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Abstract A fusion based seamless mosaic method for stitching remote sensing

images is introduced in this paper. The proposed method focuses on one major

problem in the process of mosaic: how to generate visually pleasant stitching result

in the cases of misalignment, global and local intensity differences between images.

First, two partially overlapped images are decomposed into high-frequency com-

ponents and low-frequency components with Gaussian low-pass filter. Second, by

considering the information characteristics contained in both separated components,

different mosaic schemes are designed to accomplish stitching process accordingly.

For the low-frequency components consisting of coarse shape and illumination

information, two-dimension weighted blending rule is utilized to achieve smoothing

transition. For the high-frequency components including rich details, an improved

seam searching strategy based on dynamic programming is introduced. With the

obtained stitching seam guiding the stitching process, visible structural break can be

avoided. Finally, the mosaic result is produced by linearly composing both stitching

results of different components together. Experimental results demonstrate the

effectiveness of the proposed method in generating seamless mosaic results without

introducing any unexpected blurring or artifacts.

Keywords Seamless mosaic � Image fusion � Weighted blending � Optimal seam

1 Introduction

Remote sensing techniques can provide an abundance of useful information, which

plays an important role in both military and civilian domain, such as battlefield
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investigation and marine resources surveillance. Due to the limited field-of-view of

sensors, the area of interest always cannot be occupied in one obtained image.

Therefore, it is essential to generate large-scale composition image with a sequence

of overlapped remote sensing images, which is usually referred to as image mosaic

technique [1–3].

Generally, the following two desirable properties are required in generating

visually pleasant mosaic result [4]. First, the result should be as similar as possible

to the input images in terms of intensity and geometry. Second, the stitching line

should be invisible. However, the overlapped images obtained from different time,

angles and sensors always present global/local intensity difference. Besides, the

misalignment, caused by the inaccurate registration or the presence of moving

objects and motion parallax, is another common issue in the process of mosaic. Both

the intensity difference and misalignment will introduce visible stitching seam,

blurring effect and structure inconsistence. Assuming that images with partially

overlapped regions have already been aligned by some image registration methods

[5–7], image mosaic methods can be categorized into two methods: weighted

blending based method and optimal seam based method [8].

The weighted blending based methods, commonly called as alpha blending or

feathering [9–11], aim at achieving smooth transition in the overlapped region.

Specifically, the mosaic result is considered as a weighted combination of both

images, where the weight coefficient is calculated according to the distance from the

stitching boarders or the centers. More advanced weighted blending techniques are

developed by using variational approach [12] or Poisson-based gradient-domain

compositing approach [13]. However, the blending based mosaic methods have the

drawback that ghost and blurring artifacts may be introduced if overlapped images

are misaligned [4, 14].

The optimal seam based methods intend to search a curve in the overlapping

area, on which the two registered images have the minimum difference. With the

overlapping area being divided into two parts by the searched curve, each part can

then be filled with the pixels in the corresponding image. Many optimal seam

searching methods have been developed in the literature, including Dijkstras

algorithm based methods [15–17], dynamic programming based methods [18–20],

and graph-cuts based methods [21, 22]. However, the optimal seam based methods

fail in generating visually pleasant mosaic results when it comes to the case of

intensity difference. To avoid the visual inconsistence caused by unbalanced

intensity, histogram matching based pre-processing has been extensively considered

[23–25]. As one statistic based intensity balancing method, the histogram matching

is effective in adjusting the global intensity distribution of the target image to fit the

reference image through nonlinear transformation. But in the case that the

overlapped images have quite different scenery distribution (e.g. 10 % field and

90 % river in one image, while 90 % field and 10 % river in another one), histogram

based balancing method is no longer appropriate. Meanwhile, the local intensity

difference cannot be eliminated via histogram matching.

Considering the merits and drawbacks of the weighted blending based method

and the optimal seam based method, both methods are integrated appropriately into

one framework to improve the mosaic performance. First, low-pass filter is applied
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to decompose each overlapped image into high-frequency component and low-

frequency component. Then different mosaic schemes are designed for stitching

each component. For low-frequency components consisting of uneven illumination

information, the weighted blending rule based mosaic scheme is introduced to

achieve smooth intensity transition. With no detail information in the low-frequency

components, the weighted blending rule can be effective in avoiding ghost or

blurring effect. For high-frequency components consisting of rich details (edges,

structures and texture, etc.), a modified optimal seam searching method is designed

to determine the seam line and guide the stitching process within the overlapping

area [18–20]. With no uneven intensity information in the high-frequency

components, the modified optimal seam based mosaic method can work well in

preserving structure and texture consistence. Finally, the mosaic result can be

obtained via linearly composing both mosaic results corresponding to the

components of high-frequency and the low-frequency together.

The rest of the paper is organized as follows. In Sect. 2, we described the

proposed seamless mosaic method in detail. Then we show the experimental mosaic

results on real remote sensing images by our method in Sect. 3. Meanwhile, the

comparison results of different mosaic methods are also given in Sect. 3. Finally,

the conclusions are drawn in Sect. 4, and the focus of the future related work is also

referred in this section.

2 The Proposed Method

Let I1 and I2 represent two overlapped remote sensing images respectively, the

proposed remote sensing image mosaic method consists of four parts: low-pass

filtering based image decomposition, weighted blending based mosaic for low-

frequency components, optimal seam based mosaic for high-frequency components,

and the composition of both mosaic results of different components. The first step

aims at decomposing each registered image into high-frequency component IiHði ¼
1; 2Þ and the low-frequency component IiLði ¼ 1; 2Þ, denoted as Ii ¼ IiH þ IiL

ði ¼ 1; 2Þ. Then, we can generate two mosaic results with different mosaic schemes,

denoted as IH�mosaic and IL�mosaic, respectively. Finally, the mosaic result can be

obtained via composing mosaic results of different components, mathematically

denoted as Imosaic ¼ IL�mosaic þ IH�mosaic. The framework is shown in Fig. 1.

2.1 Low-Pass Filtering Based Image Decomposition

The process of image decomposition aims at separating the original images I1 and I2

into coarse component and the detail component. The coarse component mainly

consists of profile and illumination information, and the detail component only

contains details such as edges, structures and textures. To fulfill this decomposition

process, related works have been done in [26–28], varying from easy low-pass/high-

pass filtering [26] to wavelet transformation [27] and the morphological component

analysis [28]. In our method, the Gaussian low-pass filtering is adopted for the sake
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of low computational cost, as recommended in [26]. The Gaussian low-pass filtering

is defined as:

gðx; yÞ ¼ expð�ðx2 þ y2Þ=2D0
2Þ ð1Þ

where x is the distance from the origin in the horizontal axis, y is the distance from

the origin in the vertical axis, and D0 is the cut-off frequency. One example of

Gaussian low-pass filtering based decomposition result is given in Fig. 2. It is clear

from Fig. 2 that such decomposition method is effective in generating the coarse

component (low-frequency component, IL) and detail component (high-frequency

component, IH).

2.2 Weighted Blending Based Low-Frequency Components Mosaic

For the low-frequency components I1L and I2L, the weighted blending rule is applied

to generate the mosaic result IL�mosaic. Let U0 denotes the overlapping region, U1

and U2 denote the non-overlapping regions belonging to image I1L and I2L,

respectively. Traditionally, the 1-D weighted blending rule is defined as:

Imosaicðx; yÞ ¼
I1Lðx; yÞ; ðx; yÞ 2 U1

k � I2Lðx; yÞ þ ð1� kÞ � I1Lðx; yÞ; ðx; yÞ 2 U0

I2Lðx; yÞ; ðx; yÞ 2 U2

8
><

>:
ð2Þ

where k is weight coefficient calculated by k = d/W, in which d represents the

distance from the current point to the border of the overlapping area and W rep-

resents the width of the overlapping region. One example is given in Fig. 3. It is

clear that the two images in Fig. 3a, b have difference in local intensity, which

would lead to visible seam if pasting both images together directly. Instead, with the

1-D blending rule defined as Eq. (2), applied to stitch I1L and I2L, visually smooth

transmission can be achieved.

When it comes to the case of 2-D shift transformation (as shown in Fig. 4a), the

weight coefficient k is adjusted to:

Fig. 1 The framework of the proposed seamless image mosaic method
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k ¼ l1=ðl1 þ l2Þ ð3Þ

l1 ¼ ðH � yÞ=H; l2 ¼ ðW � xÞ=W ð4Þ

where H and W respectively represents the height and width of the overlapping

regions, y and x respectively denote the relative vertical and horizontal location to

the borders, as illuminated in Fig. 4. One example of applying 2-D blending rule in

stitching low-frequency components is given in Fig. 4c, and it is clear that smooth

transition can be achieved from left to right and from up to down.

2.3 Optimal Seam Based High Frequency Components Mosaic

The two registered images of high-frequency components, I1H and I2H , mainly

consist of rich structures and textures. Considering the weighted blending based

mosaic method would fail in avoiding blurring and double-edge in the case of

misalignment, an optimal seam searching strategy is utilized to guide the process of

stitching I1H and I2H . First, by using sum of squared differences (SSD), one energy

function is defined as [29]:

eðx; yÞ ¼
X
ðBlock1ðx; yÞ � Block2ðx; yÞÞ2 ð5Þ

where Block1ðx; yÞ and Block2ðx; yÞ, respectively, represent image patches sur-

rounding each pixel (x, y) in images I1H and I2H , and the block size is N � N. Then

we will search for a path in the overlapping area along which the two textures can

match best, i.e. where the SSD error is the lowest. The optimal mosaic path C is a

Fig. 2 One example of the low-pass filtering based image decomposition

Fig. 3 1-D weighted blending rule based mosaic method for low-frequency components. a The low-
frequency component of image 1. b The low-frequency component of image 2. c 1-D weighted blending
rule based mosaic result of (a, b)
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curve crossing from top to bottom of the overlapping region with exactly one point

on each row. Following the dynamic programming based optimal seam searching

methods [29, 30], one general cumulative minimum energy is defined as:

Eðx; yÞ ¼ eðx; yÞ þ minðEðx� 1; y� 1Þ;Eðx� 1; yÞ;Eðx� 1; yþ 1ÞÞ ð6Þ

With the energy values for all pixels in the overlapping regions obtained, the next

step is to trace back the process of cumulative minimum energy calculation from the

pixel with the minimum energy in the last row. Then the optimal seam C (marked

with red line in Fig. 5) with cumulative minimum energy is decided. Finally, the

mosaic result in the overlapping area U0 can be divided into U01 and U02 by the

curve C, where the region U01 and U02 are respectively filled with pixels belonging

to image I1H and I2H . The illustration is given in Fig. 5, where the red line represents

the determined optimal line. The traditional dynamic programming based methods

can work effectively in the case of 1-D shift transformation.

However, the restriction in seam searching direction (either from top to down or

from left to right) easily leads to the failure in dealing with the case of 2-D shift

transformation in case of intensity difference. It is clear from Fig. 6a that the

searched red line by 1-D searching scheme could not connect the specified point A

and point B. As a result, two visible horizontal seams respectively originated from

point A and point B are unavoidable if two overlapped images have intensity

difference. Considering 2-D shift transformation is a more general situation in

stitching remote sensing images, it is of great importance to design a better stitching

seam searching scheme to avoid obvious artifacts. In our method, one modified

optimal seam searching scheme is designed based on the dynamic programming

algorithm. First, one optimal seam (marked with the red line in Fig. 6a) from the

upmost to the downmost of the overlapping area is searched with the traditional

dynamic programming algorithm [30]. Second, two another seams are searched in a

similar way from the leftmost to the rightmost (as marked with the blue line in

Fig. 6) and from the rightmost to the leftmost (as marked with the green line in

Fig. 6). Differently, the blue (yellow) seam, we firstly calculate the energy of all the

paths from right to left (left to right) with Eq. (6). Then we trace back this process

from the point A (B) to determine the blue (yellow) seam. Finally, the seam

Fig. 4 2-D weighted blending rule based mosaic method for low-frequency components. a Illustration of
2-D weighted blending rule. b Aligned result. c 2-D weighted blending rule based mosaic result
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connecting the point A and B can be determined to separate the overlapping area U0

into two parts, denoted as U01 and U02 (as shown in Fig. 6). By filling the areas U01

and U02 with the corresponding pixels in the left image I1 and the right image I2

respectively, the mosaic result of high-frequency components can be obtained.

One example is shown in Fig. 7. It is clear that obvious structural break (seen

more clearly in the zoomed area in the red box) can be seen in the aligned result

(Fig. 7a) due to the misalignment. By applying the modified seam searching scheme

in stitching the high-frequency components, consistent structure can be achieved in

the area marked with blue box in Fig. 7b.

3 Experiments

3.1 Experimental Setup

In this section, the performance of the proposed fusion based mosaic method is

tested on three groups of remote sensing image pairs. As shown in Fig. 8, the test

image pairs consist of one Landsat image pair and two optical aerial image pairs.

For the sake of convenience, three groups of test images are respectively named

by ‘‘Landsat’’ (Fig. 8a), ‘‘Aerial 1’’ (Fig. 8b) and ‘‘Aerial 2’’ (Fig. 8c). These test

image pairs are selected as varieties of sceneries are contained (e.g. mountain,

field, city and river, etc.).

To evaluate the performance in generating seamless mosaic result, our method is

compared with both the weighted blending rule based and the optimal seam based

mosaic methods. The blending rule is achieved by Eqs. (3) and (4), while the

dynamic programming based optimal seam searching scheme is implemented

according to [30]. In our method, two necessary parameters are needed to be set: the

cut-off frequency D0 in Eq. (1) and the patch size N 9 N in Eq. (5). To demonstrate

the effect of these two parameters in mosaic results, we repeat the mosaic

experiments with only one parameter (D0 or N) being varied and the other one being

settled. Two groups of test experimental results are given in Figs. 9 and 10.

Firstly, the influence of D0 is tested with N = 3. As shown in Fig. 9a, broken

structure can be seen in the case of D0 = 0. This is because small value of D0 leads

more illumination information to be separated in the high-frequency component,

however, the optimal seam based method for mosaicing high-frequency components

Fig. 5 Optimal seam based mosaic method for high-frequency components in the case of 1-D shift
transformation
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fails in determining an optimal stitching seam if there is illumination difference. On

the other hand, more structural information would be separated in low-frequency

component as the value of D0 increases, which may generate varying degrees of

blurring effect, as shown in Fig. 9d–f (D0 C 0.1). This blurring effect is caused by

applying the blending rule in mosaicing the low-frequency components containing

structural information. Therefore, the selection of D0 should be neither too high nor

too low, which is suggested to be values between [0.03, 0.07] according to the

experimental results. In our experiments, D0 is set to be 0.03.

Then, with the D0 settled to be 0.03, the value of N is varied to test the influence

of N. In case of inaccurate registration, unexpected optimal seam can be determined

and it would lead to failure in structure preservation which can be seen more clearly

in the zoomed blue box of Fig. 10a (N = 1). To generate better stitching seam,the

related pixels in a neighbored window are taken into considered. However, large

size (N C 5) of neighboring window cannot well eliminate structure inconsistence,

as shown in Fig. 10c–e.Therefore, N is set to be three to generate better seamless

mosaic results.

3.2 Experimental Results

In this section, the mosaic performance is tested on three remote sensing image pairs

(shown in Fig. 8), and the visual comparison results of various mosaic methods are

given in Figs. 11, 12 and 13.

Fig. 6 The modified optimal seam based mosaic method for high-frequency components in the case of
2-D shift transformation

Fig. 7 Example of the modified optimal seam based mosaic method for high-frequency components.
a Aligned result. b Modified optimal seam based mosaic result
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Figure 11 shows the comparison results of stitching image pair ‘‘Landsat’’. The

image pair ‘‘Landsat’’(Fig. 8a) presents no intensity difference, and it is used to test

the performance in handling the case of misalignment. Practically, we misalign the

images ‘‘Landsat’’ with five pixels respectively in vertical and horizontal directions.

It is obvious from Fig. 11a, b that both the 2-D weighted blending rule based and the

optimal seam based methods are affected by the misalignment. Specifically, blurring

and ghost phenomenon appears in the mosaic result obtained via blending rule based

method, which can be noticed more clearly in the area marked with red box in

Fig. 11a. Though the optimal seam based mosaic method is free of blurring effect,

obvious structural break is introduced in the overlapping area, as shown in the red

box of Fig. 11b. By contrast, our method can achieve visually smoothing transition

in terms of intensity and structure simultaneously (Fig. 11c), meanwhile, no

blurring effect is introduced.

Comparison results of another two groups of test image pairs, the ‘‘Aerial 1’’ and

the ‘‘Aerial 2’’, are respectively shown in Figs. 12 and 13. It is clear that local color

tone variance (bright spot in the overlapping area in Fig. 8b) exists in ‘‘Aerial 1’’,

meanwhile the ‘‘Aerial 2’’ has global variance in terms of color tone. These two

image pairs are utilized to evaluate the mosaic performance in dealing with both the

problems of intensity variance and misalignment.

Fig. 8 Three groups of test remote sensing image pairs. a Image pair, ‘‘Landsat’’. b Image pair, ‘‘Arial
1’’. c Image pair, ‘‘Arial 2’’
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Figure 12 shows the comparison mosaic results corresponding to image pairs

‘‘Aerial 1’’. It is clear from the blue box in Fig. 12b that visible seam can be seen in

the mosaic result by the optimal seam based method. By contrast, both the blending

rule based method and our method can achieve smooth transition in the lake area, as

shown in blue boxes in Fig. 12a, c. However, the blending rule applied in the

original images leads to serious artifact of double-edge in the overlapping area due

to the misalignment, which can be seen more clearly in the red box of Fig. 12a. By

integrating both the 2-D blending rule and the modified optimal seam searching

scheme into one framework, our method can successfully avoid both artifacts and

eliminate obvious seam simultaneously (Fig. 12c).

Figure 13 shows the comparison results of stitching image pair ‘‘Aerial 2’’. In

accordance with the result shown in Fig. 12a, b, the weighted blending rule cannot

avoid the blurring effect due to misalignment (red box in Fig. 13a), meanwhile, the

mismatched alignment leads to the blurring road in the optimal seam based mosaic

result (in the blue box of Fig. 13b). In addition, the restricted stitching seam

searching direction of traditional dynamic programming algorithm makes the visible

vertical seam unavoidable, as shown in the red box of Fig. 13b. Regardless of the

negative effect caused by local/global uneven intensity and misalignment, our

method can generate visually pleasant seamless mosaic result (Fig. 13c), which is

free of blurring effect and structural break.

Fig. 9 Influence of parameter D0 in mosaic results of image pair ‘‘Arial 2’’. a D0 = 0. b D0 = 0.03.
c D0 = 0.07. d D0 = 0.1. e D0 = 0.15. f D0 = 0.3
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Fig. 10 Influence of parameter N in mosaic results of image pair ‘‘Arial 2’’. a N = 1. b N = 3. c N = 5.
d N = 7. e N = 9

Fig. 11 Comparison mosaic results of test image pair ‘‘Landsat’’. a 2-D weighted blending based
method. b Optimal seam based method. c The proposed fusion based method
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Fig. 12 Comparison mosaic results of test image pair ‘‘Aerial 1’’. a The blending rule based method.
b The optimal seam based method. c The proposed fusion based method

Fig. 13 Comparison mosaic results of test image pair ‘‘Aerial 2’’. a The blending rule based method.
b The optimal seam based method. c The proposed fusion based method
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4 Conclusions and Discussions

In this paper, a fusion based seamless mosaic method is proposed to generate

visually pleasant stitching result with partially overlapped remote sensing images.

Considering the merits and drawbacks of both the weighted blending rule and the

optimal seam searching strategy, they are integrated into one framework to ensure

the intensity and structural consistence simultaneously. This seamless mosaic

process is implemented by firstly decompose each aligned image into two sub-

components, followed by various mosaic schemes are designed to stitch different

sub-components. For low-frequency components consisting of coarse shape and

illumination information, the 2-D weighted blending rule is utilized to achieve

smooth intensity transition. For the high-frequency components containing impor-

tant structure and texture information, a modified optimal seam searching scheme is

proposed to guide the stitching process, and as a result, structural break can be

avoided. The excellent performance in the experimental section demonstrates the

effectiveness of the proposed mosaic method in avoiding visible stitching seam and

blurring effect, especially in the cases of misalignment and intensity difference.

This paper mainly focuses on generating seamless mosaic result from two

overlapped images with the proposed fusion based framework. In practice, to

generate seamless mosaic image of large area, quantities of remote sensing images

or videos are needed. Meanwhile, more complicated transformation may exist

between images, including shift, rotation and scaling. Therefore, the emphasis of

our future work will be laid on adjusting the proposed fusion based mosaic

framework to stitch series of images or aerial/satellite videos automatically and

quickly.
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