
Vol.:(0123456789)

Software Quality Journal (2024) 32:1239–1285
https://doi.org/10.1007/s11219-024-09687-z

1 3

RESEARCH

Integrated multi‑view modeling for reliable machine
learning‑intensive software engineering

Jati H. Husen1,2 · Hironori Washizaki1 · Jomphon Runpakprakun1 ·
Nobukazu Yoshioka1 · Hnin Thandar Tun1 · Yoshiaki Fukazawa1 · Hironori Takeuchi3

This paper is an extension of a previously published conference paper Husen et al.
(2023). This paper significantly expands the proposed framework in the form of an
updated metamodel and process model, on top of new validations in the form of an
extensive case study and a controlled experiment.

Accepted: 20 June 2024 / Published online: 3 July 2024
© The Author(s) 2024

Abstract
Development of machine learning (ML) systems differs from traditional approaches. The
probabilistic nature of ML leads to a more experimentative development approach, which
often results in a disparity between the quality of ML models with other aspects such
as business, safety, and the overall system architecture. Herein the Multi-view Modeling
Framework for ML Systems (M3S) is proposed as a solution to this problem. M3S pro-
vides an analysis framework that integrates different views. It is supported by an inte-
grated metamodel to ensure the connection and consistency between different models.
To facilitate the experimentative nature of ML training, M3S provides an integrated plat-
form between the modeling environment and the ML training pipeline. M3S is validated
through a case study and a controlled experiment. M3S shows promise, but future research
needs to confirm its generality.

Keywords  Machine learning · Model-based analysis · Multi-view · Integrated framework

1  Introduction

A machine learning (ML)-based system offers numerous benefits. For example, it pro-
vides software solutions to previously impossible functionalities, including autonomous
driving, object recognition, and forecasting. Due to the criticality of the results, ML-
based software must employ a reliable and trustworthy approach (Khomh et al., 2018;
Ozkaya, 2020). However, achieving reliability and trustworthiness remains challeng-
ing due to the unique characteristics of the ML-based software components (Martínez-
Fernández et al., 2022; Sculley et al., 2015).

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-024-09687-z&domain=pdf

1240	 Software Quality Journal (2024) 32:1239–1285

1 3

Developments of ML components, which are more often referred to as ML models, are
highly experimental and nondeterministic (Wan et al., 2021). Identifying the ML model
version suitable for the predefined quality described in the performance metrics requires
experimentation using different parameters and datasets (Vogelsang & Borg, 2019). Then
continuous monitoring is necessary after deployment to detect drifts and keep the ML
Model relevant to the ever-changing operation domain via retraining (Xiang et al., 2023;
Lima et al., 2022). Additionally, the characteristics of ML drive solutions that are uncom-
mon to traditional software engineering. Dataset manipulation such as augmentation,
reduction, or rebalancing is necessary to provide quality inputs to the training and testing
process (Rahman et al., 2023). Manipulation of the neural network architecture (e.g., deep
neural network (DNN) repair) is another example of ML-specific solutions that replace
traditional software debugging activities (Sotoudeh et al., 2021).

The decisions made during ML-specific development activities often occur in isolation
from the requirements of the rest of the software systems (Nahar et al., 2023). Analysis
of the components in ML models considers only the ML perspective and ignores other
aspects crucial for reliable and successful software system development, such as business
and safety requirements (Wolf & Paine, 2020; Pereira & Thomas, 2020). Consequently, the
reliability of the overall ML-based system cannot be demonstrated. This type of problem
is not new for traditional software. The model-based approach overcomes this problem by
facilitating traceability and consistency between different aspects of the software system
(Batot et al., 2021). The term multi-view emphasizes the usage of different models to cap-
ture various aspects of the system (Reineke et al., 2019).

Several multi-view approaches have been proposed to facilitate ML characteristics
(Villamizar et al., 2022; Nalchigar et al., 2021). However, these approaches are prone to
inconsistency and a lack of traceability between the analysis and implementation because the
decision is implemented separately from the analysis. Some works have aimed to implement
a model transformation approach that integrates analysis models into ML model training, but
the capability to discuss the relationship between the model defining the ML training design
and other aspects necessary for a system-level analysis is lacking (Moin et al., 2022; Koseler
et al., 2019). A different approach that combines the benefits of multi-view modeling and
integrated implementation is necessary to achieve effective ML system analysis.

This paper extends our proposal of the Multi-view Modeling Framework for ML Sys-
tems (M3S) as a model-based framework that facilitates consistent and comprehensive
analysis of ML systems (Husen et al., 2023). M3S analyzes the ML components and the
overall system itself. The analysis includes integrating the modeling environment and the
ML pipelines to facilitate the highly experimental characteristics of ML models, in which
a series of training and evaluations are conducted with different solutions and configura-
tions to identify an ML model version that satisfies all requirements. These integrations are
based on a cohesive metamodel to ensure analysis consistency. The underlying approach
of M3S supports a reliable and comprehensive analysis of the ML system while ensuring
tight synchronization with the implementation. This synchronization provides the base for
a feedback loop between the analysis and the implementation at both the ML model and
the overall system levels.

Previously, we proposed a version of M3S and evaluated it with a limited case study
(Husen et al., 2023). The early version features an analysis framework without any inclu-
sion of integrated implementation of the decision documented in the models. This paper
extends the previous work with an improved version of the framework. The enhanced
framework includes the integration of the modeling environment with ML training pipe-
lines along with an updated metamodel and process to reflect the improvement. Finally, a

1241Software Quality Journal (2024) 32:1239–1285	

1 3

more comprehensive case study and a controlled experiment validate the capabilities of the
updated M3S.

The contributions of this paper include:

•	 Proposal of a multi-view modeling approach for an overall analysis of ML sys-
tems. Because comprehensive analysis is necessary to achieve reliable ML systems as
an overall solution and not simply an ML model, we validate the usefulness of the pro-
posed approach.

•	 Development of an integrated metamodel for ML system analysis. Integrating different
modeling approaches into a single entity is a limitation of the multi-view modeling approach.
Herein we create an integrated model, which combines the unique characteristics of ML sys-
tems, and introduce an integrated metamodel that incorporates analysis approaches devel-
oped for ML systems (e.g., ML Canvas and the ML model pipeline) itself.

•	 Integrated tool between the modeling environment and ML training pipeline. ML
model development is a highly experimentative approach. Separating analysis from the
ML model training and testing causes drift. To enhance the consistency between these
two sides with different natures, we developed a tool that integrates the modeling envi-
ronment and the ML pipeline through the definition and execution of configurations in
ML training approaches.

The rest of this paper is structured as follows. Section 2 provides a motivating example.
Section 3 summarizes related works. Section 4 presents the M3S and its implementation as
an integrated tool. Sections 5 and 6 show a case study and experiment of M3S, respectively.
Section 7 discusses the benefits and limitations of M3S identified during the evaluation.
Finally, section 8 concludes this paper with the future direction of M3S.

2 � Motivating example

Figure 1 outlines the motivating example of our work. In a model-first ML system devel-
opment, an ML model is developed using the standard experimental process where an
experiment management tool executes several runs. This generates a set of versions for a
multi-class classification model. The performance of each version is tested and is ready for
use as the basis to decide the version to be deployed into the system.

On the other hand, the system where the ML model will work has its requirements. At the
very least, a business-level decision will dictate the success criteria of the overall project. The
problem happens in the link between the performance of the selected version of the ML model
and requirements at a higher level. How to trace the order of the importance of the ML perfor-
mance for each class into the business decisions? On top of that, do the business decisions align
or contradict each other on the ML performance level? How to reconcile and maximize the
achievement of the project goals in the case of conflicting decisions?

However, the system where the ML model will be deployed has its own requirements.
At a minimum, a business-level decision will dictate the success criteria of the overall pro-
ject. This typically creates issues in the link between the performance of the selected ver-
sion of the ML model and the requirements at a higher level. Not only is tracing the order
of the ML performance for each class into the business decisions crucial but the business
decisions must align with the ML performance level. Hence, when the ML performance
and business decisions conflict, they must be reconciled to achieve the project goals.

1242	 Software Quality Journal (2024) 32:1239–1285

1 3

In a hypothetical situation where training a new version of the ML model is available,
another problem also emerges. The approach to train the version must satisfy the business
decisions. Analysis based on the defined business decisions must be employed to select
a suitable approach. Otherwise, experimentation on training the new version of the ML
model may lead to unachievable goals. It should be noted that business decisions may state
not only the functionality of the ML model but also other quality aspects such as safety and
fairness. Hence, a trade-off may be necessary (Software engineering - systems and software
quality requirements and evaluation (square) - quality model for ai systems, 2023).

We aim to solve this problem using M3S. The multi-view approach should bridge the
deterministic side of higher-level requirements and the decisions to implement training
strategies inside the black-box ML training activities. An integrated metamodel will guide
which part of the decisions are connected and synchronized. Finally, if a change in higher-
level requirements is necessary, the traceability of the framework should provide reliable
information on the limitations of possible solutions from ML model training.

3 � Related works

Several works have investigated reliable ML system development. Here, we classify them
based on their similarity to M3S. In terms of a model-based approach for analyzing ML mod-
els, early examples include Bishop’s work in probabilistic graphical models (Bishop, 2013) and
Infer.net (Minka et al., 2018). Moin et al. proposed the integration of Model-Driven Software
Engineering and Automated ML (AutoML) with automated source code and ML model gen-
eration (Moin et al., 2022) as well as a Model-driven Engineering (MDE) approach for ana-
lytic and software modeling with a focus on ML mainly for the Internet of Things (IoT)
domain with a prototype named ML-Quadrat (Moin et al., 2022). Kirchoff et al. conducted
a comparative study using MontiAnna, a textual modeling framework, and ML-Quadrat to
explain the potential of the MDE approach in the ML domain (Kirchhof et al., 2022). Koseler
et al. defined a domain-specific modeling language for ML for a metamodel for ML systems
(Koseler et al., 2019). Langford et al. proposed MoDALAS to facilitate model-driven runt-
ime monitoring for learning-enabled components (Langford et al., 2021). M3S differs from the
other studies in this area as it tries to address not only single aspect using a single model but to
integrate different aspects into a single workflow.

Fig. 1   Motivating example

1243Software Quality Journal (2024) 32:1239–1285	

1 3

Some studies have connected ML performance to requirements on higher levels.
Villamizar et al. proposed perspective-based ML task specification based on the
classification of 45 ML concerns into five perspectives: objectives, user experience,
infrastructure, model, and data (Villamizar et al., 2022). Takeuchi and Yamamoto devised
an analysis method to construct a business-AI alignment model in ArchiMate (Takeuchi
& Yamamoto, 2020). Chuprina et al. proposed an artefact-based requirements engineering
approach, which divides the concerns into four layers: context, requirements, system,
and data-centric (Chuprina et al., 2021). Nalchigar et al. proposed GR4ML, a conceptual
modeling framework for ML that utilizes three perspectives: business, analytic design, and
data preparation (Nalchigar et al., 2021). M3S follows the same concept, but a different
approach in the abstraction of the levels of requirements. M3S also extends the concept into
the ML training pipeline.

Idowu et al. proposed the Experiment Management Meta-Model (EMMM) as an inte-
grated metamodel of a commonly used experiment management tool (Idowu et al., 2022)
and taxonomy of those tools (Idowu et al., 2023). The difference between our metamodel
and EMMM is the focus of the metamodel. EMMM is an experiment management tool,
while our integrated metamodel aims to connect the elements of the analysis models to the
artefacts inside the experiment management tool itself. At M3S, the metamodel of the pipe-
line exists as a single part of the overall integrated metamodel.

The main difference between M3S and the aforementioned studies is the approach uti-
lized for connecting the analysis and implementation of the analysis inside the machine
learning training. M3S is not designed to generate the source code for model training.
Instead, it connects the solutions, configurations, and results embedded in the ML pipeline
with higher-level requirements to support project requirements achievement. Moreover,
M3S facilitates a feedback loop between the ML pipeline and the system modeling through
the integrated environment for modeling and training, which is not well supported by tradi-
tional model-driven approaches of model-to-code generation.

4 � Multi‑view modeling framework for ML system

Figure 2 overviews M3S, which aims to integrate and synchronize both sides. The key
concept behind M3S is an integrated, traceable process between system models and the
ML pipeline. It involves a multi-peak process where the analysis and implementation are
iteratively refined from a highly abstract and speculative state into a more concrete and
proven one. An integrated metamodel guides the connection between system models, ML
pipelines, and configurations, connecting both sides to ensure consistency and traceability.
There are three use cases of M3S: top-down, model-first, and parallel approaches. The use
cases are based on which side is developed first. The use cases are based on common tra-
jectories of ML system development (Nahar et al., 2022).

The first is a top-down approach. This is like a traditional software process where ana-
lytical models are developed prior to the execution of ML pipelines. The results of ML
testing are then used as the basis to refine the decisions before another ML pipeline is
executed. This use case fits a product-first approach to ML-system development.

The second one is the model-first approach. In this case, early versions of the ML model
are developed before the analysis starts. The analysis is done in a reverse engineering manner.
First, the current capability of the ML model is connected to the higher requirements. Second,

1244	 Software Quality Journal (2024) 32:1239–1285

1 3

whether the model satisfies the goal is determined. Third, the requirements are retrained or
negotiated based on the findings of the analysis. This approach is appropriate when the ML
system process is based on exploring what kind of ML task the existing data can produce.

The last one is the parallel or hybrid approach. This use case starts by defining the
highest-level requirements followed by small experimentation using anything the team can
think of. In this case, both the analysis and experimentation sides must communicate fre-
quently to close the gaps as the analysis and ML performance become clearer over time.
This is the best usage of M3S. However, this use case is also the most challenging to imple-
ment correctly.

4.1 � Multi‑view modeling process

M3S is comprised of six views covering different aspects of a reliable ML system.
Table 1 summarizes the views and the model responsible for each view. The views are
selected based on the identification part ISO/IEC Guide 51, which specifies analysis
steps of the safety aspects for standards (Safety aspects - guidelines for their inclusion
in standards, 2014). ISO/IEC Guide 51 covers high-level use cases, functionalities, and
failure analysis of the system itself. ISO/IEC Guide 51 is selected with the goal of align-
ing the framework with safety aspects by following the required iterative process for
risk assessment. This allows M3S to be utilized for safety-critical ML systems where
highly reliable analysis and argumentation of the development of ML model and overall
system are required. We transformed the steps into aspects that must be covered and
subsequently assigned a model for each step. Figure 3 summarizes the transformation
and model assignment.

Fig. 2   Overview of M3S

Table 1   Views of M3S

No View Covered Aspect Responsible Model

1 Value Business and project requirements AI Project Canvas
2 ML Task ML task requirements and ML Canvas

higher-level performance requirements
3 Architecture Architectural design and integration Architectural Diagram (SysML)

requirements
4 Goal Detailed ML performance requirements KAOS Goal Model
5 Safety Safety requirements STAMP/STPA
6 Argumentation Solution argumentation Safety Case

1245Software Quality Journal (2024) 32:1239–1285	

1 3

Following the steps of ISO/IEC Guide 51, the modeling process becomes systematic
steps of modeling activities. Back-and-forth adjustments between models may be necessary
to correct and align the information between them. The decisions captured in the mod-
els are then implemented into a model training pipeline. In addition, a V-shaped process
can be realized by connecting a validation process to each step of the modeling activities
(Fig. 4). By utilizing a V-shaped process, the correctness of the decisions made during
the analysis can be evaluated and traced for improvement and revision during the develop-
ment process. Ultimately, a monitoring phase to detect performance degradation of the ML
model from drift can be traced back to the main goal of the ML system.

The details of the process are as follows:

	 1.	 Begin with the "Value" view. This view involves developing an AI Project Can-
vas to capture the project-level requirements (Thiée, 2021). This step defines the top
business-level requirements, which include value propositions, potential users and
other stakeholders, related aspects of the systems, and financial aspects of the project.

	 2.	 Identify the common aspects of the ML Task on the "ML Task" view using ML
Canvas (Dorard, 2015). ML Canvas incorporates the information of AI Project Canvas
(e.g., the value proposition, output, and data) into the requirements necessary for build-
ing an ML pipeline. ML Canvas defines the data collection and processing activities,
the desired capability of the ML model, and the need for continuous monitoring.

	 3.	 Develop the "Architecture" view by an architecture diagram made in SysML.
This view overviews the workflow to integrate the ML models and traditional software
components. Communications between the components, including sensors, control-
lers, and user interfaces, are defined here. The information on integration in AI Project
Canvas acts as the baseline for developing this model.

Fig. 3   Mapping of models into views and ISO/IEC Guide 51

1246	 Software Quality Journal (2024) 32:1239–1285

1 3

	 4.	 Model the "Goal" view using the KAOS Goal Model. This view defines the details of the
ML task and the expected performance defined in ML Canvas. It also assigns the expected
performance to each ML component described in the architectural diagram (Matulevičius
& Heymans, 2007). The model decomposes the task and required performance into more
detailed specifications. In the leaf nodes of the KAOS diagram, details of the desired perfor-
mance must be defined in a measurable form. A formal specification of the ML performance
can also be used to give an unambiguous specification (Letier, 2001).

	 5.	 Employ STAMP/STPA acts as the model for the "Safety" view in M3S (Leveson,
2012). The model uses the specified architecture in the architecture diagram to model
interactions and identify potential communication failures that may lead to accidents.
Root cause analysis of each failure is followed by the definition of the countermeasures
that need to be implemented to ensure the safety of the overall system.

	 6.	 Assign responsibility to the safety case as the model of the "Argumentation"
view that captures the solutions implemented in the ML pipeline and related
components. The model specifies the goals of each implementation of solutions. The
solutions cover data engineering, training approach, safeguarding, and other aspects
necessary to be argumentative. The ML pipeline implements the solution and its con-
figuration reflected in the safety case.

	 7.	 Execute the workflow of the training pipeline according to the information in
the solutions described in the "Argumentation" view. Continuous synchronization
provides consistency between decisions to utilize the solutions. Then the result of the
training pipeline goes through several steps of testing.

	 8.	 Execute unit tests in the form of ML performance metrics to signal whether
the specified minimum performances in the "Goal" view are too optimistic or
pessimistic. This step shows the achievement of ML performance requirements and
decides whether a change to the analysis model is necessary. New solutions in the
"Argumentation" view or evolution of the ML performance requirements in the "Goal"
view may be necessary.

Fig. 4   Modeling Process of M3S

1247Software Quality Journal (2024) 32:1239–1285	

1 3

	 9.	 Execute an integration test to validate whether the designed architecture in the
"Architecture" view fulfills its purpose. Like the previous step, the architectural
decision in the "Architectural" view may need to be updated if the integration fails to
be done or does not demonstrate the desired quality.

	10.	 Implement continuous monitoring to detect possible drift and wrong specifica-
tions of the "ML Task" view. This step is important because the uncertainty of
the ML model cannot be removed from the system. Detection through the described
Monitoring element in ML canvas notifies developers when drifts occur.

	11.	 Employ value monitoring to evaluate whether the proposed values in the "Value"
view are achieved. A misaligned business judgment needs to be monitored closely. A
change in the environment may lead to an incorrect business judgment, which requires
a shift in the value proposition.

4.2 � Integrated metamodel

To achieve consistency between different views, we developed an integrated metamodel,
which summarizes the relationship between the elements inside each view, using a meta-
data modeling process. The metamodeling process focuses on identifying similar elements
between different models and connecting parts that lead to a comprehensive connection
between all views. The integrated metamodel of M3S not only covers the models but also
their communication with the ML pipeline. To achieve this, the integrated metamodel
includes common concepts of the ML pipeline and the experiment management tool.
Finally, the general concept of an ‘ML Solution’ is added to describe the implementation
of solutions detailed in the safety case. The integrated metamodel is constructed and evalu-
ated iteratively. The process begins with a metamodel for each utilized model. Then, the
connections between all element pairs are evaluated to determine the connection type.

Connections are classified into four categories: same, similar, aggregate, or contribution
(El Hamlaoui et al., 2018). "Same" connections mean the exact similarity between two ele-
ments, and the description of both elements mimics each other. "Similar" connections rep-
resent a generality and specialization between two elements, where one element describes
a higher-level explanation while the other provides a more specific description. Most con-
nections are classified as "contributions," which means the two elements are interdependent.
Finally, “aggregation" connections show one element as a subset of another. To ensure the
correctness of the metamodel, an iterative evaluation and correction process is implemented.

Table 2 shows an example of connecting the elements between two views and their con-
nection types. The value proposition of both AI Project Canvas for the "Value" view and
ML Canvas for the "ML Task" view is the same, meaning that the description from one
side should match the other. Output and Integration of the "Value" view show an example
of a similar connection, where the Impact Simulation of the "ML Task" view and Com-
ponent of the "Architecture" view should use these elements as a basis, respectively. The
safety goal of the "Argumentation" view should have a more specialized description than
the goals of the "Goal" view as part of their aggregation. For the contribution, the ML per-
formance generated from the ML testing activities should contribute to the achievement of
the ML requirements, which is a specialized type of goal in the "Goal" view.

Figure 5 depicts the entire integrated metamodel of M3S, including the examples shown
in Table 2. It should be noted that the class diagram notation is used to model our inte-
grated metamodel. The “same" connections are modeled as a single node of an element,
such as the "Value Proposition" elements of the AI Project Canvas for the "Value" view

1248	 Software Quality Journal (2024) 32:1239–1285

1 3

Ta
bl

e 
2  

E
xa

m
pl

es
 o

f c
on

ne
ct

in
g

el
em

en
ts

 in
 th

e
in

te
gr

at
ed

 m
et

am
od

el

So
ur

ce
 V

ie
w

 &
 M

od
el

So
ur

ce
 E

le
m

en
t

D
es

tin
at

io
n

V
ie

w
 &

 M
od

el
D

es
tin

at
io

n
El

em
en

t
Ty

pe
 o

f C
on

ne
ct

io
n

Va
lu

e
- A

I P
ro

je
ct

 C
an

va
s

Va
lu

e
Pr

op
os

iti
on

M
L

Ta
sk

 -
M

L
C

an
va

s
Va

lu
e

Pr
op

os
iti

on
Sa

m
e

Va
lu

e
- A

I P
ro

je
ct

 C
an

va
s

O
ut

pu
t

M
L

Ta
sk

 -
M

L
C

an
va

s
Im

pa
ct

 S
im

ul
at

io
n

C
on

tri
bu

tio
n

Va
lu

e
- A

I P
ro

je
ct

 C
an

va
s

In
te

gr
at

io
n

A
rc

hi
te

ct
ur

e
- A

rc
hi

te
ct

ur
al

 D
ia

gr
am

C
om

po
ne

nt
C

on
tri

bu
tio

n
M

L
Ta

sk
 -

M
L

C
an

va
s

Va
lu

e
Pr

op
os

iti
on

G
oa

l -
 K

A
O

S
G

oa
l M

od
el

G
oa

l
Si

m
ila

r
A

rc
hi

te
ct

ur
e

- A
rc

hi
te

ct
ur

al
 D

ia
gr

am
C

om
po

ne
nt

Sa
fe

ty
 -

ST
A

M
P/

ST
PA

En
tit

y
Si

m
ila

r
A

rg
um

en
ta

tio
n

- S
af

et
y

C
as

e
Sa

fe
ty

 G
oa

l
G

oa
l -

 K
A

O
S

G
oa

l M
od

el
G

oa
l

Si
m

ila
r

Sa
fe

ty
 -

ST
A

M
P/

ST
PA

C
on

tri
bu

te
A

rg
um

en
ta

tio
n

- S
af

et
y

C
as

e
So

lu
tio

n
C

on
tri

bu
tio

n
W

or
kfl

ow
 P

ip
el

in
e

M
L

Pe
rfo

rm
an

ce
G

oa
l -

 K
A

O
S

G
oa

l M
od

el
M

L
Re

qu
ire

m
en

ts
C

on
tri

bu
tio

n
W

or
kfl

ow
 P

ip
el

in
e

M
L

So
lu

tio
n

A
rg

um
en

ta
tio

n
- S

af
et

y
C

as
e

So
lu

tio
n

C
on

tri
bu

tio
n

1249Software Quality Journal (2024) 32:1239–1285	

1 3

and ML Canvas for the "ML Task" view. Aggregation indicates “aggregate" connections,
for example, between "Dataset" and "Label" elements of the ML Pipeline. Generalizations
indicate “similar" connections, as shown between the "Goal" element and "Safety Goal."
Associations indicate "contribution" connections, including the connection between the
"Solution" element of the Safety Case for the "Argumentation" view and the "Counter-
measure" of STAMP/STPA for the "Safety" view. A colored box symbolizes that an ele-
ment may contribute to one or more views.

4.3 � Extensibility

M3S was designed to be flexible. Figure 6 summarizes the modification process for the
models in M3S. The process of extending the M3S framework is based on the evolution-
ary thinking approach of ISO/IEC/IEEE 14764:2022 (Iso, iec, ieee international standard
- software engineering - software life cycle processes - maintenance, 2022). This extension
process allows the adoption of M3S to be lightweight or more extensive, depending on the
needs of the case-specific criterion.

The first step in the extension process is to understand the analysis requirements of
the ML-system development project. The analysis requirements include the ML con-
cerns relevant to both the processes and products. Information about existing multi-view
model-based processes (e.g., the standard goal-oriented multi-view modeling process of
M3S) serves as the baseline for extensions into a more fitting process. Model respon-
sibility mapping assigns the analysis models responsible for each aspect described in
the analysis requirements. This step specifies the lack or excess of model utilization to
cover all necessary views.

Each addition or reduction of the models creates a modification proposal. Each proposal
is either accepted or rejected based on the potential impact of the modification. If a pro-
posal is accepted, the integrated model is updated. Finally, continuous monitoring looks for
potential concept drifts during the development and system operation. If a major concept
drift is detected, another iteration of the extension is conducted to add or remove views.

Fig. 5   M3S integrated metamodel

1250	 Software Quality Journal (2024) 32:1239–1285

1 3

Iterative extensions based on an improved understanding gained from the development and
operation should enhance the fitness of the list of utilized models over time.

4.4 � Integrated modeling tool

We developed a prototype of an integrated ML system modeling environment to support
the modeling and ML training process. The environment is developed as a plugin for the
Astah* System Safety1 because this can reuse existing Astah* System Safety features such
as SysML for architecture diagram, Goal Structuring Notation (GSN) for KAOS and safety
case, and STAMP/STPA modeling. Additionally, the hyperlink feature of the Astah* Sys-
tem Safety helps connect two different views.

Figure 7 summarizes the extension of the Astah* System Safety to support M3S. We
created plugins to add ML Canvas and AI Project Canvas to the Astah* System Safety to
facilitate all the views. We also extended the SysML requirement object into canvas ele-
ments to ensure the elements of ML Canvas and AI Project Canvas can utilize the function-
ality offered by Astah* System Safety. Figure 8 shows examples of how the canvases work
inside the Astah* System Safety environment. The modeling environment is integrated into
the Data Version Control2 (DVC) experiment management tool via a set of plugins. The
plugins work as a communication bridge to retrieve and send data to the other side. This
integration is developed following the M3S metamodel.

For inward communication, we developed the ML performance monitoring plugin. It
supports the definition of the ML performance requirements at leaf nodes of the KAOS
goal model and fetches the testing result to trace the impact of a version of the ML model
in satisfying them. As a proof-of-concept, we monitored the accuracy, precision, recall,
and misclassification rate of a classification model. Figure 9 shows the performance
requirement setting, ML performance data fetching, and impact tracing feature. The per-
formance requirement setting allows the minimum ML performance to be specified. This
minimum can also be set through goals written in parsable descriptions. A pop-up window

Fig. 6   M3S extension process
(Husen et al., 2023)

1  https://​astah.​net/​produ​cts/​astah-​system-​safety/.
2  https://​dvc.​org/.

https://astah.net/products/astah-system-safety/
https://dvc.org/

1251Software Quality Journal (2024) 32:1239–1285	

1 3

summarizes all the ML performance requirements and provides a list of versions of the ML
model to be evaluated. Finally, the plugin evaluates the achievement of the requirement and
traces the failure into all the models.

For outward communication, we developed the DNN repair plugin. This plugin facil-
itates parameter configuration for the repair process and its execution from the mod-
eling environment. The configuration is specified in the solution element on the "Argu-
mentation" view. The configuration is recorded in the safety case for argumentation
purposes. Figure 10 overviews the flow of the configuration setting and repair execu-
tion. The solution is defined through a parsable description or GUI support. Another
window acts as the execution point to select the version to be repaired and the resulting
version’s name. The ML pipeline plugin provides a simple function of executing train-
ing of the ML model using several hyperparameters as inputs. A message containing the
value of each hyperparameter is then sent as a trigger for the new execution of the ML
training process. The result of the training process consists of the trained ML model, its

Fig. 7   Architecture of the Astah* System Safety and DVC integration

Fig. 8   Implementation of AI Project Canvas on Astah* System Safety

1252	 Software Quality Journal (2024) 32:1239–1285

1 3

metadata, and the validation result. The data is stored in the version control system for
future access.

5 � Case study

This case study aimed to evaluate the capability of M3S to facilitate comprehensive analy-
sis. We chose a case study as the evaluation method for two reasons. First, it can evaluate
the modeling side of M3S from the first step, "Value" view development, to the eighth step,

Fig. 9   Performance monitoring feature

Fig. 10   DNN repair feature

1253Software Quality Journal (2024) 32:1239–1285	

1 3

the unit test of trained ML models. Second, it is suitable with respect to the extensive time
needed to evaluate the overall process with external participants.

5.1 � Utilized case

Table 3 summarizes the case study, which is based on object classification ML models
for autonomous driving cars (ADV). Here, the scope of the classification task is limited
to traffic sign classification. The inputs for the ML model classification are color images
from an embedded camera system as the sensors of the overall ADV system. The classifi-
cation result is sent to the decision-making ML model as a decision-making input for the
car’s control system.

ADV is required to work at level three of vehicle autonomy. In level three conditions,
the autonomous part returns the driving responsibility to the driver when ADV is operated
outside the preferable domain. To train and test the model, we used the publicly available
German Traffic Sign Recognition Benchmark (GTSRB) dataset (Stallkamp et al., 2012,
2011). The GTSRB dataset consists of images of German traffic signs that fit the case
study. Figure 11 shows samples for each of the 43 traffic sign classes.

The case study considers two operation domains (Fig. 12). The first one is the highway.
Because this domain is free of pedestrians and bikes, traffic signs indicating such objects
are non-existent. The second one is suburban roads, where pedestrians and bikes are more
prevalent. The highway domain is prioritized from an economic standpoint, whereas the
suburban road domain is preferable from the user standpoint. The JAMA Framework Japan
Automobile Manufacturers Association (2021) and Aurora’s safety case framework for
ADVs3 serve as the basis to ensure that the case study reflects the real world as much as
possible. To fit the ML model to both cases, DNN repair may be utilized to improve the
performance of important classes. However, if no version of trained ML models satisfies
both cases, the highway domain is prioritized. The configuration of the repair process must
reflect such concerns.

Table 3   Overview of the case
study

Aspect Description

Overall System Autonomous Driving Car
Mandatory Top Goal Safe highway operation
Preferable Top Goal Safe urban road operation
ML Task Traffic sign multiclass classification
Input Color images
Output Classified traffic sign for driving

decision-making ML model
Dataset GTSRB
Available ML techniques DNN Repair (Athena)

3  https://​blog.​aurora.​tech/​safety/​safety-​case-​frame​work-​devel​opment-​and-​tailo​ring.

https://blog.aurora.tech/safety/safety-case-framework-development-and-tailoring

1254	 Software Quality Journal (2024) 32:1239–1285

1 3

Fig. 11   Sample of images in the GTSRB dataset (Hosseinzadeh Kassani & Teoh, 2016)

Fig. 12   Illustration of the difference between highway and urban road domain

1255Software Quality Journal (2024) 32:1239–1285	

1 3

5.2 � Research Questions

This case study aims to answer the following research questions (RQs):

•	 RQ1. Does the integrated metamodel ensure consistency in the multi-view mode-
ling process of M3S? RQ1 assesses the benefits and necessity of utilizing an integrated
metamodel to facilitate the M3S process. This question should validate the integrated
metamodel, which serves as the guideline for the M3S modeling process.

•	 RQ2. Does the integrated modeling tool facilitate validating higher-level goals
compared to existing ML performances? RQ2 evaluates the capability of the tool-
supported M3S process to maintain and utilize backward traceability between the ML
test result and the specified ML performance and other related requirements.

•	 RQ3. Does the integrated modeling tool facilitate rationalizing ML-specific solu-
tions and their impact? RQ3 examines the capability of the tool-supported M3S pro-
cess to maintain traceability between ML-specific solutions, including the configura-
tion and implementation of such solutions in the ML pipeline.

The process and results of the case study address RQ1. Evaluating the impact analysis
function of the integrated tool answers RQ2. Finally, the evaluation of the solution integra-
tion function of the DNN repair answers RQ3.

5.3 � Results

The case study followed the process steps described in the Subsection 4.1. The numbering
in this subsection reflects the numbering of steps of the M3S process.

1.	 We initially modeled the "Value" view using the AI Project Canvas based on the infor-
mation from the case study. The result of the modeling can be seen at the top of the
Fig. 13.

2.	 Figure 13 shows the result of the AI Project Canvas for the "Value" view and the ML
Canvas for the "ML Task" view along with the related metamodel part that guides the
derivation of information from the AI Project Canvas to the ML Canvas. Firstly, the
value proposition developed in the "Value" view was copied directly into the "ML
Task" view. Then other elements in the "ML Task" view were derived based on the
value proposition. On the elements where a specific connection was described in the
metamodel (e.g., the outputs of the "Value" view and the impact simulations of the
"ML Task” view), more detailed information was derived. At this point, the informa-
tion necessary for training the initial versions of the ML models was complete. Various
versions of ML models using different hyperparameter configurations could be trained
using the information of the dataset and ML task in ML Canvas on the DVC side. In
parallel, modeling continued for the "Architectural" and "Goal" view.

3.	 The integration part of the AI Project Canvas dictated the development of an archi-
tectural diagram for the "Architectural" view (Fig. 14). Each piece of information in
AI Project Canvas’s integration was translated into the system requirements prior to
dividing into specialized components inside the architectural diagram. The connec-
tion between the components was subsequently analyzed and specified to complete
the architectural diagram.

1256	 Software Quality Journal (2024) 32:1239–1285

1 3

Fig. 13   AI Project Canvas (top) and ML Canvas (bottom) with associated metamodel elements (middle)

1257Software Quality Journal (2024) 32:1239–1285	

1 3

4.	 The value proposition and impact simulation defined in the "ML Task" served as the
basis of higher-level goals in the KAOS goal model for the "Goal" view (Fig. 15). Then
it was further decomposed to obtain a goal achievable by a single performance metric.
With the required ML performance defined in a semi-formal way, the M3S modeling tool
parsed the information and used it to check if the requirements were satisfied. Figure 16
compares the ability of three different ML models to satisfy the requirements. By exam-
ining the color-coded elements, version A clearly outperformed the other two. However,
no version completely satisfied all the requirements. Thus, we continued developing the
"Safety" view with a clear understanding of the limitations of the available ML models.

5.	 STAMP/STPA inside the "Safety" view indicated how the hazard from the user perspec-
tive connects to the limitation of the ML model. The architecture diagram was translated
into the control structure diagram of STAMP/STPA (Fig. 17). Unsafe control actions
between the ML model and the other components of the ML system were analyzed. Then
countermeasures were given based on the limitation of existing ML models towards each
hazard causal factor of each unsafe control action.

6.	 Figure 18 shows the connection of the top goal of the goal model to the top goal of
safety constraint and the countermeasures from STAMP/STPA in the safety case of the
"Argumentation" view. For the solution that utilized DNN repair, we implemented repair
strategies and patterns to improve the best-performing version of the ML model, which
was version A. Figure 19 summarizes the patterns utilized and the difference between

Fig. 14   Derivation of AI Project Canvas’ Integration (top) into the Architectural Diagram’s components
(bottom)

1258	 Software Quality Journal (2024) 32:1239–1285

1 3

Fig. 15   ML Canvas (top) and part of the KAOS Goal Model (bottom) and its associated metamodel ele-
ments (middle)

1259Software Quality Journal (2024) 32:1239–1285	

1 3

Fig. 16   Comparison of the results from different ML model versions. Red means the performance require-
ment is not fulfilled

1260	 Software Quality Journal (2024) 32:1239–1285

1 3

the repair results. The first pattern was a balanced approach, where both classes were
treated equally with the same priority weighting. The other one prioritized fixing the
worse-performing class.

7.	 DNN repair processes were executed for both cases using the specified configuration in
the "Argumentation" view. The repair resulted in two new versions of the ML model,
improved from the selected A version as the base model for repair. All new versions of
the ML model are stored on the DVC side.

8.	 Although the execution of the repair improved the performance in both patterns, nei-
ther achieved the required ML performance. Further evaluation of the misclassified
images showed that the test data quality might not be suitable for real-life situations.
The test data in Fig. 20 was too extreme for the target operational domain, considering
the development goal only required level 3 self-driving capability. As such, further
manipulation of the test data, such as the exclusion of extremely low-quality images,
may be necessary to measure the capability of the ML model properly. Moreover, the
quality of the sensors also came into question. The ability of the cameras to provide
quality images is integral to ensure that the ML model is not exposed to extreme cases.
However, both solutions increased development costs. Figure 21 shows how the solu-
tions are reflected in the "Argumentation" view and the associated costs of the solu-

Fig. 17   Derivation of Architectural Diagram’s components (top) into STAMP/STPA’s Entities (bottom)

1261Software Quality Journal (2024) 32:1239–1285	

1 3

tions in the AI Project Canvas for the "Value" view due to the part of the metamodel
that specifies the interconnected changes. Hereafter, we adopted the balanced repair
version of the ML model for further integration. However, the need for better-quality
camera sensors is noted as a future improvement.

Fig. 18   Development of a safety case (top) from KAOS Goal Model’s Top Goal (snippet) and STAMP/
STPA’s Countermeasures (bottom)

1262	 Software Quality Journal (2024) 32:1239–1285

1 3

5.4 � Answers to research questions

Here, the research questions are answered. Each subsection is dedicated to one research
question.

5.4.1 � RQ1. Does the integrated metamodel ensure consistency in the multi‑view
modeling process of M3S?

The results highlight how the metamodel guides the development of new elements. The
metamodel guides the consistency from business-level decisions into the ML training
aspects (Fig. 13). Then the information in the AI Project Canvas serves as the basis to

Fig. 19   Repair strategy patterns utilized in the case study

Fig. 20   Misclassified test data for each version of the ML model

1263Software Quality Journal (2024) 32:1239–1285	

1 3

construct the architectural diagram (Fig. 14) while composing the abstract description
in the ML canvas realizes achievable ML performance requirements (Fig. 15). Finally,
the architectural decision should be the foundation of the STAMP/STPA control struc-
ture (Fig. 17).

Fig. 21   Inclusion of newly found solutions in the safety case (top) and the associated update on AI Project
Canvas (bottom) based on the metamodel (middle)

1264	 Software Quality Journal (2024) 32:1239–1285

1 3

The metamodel guides the process in higher-level decisions to update the models during
the loop. The costs in the AI project canvas should be added for each newly proposed deci-
sion (Fig. 21) because the metamodel must not only work in the initial development but
also in the later stages when decisions may need to be changed.

This case study demonstrates the capability of the metamodel. Hence, the integrated
metamodel of M3S can ensure consistency in the multi-view modeling process.

The integrated metamodel of M3S ensures the consistency of the multi-view mod-
eling process. Elements of different models can be traced and connected using the
integrated metamodel not only during the initial development but also as the analysis
models evolve as new solutions update the elements of another view.

5.4.2 � RQ2. Does the integrated modeling tool facilitate validating higher‑level goals
compared to existing ML performances?

The integrated modeling tool can be configured to monitor specific ML metrics through
the goals of the KAOS goal model (Fig. 15). The color coding in Fig. 16 demonstrates the
tool’s capability to communicate with the ML pipeline to fetch the test result and mark
the achievement of the configured goal nodes and the associated elements of other mod-
els. This format visualizes the impact of the ML model on the achievement of the higher-
level goals. The integrated modeling tool utilizes visualization techniques to support the
traceability between models. Consequently, the integrated modeling tool can validate the
achievement of higher-level goals from existing ML performances.

The integrated modeling tool of M3S successfully validates the achievement of
higher-level goals using the traceability between the business and system-level goals
and lower-lever ML performance goals. The fetched ML performance from the DVC
server can be automatically traced to other views such as the "Value" and "Architec-
ture" views.

5.4.3 � RQ3. Does the integrated modeling tool facilitate rationalizing ML‑specific
solutions and their impact?

Figure 18 demonstrate how the information of ML-specific solutions is captured inside the
safety case of M3S. The solution spans from the data layer to ML training and architec-
tural decisions made. The metamodel supported the addition of solutions on other aspects.
Moreover, the integrated DNN repair tool, which is used as an implementation example of
an integrated solution, shows promising results. Solutions can be captured inside the analy-
sis model and subsequently executed in a single flow, ensuring synchronization of deci-
sion-making and solution execution during the iterative addition of solutions. The impact
of the solution on ML performance and the higher-level goals can also be traced using the
performance checking function (Fig. 16).

It should be noted that these findings are based on a single integrated solution. More
implementations of integrated solutions, especially on different aspects such as data
manipulation, are necessary to understand the full capability and limitation of integrating

1265Software Quality Journal (2024) 32:1239–1285	

1 3

solutions into both the analysis and model training because the solutions may work differ-
ently from the DNN repair, which works directly with the ML model.

The integrated solutions of M3S allow decision-making and execution of solutions to
maintain consistency during the iterative and experimentative development process.
However, this finding is limited to the context of DNN repair. Further implementa-
tion and evaluation of different types of solutions such as data manipulation are nec-
essary to understand the benefits and limitations of integrated ML solutions.

5.5 � Threat to validity

The main threat to our case study is the validity of the case itself. An unrealistic case
study questions the uncertainty of whether the results of the case study reflect the real
situation. We implemented two strategies to ensure that the case study is suitable to
evaluate M3S. First, the case study is based on reliable documents. We followed the
JAMA framework for required capability and possible failures. We also followed Auro-
ra’s safety case framework for ADVs to design the overall system. Second, we solic-
ited input from industry practitioners. We continuously reviewed the case study and the
results with industrial experts to verify the quality of the case and analysis results.

6 � Controlled experiment

The controlled experiment focused on evaluating the usability of M3S to execute the
integrated pipeline. The experiment consisted of two parts. The first one evaluated the
capability of M3S to facilitate impact analysis of the integrated pipeline. The second
assessed the capability of M3S to execute an integrated solution, which in this experi-
ment is represented in the form of a DNN repair.

6.1 � Research questions

We aimed to answer the following research questions (RQs):

•	 RQ4. Can M3S efficiently facilitate the impact analysis from ML model per-
formance? RQ4 evaluates the time needed for M3S to complete the impact analysis
task on ML performance testing. A lower time compared to the control group indi-
cates a better efficiency compared to ad-hoc approaches.

•	 RQ5. Can M3S efficiently facilitate the analysis of parameters for repair activi-
ties? RQ5 evaluates the time needed for M3S to fully configure the integrated solu-
tions. A lower time compared to the control group indicates a better efficiency com-
pared to ad-hoc approaches.

•	 RQ6. Does M3S help users train a better ML model through integrated solu-
tions? RQ6 evaluates the capability of M3S to help developers effectively incorpo-
rate solutions to train better ML models.

1266	 Software Quality Journal (2024) 32:1239–1285

1 3

•	 RQ7. How confident are users about the impact analysis result of M3S? RQ7
evaluates the users’ acceptance toward the result generated by M3S in analyzing the
impact of the result of ML performance testing.

•	 RQ8. How confident are users about the usability of the impact analysis of
M3S? RQ8 evaluates users’ acceptance toward the support provided by the support
tool for M3S in analyzing the impact of ML performance testing.

•	 RQ9. How confident are users about the result of solution integration in M3S?
RQ9 evaluates users’ acceptance toward the result generated by M3S in the configu-
ration and execution of the integrated solution.

•	 RQ10. How confident are users about the usability of the solution integration in
M3S? RQ10 evaluates users’ acceptance toward the support provided by the support
tool for M3S for the configuration and execution of the integrated solution.

The time spent by the participants finishing their tasks answers RQ4 and RQ5. The per-
formance of the ML models repaired by the participants answered RQ6. RQ7, RQ8, RQ9,
and RQ10 are addressed based on the participant’s responses to the post-experiment
questionnaire.

6.2 � Experiment design

The experiment is designed to answer the research questions. Here, the design of the flow,
participants, and data collection method for the experiment are detailed.

6.2.1 � Experiment flow

Our experiment consists of two parts. The first part evaluates the effectiveness and effi-
ciency of the M3S modeling-training pipeline integration for performance monitoring and
tracing. The second part evaluates the effectiveness and efficiency of M3S modeling-DNN
repair pipeline integration as a sample of modeling-solution integration.

The final goal of the experiment involving the participants is to identify a version of the ML
model that best meets the requirements. The model can be an existing or repaired model. If no
version satisfies all the ML requirements, they must indicate the changes necessary for immedi-
ate deployment of the most suitable model. Additionally, the participants need to finish the tasks
given by the proctors to achieve such goals in the available time for each part.

We separated the participants into two: the framework and control groups. The
framework group used M3S to achieve their goal, while the control group used an ad-
hoc approach. The experiment employed natural language specification as a control for
comparison to the M3S multi-view models. To ensure the similarity, the natural lan-
guage was translated from the M3S models already specified for the experiment group.
The framework group used the standard command-line interface (CLI) execution of the
pipeline works for the integrated solution.

Figure 22 outlines the ML performance evaluation part of the experiment. Both
groups started the experiment with a general briefing. The briefing consisted of an
introduction of the group members and an explanation of the goals and tasks. Then
the groups were physically separated to work with their own approaches. Both groups
started by understanding the requirements for their respective group (e.g., the multi-
view models for the framework group or in a natural language for the control group).

1267Software Quality Journal (2024) 32:1239–1285	

1 3

The next step was to execute a tool to work with the ML model. The framework
group began by configuring the required performance for the leaf goals they wanted to
monitor. Then they executed the fetching of ML model performance from the pipeline.
In contrast, the control group executed the pipeline using the command lines in the CLI
to determine the performance of each version of the ML model. Finally, each group
decided which version of the ML model was the most suitable to satisfy the existing
requirements, and if the existing versions of the ML model did not satisfy all require-
ments, they indicated which requirements were not satisfied.

Figure 23 overviews the second part of the experiment. It began with an explanation
of how DNN repair works and what parameters need to be configured for the repair to
work. Both groups were then tasked with repairing the version of the ML model they
found most suitable in the first part of the experiment to fulfill as many requirements
as possible. The experiment group worked with the safety case model to specify the

Fig. 22   Experiment flow for ML performance monitoring part

Fig. 23   Experiment flow for the integrated DNN repair pipeline part

1268	 Software Quality Journal (2024) 32:1239–1285

1 3

configuration, while the control group worked with the configuration file directly to
set up the repair process. Both groups then executed the repair using their approach.
Then they evaluated the success of the repair process using a similar approach. Finally,
they decided whether to use the repaired or the original version based on the suitability
to satisfy the requirements. If they chose the repaired version and it did not satisfy all
requirements, they had to mark which requirements were not satisfied.

Afterward, the participants completed a post-experiment questionnaire. The experiment
concluded with a short discussion session between both groups. During the discussion, a
moderator captured the subjective opinions of the participants about what worked well and
what could be improved.

6.2.2 � Participants

Our experiment attracted thirteen participants from practitioners, academia, and graduate
students with varying roles and experience levels. Table 4 summarizes the participants. For
the practitioners and academia, we collected the experience based on how long they have
worked in their role, whereas the year in graduate school was collected for studies. The
personal identities of each participant were obscured to protect their privacy. The partici-
pants were divided into four groups: the practitioner control group, the practitioner frame-
work group, the student control group, and the student framework group.

We split the participants into practitioners and students before assigning them to the
framework and control groups for two reasons. The first one was to isolate the experience
levels to detect differences between the perspectives based on experience. The second one
was for flexibility as students had more time available to test the tools. Although the expe-
rience and backgrounds were balanced between the framework and control groups, the par-
ticipants were randomly assigned to a group. For example, two participants had 30 years of
experience; one was assigned to each practitioner group, but it was random which one was
in each group. Similarly, two students had limited industrial experience and were assigned
to different student groups.

Table 4   Summary of the participants. The groups include practitioner control (C-P), practitioner framework
(FW-P), student control (C-S), and student framework (FW-S)

No ID Background Role Experience
(Years)

Group

1 P1 Academia Project Manager 5 C-P
2 P2 Academia Project Manager 1 C-P
3 P3 Industry Quality Assurance 5 C-P
4 P4 Academia Quality Assurance 5 FW-P
5 P5 Industry Quality Assurance, Software Engineer 5 FW-P
6 P6 Industry Project Manager 30 C-P
7 P7 Industry Data Scientist 30 FW-P
8 P8 Academia Server Reliability Engineer 5 FW-P
9 S1 Student Master Student 1 C-S
10 S2 Student Master Student, Software Engineer 1 C-S
11 S3 Student Master Student 1 FW-S
12 S4 Student Master Student 2 FW-S
13 S5 Student Master Student, Project Manager 1 FW-S

1269Software Quality Journal (2024) 32:1239–1285	

1 3

6.2.3 � Questionnaire

A post-experiment questionnaire was employed to capture the participants’ subjective
opinions from both groups. The questionnaire employed a Likert scale to capture the par-
ticipants’ impression (Likert, 1932-1985). Each question was designed to answer RQ3,
RQ4, RQ5, and RQ7. A four-point Likert scale was used to reduce bias from selecting the
neutral option. Table 5 shows the questions of the post-experiment questionnaire and their
corresponding RQs.

The results of the questionnaire from the control and experiment groups were compared.
The difference in the average between the groups was used to answer the related RQ. The
analysis used a weighted calculation to separate the extreme options of ’Highly Disagree’ and
’Highly Agree’ from the ’Disagree’ and ’Agree’ options.

6.3 � Results

6.3.1 � Time for completion

Figure 24 summarizes the time required for each group to finish the ML performance mon-
itoring part. The student framework group performed three iterations of monitoring during
the experiment, with each iteration fulfilling the completion criteria. To evaluate the time
properly, we divided their time into three parts to reflect each iteration. We also separated
the time for discussion and tool operation. The discussion consisted of conversations about
the tool, case, and solution. However, further classification was difficult since the topics
were often mixed.

The framework groups tended to use time for tool operation more efficiently than the
control groups. The practitioner and student control groups required more than 10 minutes
and 13 minutes, respectively, whereas the practitioner and student framework groups each
required about 3 minutes. Even when considering the multiple iterations executed by the
student framework group, the time remained consistent. Similarly, the discussion time was
longer in the framework group when the results were compared by experience level (prac-
titioners or students). For a given experience level, the discussion time of the framework
group was almost twice that of the control group.

Table 5   Post-experiment four-scale Likert questionnaire

No. Question Related RQ

Q1 I’m confident in the impact analysis results produced by our team. RQ7
Q2 I can easily evaluate the performance of different versions of the ML model. RQ8
Q3 I can easily evaluate the effect of different versions of the ML model RQ8

in satisfying the ML performance requirements.
Q4 I can easily evaluate the effect of different versions of the ML model RQ8

in satisfying the overall requirements.
Q5 I’m confident in the configuration of the repair tool generated by our team. RQ9
Q6 I can easily decide the value of the configuration for different labels of RQ10

repair tools.
Q7 I can easily evaluate the improvement and regression of the overall RQ10

requirements satisfaction due to the repair activity.

1270	 Software Quality Journal (2024) 32:1239–1285

1 3

Figure 25 summarizes the time required for each group to finish the DNN repair part.
Similar to the ML performance monitoring part, the student framework group completed
three iterations of the task. The practitioner framework group completed two iterations.
Following the same approach as the ML performance monitoring part, we divided their
time to reflect the iterations. We also separated the tool operation and discussion time.

The control group for a given experience level spent more time on tool operation.
The student groups showed a significant difference; the discussion time of the control
group was almost twice that of the framework group. For the practitioners, the control
group took slightly longer than the framework group. The second iteration from the
practitioner framework group was less than half the time for the single iteration of the
practitioner control group. However, the learning curve effect must be considered in
this comparison. The discussion time for the control groups from both sections was
significantly higher than that for the framework groups. Overall, regardless of their

Fig. 24   Time needed for each group to finish the ML performance monitoring task

Fig. 25   Time needed for each group to finish the DNN repair task

1271Software Quality Journal (2024) 32:1239–1285	

1 3

experience level, the control groups took more time than the framework groups to fin-
ish the DNN repair part.

6.3.2 � Repaired ML models performances

Table 6 summarizes the performances of repaired ML models by the group, along with
performance expectations. The aim of the experiment is for ML models to satisfy all
desired values. The ML models from both framework groups satisfied all the desired
values. In contrast, the control groups failed to satisfy the desired misclassification
rate from the label ”Speed Limit 60” to ”Speed Limit 80” but satisfied the remaining
desired values.

Except for the misclassification rates, both control groups produced ML models
with better performance than their respective framework groups. In both practitioner
and student groups, the misclassification rate for the label “Speed Limit 60” to “Speed
Limit 80” of the framework group’s ML model was half that of the control group’s ML
model. A similar reduction was observed for the student group in the case of “Speed
Limit 100” to “Speed Limit 120” for the students, but the difference in practitioners
was much smaller. The characteristics of the misclassification rate should be discussed
as a performance metric to understand the findings.

6.3.3 � Questionnaire result

Here, the results are visualized using diverging bar charts (Heiberger & Robbins, 2014)
because the differences in perceptions can easily be identified. Our analysis focused on the
positivity or negativity of the sentiment by group.

Figure 26 summarizes the answers to Q1. The framework group had a more positive
sentiment (72.3%) than the control group (62.5%). This was a difference of 11.2%, suggest-
ing that the control group felt their tracing result was more prone to mistakes.

Figure 27 summarizes the answers to Q2, Q3, and Q4. As the tracing comprehensive-
ness increased, the sentiment of the control groups decreased from 85.7% positive in Q2 to
50% positive in Q3 and 12.5% positive for Q4. In contrast, the framework groups showed
100% positivity for Q2 and Q3 and had a slight drop to 88.8% positivity in Q4.

Table 6   Summary of ML model performances trained by each group. Groups include practitioner control
(C-P), practitioner framework (FW-P), student control (C-S), and student framework (FW-S). Underlined
values indicate failure in satisfying the desired value

No Performance Metrics Desired Value C-P FW-P C-S FW-S

1 Overall accuracy ≥0.90 0.96 0.95 0.96 0.94
2 Overall precision ≥0.80 0.94 0.94 0.95 0.93
3 Misclassification rate from the label ≤0.020 0.022 0.011 0.038 0.020

"Speed Limit 60" to "Speed Limit 80"
4 Misclassification rate from the label ≤0.20 0.009 0.008 0.004 0.009

"Speed Limit 100" to "Speed Limit 120"
5 Precision of label "No Overtaking" ≥0.80 0.94 0.90 0.94 0.91
6 Recall of label "No Overtaking" ≥0.80 1.00 1.00 1.00 0.95

1272	 Software Quality Journal (2024) 32:1239–1285

1 3

The answers to Q5 suggest that the M3S implementation of the DNN repair solution
has major weaknesses (Fig. 28). The control group indicated 100% positivity, whereas
the framework group had only 62.5% positivity in their answers. The significant gap
between the groups implied that something is not working well for the framework
groups and needs to be fixed.

Figure 29 shows the answers to Q6. The 1.5% difference in positivity by group sug-
gested a slight disadvantage in using M3S in terms of efficiency of deciding the input
of the DNN repair tools. However, the answers to Q7 showed that M3S had a signifi-
cant advantage for evaluating the output as the framework group showed a 38.8% higher
positivity than the control group.

Fig. 26   Summary of the answers to Q1

Fig. 27   Summary of the answers to Q2, Q3, and Q4

1273Software Quality Journal (2024) 32:1239–1285	

1 3

6.4 � Answers to research questions

6.4.1 � RQ4. Can M3S efficiently facilitate the impact analysis from ML model
performance?

For the tool operation, M3S is a more efficient approach than the natural language spec-
ification and CLI-based tool combination. However, the difference in discussion time
must be considered to properly understand the reason for the time difference. This find-
ing is relevant for the practitioner framework group, which spent a lot of time discuss-
ing. An interesting finding from their post-experiment discussion is the comments about
model correctness. The practitioner framework group took the time to discuss whether
the models’ logical points are correct. None of the other groups engaged in this type of
analysis. It is plausible that the time spent by the practitioner framework group discuss-
ing the correctness is due to the clarity of the connection between the elements rather
than the difficulties in finishing their task. With that in mind, we argue that the M3S
approach is more efficient than the ad-hoc approach used by the control group. Moreo-
ver, the experience level did not affect the required time for completion.

The M3S approach is more efficient than the ad-hoc approach. This is consistent
with the fact that the framework group needed much less time than the control
group, regardless of experience level.

Fig. 28   Summary of the answers to Q5

Fig. 29   Summary of the answers to Q6 and Q7

1274	 Software Quality Journal (2024) 32:1239–1285

1 3

6.4.2 � RQ5. Can M3S efficiently facilitate the analysis of parameters for repair activities?

Although the difference by group is not significant, the difference by group and experi-
ence level is. In both cases, the framework groups took less time to complete their task
than the control groups. This finding is more pronounced in the students. The operation
time of the student control group is almost twice that of the student framework group.
Additionally, the participants’ comments further support this. One participant in the
control group commented on the need for GUIs to complete all the DNN repair tasks.

Each group employed a similar format in their discussions: identify important classes
to repair, decide the exact number for the configuration, and evaluate the result of the
DNN repair. Although similar formats were utilized, the control groups had longer dis-
cussions. Comments from the practitioner control group emphasized their difficulties
in deciding the value of the configuration and analyzing the side effects of the process.

The M3S approach more efficiently facilitates parameter analysis in the repair
activity than a more ad-hoc approach. M3S supports a faster analysis to make and
evaluate the decisions of the DNN repair activities. However, experience level
also affects the analysis.

6.4.3 � RQ6. Does M3S help users train a better ML model through integrated solutions?

Participants in the framework groups repaired the model to satisfy all the desired values
of ML performance. In contrast, the control groups failed to repair the model to satisfy
the desired misclassification rate. It should be noted that the control groups’ models
outperformed the framework groups’ models for other performance metrics. This find-
ing leads to interesting questions about the nature of the requirements to be satisfied.

An important difference between achieving the misclassification rate and other per-
formance metrics is its relationship with multiple labels. Accuracy, precision, and recall
simply focus on the population of a single label, whereas the misclassification rate
requires a deeper analysis of the connection between the label misclassified from and
the label being misclassified into. This leads to more complex decision-making when
configuring the priority of labels in DNN repair. We argue that M3S helps guide deci-
sion-making in more complex situations. This argument is supported by the fact that the
framework groups better repaired models for the misclassification rate while simultane-
ously satisfying all desired values.

The M3S approach helps the user train a better model in complex situations where
the relationships between labels are important. However, the efficacy in a straight-
forward situation when only a single metric is important is lower compared to the
ad-hoc approach.

6.4.4 � RQ7. How confident are users about the impact analysis result of M3S?

Participants in the framework groups are more confident in their ML performance mon-
itoring task results compared to the control groups. This is supported by the positive
comment about the M3S capability from the practitioner framework group, which stated

1275Software Quality Journal (2024) 32:1239–1285	

1 3

that the automatic detection of satisfied and unsatisfied elements helped them navigate
the effect of ML model performance even if they had to recheck it. In contrast, both
control groups were concerned about their result if the requirements were larger than
the ones used in the experiments.

The automatic impact signaling of M3S increases users’ confidence in the impact
analysis result compared to a more ad-hoc approach because the only result needs
to be rechecked using M3S instead of analyzing everything from scratch. The
impact becomes more significant as the number of requirements increases.

6.4.5 � RQ8. How confident are users about the usability of the impact analysis of M3S?

The answers to Q2, Q3, and Q4 show interesting results. The difference in the senti-
ments becomes more significant as the scope of the requirements broadens. Both groups
started with similar confidence levels. However, the sentiments of the control group
about their capability to evaluate the overall requirements became extremely negative,
implying that the ad-hoc approach is highly unreliable in such cases. In contrast, the
framework groups showed stable responses for all cases. The participants who used M3S
felt confident that they can work with all levels of requirements, not just the ML perfor-
mance requirements, indicating that M3S has a better usability for evaluating the impact
than a more ad-hoc approach.

The M3S approach is more usable than ad-hoc approaches. This sentiment is more
pronounced when impact analysis requires a more comprehensive approach. M3S
should be more beneficial when the scope of the impact is broad.

6.4.6 � RQ9. How confident are users about the solution integration in M3S?

The integration of DNN repair into our framework has some major issues. Unfortu-
nately, the reason is unclear from the answers to Q5. Both the practitioner and student
framework groups completed the repair and satisfied all the ML performance require-
ments, whereas neither control group did. However, the post-experiment discussion may
provide some insight. One participant noted that the DNN repair process is not visible
from the modeling side. Another participant reported unfamiliarity with the tool and the
need to see the detailed process of the DNN repair. Based on the post-discussion com-
ments, we assume our integration has some issues. Our integration is overly encapsu-
lated and lacks the transparency of more traditional approaches. Additional information
is necessary to properly answer this question.

The confidence of the integrated DNN repair in M3S result is low. This may be
due to the lack of transparency, especially when users are unfamiliar with the
solution. In the future, an in-depth evaluation of the internal process, especially
the generality of the findings on different types of solutions, should be conducted.

1276	 Software Quality Journal (2024) 32:1239–1285

1 3

6.4.7 � RQ10. How confident are users about the usability of the solution integration
in M3S?

M3S shows a slight disadvantage compared to the ad-hoc groups, but the difference may
be caused by the weighting of extreme options. Nevertheless, the problems from both
groups should be evaluated to understand whether they felt the same difficulties during
the experiment. The control group noted that an ad-hoc feeling during the decision of the
configuration value made it difficult. The framework group did not make a similar com-
ment, suggesting the groups encountered different problems. Moreover, a participant in the
control group stated the need for a GUI-based approach for the repair, whereas the frame-
work group indicated the ease of not having to write CLI commands manually. However,
the framework group mentioned that the randomness of the ML solution is an issue. This
situation is likely to be felt since both sections of the framework group conducted the repair
during the experiment more than once and tried to make sense of the detailed effect of the
configuration. Unfortunately, randomness is a characteristic of the ML training process.
Addressing randomness is beyond the scope of this experiment.

Overall, the comments suggest that our approach has better usability than more ad-
hoc approaches for deciding the value of the configuration, which is a limitation of the
ML solution itself. The answers to Q7 show that the sentiment of the framework group is
significantly more positive than the control group, indicating that the solution integration
implemented in M3S has a higher usability than ad-hoc approaches.

Users have a higher confidence in the solution integration’s usability of M3S than
the ad-hoc approach. The main reason for is the availability of GUI support in M3S
allows for more reason-based decision-making, especially when evaluating the solu-
tion’s successes and side effects.

6.5 � Threat to validity

There are several threats to the validity of the experiment. One internal threat is the par-
ticipants’ familiarity with the methods. To mitigate this threat, we randomized the groups
while ensuring that both groups had similar experience levels. Another internal threat is
the participants’ bias towards a particular method. We countered potential bias by not shar-
ing the aim of this research with the participants.

An external threat is sampling bias. Our experiment included two different sections to
improve the generality of the results. We also selected participants with differing levels of
experience in ML and software development to ensure the quality of the sampling.

7 � Discussion

This section addresses benefits, limitations, and other insights of M3S gained from the case
study and controlled experiment.

1277Software Quality Journal (2024) 32:1239–1285	

1 3

7.1 � Benefits ‑ comprehensive feedback loop

The case study highlighted that the repair process and proposal to improve the sensors are
based on feedback from previous actions. Similarly, the proposal to improve the camera
sensors was also made by understanding the limitations of the repaired ML model. At the
same time, the controlled experiment has shown positive sentiment toward the impact anal-
ysis inside M3S on top of the fact that the users of the framework managed to create bet-
ter ML models. The development process in M3S drives an informed decision, which is
implemented again in another development process, creating a feedback loop between the
analysis and the implementation.

Table 7 compares the scope of M3S to other approaches. Compared to other multi-view
analysis approaches (Villamizar et al., 2022; Nalchigar et al., 2021), M3S covers more
aspects, namely safety and argumentation. Additionally, M3S facilitates an integrated feed-
back loop between the analysis and the ML training and testing pipeline. Compared to pure
analysis approaches, M3S supports a dynamic environment for continuous evaluation and
improvement of decisions behind ML system development through the traceability pro-
vided by the integration (Galvao and Goknil, 2007).

The analysis scope of M3S differs from model-transformation approaches (Moin
et al., 2022; Koseler et al., 2019). Model-transformation approaches fit better with the ML
model training without considering other aspects required for an overall ML system. In
contrast, M3S supports the development of more robust ML systems that integrate ML
model analysis and higher-level requirements necessary for a successful large-scale ML
system development. The integration facilitates the validation of potentially unrealistic
expectations of the capability of the ML model and provides guidance for their refinement
into a more realistic one (Nahar et al., 2023).

7.2 � Benefits ‑ documented integrated solutions

An underlying principle of M3S is solution integration to improve the quality of the ML
model in the multi-view analysis part. The concept of integration is not unique. Table 7
summarizes other works that have explored the idea of using model transformation to gen-
erate training pipeline source code. The distinction between M3S and other approaches
lies in the generated part of the pipeline through model transformation; M3S produces the
configuration of the preferred solutions to improve the ML model quality. The underlying
benefit of this approach is that the experimentation of the proposed solution is tightly syn-
chronized with the analysis part, enhancing both traceability and reproducibility.

The experimentation using different approaches to DNN repair is documented directly
inside the solution of the safety case (Fig. 19). This facilitates tracing the improvement or
degradation of the ML model quality because the configuration of proposed solutions is
well represented inside the models. Although the case study only evaluated a single solu-
tion, other solutions should show similar benefits. For example, the decision to experiment
with data augmentation to balance data distribution can be properly reflected in the model
with the configuration of the augmentation written as a description of the solution.

The benefits of the M3S style of integration should be more apparent in longer loops
of adding and removing solutions to the ML model training compared to the model
transformation approaches summarized in Table 7. The decisions behind each experi-
ment are more properly reflected in the model rather than directly placing the ML

1278	 Software Quality Journal (2024) 32:1239–1285

1 3

Ta
bl

e 
7  

C
om

pa
ris

on
 o

f M
3 S

w
ith

 o
th

er
 a

pp
ro

ac
he

s

A
sp

ec
t

M
3 S

V
ill

am
iz

ar
 e

t a
l.

(2
02

2)
N

al
ch

ig
ar

 e
t a

l.
(2

02
1)

M
L-

Q
ua

dr
at

 (M
oi

n
et

 a
l.,

 2
02

2)
K

os
el

er
 e

t a
l.

(2
01

9)

B
us

in
es

s r
eq

ui
re

m
en

ts
Va

lu
e

M
L

O
bj

ec
tiv

es
B

us
in

es
s

-
-

U
se

rs
Va

lu
e

U
X

B
us

in
es

s
-

-
M

L
ta

sk
 a

nd
 p

er
fo

rm
an

ce
M

L
Ta

sk
, G

oa
l

M
od

el
A

na
ly

si
s

Te
xt

ua
l m

od
el

C
la

ss
 d

ia
gr

am
A

rc
hi

te
ct

ur
e

A
rc

hi
te

ct
ur

e
In

fr
as

tru
ct

ur
e

-
-

-
D

at
a

M
L

Ta
sk

D
at

a
D

at
a

Pr
ep

ar
at

io
n

Te
xt

ua
l m

od
el

C
la

ss
 d

ia
gr

am
Sa

fe
ty

Sa
fe

ty
-

-
-

-
A

rg
um

en
ta

tio
n

A
rg

um
en

ta
tio

n
-

-
-

-
D

at
a

en
gi

ne
er

in
g

-
-

-
-

-
M

L
m

od
el

 tr
ai

ni
ng

In
te

gr
at

ed
 p

ip
el

in
e

-
-

C
od

e
ge

ne
ra

tio
n

C
od

e
G

en
er

at
io

n
M

L
pe

rfo
rm

an
ce

 te
sti

ng
In

te
gr

at
ed

 p
ip

el
in

e
-

-
C

od
e

ge
ne

ra
tio

n
C

od
e

G
en

er
at

io
n

O
th

er
 M

L
so

lu
tio

ns
In

te
gr

at
ed

 p
ip

el
in

e
-

-
-

-

1279Software Quality Journal (2024) 32:1239–1285	

1 3

pipeline design in the model. Given the characteristic of ML systems where monitor-
ing for model degradation from drifts is prominent (Bayram et al., 2022), the ability to
retrace past decisions is highly beneficial.

7.3 � Limitation ‑ variation of machine learning tasks

One issue discovered while developing and validating M3S is the vast possibilities of tasks
in the ML model. The case study and controlled experiment only considered the multi-
class classification task as other ML tasks were beyond the scope of this research. This
limits our findings to the multi-class classification task. Although this study demonstrates
the versatility of M3S in handling different ML tasks, in the future, the generality of M3S in
handling different tasks should be validated.

A comparison to other works utilizing a framework for different ML tasks suggests
that M3S has the versatility necessary to handle various ML tasks. Our early works on
the framework extensibility showed promising results in named entity recognition (NER)
problems for a rule-based text transformation (Takeuchi et al., 2023). Extension of M3S
with activity-driven analysis demonstrated the ability to handle optical character recogni-
tion (OCR) tasks (Tanaka et al., 2023). By comparing the characteristics of the NER and
OCR task to the image classification in our case study, we can explore the features of M3S
that work differently from the case study we presented.

The performance metrics are one crucial aspect that differs from our case study. The
performance metrics of image classification mainly rely on classical ones, such as accu-
racy, precision, and recall while The OCR’s accuracy varies between characters and word-
level error rates. This difference is also true for other ML tasks, such as the mean square
error (MSE) for regression and intersection-over-union (IoU) for semantic segmentation.
While the analysis side of this difference can be handled by the Value, ML Task, and
Goal views, implementation in the integrated training pipeline will differ. A modification
or extension to facilitate the variation of ML performance metrics is necessary to fit the
requirements of individual projects.

The same is also true for the available solutions to improve the quality of the ML model.
The DNN repair in the case study works mainly for image classification problems and only
one variant among all possible DNN repair tools, as each technique has its own parameters
and processes. Additionally, different ML tasks may not have the same solutions available.
Moreover, even the same type of solution, such as data augmentation, will have variations
for different types of data required by each ML task. An extension is necessary to facilitate
the specific needs of solutions for each possible case because exhaustively providing all
possible solutions is expensive.

In conclusion, the limitation in handling the myriad of ML tasks lies in the implementa-
tion. Although other works have explored the versatility of M3S on the analysis side, chal-
lenges on the implementation side have yet to be solved. In the future, a general, extensi-
ble interface between the modeling side and the training pipeline should be investigated to
enable an efficient extension of the integrated pipeline to facilitate different configurations
of the ML performance and parameters into integrated solutions.

1280	 Software Quality Journal (2024) 32:1239–1285

1 3

7.4 � Limitation‑platform‑agnosticism

The support tool in the case study and controlled experiment is based on the Astah*
System Safety and DVC. We selected this platform due to its suitability for the reuse of
existing functions. However, this also raises a concern about the platform-agnosticism
of M3S and its usability among other software development processes and tools. The
concern is important as developers commonly have existing processes and tools work-
ing. This subsection will address such concerns and guide future works in this direction.

For analysis and modeling, we suggest that any modeling tool that supports model
analysis can be utilized. Since modeling approaches are not developed in a platform-
specific manner, they should work in any modeling environment. However, applying
the metamodel and integration into the training pipeline may be challenging. The meta-
model-based modeling approach of M3S requires a modeling environment that supports
such functions either natively or via custom functionality. Integration also needs a cus-
tom communication function, which requires extensible modeling tools. Two common
modeling environments come with those functions: Sparx Systems Enterprise Archi-
tect4 and Eclipse Modeling Framework5. However, other modeling environments with
those features are also possible to support M3S.

Various ML training pipelines can be implemented in the integrated training pipe-
line. We argue that our metamodel facilitates the integration of the modeling part with
the training pipeline based on similar research by (Idowu et al., 2022). M3S’ integrated
metamodel works in a similar manner to Idowu’s proposed general metamodel for
experiment management tools aimed at general integration. The integrated metamodel
connects artefacts generated by the pipeline, which is managed by experiment manage-
ment tools, into the concepts inside the models. This allows for the implementation of
the integrated pipeline using different platforms because such pipelines support the gen-
eral artifacts of ML training described in the integrated metamodel (Idowu et al., 2023).

The present case study and controlled experiment did not consider the extensibility pro-
cess of the framework, as described in subsection 4.3. A case study involving customiza-
tion and extension has been discussed briefly (Husen et al., 2023). The extension process
should allow developers to evaluate and customize M3S to their needs and constraints,
including the use of existing processes and tools. Moreover, efforts have been made to gen-
eralize currently implemented solutions (Runpakprakun et al., 2023).

7.5 � Limitation ‑ internal solution uncertainty

Uncertainty due to the probabilistic nature of ML models is a crucial problem in ML sys-
tem development. M3S aims to support decision-making and management by documenting
the decisions made during the development and operation of ML systems. The extensive
nature of M3S should support understanding the impact of varying ML performance due to
uncertainties and other aspects. Additionally, M3S should be able to evaluate if previously
utilized solutions are still relevant under new conditions.

5  https://​eclip​se.​dev/​model​ing/​emf/.

4  https://​sparx​syste​ms.​com/.

https://eclipse.dev/modeling/emf/
https://sparxsystems.com/

1281Software Quality Journal (2024) 32:1239–1285	

1 3

However, the solution’s internal uncertainty remains in the decision-making. This situ-
ation is especially true during the DNN repair process in the controlled experiment. The
non-deterministic nature of the method leads to low confidence for participants working
with M3S as they retried the repair. They found that their configuration was inconsistent
with their expectations. Combined with the black-box approach provided by the integrated
tool, the perception of how the solution works was too vague for the developers’ comfort.

8 � Conclusion and future works

This paper proposes and evaluates M3S, which is an approach to facilitate a consistent and com-
prehensive analysis of ML systems. Herein, we elucidate the benefits of M3S through a case
study and experiment. The evaluation demonstrated that M3S clarifies existing decisions and
enhances the performance evaluation of ML models. The case study involved a series of guided
decisions through different views from the top business goals into executable solutions and test-
able ML performance requirements, while the experiment confirmed the evaluation ease of the
ML performance requirements and the related higher-level decisions.

Moreover, the consistency between decisions and implementation is managed effi-
ciently during training. The decisions made in the models directly influence the execution
of solutions implemented in the training pipeline (e.g., the solution part of the safety case).
However, M3S provides limited assistance in navigating the internal uncertainty of solu-
tions, resulting in a less positive response regarding the trustworthiness of solution imple-
mentation. This limitation may have several origins, such as the lack of transparency in the
internal processes. Further improvements in the solution implementation are necessary.

Finally, the generality of the framework to handle different ML tasks remains unclear.
Although there are some indications of generality, the evaluation is insufficient to draw a
proper conclusion. In the future, experiments on the benefits and limitations of utilizing
M3S for ML tasks other than classification are necessary to demonstrate the generality of
the framework.

Other future tasks include exploring more views and the extensibility of M3S, as well as
improving the implementation of integrated solutions. One direction is to generalize sup-
ported modeling, integrated solutions, and experimentation environments. A second direc-
tion is to provide a plug-and-play approach to the extensibility of M3S. A third direction is
to evaluate the universality of the M3S framework, especially on different ML tasks, and to
extend the case study to include continuous monitoring.

Author contributions  J.H.H. wrote the main manuscript text and the design of the overall process. J.R.
developed the integration mechanism between modeling and ML training environment. H.T.T, H.W., and
N.Y. developed and extended the integrated metamodel. H.T. contributed to the evaluation of the design
of the extension process of the framework. H.W., N.Y., and Y.F. supported the validations. All authors
reviewed the manuscript.

Funding  This work was supported by JST-Mirai program grant number JPMJMI20B8 and JST SPRING
grant number JPMJSP2128.

Availability of data and materials  All the diagrams and ML models developed during the case study have
been deposited in https://​doi.​org/​10.​5281/​zenodo.​84295​84. The dataset utilized for training during the case
study and experimentation, GTSRB, is available as a public dataset by the original authors at https://​sid.​
erda.​dk/​public/​archi​ves/​daaea​c0d7c​e1152​aea9b​61d9f​1e193​70/​publi​shed-​archi​ve.​html

https://doi.org/10.5281/zenodo.8429584
https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/published-archive.html
https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/published-archive.html

1282	 Software Quality Journal (2024) 32:1239–1285

1 3

Declarations 

Competing interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Batot, E. R., Cabot, J., & Gérard, S. (2021). (not) yet another metamodel for traceability. In 2021 ACM/
IEEE International Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C), pp 787–796. https://​doi.​org/​10.​1109/​MODELS-​C53483.​2021.​00125

Bayram, F., Ahmed, B. S., & Kassler, A. (2022). From concept drift to model degradation: An overview on
performance-aware drift detectors. Knowledge-Based Systems, 245, 108632. https://​doi.​org/​10.​1016/j.​
knosys.​2022.​108632

Bishop, C. (2013). Model-based machine learning. Philosophical Transactions Series A, Mathematical,
physical, and Engineering Sciences, 371, 20120222. https://​doi.​org/​10.​1098/​rsta.​2012.​0222

Chuprina, T., Méndez, D., & Wnuk, K. (2021). Towards artefact-based requirements engineering for data-
centric systems, vol. 2857. Essen, Germany. https://​ceur-​ws.​org/​Vol-​2857/​re4ai1.​pdf

Dorard, L. (2015). Machine Learning Canvas. https://​www.​machi​nelea​rning​canvas.​com/
El Hamlaoui, M., Bennani, S., Nassar, M., Ebersold, S., & Coulette, B. (2018). A mde approach for het-

erogeneous models consistency. In Proceedings of the 13th International Conference on Evaluation of
Novel Approaches to Software Engineering. ENASE 2018, pp. 180–191. SCITEPRESS - Science and
Technology Publications, Lda, Setubal, PRT. https://​doi.​org/​10.​5220/​00067​74101​800191

Galvao, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven engineering. In 11th
IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), pp 313–313.
https://​doi.​org/​10.​1109/​EDOC.​2007.​42

Heiberger, R., & Robbins, N. (2014). Design of diverging stacked bar charts for likert scales and other appli-
cations. Journal of Statistical Software,57, 1–32. https://​doi.​org/​10.​18637/​jss.​v057.​i05

Hosseinzadeh Kassani, P., & Teoh, A. (2016). A new sparse model for traffic sign classification using soft
histogram of oriented gradients. Applied Soft Computing,52. https://​doi.​org/​10.​1016/j.​asoc.​2016.​12.​
037

Husen, J. H., Washizaki, H., Tun, H. T., Yoshioka, N., Fukazawa, Y., Takeuchi, H., Tanaka, H., & Munakata,
K. (2023). Extensible modeling framework for reliable machine learning system analysis. In 2023
IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN), pp
94–95. https://​doi.​org/​10.​1109/​CAIN5​8948.​2023.​00022

Husen, J., Washizaki, H., Yoshioka, N., Tun, H., Fukazawa, Y., & Takeuchi, H. (2023). Metamodel-Based
Multi-View Modeling Framework for Machine Learning Systems. In Proceedings of the 11th Interna-
tional Conference on Model-Based Software and Systems Engineering - MODELSWARD, pp 194–201.
SciTePress, Lisbon, Portugal. https://​doi.​org/​10.​5220/​00116​99600​003402. INSTICC.

Idowu, S., Strüber, D., & Berger, T. (2022). Emmm: A unified meta-model for tracking machine learning
experiments, pp 48–55. Institute of Electrical and Electronics Engineers Inc., Gran Canaria, Spain.
https://​doi.​org/​10.​1109/​SEAA5​6994.​2022.​00016

Idowu, S., Strüber, D., & Berger, T. (2023). Asset management in machine learning: State-of-research and
state-of-practice. ACM Computing Surveys, 55, 1–35. https://​doi.​org/​10.​1145/​35438​47

Iso, iec, ieee international standard - software engineering - software life cycle processes - maintenance.
(2022). Standard. Geneva, CH: International Organization for Standardization.

Japan Automobile Manufacturers Association, I. (2021). Automated driving safety evaluation framework
ver 2.0. Technical Report.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MODELS-C53483.2021.00125
https://doi.org/10.1016/j.knosys.2022.108632
https://doi.org/10.1016/j.knosys.2022.108632
https://doi.org/10.1098/rsta.2012.0222
https://ceur-ws.org/Vol-2857/re4ai1.pdf
https://www.machinelearningcanvas.com/
https://doi.org/10.5220/0006774101800191
https://doi.org/10.1109/EDOC.2007.42
https://doi.org/10.18637/jss.v057.i05
https://doi.org/10.1016/j.asoc.2016.12.037
https://doi.org/10.1016/j.asoc.2016.12.037
https://doi.org/10.1109/CAIN58948.2023.00022
https://doi.org/10.5220/0011699600003402
https://doi.org/10.1109/SEAA56994.2022.00016
https://doi.org/10.1145/3543847

1283Software Quality Journal (2024) 32:1239–1285	

1 3

Khomh, F., Adams, B., Cheng, J., Fokaefs, M., & Antoniol, G. (2018). Software engineering for machine-
learning applications: The road ahead. IEEE Software, 35(5), 81–84. https://​doi.​org/​10.​1109/​MS.​2018.​
35712​24

Kirchhof, J. C., Kusmenko, E., Ritz, J., Rumpe, B., Moin, A., Badii, A., Günnemann, S., & Challenger, M.
(2022). Mde for machine learning-enabled software systems: A case study and comparison of mon-
tianna & ml-quadrat. In Proceedings of the 25th International Conference on Model Driven Engineer-
ing Languages and Systems: Companion Proceedings. MODELS ’22, pp. 380–387. Association for
Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​35503​56.​35615​76

Koseler, K., McGraw, K., & Stephan, M. (2019). Realization of a machine learning domain specific mod-
eling language: A baseball analytics case study. In Proceedings of the 7th International Conference
on Model-Driven Engineering and Software Development. MODELSWARD 2019, pp 13–24. SCITE-
PRESS - Science and Technology Publications, Lda, Setubal, PRT. https://​doi.​org/​10.​5220/​00072​
45800​130024

Langford, M. A., Chan, K. H., Fleck, J. E., McKinley, P. K., & Cheng, B. H. C. (2021). Modalas: Model-
driven assurance for learning-enabled autonomous systems. In 2021 ACM/IEEE 24th International
Conference on Model Driven Engineering Languages and Systems (MODELS), pp 182–193. https://​
doi.​org/​10.​1109/​MODEL​S50736.​2021.​00027

Letier, E. (2001). Reasoning about agents in goal-oriented requirements engineering.
Leveson, N. G. (2012). Engineering a Safer World: Systems Thinking Applied to Safety. The MIT Press,

Cambridge, Massachusetts. https://​doi.​org/​10.​7551/​mitpr​ess/​8179.​001.​0001
Likert, R. (1932-1985). A Technique for the Measurement of Attitudes / by Rensis Likert. Archives of psy-

chology ; no. 140. [s.n.], New York.
Lima, A., Monteiro, L., & Furtado, A. (2022). Mlops: Practices, maturity models, roles, tools, and chal-

lenges – a systematic literature review, pp. 308–320. SCITEPRESS - Science and Technology Publica-
tions, Online. https://​doi.​org/​10.​5220/​00109​97300​003179

Martínez-Fernández, S., Bogner, J., Franch, X., Oriol, M., Siebert, J., Trendowicz, A., Vollmer, A. M., &
Wagner, S. (2022). Software engineering for ai-based systems: A survey. ACM Transactions on Soft-
ware Engineering and Methodology,31(2). https://​doi.​org/​10.​1145/​34870​43

Matulevičius, R., & Heymans, P. (2007). Visually effective goal models using kaos, 4802, 265–275. https://​
doi.​org/​10.​1007/​978-3-​540-​76292-8_​32

Minka, T., Winn, J. M., Guiver, J. P., Zaykov, Y., Fabian, D., & Bronskill, J. (2018) Infer.NET 0.3. Microsoft
Research Cambridge. http://​dotnet.​github.​io/​infer

Moin, A., Wattanavaekin, U., Lungu, A., Challenger, M., Badii, A., & Günnemann, S. (2022). Enabling
automated machine learning for model-driven AI engineering. CoRR abs/2203.02927. https://​doi.​org/​
10.​48550/​arXiv.​2203.​02927

Moin, A., Challenger, M., Badii, A., & Günnemann, S. (2022). A model-driven approach to machine learn-
ing and software modeling for the iot: Generating full source code for smart internet of things (iot)
services and cyber-physical systems (cps). Software and Systems Modeling, 21, 987–1014. https://​doi.​
org/​10.​1007/​s10270-​021-​00967-x

Nahar, N., Zhang, H., Lewis, G., Zhou, S., & Kästner, C. (2023). A meta-summary of challenges in building
products with ml components – collecting experiences from 4758+ practitioners. In 2023 IEEE/ACM
2nd International Conference on AI Engineering – Software Engineering for AI (CAIN), pp 171–183.
https://​doi.​org/​10.​1109/​CAIN5​8948.​2023.​00034

Nahar, N., Zhou, S., Lewis, G., & Kästner, C. (2022). Collaboration challenges in building ml-enabled sys-
tems: Communication, documentation, engineering, and process. In Proceedings of the 44th Inter-
national Conference on Software Engineering. ICSE ’22, pp 413–425. Association for Computing
Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​35100​03.​35102​09

Nalchigar, S., Yu, E., & Keshavjee, K. (2021). Modeling machine learning requirements from three perspec-
tives: a case report from the healthcare domain. Requirements Engineering, 26, 1–18. https://​doi.​org/​
10.​1007/​s00766-​020-​00343-z

Ozkaya, I. (2020). What is really different in engineering ai-enabled systems? IEEE Software, 37(4), 3–6.
https://​doi.​org/​10.​1109/​MS.​2020.​29936​62

Pereira, A., & Thomas, C. (2020). Challenges of machine learning applied to safety-critical cyber-physical
systems. Machine Learning and Knowledge Extraction,2. https://​doi.​org/​10.​3390/​make2​040031

Rahman, M. S., Khomh, F., Hamidi, A., Cheng, J., Antoniol, G., & Washizaki, H. (2023). Machine learning
application development: practitioners’ insights. Software Quality Journal, pp. 1–55. https://​doi.​org/​
10.​1007/​s11219-​023-​09621-9

Reineke, J., Stergiou, C., & Tripakis, S. (2019). Basic problems in multi-view modeling. Software & Sys-
tems Modeling,18. https://​doi.​org/​10.​1007/​s10270-​017-​0638-1

https://doi.org/10.1109/MS.2018.3571224
https://doi.org/10.1109/MS.2018.3571224
https://doi.org/10.1145/3550356.3561576
https://doi.org/10.5220/0007245800130024
https://doi.org/10.5220/0007245800130024
https://doi.org/10.1109/MODELS50736.2021.00027
https://doi.org/10.1109/MODELS50736.2021.00027
https://doi.org/10.7551/mitpress/8179.001.0001
https://doi.org/10.5220/0010997300003179
https://doi.org/10.1145/3487043
https://doi.org/10.1007/978-3-540-76292-8_32
https://doi.org/10.1007/978-3-540-76292-8_32
http://dotnet.github.io/infer
https://doi.org/10.48550/arXiv.2203.02927
https://doi.org/10.48550/arXiv.2203.02927
https://doi.org/10.1007/s10270-021-00967-x
https://doi.org/10.1007/s10270-021-00967-x
https://doi.org/10.1109/CAIN58948.2023.00034
https://doi.org/10.1145/3510003.3510209
https://doi.org/10.1007/s00766-020-00343-z
https://doi.org/10.1007/s00766-020-00343-z
https://doi.org/10.1109/MS.2020.2993662
https://doi.org/10.3390/make2040031
https://doi.org/10.1007/s11219-023-09621-9
https://doi.org/10.1007/s11219-023-09621-9
https://doi.org/10.1007/s10270-017-0638-1

1284	 Software Quality Journal (2024) 32:1239–1285

1 3

Runpakprakun, J., Husen, J. H., Washizaki, H., Yoshioka, N., & Fukazawa, Y. (2023). Towards integrated
model-based machine learning experimentation framework. In 2023 10th International Conference on
Dependable Systems and Their Applications (DSA), pp 593–594. https://​doi.​org/​10.​1109/​DSA59​317.​
2023.​00086

Safety aspects - guidelines for their inclusion in standards. (2014). Standard. Geneva, CH: International
Organization for Standardization.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo,
J. -F., & Dennison, D. (2015). Hidden technical debt in machine learning systems. In: Proceedings of
the 28th International Conference on Neural Information Processing Systems - Volume 2. NIPS’15, pp
2503–2511. MIT Press, Cambridge, MA, USA.

Software engineering - systems and software quality requirements and evaluation (square) - quality model
for ai systems. (2023). Standard. Geneva, CH: International Organization for Standardization.

Sotoudeh, M., & Thakur, A. V. (2021). Provable repair of deep neural networks. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation.
PLDI 2021, pp. 588–603. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​
10.​1145/​34534​83.​34540​64

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2011). The German Traffic Sign Recognition Bench-
mark: A multi-class classification competition. In IEEE International Joint Conference on Neural Net-
works, pp 1453–1460.

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012). Man vs computer: Benchmarking machine
learning algorithms for traffic sign recognition. Neural Networks,32, 323–332. https://​doi.​org/​10.​
1016/j.​neunet.​2012.​02.​016. Selected Papers from IJCNN.

Takeuchi, H., & Yamamoto, S. (2020). Business analysis method for constructing business-ai alignment
model. Proceedings of the 24th International Conference on Knowledge-Based and Intelligent Infor-
mation & Engineering Systems (KES)(Procedia Computer Science),176, 1312–1321. https://​doi.​org/​
10.​1016/j.​procs.​2020.​09.​140

Takeuchi, H., Husen, J. H., Tun, H. T., Washizaki, H., & Yoshioka, N. (2023). Enterprise architecture-
based metamodel for a holistic busines–it alignment view on machine learning projects. In 2023
IEEE International Conference on e-Business Engineering (ICEBE), pp 8–15. https://​doi.​org/​10.​
1109/​ICEBE​59045.​2023.​00013

Tanaka, H., Ide, M., Munakata, K., Washizaki, H., & Yoshioka, N. (2023). Activity-based modeling strategy
for reliable machine learning system analysis targeting gui-based applications. In 2023 10th Interna-
tional Conference on Dependable Systems and Their Applications (DSA), pp 135–143. https://​doi.​org/​
10.​1109/​DSA59​317.​2023.​00026

Thiée, L. -W. (2021). A systematic literature review of machine learning canvases. Gesellschaft für Informa-
tik, Bonn. https://​doi.​org/​10.​18420/​infor​matik​2021-​101

Villamizar, H., Kalinowski, M., & Lopes, H. (2022). Towards perspective-based specification of machine
learning-enabled systems. In 2022 48th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp 112–115. IEEE Computer Society, Los Alamitos, CA, USA. https://​doi.​org/​10.​
1109/​SEAA5​6994.​2022.​00025. https://​doi.​ieeec​omput​ersoc​iety.​org/​10.​1109/​SEAA5​6994.​2022.​00025

Vogelsang, A., & Borg, M. (2019). Requirements engineering for machine learning: Perspectives from data
scientists. In: 2019 IEEE 27th International Requirements Engineering Conference Workshops (REW),
pp 245–251. IEEE Computer Society, Los Alamitos, CA, USA. https://​doi.​org/​10.​1109/​REW.​2019.​
00050. https://​doi.​ieeec​omput​ersoc​iety.​org/​10.​1109/​REW.​2019.​00050

Wan, Z., Xia, X., Lo, D., & Murphy, G. C. (2021). How does machine learning change software devel-
opment practices? IEEE Transactions on Software Engineering, 47(9), 1857–1871. https://​doi.​org/​10.​
1109/​TSE.​2019.​29370​83

Wolf, C. T., & Paine, D. (2020). Sensemaking practices in the everyday work of ai/ml software engineering.
In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops,
ICSEW’20, pp. 86–92. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​
10.​1145/​33879​40.​33914​96. https://​doi-​org.​waseda.​idm.​oclc.​org/​10.​1145/​33879​40.​33914​96

Xiang, Q., Zi, L., Cong, X., & Wang, Y. (2023). Concept drift adaptation methods under the deep learning
framework: A literature review. Applied Sciences,13(11). https://​doi.​org/​10.​3390/​app13​116515

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/DSA59317.2023.00086
https://doi.org/10.1109/DSA59317.2023.00086
https://doi.org/10.1145/3453483.3454064
https://doi.org/10.1145/3453483.3454064
https://doi.org/10.1016/j.neunet.2012.02.016
https://doi.org/10.1016/j.neunet.2012.02.016
https://doi.org/10.1016/j.procs.2020.09.140
https://doi.org/10.1016/j.procs.2020.09.140
https://doi.org/10.1109/ICEBE59045.2023.00013
https://doi.org/10.1109/ICEBE59045.2023.00013
https://doi.org/10.1109/DSA59317.2023.00026
https://doi.org/10.1109/DSA59317.2023.00026
https://doi.org/10.18420/informatik2021-101
https://doi.org/10.1109/SEAA56994.2022.00025
https://doi.org/10.1109/SEAA56994.2022.00025
https://doi.ieeecomputersociety.org/10.1109/SEAA56994.2022.00025
https://doi.org/10.1109/REW.2019.00050
https://doi.org/10.1109/REW.2019.00050
https://doi.ieeecomputersociety.org/10.1109/REW.2019.00050
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1145/3387940.3391496
https://doi.org/10.1145/3387940.3391496
https://doi-org.waseda.idm.oclc.org/10.1145/3387940.3391496
https://doi.org/10.3390/app13116515

1285Software Quality Journal (2024) 32:1239–1285	

1 3

Authors and Affiliations

Jati H. Husen1,2 · Hironori Washizaki1 · Jomphon Runpakprakun1 ·
Nobukazu Yoshioka1 · Hnin Thandar Tun1 · Yoshiaki Fukazawa1 · Hironori Takeuchi3

 *	 Jati H. Husen
	 jati.h@asagi.waseda.jp; jatihusen@telkomuniversity.ac.id

	 Hironori Washizaki
	 washizaki@waseda.jp

	 Jomphon Runpakprakun
	 k-jomphon@moegi.waseda.jp

	 Nobukazu Yoshioka
	 nobukazuy@acm.org

	 Hnin Thandar Tun
	 hninthandar003@gmail.com

	 Yoshiaki Fukazawa
	 fukazawa@waseda.jp

	 Hironori Takeuchi
	 h.takeuchi@cc.musashi.ac.jp

1	 Waseda University, Tokyo 169‑8050, Japan
2	 Telkom University, Bandung 40257, Jawa Barat, Indonesia
3	 Musashi University, Tokyo 176‑8534, Japan

	Integrated multi-view modeling for reliable machine learning-intensive software engineering
	Abstract
	1 Introduction
	2 Motivating example
	3 Related works
	4 Multi-view modeling framework for ML system
	4.1 Multi-view modeling process
	4.2 Integrated metamodel
	4.3 Extensibility
	4.4 Integrated modeling tool

	5 Case study
	5.1 Utilized case
	5.2 Research Questions
	5.3 Results
	5.4 Answers to research questions
	5.4.1 RQ1. Does the integrated metamodel ensure consistency in the multi-view modeling process of M3S?
	5.4.2 RQ2. Does the integrated modeling tool facilitate validating higher-level goals compared to existing ML performances?
	5.4.3 RQ3. Does the integrated modeling tool facilitate rationalizing ML-specific solutions and their impact?

	5.5 Threat to validity

	6 Controlled experiment
	6.1 Research questions
	6.2 Experiment design
	6.2.1 Experiment flow
	6.2.2 Participants
	6.2.3 Questionnaire

	6.3 Results
	6.3.1 Time for completion
	6.3.2 Repaired ML models performances
	6.3.3 Questionnaire result

	6.4 Answers to research questions
	6.4.1 RQ4. Can M3S efficiently facilitate the impact analysis from ML model performance?
	6.4.2 RQ5. Can M3S efficiently facilitate the analysis of parameters for repair activities?
	6.4.3 RQ6. Does M3S help users train a better ML model through integrated solutions?
	6.4.4 RQ7. How confident are users about the impact analysis result of M3S?
	6.4.5 RQ8. How confident are users about the usability of the impact analysis of M3S?
	6.4.6 RQ9. How confident are users about the solution integration in M3S?
	6.4.7 RQ10. How confident are users about the usability of the solution integration in M3S?

	6.5 Threat to validity

	7 Discussion
	7.1 Benefits - comprehensive feedback loop
	7.2 Benefits - documented integrated solutions
	7.3 Limitation - variation of machine learning tasks
	7.4 Limitation-platform-agnosticism
	7.5 Limitation - internal solution uncertainty

	8 Conclusion and future works
	References

