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Abstract We present a newly developed feature transformation (FT) detection

method for hyper-spectral imagery (HSI) sensors. In essence, the FT method, by

transforming the original features (spectral bands) to a different feature domain,

may considerably increase the statistical separation between the target and back-

ground probability density functions, and thus may significantly improve the target

detection and identification performance, as evidenced by the test results in this

paper. We show that by differentiating the original spectral, one can completely

separate targets from the background using a single spectral band, leading to perfect

detection results. In addition, we have proposed an automated best spectral band

selection process with a double-threshold scheme that can rank the available

spectral bands from the best to the worst for target detection. Finally, we have also

proposed an automated cross-spectrum fusion process to further improve the

detection performance in lower spectral range (\1000 nm) by selecting the best

spectral band pair with multivariate analysis. Promising detection performance has

been achieved using a small background material signature library for concept-

proving, and has then been further evaluated and verified using a real background

HSI scene collected by a HYDICE sensor.
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1 Introduction

Traditionally, single broadband panchromatic (EO) imagers and red–green–blue

(RGB) color video cameras have been widely used for daytime threat detection,

while single broad band SWIR, MWIR, and LWIR cameras have been widely used

for both daytime and nighttime threat detection. With more recent advances of

multispectral and hyper-spectral sensing techniques, detection and identification of

different threat types on the earth’s surface are conducted primarily through SWIR,

i.e., 400 nm through 2500 nm bands. SWIR spectral bands are favored by many

sensing and imaging systems because of the high reflectivity and strong solar

illumination available during the day.

In general, the 400–500 nm range may be utilized for illuminating material in

shadow and water penetration bathymetry; the 500–600 nm range for water

penetration bathymetry and discrimination of oil on water; the 600–700 nm range

for vegetation differentiation; the 700–1100 nm range for camouflage detection and

shoreline mapping; the 1100–3000 nm range for discrimination of oil on water,

snow/cloud differentiation, camouflage detection, change detection, plume detec-

tion, and explosion detection.

In one of our recent SPIE conference papers [1], we have shown results on

Chemical Agent Resistant Coating (CARC) detection using HSI, and also presented

a newly developed feature transformation (FT) detection method. CARC is the term

for the paint commonly applied to military vehicles which provides protection

against chemical and biological weapons. There are different CARC colors. We

have presented results for detecting CARC with two colors: green and beige. A

target insertion method has been developed. This method allows one to insert the

target radiance into any HSI sensor scene, while still preserving the sensor spatial–

spectral noise at all the pixel positions. Different CARC types have been inserted to

a DC Mall hyper-spectral scene with this target insertion tool. We have used several

current state-of-the-art HSI target detection methods [2–10] such as matched filter

(MF), adaptive coherence estimator (ACE), constrained energy minimization

(CEM), and spectral angle mapper (SAM), to detect the inserted CARCs.1

There are two issues with the current-state-of-the-art detection methods (such as

the four mentioned above): (1) Many targets under consideration may have similar

spectral signatures as the signatures from the background, leading to bad target

detection performance (high false detection rate); and (2) These methods need to

use all the available spectral bands (high spectral dimensions). In fact, many bands

in the spectral range (400–2500 nm) may have high dependency to each other with

redundant information. Therefore, if we can find a few bands that have the least

redundant information, we may then use a few of these best bands (low spectral

dimensions) to obtain better detection performance. Furthermore, the reduction

from several hundred spectral dimensions to a couple of spectral dimensions will

considerably reduce the required computational times. Accordingly, we have

1 In [1], CARC detection has also been tested using real out-door measurements. Four green Type II

CARC coupons (painted on a pine-wood board post) were positioned in a complex urban scene with

numerous background materials. The SAM detection method was able to detect the CARC coupons with

high probability of target detection (Pd).
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developed a FT method to de-similar the target signature from the background

signatures, and an automated best spectral band selection process to reduce the

spectral dimensions for target detection.

In essence, the FTmethod, by transforming the original features to a different feature

domain (e.g., the Fourier, wavelet, PCA, and local cosine domains), may considerably

increase the statistical separation between the target and background probability

density functions, and thus may significantly improve the target detection and

identification performance, as evidenced by the test results presented in this paper. In

our tests, we used signatures for green and beige CARCs in original measured

reflectance value units against a small signature library including 433 background

material signatures that are frequently encountered such as: paints, green trees (grass)

and forests, metal, shingle, concrete, brick, sand, tar, asphalt, limestone, snow, and

water, etc. In the original spectral band domain, the beige and green CARC signatures

have large overlaps and similaritieswith the signatures of backgroundmaterials/objects

across the whole spectral bands (400–2500 nm), leading to bad detection results.2

On the other hand, by observing the CARC and background signature curves, we

noticed that the curve slopes are quite different at some spectral bands, and thus we

have conducted a spectral FT by differentiating the originally measured reflectance

spectral bands. We have shown that by differentiating the original spectral features

(this operation can be considered as the 1st level Haar wavelet high-pass filtering),

we can completely separate beige CARC from the background using a single band

at 650 nm, and completely separate green CARC from the background using a

single band at 1180 nm, leading to perfect detection results [1].

After the FT process, we then apply an automated best spectral band selection

process that can select the best band and rank the available spectral bands from the best

to the worst for target detection.With a double-threshold scheme [11], we can rank the

spectral bands by measuring the number of the background materials that are fallen

within the double-threshold interval with the target mean intensity level at the center.

To further improve the detection performance in lower spectral range (\1000 nm),

we have developed an automated cross-spectrum fusion process to find spectral band

pairs that are less correlated to each other usingmultivariate analysis. Preliminary tests

have shown that the fused spectral band pair can considerably reduce false detections

than the use of a single spectral band. Our automated cross-spectrum fusion process

has found several such good spectral band pairs in the low spectral range

(400–800 nm) for improved beige and green CARC detections.

In this paper, we present substantively expanded and improved results on the FT

detection method and the automated best spectral band (as well as the fused best

band-pair) selection process with more realistic testing data and additional target

type (human skin):

1. In [1], we have only tested the FT and the best band selection methods using a

small background signature library (that does not contain sensor noise) for

2 In this paper, we aim on using only a few better spectral bands for target detection. If we use the whole

400–2500 nm spectral vector for detection, the conventional detection methods (e.g., MF, ACE, CEM,

and SAM) can still perform quite well as demonstrated in [1].
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concept-proving. In this paper, we have tested our new methods with real HSI

imagery cube data collected by a HYDICE sensor (imagery of Washington DC

Mall scene3);

2. In this paper, the receiver operating characteristic (ROC) performance curves

have been newly estimated to quantitatively compare detection performance

between different target types, different feature domains, and between the best

single spectral band and the best fused band-pair;

3. In addition to the green and beige CARCs as the targets used in [1], we have

also tested human skin detection with our new methods. Human skin detection

has recently become a more popular topic for reliable human and pedestrian

detection, tracking, identification, and behavior/activity estimation. As shown in

one of our recent papers [12], reliable human skin detection is critical for

human full body, body-parts (head, arms, torso, and legs) detection, tracking, as

well as pose and activity estimation. In [12], we have shown that with an RGB

camera, it is difficult to distinguish the yellowish skin from the cloths with

yellow or reddish colors. In this paper, we present that we can reliably detect the

skin signature with a few best single spectral bands and best fused band-pairs

using the FT and the best band selection methods.

Onemotivation to use the low spectral range (visible to near IR spectrum) is that the

cost of HSI equipment will be much lower. If the CARC and the skin detections can be

conducted using a few low spectral bands, we may use a low cost single broadband

panchromatic imager or a high-definition (HD) RGB camera with a few color filters to

accomplish the tasks. This will further reduce the equipment cost and improve the

image spatial and temporal resolution. In general, the HD RGB camera and the

panchromatic imager have much higher spatial and temporal resolution than an HSI.

As discussed in another recent SPIE conference paper [13], we have shown a newway

to improveHSI spatial resolution (to deal withHSI sub-pixel un-mixing problem)with

HSI sharpening using a high-resolution RGB camera and a panchromatic imager.

This paper is organized in the following way: a target insertion method is discussed

in Sect. 2, the FT method in Sect. 3, automated best band selection process with

double-threshold scheme in Sect. 4, automated cross-spectrum band-pair fusion

process in Sect. 5, quantitative detection performance evaluation with ROC curve

estimation in Sect. 6, detection performance evaluation with real HSI imagery

background in Sect. 7, and finally we discuss and summarize the paper in Sect. 8.

2 Target Insertion Method

We would like to test CARC and human detection performance under many different

background environments and differentweatherConditions. However, accomplishing

this task is very costly and time consuming. Alternatively, we can test target detection

by inserting the target signature into different available hyper-spectral scene imagery

3 This HSI imagery dataset is available from: https://engineering.purdue.edu/*biehl/MultiSpec/

hyperspectral.html.
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cubes. Such a target insertion tool would allow us to test complex target detection and

identification performances under many different target conditions (resolved or un-

resolved) and background environmental conditions.

Un-resolved (point) target insertion (implant) methods have been well developed.

Originally, point target insertion methods have been developed for single broadband

IR sensors by inserting a point target into a single pixel [14] or by inserting the

optical point spread function (PSF) into a 3 9 3 or 5 9 5 pixel area in the

background scenes [15]. The Rotman–Bar Tal Algorithm (RBTA) developed in [14]

has been adapted to the analysis of hyperspectral imagery in [7]. The authors of [8]

have further fine-tuned and improved the RBTA method to account for target

blurring (PSF) and pixel phasing (e.g., center, corner, or edge pixel phases, etc.). In

this paper, we aim on inserting an extended (resolved) target with relatively large

target area (7 9 7 or 11 9 11) for HSI sensor spatial–spectral noise4 estimation,

and thus we do not need to deal with the un-resolved target pixel phasing problem.

There are three technical issues with the target insertion: (1) the target (e.g.,

CARC) signatures are measured in laboratories as reflectance, while the material

signatures from the HSI imagery are usually measured as radiance. Therefore, we

need a way to convert the target reflectance to radiance, or wise verse, to convert the

whole scene radiance to reflectance. (2) The target signatures measured in

laboratories are generally sampled in uniform intervals (e.g., 1 or 3 nm intervals),

while the HSI imagery along the spectral dimension are generally sampled in larger

non-uniform intervals (e.g., 5 or 10 nm intervals) depending on the HSI hardware

designs. Therefore, we need to resample the target signatures before inserting the

target into the imagery scenes. (3) When we insert the target signature into pixels of

a small area (replacing the original background in that area), we must preserve the

original spatial–spectral sensor noise in that area with high fidelity.

In this study, we have used the QUick Atmospheric Correction (QUAC)

algorithm [16, 17, 18, 19] for the 400–2500 nm VNIR-SWIR spectral range to

convert the whole hyper-spectral imagery radiance to reflectance.5 The QUAC

algorithm has done quite a good job for this task (Some examples have been

presented in Fig. 21b in Sect. 7). We then developed a three-step process to insert

the target reflectance into a small region of interest (ROI) area (e.g., 7 9 7, or

11 9 11) in the imagery scene:

1. Find a homogeneous small area in the scene with the same background material

(e.g., the green grass, or the asphalt roads): ROI(x, y, k);
2. Estimate the spatial–spectral noise:

ROI noise x; y; kð Þ ¼ ROI x; y; kð Þ � ROI mean kð Þ; ð1Þ

4 Here we call the 3D (x, y, k) sensor noise as spatial–spectral noise.
5 In this study, we have used the ENVI software tools (developed by Exelis Inc.) for all the HSI imagery

data processing. The ENVI tools include high fidelity atmospheric and radiometric correction algorithms

(developed by SSI) such as QUAC and FLAASH that are based on MODTRAN4 for accurate

atmospheric parameter estimation.
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where ROI mean kð Þ is the spatial mean across (x, y) spatial ROI area at each

spectral band k as expressed below:

ROI mean kð Þ ¼ 1

n � m
Xn

x¼1

Xm

y¼1

ROI x; y; kð Þ;

where n and m are the ROI spatial sizes n 9 m.

3. Finally, we add the target reflectance signature tgt(k) to the spatial–spectral

noise in the ROI area:

ROI insert x; y; kð Þ ¼ ROI noise x; y; kð Þ þ tgt kð Þ: ð2Þ

Figure 1 shows laboratory measured reflectance signatures as tgt(k) for beige

CARC, green CARC Type II paints, and human skin (forearm) in the spectral range of

400–2500 nm. The left-side image in Fig. 2 shows a HYDICEHSI imagery data cube

in the D.C. Capitol Hill area, and the right-side image shows a RGB image from the

same area with a higher spatial resolution from Google Earth. The HYDICE imagery

spatial size is 304 9 400with 121,600 pixels (spectral vectors). The full spectral range

of this HYDICE sensor is 400–2500 nm. In this paper for most of the test cases, we

only used part of the full sensor spectral range (400–1000 nm sampled into 80 spectral

bands) for our CARC and human skin detection tests.

As shown in Fig. 3, the green CARC has been inserted into an 11 9 11 (121 pixels)

ROIonagrass backgroundarea, and thebeigeCARCand the skin havebeen inserted into

two 7 9 7 (49 pixels) ROIs on grass and asphalt surface background area, respectively,

using Eqs. (1) and (2). Figure 3a–c show the three inserted target reflectance signatures

with added sensor spatial–spectral noise.6 The estimated spatial–spectral noise using

Eq. 1 from the 11 9 11 grass ROI area (121 pixels) is shown in Fig. 4.

In [1], we have used the target inserted scene (Fig. 3d) to test detection

performance using the conventional methods: MF, ACE, CME, and SAM. In this

paper, as will be discussed in Sect. 7, the estimated sensor spatial–spectral noise

variance as shown in Fig. 4 is used for setting the double-threshold interval for the

best spectral band selection process when using the realistic background clutter for

target detection. It is seen from Fig. 4 that there are higher noise variances within

the spectral range 750–1400 nm at the 11 9 11 grass ROI area.

In addition to pure spatial–spectral noise, the variance shown in Fig. 4 certainly

also contain within-class material (grass in this case) variability. Therefore, the

inserted target signature contains a small portion of the grass variance, which in

general will worsen the target detection performance since the within-class material

variabilitywill cause deviation of the inserted target spectral signatures from the target

signature truth that is used as the reference signature during the target detection

process. Nevertheless, as shown in the detection results in [1], we can still obtain quite

good detection performance, indicating that the impact of the within-class material

(grass in this case) variability on the detection performance is relatively small.

6 The 3D ROI (7, 7, k) or ROI (11, 11, k) were re-shaped into 2D ROI (49, k) or ROI (121, k) arrays, and
plotted in Fig. 3a–c as 49 or 121 spectral vectors along the spectral wavelength (nm) direction.
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In order to reduce the within-class material variability, one should try to find a

ROI area with high homogeneous and flat surface. For example, the asphalt surface

is better than the grass area, and the grass area is better than the tree area.

3 Feature Transformation Method

In our tests, we have used signatures for Green and Beige CARCs in original

measured reflectance value units against a small background material signature

library containing 433 reflectance signatures that are frequently encountered in our

natural environment, such as paints with different colors, green trees and forests
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Fig. 1 Laboratory measured
reflectance signatures for beige
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Fig. 2 HYDICE HSI imagery data cube in the D.C. Capitol Hill area
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(Douglas Fir, Big Leaf Maple, Jasper Ridge), grass, rubber, pine wood, plate

window glass, various metals, silt, shingle, roof tile, granite, concrete, brick, sand,

tar, asphalt, limestone, clouds, snow, and water, etc.
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Fig. 3 High-fidelity beige CARC, green CARC, and human skin insertion (the reflectance values
multiplied a 10,000 scale factor by the ENVI tool process)
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Some example signatures from the small signature library are shown in Fig. 5.

The green paints and green gloss paints signatures are shown in Fig. 5a as the green

and blue curves, respectively. Green trees and forests (Douglas fir, Big Leaf maple,

and Jasper Ridge) signatures are shown as red curves, various metals are shown as

the yellow curves, and shingle is shown as the cyan curves in Fig. 5a. In Fig. 5b,

concrete and brick are shown as red, snow as green, water as blue, sand as black,

limestone as cyan, and asphalt and tar as yellow curves.

The original beige CARC, green CARC, and human skin reflectance signatures

are shown in Fig. 6a, while original reflectance signatures of the 433 background

materials are shown in Fig. 6c that including more than 100 different materials. It is

seen from Fig. 6a, c that in the original spectral feature domain, the beige CARC,

green CARC, and skin reflectance intensities have large overlaps with those of the

background materials/objects across the whole spectral bands (400–2500 nm). On

the other hand, by observing the CARC, skin, and background signature curves, we

noticed that the curve slops are quite different at some spectral bands, and thus we

have conducted a FT by differentiating the originally measured reflectance features.

The differentiating operation can be considered as the 1st level Haar wavelet high-

pass filtering by convolving the reflectance signatures with the Haar high-pass filter

along the spectral dimension. The 2-tap Haar high-pass filter is expressed as:

Haar hp kð Þ ¼ 1;�1½ �:
The differentiated reflectance signatures of the beige CARC, green CARC, and

skin are shown in Fig. 6b, while the differentiated reflectance signatures of the 433

background materials are shown in Fig. 6d. It is seen that by differentiating the

original spectral features, the CARC signature values, at some spectral bands (e.g.,

the spectral 600–700 nm region for the beige CARC and the spectral 1150–1250 nm

region for the green CARC), are separated away from background signature values.

Figure 7 shows two examples at spectral bands 650 and 640 nm for the beige

CARC. The reflectance and differentiated-reflectance values for both the beige

CARC and background in Fig. 7 have been normalized with the scale that sets the

maximum beige CARC values to 1.7

As shown in Fig. 7a, b in the original reflectance domain, the beige CARC values

(the five red circles—here we have five beige CARC measurements) at both 650 and

640 nm have large overlaps inside the 433 background values (the blue circles). On

the other hand, as shown in Fig. 7c, d in the differentiated reflectance domain, the

five beige CARC values (the red circles) at both 650 and 640 nm have totally

separated from the background values (the blue circles), leading to perfect detection

results (e.g., if we set a differentiated reflectance threshold at 0.7).

Similarly as shown in Fig. 8a, b in the original reflectance domain, the green

CARC values (the fifty red circles, here we have fifty green CARC measurements)

at both 1180 and 1190 nm have large overlaps inside the 433 background values

(the blue circles). On the other hand, as shown in Fig. 8c, d in the differentiated

reflectance domain, the fifty green CARC values (the red circles) at both 1180 and

1190 nm have totally separated from the background values (the blue circles).

7 Note: the differentiated reflectance can have negative values, and the normalization process converts

the reflectance values to relative reflectance that can have values larger than 1.
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4 Automated Best Band Selection Process with Double-Threshold
Scheme

4.1 Target Detection with Single-, and Double-Threshold

For a physical image sensor, the sensing errors are mainly caused by the

measurement noise that is generally described as a random variable (RV). Wold in

1938 proposed and proved a theorem [20] that gives us some insight into the way

that a physical measurement can always be decomposed in two components: a

deterministic component and a random noise component. Wold’s Fundamental

Theorem states that any stationary discrete-time stochastic process, x(n), may be

expressed in the form:

x nð Þ ¼ u nð Þ þ s nð Þ; ð3Þ

where u(n) and s(n) are uncorrelated processes, u(n) is a RV, and s(n) is a deter-

ministic process.

In general, for target detection (e.g., CARC) with an HSI camera, the sensor

and environmental measurement noise contribute to the u(n) component, and the

target and background clutter (CARC, cars, trees, buildings, and roads, etc.)
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Fig. 5 Some example signatures from the small signature library (Color figure online)
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intensities8 contribute to the s(n) component. To increase the probability of

detection (Pd), we must reduce the influence of the noise. Figure 9 shows an

example of probability density functions (PDF) of target and clutter noise with

assumed normal distribution. In Fig. 9, the influence of noise can be decreased by

reducing the noise variances (r2) and/or by increasing the distance (d = mt - mc)

between the means of the two intensity RVs related to the target and the clutter.

The reduced noise variance and/or the increased intensity distances will increase

the signal to clutter noise ratio (SCNR) and thus lead to a better ROC performance,

that is, a higher Pd for the same probability of false alarm (Pfa). The distance d may

be increased by applying a MF (CEM, ACE, or SAM) detection algorithm. With a

single-threshold scheme, the ROC curve performance is obtained by moving the

threshold level (the green bar with arrowhead in Fig. 9). When we reduce the

threshold intensity level (move the threshold level from right to left in Fig. 9), both

Pd and Pfa will increase.

As discussed above with Fig. 9, the conventional detection scheme uses a single

threshold between the target PDF and clutter PDF to estimate the Pd and Pfa. As

shown in Fig. 9, one may presume that the clutter has a lower (or higher) reflectance

8 Here the term ‘intensity’ is a general expression for the target strength. It can be the reflectance

brightness or radiance intensity depending on the HSI imagery units. In this paper, it stands for

reflectance.
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Fig. 6 Original and differentiated spectral signatures for CARC, skin, and background
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intensity level than the target. However, in reality, there are many different types of

clutter in the scene. Some of them may have intensity levels lower and some others

may have intensity levels higher than the target. For example, for the HSI scene

shown in Fig. 2, the asphalt roads have intensity levels lower than the target (the

green CARC), while the white/bright roof-tops have intensity levels higher than the

target. Figure 10 illustrates this situation. In this case, if the traditional single

threshold is set at a lower intensity level shown as the left-side green bar with an

arrowhead in Fig. 10, then all the clutter 2 will be detected as false detections,

resulting in very high Pfa. In one of the authors’ previous publications [11], a

double-threshold process was proposed to reduce Pfa. As shown in Fig. 10, the

second threshold (shown as the right-side green bar with an arrowhead) will reduce

the false detections caused by the clutter 2.

However, as noted in [11], this double-threshold process has the additional burden

of requiring a prior knowledge of the target intensity range. This may be an issue with

the detection tasks using the conventional EO or IR sensors under different weather

and environmental conditions. Nevertheless, for the HSI sensors, there are well

developed radiometric and atmospheric correction algorithms and methods [16, 17,

18, 19] such as QUAC, FLAASH, and FLAASH-IR to convert the measured target

radiance under various environmental conditions to the invariant target reflectance or

emissivity with high fidelity. Therefore, target intensity range at different spectral

bands should be available for us to apply the double-threshold scheme.
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Fig. 7 Original and differentiated reflectance values for beige CARC and background (Color figure online)
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Accordingly, for the symmetric Gaussian PDF, to estimate the ROC curve

performance, we change the interval between the two green arrow-bars with the

target mean (mt) at the center of this interval as shown in Fig. 10. When we increase

this interval, both Pd and Pfa will increase.
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Fig. 8 Original and differentiated reflectance values for green CARC and background (Color figure
online)

Fig. 9 PDFs of target and clutter noise (Color figure online)
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4.2 Automated Best Band Selection Process

Here are the algorithm steps for the automated best band selection process with

double-threshold scheme:

1. Differentiate the background scene reflectance imagery Bckgnd(x, y, k) and the

target reflectance signature tgt(n, k) along the spectral dimension, and obtain:

d_Bckgnd(x, y, k) and d_tgt(n, k), where n is the number of available target

signatures;

2. Set the double-threshold at each spectral band as:

Mean d tgt n; kð Þð Þ � g � STD d tgt n; kð Þð Þ\d Bckgnd x; y; kð Þ
\Mean d tgt n; kð Þð Þ þ g � STD d tgt n; kð Þð Þ;

ð4Þ

where the mean value (along the n dimension) of d_tgt(n, k) indicates the mt

value shown in Fig. 10, STD(d_tgt(n, k)) is the standard deviation (along the

n dimension) of the differentiated target signature values at a specific spectral

band, and g is a constant;

3. Estimate the number of pixels from d_Bckgnd(x, y, k) that fall into the double-

threshold interval at each spectral band;

4. Sort the estimated pixel numbers along the spectral dimension in ascending

order to rank each spectral band from the best to the worst for target detection.

The constant scale g in Eq. (4) is critical to set the double-threshold interval. For

example, if the target RV distribution is Gaussian with g = 3 setting, then the

double-threshold interval is equal to 6r (where r = STD(d_tgt(n, k))). Based on

Gaussian PDF property, the 6r interval covers more than 99.7 % of the Gaussian

PDF area, indicating Pd[ 99.7 % for this double-threshold interval.

From the standard normal distribution PDF, we have estimated the Pd (the

covered Gaussian PDF area) as a function of the r number from 2 to 10, as shown

in Fig. 11. It is seen that the Pd is very close to 100 % when the double-threshold

interval is larger than 5.5 r.

Fig. 10 PDFs of two clutters and one target (Color figure online)
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In the detection tests shown in Figs. 7 and 8, we only have 5 (n = 5) measured

beige CARC signatures and 50 (n = 50) measured green CARC signatures (and 10

measured human skin signatures). These numbers may not be large enough to obtain

reliable STD(d_tgt(n, k)). On the other hand, we have more than 400 background

signatures with multiple materials.9 In general, we have:

STD dBckgnd x;y;kð Þ
� �

[ STD dtgt n;kð Þ
� �

: ð5Þ

Accordingly, we use a conservative alternative by substituting STD(d_tgt(n, k))
with STD(d_Bckgnd(x, y, k)) in Eq. (4).

Similarly, the automated best band selection process can be applied in the

original reflectance feature domain by setting the double-threshold at each spectral

band as:

Mean tgt n; kð Þð Þ � g � STD tgt n; kð Þð Þ\Bckgnd x; y; kð Þ\Mean tgt n; kð Þð Þ þ g

� STD tgt n; kð Þð Þ: ð6Þ

In the differentiated feature domain with Eq. (4), we have applied the automated

best band selection process across a spectral range of 420–1420 nm with 201 bands

and with the setting of the double-threshold interval at g = 2.3 for CARC (g = 1.4

for human skin), and have successfully ranked the 201 bends from the best to the

worst. The double-threshold interval was shown in Figs. 7 and 8 as the intervals

between the two horizontal green lines at different spectral bands. The top best eight

bands for the beige CARC with the false detection numbers are shown in Table 1,

and those for the green CARC and human skin are shown in Tables 2 and 3,

respectively.

2 3 4 5 6 7 8 9 10
65

70

75

80

85

90

95

100

Gaussian PDF Standard Deviation (Sigma) - Two-sided

P
ob

ab
ili

ty
 o

f T
ar

ge
t D

et
ec

tio
n 

%
 (

P
d)

Pd Curve Related to Gaussian STD (Sigma) Double-Threshold

Fig. 11 Pd versus double-threshold interval at different r number

9 The small background signature library with 433 signatures can be considered as a 3D imagery cube

Bckgnd(x, y, k) with only one spatial row: y = 1, and x = 1, 2, 3, …, 433.
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As indicated by the curve in Fig. 11, for a 4.6r threshold interval (g = 2.3), we

achieve Pd[ 96 %. From Tables 1 and 2, it is seen that we achieve Pfa = 0 % at

band 650 nm for the beige CARC, and at band 1180 nm (or 1190, 1205, 1210 nm)

for the green CARC. For the same 4.6r threshold interval, we have also applied the

best band selection process for the original reflectance data using Eq. (6) for

comparison. We obtain 108 false detections out of the 433 (Pfa = 25 %)

background signatures at the best band 705 nm for the beige CARC, and obtain

299 false detections out of the 433 (Pfa = 69 %) background signatures at the best

band 1365 nm for the green CARC. These results indicate that the FT method by

differentiating the original spectral reflectance can significantly improve detection

performance by reducing the Pfa.

As discussed in the Sect. 1, we prefer to use low cost HSI cameras with the

higher end of spectral band to be smaller than 1000 nm. Accordingly, we have

applied the automated best band selection process across a spectral range of

420–1020 nm with 121 sampled bands and with the setting of the double-threshold

interval at g = 1.5 in the differentiated feature domain using Eq. (4) for the green

CARC. The resulted top best 8 bands with the false detection numbers are shown in

Table 4. It is seen that we achieve Pfa = 0 % at band 760 nm for the green CARC.

The original and differentiated reflectance values of the green CARC and

background are illustrated in Fig. 12 for the top two best bands at 760 and 775 nm.

Table 1 Band ranking results for beige CARC (g = 2.3)

Ranked bands 650 nm 640 nm 645 nm 655 nm 660 nm 665 nm 670 nm 630 nm

False detections 0 2 2 2 2 7 16 24

Table 2 Band ranking results for green CARC (g = 2.3)

Ranked

bands

1180 nm 1190 nm 1205 nm 1210 nm 1170 nm 1230 nm 1240 nm 1245 nm

False

detections

0 0 0 0 1 1 1 1

Table 3 Band ranking results for human skin (g = 1.4)

Ranked bands 440 nm 590 nm 600 nm 445 nm 595 nm 450 nm 585 nm 920 nm

False detections 0 1 1 2 3 4 5 6

Table 4 Band ranking results for green CARC (g = 1.5)

Ranked bands 760 nm 775 nm 770 nm 780 nm 785 nm 765 nm 750 nm 1000 nm

False detections 0 1 3 6 57 76 85 116
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5 Automated Cross-Spectrum Band-Pair Fusion Process

To further improve the detection performance in lower spectral range (\1000 nm),

we have developed an automated cross-spectrum fusion process to find spectral

band pairs that are less correlated to each other using multivariate analysis. We

show that the fused spectral band pair can considerably improve Pd and reduce false

detections than the use of a single spectral band alone. The fused two bands

occupies a 2D space (u, v). There are several ways to extend the 1D double-

threshold to the 2D threshold bound:

(a) Apply the 1D double-threshold for each band separately, and form a

rectangular bound in the 2D space as the 2D threshold;

(b) Use the larger 1D double-threshold from the two bands (ku, and kv) as the

diameter to form a circular 2D threshold:

v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g � STD d tgt n; kmð Þð Þð Þ2� u� muð Þ2

q
þ mv;

km ¼
ku if STD d tgt n; kuð Þð Þ[ STD d tgt n; kvð Þð Þ
kv Otherwise

�
;

ð7Þ

where mu and mv are the target mean values at these two bands;
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Fig. 12 Original and differentiated reflectance values for green CARC and background
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c) Use the 2D separable Gaussian function to form an elliptical 2D threshold:

v ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g � STD d tgt n; kvð Þð Þð Þ2� STD d tgt n; kvð Þð Þ
STD d tgt n; kuð Þð Þ

� �2

u� muð Þ2
s

þ mv

ð8Þ

Equation (8) is derived from the 2D space (u, v) separable normal distribution

function with the correlation coefficient q setting to zero. It is seen that Eq. (7) is a

special case of Eq. (8) where STD(d_tgt(n, ku)) = STD(d_tgt(n, kv)).
Here are the algorithm steps for the automated cross-spectrum fusion process:

1. Select several top best bands (e.g., top 10–15) after running the automated best

band selection process. Some examples of the top eight best bands were shown

in Tables 1, 2 and 3;

2. Pair each of the selected top bands with all the other available bands;

3. In the 2D space (u, v) for each band pair, select one 2D threshold type from the

three methods discussed above;

4. Estimate the number of pixels from d_Bckgnd(x, y, k) that fall into the 2D

threshold area for each band pair;

5. Sort the estimated pixel numbers along all the estimated spectral pair

combinations in ascending order to rank each spectral band pair from the best

to the worst for false detection.

We have applied the automated cross-spectrum fusion process, for the beige and

green CARC, across a spectral range of 420–1420 nm with 201 bands and with the

setting of threshold scale g = 4.4 using a circular 2D threshold as expressed in

Eq. (7). The selected top best six band-pairs for the beige CARC with the false

detection numbers are shown in Table 5, while those for the green CARC are shown

in Table 6. For the human skin with g = 3.3, the selected top best six band-pairs

with the false detection numbers are shown in Table 7. Based on the results in

Table 4, we have applied the automated cross-spectrum fusion process across a

smaller spectral range of 420–1020 nm with 121 bands and with the setting of

threshold scale g = 2.1 using a circular 2D threshold. The selected top best six

band-pairs for the green CARC with the false detection numbers are shown in

Table 8. By comparing Tables 1 and 2 with 5 and 6, it is seen that with similar false

detection numbers, the use of the fused band-pair can considerably increase the

target–clutter separation from 4.6r to 8.8r.

Table 5 Band pair ranking results for beige CARC (g = 4.4)

Ranked band pair 650/

620 nm

640/

610 nm

660/

620 nm

650/

640 nm

650/

610 nm

650/

655 nm

False detections 0 1 1 3 5 5
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The results of the top band-pair 650/620 nm in Table 5 (beige CARC) are plotted

in Fig. 13a, b. The green rectangle indicates a 2D rectangle threshold, the cyan

circle indicates a 2D circular threshold, and the magenta ellipse indicates a 2D

elliptical threshold. Figure 13a shows the 2D threshold results in the original

spectral domain using Eq. (6). It is seen that almost all the 433 background

signatures have fallen into the 2D threshold bounds. On the other hand, as shown in

Fig. 13b for the 2D threshold results in the differentiated spectral domain using

Eq. (4), there are some false detections that have fallen inside the up-left corner of

the rectangle threshold bound, but no false detection inside the circular and elliptical

threshold bounds.

The results of the band-pair 650/645 nm (beige CARC) are plotted in Fig. 13c, d.

It is interesting to see from Fig. 13d that there are 11 false detections that fall inside

the circular threshold bound, but only 2 false detections fall inside the elliptical

threshold bound. In general, the elliptical threshold performs better than the circular

threshold, while the circular threshold performs better than the rectangle threshold.

Finally, results of the best bend-pair 1205/1200 nm in Table 6 (green CARC), the

best bend-pair 440/590 nm in Table 7 (human skin), and the best bend-pair

760/680 nm in Table 8 (green CARC) are illustrated in Figs. 14, 15 and 16,

respectively.

6 Quantitative Detection Performance Evaluation with ROC Curve
Estimation

As discussed in Sect. 4.1, we can extend the conventional ROC estimation method

with a single-threshold scheme to estimate ROC using the double-threshold scheme.

For the symmetric Gaussian noise PDF, to estimate the ROC curve performance, we

Table 6 Band pair ranking results for green CARC (g = 4.4)

Ranked band

pair

1205/

1200 nm

1210/

1200 nm

1210/

1205 nm

1180/

1170 nm

1190/

990 nm

1190/

1000 nm

False

detections

0 0 0 2 2 2

Table 7 Band pair ranking results for human skin (g = 3.3)

Ranked band pair 440/

590 nm

440/

535 nm

440/

445 nm

440/

450 nm

445/

590 nm

440/

460 nm

False detections 0 1 2 2 2 3

Table 8 Band pair ranking results for green CARC (g = 2.1)

Ranked band pair 760/

680 nm

775/

770 nm

770/

680 nm

770/

760 nm

780/

775 nm

760/

675 nm

False detections 0 1 1 1 1 2
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change (either gradually increase or decrease) the g constant in Eq. (4), and thus

change the double-threshold interval (2g � STD d tgt n; kð Þð Þ) as illustrated in

Fig. 10. When we increase this interval, both Pd and Pfa will increase.

The estimated ROC curves of beige CARC for the best original (705 nm),

differentiated bend (650 nm), and bend-pair (650/620 nm) are plotted in Fig. 17a, b,

and those for green CARC and human skin are plotted in Figs. 18 and 19,

respectively. For example, as shown in Fig. 19 (human skin), the blue curve is the

detection performance for the best original band at 495 nm estimated using Eq. (6).

The red curve (in both Fig. 19a, b) is the detection performance for the best single

differentiated band at 440 nm estimated using Eq. (4), and the green curve is the

detection performance for the best differentiated fused band-pair at 440/590 nm.

From Fig. 19, for a Pd = 95 %, the detection with the best original band at 495 nm

(the blur curve) resulted in a high Pfa ([30 %), while the detection with the best
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differentiated single band at 440 nm (the red curve) resulted in a low Pfa (=0.23 %).

As the best performance, the detection with the differentiated fused band-pair at

440/590 nm (the green curve) resulted in a perfect Pfa = 0.

7 Detection Performance Evaluation with Real HSI Imagery
Background

So far, we have only tested the FT and the best band selection methods using a small

background signature library that contains many frequently encountered background

materials for concept-proving. However, this signature library does not contain

sensor noise, and we do not have a large measurement of the target signatures for

reliable target statistical estimation. In this section, we have further tested our new

methods with real HSI imagery cube data collected by a HYDICE sensor, and we

have also used the estimated real spatial–spectral noise from an 11 9 11 ROI area

of this imagery cube data as shown in Fig. 4 in Sect. 2. These 121 spectral noise

vectors provide us with a relatively reliable target noise r estimation at different

spectral bands.

The 150 9 100 scene area used for the tests is shown in Fig. 20a. The 11 9 11

grass ROI area containing the spatial–spectral noise shown in Fig. 4 is also within

this scene area. As discussed in Sect. 2, the CARC and skin signatures are measured

in laboratories as reflectance, while the material signatures from the HSI imagery

are measured as radiance. Here we have used the QUAC process (contained in the

ENVI Tool) [16] to convert the whole hyper-spectral imagery radiance to

reflectance. Figure 20b shows the converted 15,000 reflectance signatures from

all the pixels in the imagery shown in Fig. 20a.10 The smoothness of all the 15,000

reflectance signature curves in Fig. 20b indicates that the atmospheric correction

(QUAC) process has been executed successfully. If there are ill-conditions occurred,

the resulting signature curves would be very noisy with spikes and discontinuities.

The QUAC algorithm has done quite a good job for this task. Figure 21 shows

such an example. The red signature curve in Fig. 21a shows a radiance signature

from a tree pixel from the original imagery shown in Fig. 20a. Its converted relative

reflectance (multiplied by a scale factor of 10,000—an ENVI process routine)

signature is shown in Fig. 21b as the red curve. By comparing these two red spectral

curves, it is seen that the deep atmospheric absorption dents in the radiance curve

have been rightfully corrected.

For comparison, we have taken two reflectance signatures (the Jasper Ridge and

the fir tree) from the small reflectance signature library with 433 signatures used in

the previous section, and plotted them in Fig. 21b as the green curve (the Jasper

Ridge) and the blue curve (the fir tree).11 It is seen that the three curves are similar,

and the curve differences may be caused by different tree types.

10 The 3D img(100, 150, k) in Fig. 20a was re-shaped into 2D img(15,000, k), and plotted in Fig. 20b as

15,000 spectral vectors along the spectral wavelength (nm) direction.
11 Note: The reflectance values from the signature library are in the range between 0 and 1. Here, we

follow the ENVI process by multiplying a scale factor of 10,000 to obtain the relative reflectance for

comparison.
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In these tests, we only used a spectral range of 400–1000 nm with 80 bands.

Same as in the previous sections, we used three target signatures: green, beige

CARC, and human skin. Each of these three target signatures tgt(k) then added to

the 121 ROI noise (Fig. 4) to obtain tgt(n, k) where n = 121, as expressed in Eq. 2.

Figure 22a, b show the 121 original and differentiated spectral signatures for green

CARC, while, Fig. 22c, d show 15,000 of those for the background.12

In the differentiated feature domain with Eq. (4), we have applied the automated

best band selection process using the STD estimated from the 121 target signatures

to set the double-threshold interval, and have successfully ranked the 80 bends from

the best to the worst. The top best 8 bands for the beige CARC with the false

detection numbers are shown in Table 9, and those for the green CARC and human

skin are shown in Tables 10 and 11, respectively.

By comparing these results with the results from the previous sections (Table 9

compared to Table 1, Table 10 to Table 4 and Table 11 to Table 3), we notice that

we have obtained very similar top best spectral bands even though we have used

totally different background sets—a small signature library (With 433 signatures)

versus a real HSI background area (with 15,000 signatures).

We have applied the automated cross-spectrum fusion process, for the three

target signatures, across a spectral range of 400–1000 nm with 80 bands using a

circular 2D threshold as expressed in Eq. (7).The top best six fused band-pairs for

the beige CARC with the false detection numbers are shown in Table 12, and those

for the green CARC and human skin are shown in Tables 13 and 14, respectively.

By comparing these results with the results from the previous sections (Table 12

compared to Table 5, Table 13 to Table 8 and Table 14 to Table 7), we notice that

we have obtained similar top best fused spectral band-pairs even though we have

used totally different background sets.

Fig. 20 The 15,000 real HSI imagery background signatures from a 150 9 100 area

12 Similar to the plot in Fig. 7, the reflectance and differentiated-reflectance values for both the green

CARC and background in Fig. 22 have been normalized with the scale that sets the maximum green

CARC values to 1.
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The results of the top two differentiated band-pairs 640/632 and 640/649 nm in

Table 12 (beige CARC) are plotted in Fig. 23a, b.The red circles are the 121 target

values and the blue squares are the 15,000 background values. Figures 24 and 25

show the fused band-pair plots for the green CARC and human skin, respectively.

It is worth pointing out that the double-threshold interval related g number for the

results in this section are larger (related to larger Pd) than the g number for the

Fig. 21 Original radiance signature and converted reflectance signature from a tree pixel (the red curves)
(Color figure online)

Fig. 22 Original and differentiated spectral signatures for green CARC and background
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results in the previous section. The main reason is that in this section, we used the

realistic spatial-spectral sensor noise to estimate the target STD. On the other hand,

in the previous section, we used a conservative substitution of the background

library STD. We also notice for the results in this section that the g number for the

green CARC are smaller than the other two target signatures. It is related to the

larger noise variance around the spectral range above 750 nm as shown in Fig. 4.

Table 12 Band pair ranking results for beige CARC (g = 35)

Ranked band

pair

640.4/

632 nm

640.4/

648.9 nm

640.4/

657.7 nm

657.7/

648.9 nm

648.9/

632 nm

640.4/

666.8 nm

False

detections

0 0 1 1 24 28

Table 13 Band pair ranking results for green CARC (g = 8)

Ranked band

pair

758.9/

685.5 nm

758.9/

695.3 nm

758.9/

705.2 nm

758.9/

475.9 nm

758.9/

480.3 nm

758.9/

489.4 nm

False

detections

0 0 0 3 3 3

Table 14 Band pair ranking results for human skin (g = 12)

Ranked band

pair

600.8/

579.5 nm

524.6/

600.8 nm

443.4/

600.8 nm

600.8/

608.3 nm

579.5/

572.8 nm

443.4/

572.8 nm

False

detections

0 1 1 2 2 3

Fig. 23 2D threshold of 640/632 nm and 640/649 nm pairs for beige CARC (g = 35) (Color figure
online)
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8 Discussion and Summary

In this paper, we present results for detecting beige CARC, green CARC, and

human skin. A target insertion method has been developed. This tool allows one to

insert the target reflectance or radiance into any HSI sensor scene, while still to

preserve the sensor spatial–spectral noise in the inserted ROI area. We have

developed a FT algorithm by transforming the original spectral features to a

different feature domain. In this paper, we have shown that by differentiating the

original spectral bands, we can considerably increase the statistical distance

between the target and background clutter PDFs, leading to better performance for

the beige, green CARC, and human skin detection.

One problem with the current-state-of-the-art detection methods (e.g., MF, ACE,

CEM, and SAM) is that these methods need to use all the available spectral bands

Fig. 24 2D threshold of 759/686 nm and 759/705 nm pairs for green CARC (g = 8)

Fig. 25 2D threshold of 601/580 nm and 443/601 nm pairs for human skin (g = 12)

11 Page 30 of 33 Sens Imaging (2015) 16:11

123



(high spectral dimensions). Many bands in the spectral range may have high

dependency to each other with redundant information. In this paper as discussed in

Sect. 4, we have developed an automated best spectral band selection process. This

process selects the best band and ranks the available spectral bands from the best to

the worst for target detection with a double-threshold scheme, and thus we only

need to use a few best spectral bands (low spectral dimension) to obtain better

detection performance with faster processing times.

To further improve the detection performance, we have developed an automated

cross-spectrum fusion process to find spectral band-pairs that are less correlated to

each other using multivariate analysis. As discussed in the results from Sect. 5, the

use of the fused band-pair can considerably increase the target–clutter separation

from 4.6r (when using the best single band) to 8.8r (when using the best fused

band-pair) for the CARC signatures. For a Gaussian random noise with the target,

an 8.8r Gaussian PDF window means that the Pd is very close to 100 %. Based on

the current algorithm design, it is straightforward to extend the spectral band fusion

process from 2D to 3D by fusing three different bands for further detection

improvements.

In Sect. 6, we presented a way for quantitative detection performance evaluation

with ROC curve estimation by extending the conventional ROC estimation method

with single-threshold scheme to ROC curve estimation using our double-threshold

scheme. The estimated ROC curves for all the three target signatures indicate that

the FT method can considerably improve target detection performance using a few

best spectral bands, and the best fused band-pair selection process can further

improve detection performance over the use of a single best band alone.

In Sect. 7, we have tested our new FT method using more realistic background

signatures with real spatial–spectral sensor noise and non-uniform spectral sampling

depending on the sensor hardware. The D.C. scene imagery cube, as shown in

Fig. 2, was used. The originally measured background radiance signatures were first

converted to reflectance, and then applied for the FT method and the best band

selection processes. The detection results in Sect. 7 show that we can obtain similar

detection performance as the performance obtained in previous sections where a

small signature library was used as background for concept-proving, and thus

further validating the new target detection methods developed in this paper.

In this paper, we have shown that CARC and human skin detection can be

significantly improved with a spectral band differentiation FT method because the

target signature curves have large slope changes in certain spectral bands. Reliable

CARC detection is critical for distinguishing military vehicles from civilian

vehicles, and also for timely warning of potential chemical or biological (war)

activity. Reliable human skin detection is important for human full-body, body-parts

detection, tracking, and activity/behavior estimation. In general, the spectral band

differentiation FT method should work well for targets with large slope changes in

signature curves, but not work well for targets with flat (less slope changes)

signature curves. For example, the Tyvek signature discussed in [13] is quite flat.

Alternatively, we may apply a spectral band integral FT method to improve

detection performance for these kinds of targets with flat spectral signature curves.

Our ongoing efforts include applying the new detection methods for other types of
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targets such as Tyvek, chemicals related to home-made-explosives, cars, and

vessels, etc., and testing with different types of FTs (spectral differentiation or

integral, wavelet filtering, PCA, and local cosine functions, etc.) depending on the

target signature properties.

In [1], we have used several conventional HSI target detection methods such as

MF, ACE, CEM, and SAM to detect the inserted green and beige CARC. If we use

the whole 400–2500 nm spectral vector for detection, the conventional detection

methods can still perform quite well with high Pd and low Pfa, as demonstrated in

[1] and [13]. However, the performance became worse with lower Pd and higher

Pfa when we reduced the spectral range to 400–1000 nm. In this paper, we aim on

using only a few better spectral bands for target detection. If we compare ‘Apple’ to

‘Apple’ by further limiting the spectral range to, e.g., 400–500, 500–600, or

600–700 nm for the conventional detection methods, the performance will certainly

be further worsen.

One motivation to use the low spectral range (visible to near IR spectrum) is that

the HSI hardware with a reduced spectral range will cost less. In this paper, we have

demonstrated that the CARC with different colors can be reliably detected with a

few low spectral bands. For example, as shown in Tables 1 and 5 for the beige

CARC detection results, the best band 650 nm (4.6r separation) and the best band-

pair 650/620 nm (8.8r separation) can be used for very reliable beige CARC

detection. Accordingly, we may design and build a low cost dedicated CARC (or

human skin) detector with higher spatial and temporal resolution by using a low cost

and high-resolution panchromatic imager or a HD RGB camera with a few color

filters to accomplish the tasks.
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