which can not only increase the recon-

struction accuracy, but also shift the computation burden to decode from encode.

When U is chosen at random, a robust recovery of X is achievable from the

following convex nuclear norm minimization [8].
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min
X

SI1ðXÞ ¼ Xk k� s:t: Y ¼ UX ð6Þ

where Xk k�¼
P

k rk Xð Þ; defined the sum of singular value rk Xð Þ:

3.3 Structure Similarity Constraint

Although the pixel values may be different in spatial neighbors and neighboring

bands, the relationships between a pixel and its spatial neighbors may be very

similar in adjoining spectral bands. In [9], a technique for effective reconstruction of

HSI is proposed, which makes use of the structure similarity. The HIS can be

reconstructed by:

min
X

SI2ðXÞ ¼ SSðXÞ s:t: Y ¼ UX ð7Þ

where SSðXÞ is a regulaizer based on structure similarity.

Let Gh:R
n ! Rn denote a linear operator computing the horizontal structure

image Hi of the original image xi: Horizontal structure image can be expressed as

Hi ¼ ðxiÞj � ðxiÞjh ¼ Ghxi; with ðxiÞj and ðxiÞjh representing a pixel and its

horizontal right neighbour in the 2D spatial domain, respectively. With the same

argument, we can get the vertical structure image V.

The horizontal and vertical structure images of the whole HIS can be represented,

respectively, as:

H ¼ GhX

V ¼ GvX

The structure similarity constraints depend on the continuity of each pixel along

with the spectral direction in the structure image. In the vertical structure image, the

similarity constraint between adjoining spectral is Við Þj� Viþ1ð Þj
���

��� ¼ 0: In the

horizontal structure, it is Hið Þj� Hiþ1ð Þj
���

��� ¼ 0: As a result, the structure similarity

constraints can be written as follow:

SSðXÞ ¼
XK�1

i¼1

XN

j¼1

ðHiÞj � Hiþ1ð Þj
���

���
1
þ
XK�1

i¼1

XN

j¼1

ðviÞj � ðviþ1Þj
���

���
1

¼ DHk k1þ DVk k1
¼ DGhXk k1þ DGvXk k1

ð8Þ

where D is the gradient operator in spectral direction.

3.4 Algorithm and Implementation

Combining the above three constraints, a distributed hyperspectral compressive

sensing frame is proposed, which makes the best of the spatial piecewise-smoothed,
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low rank and structure similarity property. Joining Eqs. (5), (6) and (7), we obtain

the optimization model

min
X

DhXk k þ DvXk k þ k1 Xk k�þk2 DGhXk k1þ DGvXk k1
� �

s:t: Y ¼ UX ð9Þ

By introducing auxiliary parameters Z ¼ Z1; Z2; Z3; Z4ð Þ: Equation can be written

as the following equivalent formulation:

min
X

Z1k k þ Z2k k þ k1 Xk k�þk2 Z3k k1þ Z4k k1
� �

Y ¼ UX

s:t: Z1 ¼ DhX; Z2 ¼ DvX;

Z3 ¼ DGhX; Z4 ¼ DGvX

ð10Þ

This linear constraint problem can be solved by the augmented Lagrangian

multipliers (ALM) [10]. The Lagrangian formulation of equation is

LðX; Z; gÞ ¼ Z1k k1� cT1 ; Z1 � DhX
� �

þ b1
2

Z1 � DhXk k22þ Z2k k1

� cT2 ; Z2 � DvX
� �

þ b2
2

Z2 � DvXk k22

þ k1 Xk k�þk2 Z3k k1�k2 cT3 ; Z3 � DGhX
� �

þ k2b3
2

Z3 � DGhXk k22

þ k2 Z4k k1�k2 cT4 ; Z3 � DGvX
� �

þ k2b4
2

Z4 � DGvXk k22 ð11Þ

By using perfect square, we simplify (11) to obtain

LðX; Z; gÞ ¼ Z1k k1þ
b1
2

Z1 � DhX � g1k k22þ Z2k k1þ
b2
2

Z2 � DvX � g2k k22

þ k1 Xk k�þk2 Z3k k1þ
k2b3
2

Z3 � DGhX � g3k k22

þ k2 Z4k k1þ
k2b4
2

Z4 � DGvX � g4k k22

ð12Þ

where b ¼ b1; b2; b3; b4½ �; gi ¼ ci
bi
; g ¼ g1; g2; g3; g4½ �:

The iterating process of the proposed algorithm is as follows:

1) update Ziþ1; Ziþ1 ¼ argmin
Z

L Xi; Z; gið Þ;
2) update Xiþ1; Xiþ1 ¼ argmin

X
L X; Zi; gið Þ

3) update parameter giþ1; giþ1
1 ¼ gi1 � Z1 � DhX

iþ1ð Þ;

giþ1
2 ¼ gi2 � Z2 � DvX

iþ1
� �

giþ1
3 ¼ gi3 � Z3 � DGhX

iþ1
� �

giþ1
4 ¼ gi4 � Z4 � DGhX

iþ1
� �
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4) k ¼ k þ 1

5) if Xkþ1�Xk

Xk

���
���\e; the algorithm is end. If not, return step 1.

4 Experiment Result and Analysis

In order to verify the performance of the proposed method for HSI, experiments are

conducted on HSI. We choose a 512 9 512 9 224 cuprite and lunar lake HSI to test

our proposed method, which derive from AVIRIS (http://aviris.jpl.nasa.gov). The

measurement matrix is chosen as random matrix. In all our experiments, we

empirically choose k1 ¼ 3; k2 ¼ 2; bi ¼ 100 8ið Þ; e ¼ 0:0001: Although these

parameters may not be optimal, they are effective to demonstrate the algorithm. The

experimental results show the mean reconstruction SNR of the 224 bands of dif-

ferent reconstruction methods under different sampling rate in Fig. 2.

From Fig. 2, it can be seen that the proposed method improve the reconstruction

SNR around 3–4 dB compared with the other methods. While the rate of data
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Fig. 2 Reconstruction SNR versus the rate of measurement

Fig. 3 Different reconstruction comparison of the 50-band hyperspectral image. a Original image, b TV
model (PSNR = 27.28 dB), c the proposed method (PSNR = 31–35 dB)
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measurement is medium, the advantage of the proposed method is more obvious.

Thus, the proposed method is suitable for practical hyperspectral compression.

For better intuitive comparison of the reconstruction performance, Fig. 3 shows

the reconstruction images of the 50-band of the Cuprite at 0.2. It can be seen from

Fig. 3 that the reconstruction performance of our proposed method obviously

outperforms the other methods.

5 Conclusion

This paper has proposed a distributed hyperspectral compressive sensing frame

based on low rand and structure similarity property. Due to efficiently utilizing

spatial correlation, spectral low rank property and structure similarity property in

HSI, experimental results show that the proposed distributed compressive hyper-

spectral sensing method provides a more accurate reconstruction from random

projections. More efforts will be made in future work to improve the measurement

matrix. And More types of HIS data need to be verified for the proposed method.
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