
Vol.:(0123456789)

Software Quality Journal (2024) 32:1239–1285
https://doi.org/10.1007/s11219-024-09687-z

1 3

RESEARCH

Integrated multi‑view modeling for reliable machine 
learning‑intensive software engineering

Jati H. Husen1,2 · Hironori Washizaki1 · Jomphon Runpakprakun1 · 
Nobukazu Yoshioka1 · Hnin Thandar Tun1 · Yoshiaki Fukazawa1 · Hironori Takeuchi3

This paper is an extension of a previously published conference paper Husen et al. 
(2023). This paper significantly expands the proposed framework in the form of an 
updated metamodel and process model, on top of new validations in the form of an 
extensive case study and a controlled experiment.

Accepted: 20 June 2024 / Published online: 3 July 2024 
© The Author(s) 2024

Abstract
Development of machine learning (ML) systems differs from traditional approaches. The 
probabilistic nature of ML leads to a more experimentative development approach, which 
often results in a disparity between the quality of ML models with other aspects such 
as business, safety, and the overall system architecture. Herein the Multi-view Modeling 
Framework for ML Systems (M3S) is proposed as a solution to this problem. M3S pro-
vides an analysis framework that integrates different views. It is supported by an inte-
grated metamodel to ensure the connection and consistency between different models. 
To facilitate the experimentative nature of ML training, M3S provides an integrated plat-
form between the modeling environment and the ML training pipeline. M3S is validated 
through a case study and a controlled experiment. M3S shows promise, but future research 
needs to confirm its generality.
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1  Introduction

A machine learning (ML)-based system offers numerous benefits. For example, it pro-
vides software solutions to previously impossible functionalities, including autonomous 
driving, object recognition, and forecasting. Due to the criticality of the results, ML-
based software must employ a reliable and trustworthy approach (Khomh et  al.,  2018; 
Ozkaya,  2020). However, achieving reliability and trustworthiness remains challeng-
ing due to the unique characteristics of the ML-based software components (Martínez-
Fernández et al., 2022; Sculley et al., 2015).
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Developments of ML components, which are more often referred to as ML models, are 
highly experimental and nondeterministic (Wan et  al., 2021). Identifying the ML model 
version suitable for the predefined quality described in the performance metrics requires 
experimentation using different parameters and datasets (Vogelsang & Borg, 2019). Then 
continuous monitoring is necessary after deployment to detect drifts and keep the ML 
Model relevant to the ever-changing operation domain via retraining (Xiang et al., 2023; 
Lima et al., 2022). Additionally, the characteristics of ML drive solutions that are uncom-
mon to traditional software engineering. Dataset manipulation such as augmentation, 
reduction, or rebalancing is necessary to provide quality inputs to the training and testing 
process (Rahman et al., 2023). Manipulation of the neural network architecture (e.g., deep 
neural network (DNN) repair) is another example of ML-specific solutions that replace 
traditional software debugging activities (Sotoudeh et al., 2021).

The decisions made during ML-specific development activities often occur in isolation 
from the requirements of the rest of the software systems (Nahar et  al., 2023). Analysis 
of the components in ML models considers only the ML perspective and ignores other 
aspects crucial for reliable and successful software system development, such as business 
and safety requirements (Wolf & Paine, 2020; Pereira & Thomas, 2020). Consequently, the 
reliability of the overall ML-based system cannot be demonstrated. This type of problem 
is not new for traditional software. The model-based approach overcomes this problem by 
facilitating traceability and consistency between different aspects of the software system 
(Batot et al., 2021). The term multi-view emphasizes the usage of different models to cap-
ture various aspects of the system (Reineke et al., 2019).

Several multi-view approaches have been proposed to facilitate ML characteristics 
(Villamizar et  al.,  2022; Nalchigar et  al.,  2021). However, these approaches are prone to 
inconsistency and a lack of traceability between the analysis and implementation because the 
decision is implemented separately from the analysis. Some works have aimed to implement 
a model transformation approach that integrates analysis models into ML model training, but 
the capability to discuss the relationship between the model defining the ML training design 
and other aspects necessary for a system-level analysis is lacking (Moin et al., 2022; Koseler 
et  al.,  2019). A different approach that combines the benefits of multi-view modeling and 
integrated implementation is necessary to achieve effective ML system analysis.

This paper extends our proposal of the Multi-view Modeling Framework for ML Sys-
tems (M3S) as a model-based framework that facilitates consistent and comprehensive 
analysis of ML systems (Husen et al., 2023). M3S analyzes the ML components and the 
overall system itself. The analysis includes integrating the modeling environment and the 
ML pipelines to facilitate the highly experimental characteristics of ML models, in which 
a series of training and evaluations are conducted with different solutions and configura-
tions to identify an ML model version that satisfies all requirements. These integrations are 
based on a cohesive metamodel to ensure analysis consistency. The underlying approach 
of M3S supports a reliable and comprehensive analysis of the ML system while ensuring 
tight synchronization with the implementation. This synchronization provides the base for 
a feedback loop between the analysis and the implementation at both the ML model and 
the overall system levels.

Previously, we proposed a version of M3S and evaluated it with a limited case study 
(Husen et al., 2023). The early version features an analysis framework without any inclu-
sion of integrated implementation of the decision documented in the models. This paper 
extends the previous work with an improved version of the framework. The enhanced 
framework includes the integration of the modeling environment with ML training pipe-
lines along with an updated metamodel and process to reflect the improvement. Finally, a 
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more comprehensive case study and a controlled experiment validate the capabilities of the 
updated M3S.

The contributions of this paper include:

•	 Proposal of a multi-view modeling approach for an overall analysis of ML sys-
tems. Because comprehensive analysis is necessary to achieve reliable ML systems as 
an overall solution and not simply an ML model, we validate the usefulness of the pro-
posed approach.

•	 Development of an integrated metamodel for ML system analysis. Integrating different 
modeling approaches into a single entity is a limitation of the multi-view modeling approach. 
Herein we create an integrated model, which combines the unique characteristics of ML sys-
tems, and introduce an integrated metamodel that incorporates analysis approaches devel-
oped for ML systems (e.g., ML Canvas and the ML model pipeline) itself.

•	 Integrated tool between the modeling environment and ML training pipeline. ML 
model development is a highly experimentative approach. Separating analysis from the 
ML model training and testing causes drift. To enhance the consistency between these 
two sides with different natures, we developed a tool that integrates the modeling envi-
ronment and the ML pipeline through the definition and execution of configurations in 
ML training approaches.

The rest of this paper is structured as follows. Section 2 provides a motivating example. 
Section 3 summarizes related works. Section 4 presents the M3S and its implementation as 
an integrated tool. Sections 5 and 6 show a case study and experiment of M3S, respectively. 
Section 7 discusses the benefits and limitations of M3S identified during the evaluation. 
Finally, section 8 concludes this paper with the future direction of M3S.

2 � Motivating example

Figure 1 outlines the motivating example of our work. In a model-first ML system devel-
opment, an ML model is developed using the standard experimental process where an 
experiment management tool executes several runs. This generates a set of versions for a 
multi-class classification model. The performance of each version is tested and is ready for 
use as the basis to decide the version to be deployed into the system.

On the other hand, the system where the ML model will work has its requirements. At the 
very least, a business-level decision will dictate the success criteria of the overall project. The 
problem happens in the link between the performance of the selected version of the ML model 
and requirements at a higher level. How to trace the order of the importance of the ML perfor-
mance for each class into the business decisions? On top of that, do the business decisions align 
or contradict each other on the ML performance level? How to reconcile and maximize the 
achievement of the project goals in the case of conflicting decisions?

However, the system where the ML model will be deployed has its own requirements. 
At a minimum, a business-level decision will dictate the success criteria of the overall pro-
ject. This typically creates issues in the link between the performance of the selected ver-
sion of the ML model and the requirements at a higher level. Not only is tracing the order 
of the ML performance for each class into the business decisions crucial but the business 
decisions must align with the ML performance level. Hence, when the ML performance 
and business decisions conflict, they must be reconciled to achieve the project goals.
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In a hypothetical situation where training a new version of the ML model is available, 
another problem also emerges. The approach to train the version must satisfy the business 
decisions. Analysis based on the defined business decisions must be employed to select 
a suitable approach. Otherwise, experimentation on training the new version of the ML 
model may lead to unachievable goals. It should be noted that business decisions may state 
not only the functionality of the ML model but also other quality aspects such as safety and 
fairness. Hence, a trade-off may be necessary (Software engineering - systems and software  
quality requirements and evaluation (square) - quality model for ai systems, 2023).

We aim to solve this problem using M3S. The multi-view approach should bridge the 
deterministic side of higher-level requirements and the decisions to implement training 
strategies inside the black-box ML training activities. An integrated metamodel will guide 
which part of the decisions are connected and synchronized. Finally, if a change in higher-
level requirements is necessary, the traceability of the framework should provide reliable 
information on the limitations of possible solutions from ML model training.

3 � Related works

Several works have investigated reliable ML system development. Here, we classify them 
based on their similarity to M3S. In terms of a model-based approach for analyzing ML mod-
els, early examples include Bishop’s work in probabilistic graphical models (Bishop, 2013) and  
Infer.net (Minka et al., 2018). Moin et al. proposed the integration of Model-Driven Software  
Engineering and Automated ML (AutoML) with automated source code and ML model gen- 
eration (Moin et al., 2022) as well as a Model-driven Engineering (MDE) approach for ana-
lytic and software modeling with a focus on ML mainly for the Internet of Things (IoT) 
domain with a prototype named ML-Quadrat (Moin et al., 2022). Kirchoff et al. conducted 
a comparative study using MontiAnna, a textual modeling framework, and ML-Quadrat to 
explain the potential of the MDE approach in the ML domain (Kirchhof et al., 2022). Koseler 
et al. defined a domain-specific modeling language for ML for a metamodel for ML systems 
(Koseler et al., 2019). Langford et al. proposed MoDALAS to facilitate model-driven runt-
ime monitoring for learning-enabled components (Langford et al., 2021). M3S differs from the 
other studies in this area as it tries to address not only single aspect using a single model but to 
integrate different aspects into a single workflow.

Fig. 1   Motivating example
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Some studies have connected ML performance to requirements on higher levels. 
Villamizar et  al. proposed perspective-based ML task specification based on the 
classification of 45 ML concerns into five perspectives: objectives, user experience, 
infrastructure, model, and data (Villamizar et al., 2022). Takeuchi and Yamamoto devised 
an analysis method to construct a business-AI alignment model in ArchiMate (Takeuchi 
& Yamamoto, 2020). Chuprina et al. proposed an artefact-based requirements engineering 
approach, which divides the concerns into four layers: context, requirements, system, 
and data-centric (Chuprina et al., 2021). Nalchigar et al. proposed GR4ML, a conceptual 
modeling framework for ML that utilizes three perspectives: business, analytic design, and 
data preparation (Nalchigar et  al.,  2021). M3S follows the same concept, but a different 
approach in the abstraction of the levels of requirements. M3S also extends the concept into 
the ML training pipeline.

Idowu et al. proposed the Experiment Management Meta-Model (EMMM) as an inte-
grated metamodel of a commonly used experiment management tool (Idowu et al., 2022) 
and taxonomy of those tools (Idowu et al., 2023). The difference between our metamodel 
and EMMM is the focus of the metamodel. EMMM is an experiment management tool, 
while our integrated metamodel aims to connect the elements of the analysis models to the 
artefacts inside the experiment management tool itself. At M3S, the metamodel of the pipe-
line exists as a single part of the overall integrated metamodel.

The main difference between M3S and the aforementioned studies is the approach uti-
lized for connecting the analysis and implementation of the analysis inside the machine 
learning training. M3S is not designed to generate the source code for model training. 
Instead, it connects the solutions, configurations, and results embedded in the ML pipeline 
with higher-level requirements to support project requirements achievement. Moreover, 
M3S facilitates a feedback loop between the ML pipeline and the system modeling through 
the integrated environment for modeling and training, which is not well supported by tradi-
tional model-driven approaches of model-to-code generation.

4 � Multi‑view modeling framework for ML system

Figure  2 overviews M3S, which aims to integrate and synchronize both sides. The key 
concept behind M3S is an integrated, traceable process between system models and the 
ML pipeline. It involves a multi-peak process where the analysis and implementation are 
iteratively refined from a highly abstract and speculative state into a more concrete and 
proven one. An integrated metamodel guides the connection between system models, ML 
pipelines, and configurations, connecting both sides to ensure consistency and traceability. 
There are three use cases of M3S: top-down, model-first, and parallel approaches. The use 
cases are based on which side is developed first. The use cases are based on common tra-
jectories of ML system development (Nahar et al., 2022).

The first is a top-down approach. This is like a traditional software process where ana-
lytical models are developed prior to the execution of ML pipelines. The results of ML 
testing are then used as the basis to refine the decisions before another ML pipeline is 
executed. This use case fits a product-first approach to ML-system development.

The second one is the model-first approach. In this case, early versions of the ML model 
are developed before the analysis starts. The analysis is done in a reverse engineering manner. 
First, the current capability of the ML model is connected to the higher requirements. Second, 
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whether the model satisfies the goal is determined. Third, the requirements are retrained or 
negotiated based on the findings of the analysis. This approach is appropriate when the ML 
system process is based on exploring what kind of ML task the existing data can produce.

The last one is the parallel or hybrid approach. This use case starts by defining the 
highest-level requirements followed by small experimentation using anything the team can 
think of. In this case, both the analysis and experimentation sides must communicate fre-
quently to close the gaps as the analysis and ML performance become clearer over time. 
This is the best usage of M3S. However, this use case is also the most challenging to imple-
ment correctly.

4.1 � Multi‑view modeling process

M3S is comprised of six views covering different aspects of a reliable ML system. 
Table 1 summarizes the views and the model responsible for each view. The views are 
selected based on the identification part ISO/IEC Guide 51, which specifies analysis 
steps of the safety aspects for standards (Safety aspects - guidelines for their inclusion 
in standards, 2014). ISO/IEC Guide 51 covers high-level use cases, functionalities, and 
failure analysis of the system itself. ISO/IEC Guide 51 is selected with the goal of align-
ing the framework with safety aspects by following the required iterative process for 
risk assessment. This allows M3S to be utilized for safety-critical ML systems where 
highly reliable analysis and argumentation of the development of ML model and overall 
system are required. We transformed the steps into aspects that must be covered and 
subsequently assigned a model for each step. Figure 3 summarizes the transformation 
and model assignment.

Fig. 2   Overview of M3S

Table 1   Views of M3S

No View Covered Aspect Responsible Model

1 Value Business and project requirements AI Project Canvas
2 ML Task ML task requirements and ML Canvas

higher-level performance requirements
3 Architecture Architectural design and integration Architectural Diagram (SysML)

requirements
4 Goal Detailed ML performance requirements KAOS Goal Model
5 Safety Safety requirements STAMP/STPA
6 Argumentation Solution argumentation Safety Case
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Following the steps of ISO/IEC Guide 51, the modeling process becomes systematic 
steps of modeling activities. Back-and-forth adjustments between models may be necessary 
to correct and align the information between them. The decisions captured in the mod-
els are then implemented into a model training pipeline. In addition, a V-shaped process 
can be realized by connecting a validation process to each step of the modeling activities 
(Fig.  4). By utilizing a V-shaped process, the correctness of the decisions made during 
the analysis can be evaluated and traced for improvement and revision during the develop-
ment process. Ultimately, a monitoring phase to detect performance degradation of the ML 
model from drift can be traced back to the main goal of the ML system.

The details of the process are as follows: 

	 1.	 Begin with the "Value" view. This view involves developing an AI Project Can- 
vas to capture the project-level requirements (Thiée, 2021). This step defines the top 
business-level requirements, which include value propositions, potential users and 
other stakeholders, related aspects of the systems, and financial aspects of the project.

	 2.	 Identify the common aspects of the ML Task on the "ML Task" view using ML 
Canvas (Dorard, 2015). ML Canvas incorporates the information of AI Project Canvas 
(e.g., the value proposition, output, and data) into the requirements necessary for build-
ing an ML pipeline. ML Canvas defines the data collection and processing activities, 
the desired capability of the ML model, and the need for continuous monitoring.

	 3.	 Develop the "Architecture" view by an architecture diagram made in SysML. 
This view overviews the workflow to integrate the ML models and traditional software 
components. Communications between the components, including sensors, control-
lers, and user interfaces, are defined here. The information on integration in AI Project 
Canvas acts as the baseline for developing this model.

Fig. 3   Mapping of models into views and ISO/IEC Guide 51
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	 4.	 Model the "Goal" view using the KAOS Goal Model. This view defines the details of the 
ML task and the expected performance defined in ML Canvas. It also assigns the expected 
performance to each ML component described in the architectural diagram (Matulevičius 
& Heymans, 2007). The model decomposes the task and required performance into more 
detailed specifications. In the leaf nodes of the KAOS diagram, details of the desired perfor-
mance must be defined in a measurable form. A formal specification of the ML performance 
can also be used to give an unambiguous specification (Letier, 2001).

	 5.	 Employ STAMP/STPA acts as the model for the "Safety" view in M3S (Leveson, 
2012). The model uses the specified architecture in the architecture diagram to model 
interactions and identify potential communication failures that may lead to accidents. 
Root cause analysis of each failure is followed by the definition of the countermeasures 
that need to be implemented to ensure the safety of the overall system.

	 6.	 Assign responsibility to the safety case as the model of the "Argumentation" 
view that captures the solutions implemented in the ML pipeline and related 
components. The model specifies the goals of each implementation of solutions. The 
solutions cover data engineering, training approach, safeguarding, and other aspects 
necessary to be argumentative. The ML pipeline implements the solution and its con-
figuration reflected in the safety case.

	 7.	 Execute the workflow of the training pipeline according to the information in 
the solutions described in the "Argumentation" view. Continuous synchronization 
provides consistency between decisions to utilize the solutions. Then the result of the 
training pipeline goes through several steps of testing.

	 8.	 Execute unit tests in the form of ML performance metrics to signal whether 
the specified minimum performances in the "Goal" view are too optimistic or 
pessimistic. This step shows the achievement of ML performance requirements and 
decides whether a change to the analysis model is necessary. New solutions in the 
"Argumentation" view or evolution of the ML performance requirements in the "Goal" 
view may be necessary.

Fig. 4   Modeling Process of M3S
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	 9.	 Execute an integration test to validate whether the designed architecture in the 
"Architecture" view fulfills its purpose. Like the previous step, the architectural 
decision in the "Architectural" view may need to be updated if the integration fails to 
be done or does not demonstrate the desired quality.

	10.	 Implement continuous monitoring to detect possible drift and wrong specifica-
tions of the "ML Task" view. This step is important because the uncertainty of 
the ML model cannot be removed from the system. Detection through the described 
Monitoring element in ML canvas notifies developers when drifts occur.

	11.	 Employ value monitoring to evaluate whether the proposed values in the "Value" 
view are achieved. A misaligned business judgment needs to be monitored closely. A 
change in the environment may lead to an incorrect business judgment, which requires 
a shift in the value proposition.

4.2 � Integrated metamodel

To achieve consistency between different views, we developed an integrated metamodel, 
which summarizes the relationship between the elements inside each view, using a meta-
data modeling process. The metamodeling process focuses on identifying similar elements 
between different models and connecting parts that lead to a comprehensive connection 
between all views. The integrated metamodel of M3S not only covers the models but also 
their communication with the ML pipeline. To achieve this, the integrated metamodel 
includes common concepts of the ML pipeline and the experiment management tool. 
Finally, the general concept of an ‘ML Solution’ is added to describe the implementation 
of solutions detailed in the safety case. The integrated metamodel is constructed and evalu-
ated iteratively. The process begins with a metamodel for each utilized model. Then, the 
connections between all element pairs are evaluated to determine the connection type.

Connections are classified into four categories: same, similar, aggregate, or contribution 
(El Hamlaoui et al., 2018). "Same" connections mean the exact similarity between two ele-
ments, and the description of both elements mimics each other. "Similar" connections rep-
resent a generality and specialization between two elements, where one element describes 
a higher-level explanation while the other provides a more specific description. Most con-
nections are classified as "contributions," which means the two elements are interdependent. 
Finally, “aggregation" connections show one element as a subset of another. To ensure the 
correctness of the metamodel, an iterative evaluation and correction process is implemented.

Table 2 shows an example of connecting the elements between two views and their con-
nection types. The value proposition of both AI Project Canvas for the "Value" view and 
ML Canvas for the "ML Task" view is the same, meaning that the description from one 
side should match the other. Output and Integration of the "Value" view show an example 
of a similar connection, where the Impact Simulation of the "ML Task" view and Com-
ponent of the "Architecture" view should use these elements as a basis, respectively. The 
safety goal of the "Argumentation" view should have a more specialized description than 
the goals of the "Goal" view as part of their aggregation. For the contribution, the ML per-
formance generated from the ML testing activities should contribute to the achievement of 
the ML requirements, which is a specialized type of goal in the "Goal" view.

Figure 5 depicts the entire integrated metamodel of M3S, including the examples shown 
in Table 2. It should be noted that the class diagram notation is used to model our inte-
grated metamodel. The “same" connections are modeled as a single node of an element, 
such as the "Value Proposition" elements of the AI Project Canvas for the "Value" view 
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and ML Canvas for the "ML Task" view. Aggregation indicates “aggregate" connections, 
for example, between "Dataset" and "Label" elements of the ML Pipeline. Generalizations 
indicate “similar" connections, as shown between the "Goal" element and "Safety Goal." 
Associations indicate "contribution" connections, including the connection between the 
"Solution" element of the Safety Case for the "Argumentation" view and the "Counter-
measure" of STAMP/STPA for the "Safety" view. A colored box symbolizes that an ele-
ment may contribute to one or more views.

4.3 � Extensibility

M3S was designed to be flexible. Figure  6 summarizes the modification process for the 
models in M3S. The process of extending the M3S framework is based on the evolution-
ary thinking approach of ISO/IEC/IEEE 14764:2022 (Iso, iec, ieee international standard 
- software engineering - software life cycle processes - maintenance, 2022). This extension 
process allows the adoption of M3S to be lightweight or more extensive, depending on the 
needs of the case-specific criterion.

The first step in the extension process is to understand the analysis requirements of 
the ML-system development project. The analysis requirements include the ML con-
cerns relevant to both the processes and products. Information about existing multi-view 
model-based processes (e.g., the standard goal-oriented multi-view modeling process of 
M3S) serves as the baseline for extensions into a more fitting process. Model respon-
sibility mapping assigns the analysis models responsible for each aspect described in 
the analysis requirements. This step specifies the lack or excess of model utilization to 
cover all necessary views.

Each addition or reduction of the models creates a modification proposal. Each proposal 
is either accepted or rejected based on the potential impact of the modification. If a pro-
posal is accepted, the integrated model is updated. Finally, continuous monitoring looks for 
potential concept drifts during the development and system operation. If a major concept 
drift is detected, another iteration of the extension is conducted to add or remove views. 

Fig. 5   M3S integrated metamodel
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Iterative extensions based on an improved understanding gained from the development and 
operation should enhance the fitness of the list of utilized models over time.

4.4 � Integrated modeling tool

We developed a prototype of an integrated ML system modeling environment to support 
the modeling and ML training process. The environment is developed as a plugin for the 
Astah* System Safety1 because this can reuse existing Astah* System Safety features such 
as SysML for architecture diagram, Goal Structuring Notation (GSN) for KAOS and safety 
case, and STAMP/STPA modeling. Additionally, the hyperlink feature of the Astah* Sys-
tem Safety helps connect two different views.

Figure 7 summarizes the extension of the Astah* System Safety to support M3S. We 
created plugins to add ML Canvas and AI Project Canvas to the Astah* System Safety to 
facilitate all the views. We also extended the SysML requirement object into canvas ele-
ments to ensure the elements of ML Canvas and AI Project Canvas can utilize the function-
ality offered by Astah* System Safety. Figure 8 shows examples of how the canvases work 
inside the Astah* System Safety environment. The modeling environment is integrated into 
the Data Version Control2 (DVC) experiment management tool via a set of plugins. The 
plugins work as a communication bridge to retrieve and send data to the other side. This 
integration is developed following the M3S metamodel.

For inward communication, we developed the ML performance monitoring plugin. It 
supports the definition of the ML performance requirements at leaf nodes of the KAOS 
goal model and fetches the testing result to trace the impact of a version of the ML model 
in satisfying them. As a proof-of-concept, we monitored the accuracy, precision, recall, 
and misclassification rate of a classification model. Figure  9 shows the performance 
requirement setting, ML performance data fetching, and impact tracing feature. The per-
formance requirement setting allows the minimum ML performance to be specified. This 
minimum can also be set through goals written in parsable descriptions. A pop-up window 

Fig. 6   M3S extension process 
(Husen et al., 2023)

1  https://​astah.​net/​produ​cts/​astah-​system-​safety/.
2  https://​dvc.​org/.

https://astah.net/products/astah-system-safety/
https://dvc.org/
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summarizes all the ML performance requirements and provides a list of versions of the ML 
model to be evaluated. Finally, the plugin evaluates the achievement of the requirement and 
traces the failure into all the models.

For outward communication, we developed the DNN repair plugin. This plugin facil-
itates parameter configuration for the repair process and its execution from the mod-
eling environment. The configuration is specified in the solution element on the "Argu-
mentation" view. The configuration is recorded in the safety case for argumentation 
purposes. Figure 10 overviews the flow of the configuration setting and repair execu-
tion. The solution is defined through a parsable description or GUI support. Another 
window acts as the execution point to select the version to be repaired and the resulting 
version’s name. The ML pipeline plugin provides a simple function of executing train-
ing of the ML model using several hyperparameters as inputs. A message containing the 
value of each hyperparameter is then sent as a trigger for the new execution of the ML 
training process. The result of the training process consists of the trained ML model, its 

Fig. 7   Architecture of the Astah* System Safety and DVC integration

Fig. 8   Implementation of AI Project Canvas on Astah* System Safety
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metadata, and the validation result. The data is stored in the version control system for 
future access.

5 � Case study

This case study aimed to evaluate the capability of M3S to facilitate comprehensive analy-
sis. We chose a case study as the evaluation method for two reasons. First, it can evaluate 
the modeling side of M3S from the first step, "Value" view development, to the eighth step, 

Fig. 9   Performance monitoring feature

Fig. 10   DNN repair feature
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the unit test of trained ML models. Second, it is suitable with respect to the extensive time 
needed to evaluate the overall process with external participants.

5.1 � Utilized case

Table  3 summarizes the case study, which is based on object classification ML models 
for autonomous driving cars (ADV). Here, the scope of the classification task is limited 
to traffic sign classification. The inputs for the ML model classification are color images 
from an embedded camera system as the sensors of the overall ADV system. The classifi-
cation result is sent to the decision-making ML model as a decision-making input for the 
car’s control system.

ADV is required to work at level three of vehicle autonomy. In level three conditions, 
the autonomous part returns the driving responsibility to the driver when ADV is operated 
outside the preferable domain. To train and test the model, we used the publicly available 
German Traffic Sign Recognition Benchmark (GTSRB) dataset (Stallkamp et  al., 2012, 
2011). The GTSRB dataset consists of images of German traffic signs that fit the case 
study. Figure 11 shows samples for each of the 43 traffic sign classes.

The case study considers two operation domains (Fig. 12). The first one is the highway. 
Because this domain is free of pedestrians and bikes, traffic signs indicating such objects 
are non-existent. The second one is suburban roads, where pedestrians and bikes are more 
prevalent. The highway domain is prioritized from an economic standpoint, whereas the 
suburban road domain is preferable from the user standpoint. The JAMA Framework Japan 
Automobile Manufacturers  Association (2021) and Aurora’s safety case framework for 
ADVs3 serve as the basis to ensure that the case study reflects the real world as much as 
possible. To fit the ML model to both cases, DNN repair may be utilized to improve the 
performance of important classes. However, if no version of trained ML models satisfies 
both cases, the highway domain is prioritized. The configuration of the repair process must 
reflect such concerns.

Table 3   Overview of the case 
study

Aspect Description

Overall System Autonomous Driving Car
Mandatory Top Goal Safe highway operation
Preferable Top Goal Safe urban road operation
ML Task Traffic sign multiclass classification
Input Color images
Output Classified traffic sign for driving 

decision-making ML model
Dataset GTSRB
Available ML techniques DNN Repair (Athena)

3  https://​blog.​aurora.​tech/​safety/​safety-​case-​frame​work-​devel​opment-​and-​tailo​ring.

https://blog.aurora.tech/safety/safety-case-framework-development-and-tailoring
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Fig. 11   Sample of images in the GTSRB dataset (Hosseinzadeh Kassani & Teoh, 2016)

Fig. 12   Illustration of the difference between highway and urban road domain
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5.2 � Research Questions

This case study aims to answer the following research questions (RQs):

•	 RQ1. Does the integrated metamodel ensure consistency in the multi-view mode-
ling process of M3S? RQ1 assesses the benefits and necessity of utilizing an integrated 
metamodel to facilitate the M3S process. This question should validate the integrated 
metamodel, which serves as the guideline for the M3S modeling process.

•	 RQ2. Does the integrated modeling tool facilitate validating higher-level goals 
compared to existing ML performances? RQ2 evaluates the capability of the tool-
supported M3S process to maintain and utilize backward traceability between the ML 
test result and the specified ML performance and other related requirements.

•	 RQ3. Does the integrated modeling tool facilitate rationalizing ML-specific solu-
tions and their impact? RQ3 examines the capability of the tool-supported M3S pro-
cess to maintain traceability between ML-specific solutions, including the configura-
tion and implementation of such solutions in the ML pipeline.

The process and results of the case study address RQ1. Evaluating the impact analysis 
function of the integrated tool answers RQ2. Finally, the evaluation of the solution integra-
tion function of the DNN repair answers RQ3.

5.3 � Results

The case study followed the process steps described in the Subsection 4.1. The numbering 
in this subsection reflects the numbering of steps of the M3S process. 

1.	 We initially modeled the "Value" view using the AI Project Canvas based on the infor-
mation from the case study. The result of the modeling can be seen at the top of the 
Fig. 13.

2.	 Figure 13 shows the result of the AI Project Canvas for the "Value" view and the ML 
Canvas for the "ML Task" view along with the related metamodel part that guides the 
derivation of information from the AI Project Canvas to the ML Canvas. Firstly, the 
value proposition developed in the "Value" view was copied directly into the "ML 
Task" view. Then other elements in the "ML Task" view were derived based on the 
value proposition. On the elements where a specific connection was described in the 
metamodel (e.g., the outputs of the "Value" view and the impact simulations of the 
"ML Task” view), more detailed information was derived. At this point, the informa-
tion necessary for training the initial versions of the ML models was complete. Various 
versions of ML models using different hyperparameter configurations could be trained 
using the information of the dataset and ML task in ML Canvas on the DVC side. In 
parallel, modeling continued for the "Architectural" and "Goal" view.

3.	 The integration part of the AI Project Canvas dictated the development of an archi-
tectural diagram for the "Architectural" view (Fig. 14). Each piece of information in 
AI Project Canvas’s integration was translated into the system requirements prior to 
dividing into specialized components inside the architectural diagram. The connec-
tion between the components was subsequently analyzed and specified to complete 
the architectural diagram.
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Fig. 13   AI Project Canvas (top) and ML Canvas (bottom) with associated metamodel elements (middle)
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4.	 The value proposition and impact simulation defined in the "ML Task" served as the 
basis of higher-level goals in the KAOS goal model for the "Goal" view (Fig. 15). Then 
it was further decomposed to obtain a goal achievable by a single performance metric. 
With the required ML performance defined in a semi-formal way, the M3S modeling tool 
parsed the information and used it to check if the requirements were satisfied. Figure 16 
compares the ability of three different ML models to satisfy the requirements. By exam-
ining the color-coded elements, version A clearly outperformed the other two. However, 
no version completely satisfied all the requirements. Thus, we continued developing the 
"Safety" view with a clear understanding of the limitations of the available ML models.

5.	 STAMP/STPA inside the "Safety" view indicated how the hazard from the user perspec-
tive connects to the limitation of the ML model. The architecture diagram was translated 
into the control structure diagram of STAMP/STPA (Fig. 17). Unsafe control actions 
between the ML model and the other components of the ML system were analyzed. Then 
countermeasures were given based on the limitation of existing ML models towards each 
hazard causal factor of each unsafe control action.

6.	 Figure 18 shows the connection of the top goal of the goal model to the top goal of 
safety constraint and the countermeasures from STAMP/STPA in the safety case of the 
"Argumentation" view. For the solution that utilized DNN repair, we implemented repair 
strategies and patterns to improve the best-performing version of the ML model, which 
was version A. Figure 19 summarizes the patterns utilized and the difference between 

Fig. 14   Derivation of AI Project Canvas’ Integration (top) into the Architectural Diagram’s components 
(bottom)
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Fig. 15   ML Canvas (top) and part of the KAOS Goal Model (bottom) and its associated metamodel ele-
ments (middle)
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Fig. 16   Comparison of the results from different ML model versions. Red means the performance require-
ment is not fulfilled
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the repair results. The first pattern was a balanced approach, where both classes were 
treated equally with the same priority weighting. The other one prioritized fixing the 
worse-performing class.

7.	 DNN repair processes were executed for both cases using the specified configuration in 
the "Argumentation" view. The repair resulted in two new versions of the ML model, 
improved from the selected A version as the base model for repair. All new versions of 
the ML model are stored on the DVC side.

8.	 Although the execution of the repair improved the performance in both patterns, nei-
ther achieved the required ML performance. Further evaluation of the misclassified 
images showed that the test data quality might not be suitable for real-life situations. 
The test data in Fig. 20 was too extreme for the target operational domain, considering 
the development goal only required level 3 self-driving capability. As such, further 
manipulation of the test data, such as the exclusion of extremely low-quality images, 
may be necessary to measure the capability of the ML model properly. Moreover, the 
quality of the sensors also came into question. The ability of the cameras to provide 
quality images is integral to ensure that the ML model is not exposed to extreme cases. 
However, both solutions increased development costs. Figure 21 shows how the solu-
tions are reflected in the "Argumentation" view and the associated costs of the solu-

Fig. 17   Derivation of Architectural Diagram’s components (top) into STAMP/STPA’s Entities (bottom)
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tions in the AI Project Canvas for the "Value" view due to the part of the metamodel 
that specifies the interconnected changes. Hereafter, we adopted the balanced repair 
version of the ML model for further integration. However, the need for better-quality 
camera sensors is noted as a future improvement.

Fig. 18   Development of a safety case (top) from KAOS Goal Model’s Top Goal (snippet) and STAMP/
STPA’s Countermeasures (bottom)
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5.4 � Answers to research questions

Here, the research questions are answered. Each subsection is dedicated to one research 
question.

5.4.1 � RQ1. Does the integrated metamodel ensure consistency in the multi‑view 
modeling process of M3S?

The results highlight how the metamodel guides the development of new elements. The 
metamodel guides the consistency from business-level decisions into the ML training 
aspects (Fig. 13). Then the information in the AI Project Canvas serves as the basis to 

Fig. 19   Repair strategy patterns utilized in the case study

Fig. 20   Misclassified test data for each version of the ML model
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construct the architectural diagram (Fig. 14) while composing the abstract description 
in the ML canvas realizes achievable ML performance requirements (Fig. 15). Finally, 
the architectural decision should be the foundation of the STAMP/STPA control struc-
ture (Fig. 17).

Fig. 21   Inclusion of newly found solutions in the safety case (top) and the associated update on AI Project 
Canvas (bottom) based on the metamodel (middle)
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The metamodel guides the process in higher-level decisions to update the models during 
the loop. The costs in the AI project canvas should be added for each newly proposed deci-
sion (Fig. 21) because the metamodel must not only work in the initial development but 
also in the later stages when decisions may need to be changed.

This case study demonstrates the capability of the metamodel. Hence, the integrated 
metamodel of M3S can ensure consistency in the multi-view modeling process.

The integrated metamodel of M3S ensures the consistency of the multi-view mod-
eling process. Elements of different models can be traced and connected using the 
integrated metamodel not only during the initial development but also as the analysis 
models evolve as new solutions update the elements of another view.

5.4.2 � RQ2. Does the integrated modeling tool facilitate validating higher‑level goals 
compared to existing ML performances?

The integrated modeling tool can be configured to monitor specific ML metrics through 
the goals of the KAOS goal model (Fig. 15). The color coding in Fig. 16 demonstrates the 
tool’s capability to communicate with the ML pipeline to fetch the test result and mark 
the achievement of the configured goal nodes and the associated elements of other mod-
els. This format visualizes the impact of the ML model on the achievement of the higher-
level goals. The integrated modeling tool utilizes visualization techniques to support the 
traceability between models. Consequently, the integrated modeling tool can validate the 
achievement of higher-level goals from existing ML performances.

The integrated modeling tool of M3S successfully validates the achievement of 
higher-level goals using the traceability between the business and system-level goals 
and lower-lever ML performance goals. The fetched ML performance from the DVC 
server can be automatically traced to other views such as the "Value" and "Architec-
ture" views.

5.4.3 � RQ3. Does the integrated modeling tool facilitate rationalizing ML‑specific 
solutions and their impact?

Figure 18 demonstrate how the information of ML-specific solutions is captured inside the 
safety case of M3S. The solution spans from the data layer to ML training and architec-
tural decisions made. The metamodel supported the addition of solutions on other aspects. 
Moreover, the integrated DNN repair tool, which is used as an implementation example of 
an integrated solution, shows promising results. Solutions can be captured inside the analy-
sis model and subsequently executed in a single flow, ensuring synchronization of deci-
sion-making and solution execution during the iterative addition of solutions. The impact 
of the solution on ML performance and the higher-level goals can also be traced using the 
performance checking function (Fig. 16).

It should be noted that these findings are based on a single integrated solution. More 
implementations of integrated solutions, especially on different aspects such as data 
manipulation, are necessary to understand the full capability and limitation of integrating 
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solutions into both the analysis and model training because the solutions may work differ-
ently from the DNN repair, which works directly with the ML model.

The integrated solutions of M3S allow decision-making and execution of solutions to 
maintain consistency during the iterative and experimentative development process. 
However, this finding is limited to the context of DNN repair. Further implementa-
tion and evaluation of different types of solutions such as data manipulation are nec-
essary to understand the benefits and limitations of integrated ML solutions.

5.5 � Threat to validity

The main threat to our case study is the validity of the case itself. An unrealistic case 
study questions the uncertainty of whether the results of the case study reflect the real 
situation. We implemented two strategies to ensure that the case study is suitable to 
evaluate M3S. First, the case study is based on reliable documents. We followed the 
JAMA framework for required capability and possible failures. We also followed Auro-
ra’s safety case framework for ADVs to design the overall system. Second, we solic-
ited input from industry practitioners. We continuously reviewed the case study and the 
results with industrial experts to verify the quality of the case and analysis results.

6 � Controlled experiment

The controlled experiment focused on evaluating the usability of M3S to execute the 
integrated pipeline. The experiment consisted of two parts. The first one evaluated the 
capability of M3S to facilitate impact analysis of the integrated pipeline. The second 
assessed the capability of M3S to execute an integrated solution, which in this experi-
ment is represented in the form of a DNN repair.

6.1 � Research questions

We aimed to answer the following research questions (RQs):

•	 RQ4. Can M3S efficiently facilitate the impact analysis from ML model per-
formance? RQ4 evaluates the time needed for M3S to complete the impact analysis 
task on ML performance testing. A lower time compared to the control group indi-
cates a better efficiency compared to ad-hoc approaches.

•	 RQ5. Can M3S efficiently facilitate the analysis of parameters for repair activi-
ties?  RQ5 evaluates the time needed for M3S to fully configure the integrated solu-
tions. A lower time compared to the control group indicates a better efficiency com-
pared to ad-hoc approaches.

•	 RQ6. Does M3S help users train a better ML model through integrated solu-
tions?  RQ6 evaluates the capability of M3S to help developers effectively incorpo-
rate solutions to train better ML models.
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•	 RQ7. How confident are users about the impact analysis result of M3S? RQ7 
evaluates the users’ acceptance toward the result generated by M3S in analyzing the 
impact of the result of ML performance testing.

•	 RQ8. How confident are users about the usability of the impact analysis of 
M3S? RQ8 evaluates users’ acceptance toward the support provided by the support 
tool for M3S in analyzing the impact of ML performance testing.

•	 RQ9. How confident are users about the result of solution integration in M3S? 
RQ9 evaluates users’ acceptance toward the result generated by M3S in the configu-
ration and execution of the integrated solution.

•	 RQ10. How confident are users about the usability of the solution integration in 
M3S? RQ10 evaluates users’ acceptance toward the support provided by the support 
tool for M3S for the configuration and execution of the integrated solution.

The time spent by the participants finishing their tasks answers RQ4 and RQ5. The per-
formance of the ML models repaired by the participants answered RQ6. RQ7, RQ8, RQ9, 
and RQ10 are addressed based on the participant’s responses to the post-experiment 
questionnaire.

6.2 � Experiment design

The experiment is designed to answer the research questions. Here, the design of the flow, 
participants, and data collection method for the experiment are detailed.

6.2.1 � Experiment flow

Our experiment consists of two parts. The first part evaluates the effectiveness and effi-
ciency of the M3S modeling-training pipeline integration for performance monitoring and 
tracing. The second part evaluates the effectiveness and efficiency of M3S modeling-DNN 
repair pipeline integration as a sample of modeling-solution integration.

The final goal of the experiment involving the participants is to identify a version of the ML 
model that best meets the requirements. The model can be an existing or repaired model. If no 
version satisfies all the ML requirements, they must indicate the changes necessary for immedi-
ate deployment of the most suitable model. Additionally, the participants need to finish the tasks 
given by the proctors to achieve such goals in the available time for each part.

We separated the participants into two: the framework and control groups. The 
framework group used M3S to achieve their goal, while the control group used an ad-
hoc approach. The experiment employed natural language specification as a control for 
comparison to the M3S multi-view models. To ensure the similarity, the natural lan-
guage was translated from the M3S models already specified for the experiment group. 
The framework group used the standard command-line interface (CLI) execution of the 
pipeline works for the integrated solution.

Figure  22 outlines the ML performance evaluation part of the experiment. Both 
groups started the experiment with a general briefing. The briefing consisted of an 
introduction of the group members and an explanation of the goals and tasks. Then 
the groups were physically separated to work with their own approaches. Both groups 
started by understanding the requirements for their respective group (e.g., the multi-
view models for the framework group or in a natural language for the control group).
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The next step was to execute a tool to work with the ML model. The framework 
group began by configuring the required performance for the leaf goals they wanted to 
monitor. Then they executed the fetching of ML model performance from the pipeline. 
In contrast, the control group executed the pipeline using the command lines in the CLI 
to determine the performance of each version of the ML model. Finally, each group 
decided which version of the ML model was the most suitable to satisfy the existing 
requirements, and if the existing versions of the ML model did not satisfy all require-
ments, they indicated which requirements were not satisfied.

Figure 23 overviews the second part of the experiment. It began with an explanation 
of how DNN repair works and what parameters need to be configured for the repair to 
work. Both groups were then tasked with repairing the version of the ML model they 
found most suitable in the first part of the experiment to fulfill as many requirements 
as possible. The experiment group worked with the safety case model to specify the 

Fig. 22   Experiment flow for ML performance monitoring part

Fig. 23   Experiment flow for the integrated DNN repair pipeline part
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configuration, while the control group worked with the configuration file directly to 
set up the repair process. Both groups then executed the repair using their approach. 
Then they evaluated the success of the repair process using a similar approach. Finally, 
they decided whether to use the repaired or the original version based on the suitability 
to satisfy the requirements. If they chose the repaired version and it did not satisfy all 
requirements, they had to mark which requirements were not satisfied.

Afterward, the participants completed a post-experiment questionnaire. The experiment 
concluded with a short discussion session between both groups. During the discussion, a 
moderator captured the subjective opinions of the participants about what worked well and 
what could be improved.

6.2.2 � Participants

Our experiment attracted thirteen participants from practitioners, academia, and graduate 
students with varying roles and experience levels. Table 4 summarizes the participants. For 
the practitioners and academia, we collected the experience based on how long they have 
worked in their role, whereas the year in graduate school was collected for studies. The 
personal identities of each participant were obscured to protect their privacy. The partici-
pants were divided into four groups: the practitioner control group, the practitioner frame-
work group, the student control group, and the student framework group.

We split the participants into practitioners and students before assigning them to the 
framework and control groups for two reasons. The first one was to isolate the experience 
levels to detect differences between the perspectives based on experience. The second one 
was for flexibility as students had more time available to test the tools. Although the expe-
rience and backgrounds were balanced between the framework and control groups, the par-
ticipants were randomly assigned to a group. For example, two participants had 30 years of 
experience; one was assigned to each practitioner group, but it was random which one was 
in each group. Similarly, two students had limited industrial experience and were assigned 
to different student groups.

Table 4   Summary of the participants. The groups include practitioner control (C-P), practitioner framework 
(FW-P), student control (C-S), and student framework (FW-S)

No ID Background Role Experience 
(Years)

Group

1 P1 Academia Project Manager 5 C-P
2 P2 Academia Project Manager 1 C-P
3 P3 Industry Quality Assurance 5 C-P
4 P4 Academia Quality Assurance 5 FW-P
5 P5 Industry Quality Assurance, Software Engineer 5 FW-P
6 P6 Industry Project Manager 30 C-P
7 P7 Industry Data Scientist 30 FW-P
8 P8 Academia Server Reliability Engineer 5 FW-P
9 S1 Student Master Student 1 C-S
10 S2 Student Master Student, Software Engineer 1 C-S
11 S3 Student Master Student 1 FW-S
12 S4 Student Master Student 2 FW-S
13 S5 Student Master Student, Project Manager 1 FW-S
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6.2.3 � Questionnaire

A post-experiment questionnaire was employed to capture the participants’ subjective 
opinions from both groups. The questionnaire employed a Likert scale to capture the par-
ticipants’ impression (Likert, 1932-1985). Each question was designed to answer RQ3, 
RQ4, RQ5, and RQ7. A four-point Likert scale was used to reduce bias from selecting the 
neutral option. Table 5 shows the questions of the post-experiment questionnaire and their 
corresponding RQs.

The results of the questionnaire from the control and experiment groups were compared. 
The difference in the average between the groups was used to answer the related RQ. The 
analysis used a weighted calculation to separate the extreme options of ’Highly Disagree’ and 
’Highly Agree’ from the ’Disagree’ and ’Agree’ options.

6.3 � Results

6.3.1 � Time for completion

Figure 24 summarizes the time required for each group to finish the ML performance mon-
itoring part. The student framework group performed three iterations of monitoring during 
the experiment, with each iteration fulfilling the completion criteria. To evaluate the time 
properly, we divided their time into three parts to reflect each iteration. We also separated 
the time for discussion and tool operation. The discussion consisted of conversations about 
the tool, case, and solution. However, further classification was difficult since the topics 
were often mixed.

The framework groups tended to use time for tool operation more efficiently than the 
control groups. The practitioner and student control groups required more than 10 minutes 
and 13 minutes, respectively, whereas the practitioner and student framework groups each 
required about 3 minutes. Even when considering the multiple iterations executed by the 
student framework group, the time remained consistent. Similarly, the discussion time was 
longer in the framework group when the results were compared by experience level (prac-
titioners or students). For a given experience level, the discussion time of the framework 
group was almost twice that of the control group.

Table 5   Post-experiment four-scale Likert questionnaire

No. Question Related RQ

Q1 I’m confident in the impact analysis results produced by our team. RQ7
Q2 I can easily evaluate the performance of different versions of the ML model. RQ8
Q3 I can easily evaluate the effect of different versions of the ML model RQ8

in satisfying the ML performance requirements.
Q4 I can easily evaluate the effect of different versions of the ML model RQ8

in satisfying the overall requirements.
Q5 I’m confident in the configuration of the repair tool generated by our team. RQ9
Q6 I can easily decide the value of the configuration for different labels of RQ10

repair tools.
Q7 I can easily evaluate the improvement and regression of the overall RQ10

requirements satisfaction due to the repair activity.
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Figure 25 summarizes the time required for each group to finish the DNN repair part. 
Similar to the ML performance monitoring part, the student framework group completed 
three iterations of the task. The practitioner framework group completed two iterations. 
Following the same approach as the ML performance monitoring part, we divided their 
time to reflect the iterations. We also separated the tool operation and discussion time.

The control group for a given experience level spent more time on tool operation. 
The student groups showed a significant difference; the discussion time of the control 
group was almost twice that of the framework group. For the practitioners, the control 
group took slightly longer than the framework group. The second iteration from the 
practitioner framework group was less than half the time for the single iteration of the 
practitioner control group. However, the learning curve effect must be considered in 
this comparison. The discussion time for the control groups from both sections was 
significantly higher than that for the framework groups. Overall, regardless of their 

Fig. 24   Time needed for each group to finish the ML performance monitoring task

Fig. 25   Time needed for each group to finish the DNN repair task
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experience level, the control groups took more time than the framework groups to fin-
ish the DNN repair part.

6.3.2 � Repaired ML models performances

Table 6 summarizes the performances of repaired ML models by the group, along with 
performance expectations. The aim of the experiment is for ML models to satisfy all 
desired values. The ML models from both framework groups satisfied all the desired 
values. In contrast, the control groups failed to satisfy the desired misclassification 
rate from the label ”Speed Limit 60” to ”Speed Limit 80” but satisfied the remaining 
desired values.

Except for the misclassification rates, both control groups produced ML models 
with better performance than their respective framework groups. In both practitioner 
and student groups, the misclassification rate for the label “Speed Limit 60” to “Speed 
Limit 80” of the framework group’s ML model was half that of the control group’s ML 
model. A similar reduction was observed for the student group in the case of “Speed 
Limit 100” to “Speed Limit 120” for the students, but the difference in practitioners 
was much smaller. The characteristics of the misclassification rate should be discussed 
as a performance metric to understand the findings.

6.3.3 � Questionnaire result

Here, the results are visualized using diverging bar charts (Heiberger & Robbins, 2014) 
because the differences in perceptions can easily be identified. Our analysis focused on the 
positivity or negativity of the sentiment by group.

Figure 26 summarizes the answers to Q1. The framework group had a more positive 
sentiment (72.3%) than the control group (62.5%). This was a difference of 11.2%, suggest-
ing that the control group felt their tracing result was more prone to mistakes.

Figure 27 summarizes the answers to Q2, Q3, and Q4. As the tracing comprehensive-
ness increased, the sentiment of the control groups decreased from 85.7% positive in Q2 to 
50% positive in Q3 and 12.5% positive for Q4. In contrast, the framework groups showed 
100% positivity for Q2 and Q3 and had a slight drop to 88.8% positivity in Q4.

Table 6   Summary of ML model performances trained by each group. Groups include practitioner control 
(C-P), practitioner framework (FW-P), student control (C-S), and student framework (FW-S). Underlined 
values indicate failure in satisfying the desired value

No Performance Metrics Desired Value C-P FW-P C-S FW-S

1 Overall accuracy ≥0.90 0.96 0.95 0.96 0.94
2 Overall precision ≥0.80 0.94 0.94 0.95 0.93
3 Misclassification rate from the label ≤0.020 0.022 0.011 0.038 0.020

"Speed Limit 60" to "Speed Limit 80"
4 Misclassification rate from the label ≤0.20 0.009 0.008 0.004 0.009

"Speed Limit 100" to "Speed Limit 120"
5 Precision of label "No Overtaking" ≥0.80 0.94 0.90 0.94 0.91
6 Recall of label "No Overtaking" ≥0.80 1.00 1.00 1.00 0.95
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The answers to Q5 suggest that the M3S implementation of the DNN repair solution 
has major weaknesses (Fig. 28). The control group indicated 100% positivity, whereas 
the framework group had only 62.5% positivity in their answers. The significant gap 
between the groups implied that something is not working well for the framework 
groups and needs to be fixed.

Figure 29 shows the answers to Q6. The 1.5% difference in positivity by group sug-
gested a slight disadvantage in using M3S in terms of efficiency of deciding the input 
of the DNN repair tools. However, the answers to Q7 showed that M3S had a signifi-
cant advantage for evaluating the output as the framework group showed a 38.8% higher 
positivity than the control group.

Fig. 26   Summary of the answers to Q1

Fig. 27   Summary of the answers to Q2, Q3, and Q4
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6.4 � Answers to research questions

6.4.1 � RQ4. Can M3S efficiently facilitate the impact analysis from ML model 
performance?

For the tool operation, M3S is a more efficient approach than the natural language spec-
ification and CLI-based tool combination. However, the difference in discussion time 
must be considered to properly understand the reason for the time difference. This find-
ing is relevant for the practitioner framework group, which spent a lot of time discuss-
ing. An interesting finding from their post-experiment discussion is the comments about 
model correctness. The practitioner framework group took the time to discuss whether 
the models’ logical points are correct. None of the other groups engaged in this type of 
analysis. It is plausible that the time spent by the practitioner framework group discuss-
ing the correctness is due to the clarity of the connection between the elements rather 
than the difficulties in finishing their task. With that in mind, we argue that the M3S 
approach is more efficient than the ad-hoc approach used by the control group. Moreo-
ver, the experience level did not affect the required time for completion.

The M3S approach is more efficient than the ad-hoc approach. This is consistent 
with the fact that the framework group needed much less time than the control 
group, regardless of experience level.

Fig. 28   Summary of the answers to Q5

Fig. 29   Summary of the answers to Q6 and Q7
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6.4.2 � RQ5. Can M3S efficiently facilitate the analysis of parameters for repair activities?

Although the difference by group is not significant, the difference by group and experi-
ence level is. In both cases, the framework groups took less time to complete their task 
than the control groups. This finding is more pronounced in the students. The operation 
time of the student control group is almost twice that of the student framework group. 
Additionally, the participants’ comments further support this. One participant in the 
control group commented on the need for GUIs to complete all the DNN repair tasks.

Each group employed a similar format in their discussions: identify important classes 
to repair, decide the exact number for the configuration, and evaluate the result of the 
DNN repair. Although similar formats were utilized, the control groups had longer dis-
cussions. Comments from the practitioner control group emphasized their difficulties 
in deciding the value of the configuration and analyzing the side effects of the process.

The M3S approach more efficiently facilitates parameter analysis in the repair 
activity than a more ad-hoc approach. M3S supports a faster analysis to make and 
evaluate the decisions of the DNN repair activities. However, experience level 
also affects the analysis.

6.4.3 � RQ6. Does M3S help users train a better ML model through integrated solutions?

Participants in the framework groups repaired the model to satisfy all the desired values 
of ML performance. In contrast, the control groups failed to repair the model to satisfy 
the desired misclassification rate. It should be noted that the control groups’ models 
outperformed the framework groups’ models for other performance metrics. This find-
ing leads to interesting questions about the nature of the requirements to be satisfied.

An important difference between achieving the misclassification rate and other per-
formance metrics is its relationship with multiple labels. Accuracy, precision, and recall 
simply focus on the population of a single label, whereas the misclassification rate 
requires a deeper analysis of the connection between the label misclassified from and 
the label being misclassified into. This leads to more complex decision-making when 
configuring the priority of labels in DNN repair. We argue that M3S helps guide deci-
sion-making in more complex situations. This argument is supported by the fact that the 
framework groups better repaired models for the misclassification rate while simultane-
ously satisfying all desired values.

The M3S approach helps the user train a better model in complex situations where 
the relationships between labels are important. However, the efficacy in a straight-
forward situation when only a single metric is important is lower compared to the 
ad-hoc approach.

6.4.4 � RQ7. How confident are users about the impact analysis result of M3S?

Participants in the framework groups are more confident in their ML performance mon-
itoring task results compared to the control groups. This is supported by the positive 
comment about the M3S capability from the practitioner framework group, which stated 
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that the automatic detection of satisfied and unsatisfied elements helped them navigate 
the effect of ML model performance even if they had to recheck it. In contrast, both 
control groups were concerned about their result if the requirements were larger than 
the ones used in the experiments.

The automatic impact signaling of M3S increases users’ confidence in the impact 
analysis result compared to a more ad-hoc approach because the only result needs 
to be rechecked using M3S instead of analyzing everything from scratch. The 
impact becomes more significant as the number of requirements increases.

6.4.5 � RQ8. How confident are users about the usability of the impact analysis of M3S?

The answers to Q2, Q3, and Q4 show interesting results. The difference in the senti-
ments becomes more significant as the scope of the requirements broadens. Both groups 
started with similar confidence levels. However, the sentiments of the control group 
about their capability to evaluate the overall requirements became extremely negative, 
implying that the ad-hoc approach is highly unreliable in such cases. In contrast, the 
framework groups showed stable responses for all cases. The participants who used M3S 
felt confident that they can work with all levels of requirements, not just the ML perfor-
mance requirements, indicating that M3S has a better usability for evaluating the impact 
than a more ad-hoc approach.

The M3S approach is more usable than ad-hoc approaches. This sentiment is more 
pronounced when impact analysis requires a more comprehensive approach. M3S 
should be more beneficial when the scope of the impact is broad.

6.4.6 � RQ9. How confident are users about the solution integration in M3S?

The integration of DNN repair into our framework has some major issues. Unfortu-
nately, the reason is unclear from the answers to Q5. Both the practitioner and student 
framework groups completed the repair and satisfied all the ML performance require-
ments, whereas neither control group did. However, the post-experiment discussion may 
provide some insight. One participant noted that the DNN repair process is not visible 
from the modeling side. Another participant reported unfamiliarity with the tool and the 
need to see the detailed process of the DNN repair. Based on the post-discussion com-
ments, we assume our integration has some issues. Our integration is overly encapsu-
lated and lacks the transparency of more traditional approaches. Additional information 
is necessary to properly answer this question.

The confidence of the integrated DNN repair in M3S result is low. This may be 
due to the lack of transparency, especially when users are unfamiliar with the 
solution. In the future, an in-depth evaluation of the internal process, especially 
the generality of the findings on different types of solutions, should be conducted.
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6.4.7 � RQ10. How confident are users about the usability of the solution integration 
in M3S?

M3S shows a slight disadvantage compared to the ad-hoc groups, but the difference may 
be caused by the weighting of extreme options. Nevertheless, the problems from both 
groups should be evaluated to understand whether they felt the same difficulties during 
the experiment. The control group noted that an ad-hoc feeling during the decision of the 
configuration value made it difficult. The framework group did not make a similar com-
ment, suggesting the groups encountered different problems. Moreover, a participant in the 
control group stated the need for a GUI-based approach for the repair, whereas the frame-
work group indicated the ease of not having to write CLI commands manually. However, 
the framework group mentioned that the randomness of the ML solution is an issue. This 
situation is likely to be felt since both sections of the framework group conducted the repair 
during the experiment more than once and tried to make sense of the detailed effect of the 
configuration. Unfortunately, randomness is a characteristic of the ML training process. 
Addressing randomness is beyond the scope of this experiment.

Overall, the comments suggest that our approach has better usability than more ad-
hoc approaches for deciding the value of the configuration, which is a limitation of the 
ML solution itself. The answers to Q7 show that the sentiment of the framework group is 
significantly more positive than the control group, indicating that the solution integration 
implemented in M3S has a higher usability than ad-hoc approaches.

Users have a higher confidence in the solution integration’s usability of M3S than 
the ad-hoc approach. The main reason for is the availability of GUI support in M3S 
allows for more reason-based decision-making, especially when evaluating the solu-
tion’s successes and side effects.

6.5 � Threat to validity

There are several threats to the validity of the experiment. One internal threat is the par-
ticipants’ familiarity with the methods. To mitigate this threat, we randomized the groups 
while ensuring that both groups had similar experience levels. Another internal threat is 
the participants’ bias towards a particular method. We countered potential bias by not shar-
ing the aim of this research with the participants.

An external threat is sampling bias. Our experiment included two different sections to 
improve the generality of the results. We also selected participants with differing levels of 
experience in ML and software development to ensure the quality of the sampling.

7 � Discussion

This section addresses benefits, limitations, and other insights of M3S gained from the case 
study and controlled experiment.
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7.1 � Benefits ‑ comprehensive feedback loop

The case study highlighted that the repair process and proposal to improve the sensors are 
based on feedback from previous actions. Similarly, the proposal to improve the camera 
sensors was also made by understanding the limitations of the repaired ML model. At the 
same time, the controlled experiment has shown positive sentiment toward the impact anal-
ysis inside M3S on top of the fact that the users of the framework managed to create bet-
ter ML models. The development process in M3S drives an informed decision, which is 
implemented again in another development process, creating a feedback loop between the 
analysis and the implementation.

Table 7 compares the scope of M3S to other approaches. Compared to other multi-view 
analysis approaches (Villamizar et  al.,  2022; Nalchigar et  al.,  2021), M3S covers more 
aspects, namely safety and argumentation. Additionally, M3S facilitates an integrated feed-
back loop between the analysis and the ML training and testing pipeline. Compared to pure 
analysis approaches, M3S supports a dynamic environment for continuous evaluation and 
improvement of decisions behind ML system development through the traceability pro-
vided by the integration (Galvao and Goknil, 2007).

The analysis scope of M3S differs from model-transformation approaches (Moin 
et al., 2022; Koseler et al., 2019). Model-transformation approaches fit better with the ML 
model training without considering other aspects required for an overall ML system. In 
contrast, M3S supports the development of more robust ML systems that integrate ML 
model analysis and higher-level requirements necessary for a successful large-scale ML 
system development. The integration facilitates the validation of potentially unrealistic 
expectations of the capability of the ML model and provides guidance for their refinement 
into a more realistic one (Nahar et al., 2023).

7.2 � Benefits ‑ documented integrated solutions

An underlying principle of M3S is solution integration to improve the quality of the ML 
model in the multi-view analysis part. The concept of integration is not unique. Table 7 
summarizes other works that have explored the idea of using model transformation to gen-
erate training pipeline source code. The distinction between M3S and other approaches 
lies in the generated part of the pipeline through model transformation; M3S produces the 
configuration of the preferred solutions to improve the ML model quality. The underlying 
benefit of this approach is that the experimentation of the proposed solution is tightly syn-
chronized with the analysis part, enhancing both traceability and reproducibility.

The experimentation using different approaches to DNN repair is documented directly 
inside the solution of the safety case (Fig. 19). This facilitates tracing the improvement or 
degradation of the ML model quality because the configuration of proposed solutions is 
well represented inside the models. Although the case study only evaluated a single solu-
tion, other solutions should show similar benefits. For example, the decision to experiment 
with data augmentation to balance data distribution can be properly reflected in the model 
with the configuration of the augmentation written as a description of the solution.

The benefits of the M3S style of integration should be more apparent in longer loops 
of adding and removing solutions to the ML model training compared to the model 
transformation approaches summarized in Table 7. The decisions behind each experi-
ment are more properly reflected in the model rather than directly placing the ML 
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pipeline design in the model. Given the characteristic of ML systems where monitor-
ing for model degradation from drifts is prominent (Bayram et al., 2022), the ability to 
retrace past decisions is highly beneficial.

7.3 � Limitation ‑ variation of machine learning tasks

One issue discovered while developing and validating M3S is the vast possibilities of tasks 
in the ML model. The case study and controlled experiment only considered the multi-
class classification task as other ML tasks were beyond the scope of this research. This 
limits our findings to the multi-class classification task. Although this study demonstrates 
the versatility of M3S in handling different ML tasks, in the future, the generality of M3S in 
handling different tasks should be validated.

A comparison to other works utilizing a framework for different ML tasks suggests 
that M3S has the versatility necessary to handle various ML tasks. Our early works on 
the framework extensibility showed promising results in named entity recognition (NER) 
problems for a rule-based text transformation (Takeuchi et  al., 2023). Extension of M3S 
with activity-driven analysis demonstrated the ability to handle optical character recogni-
tion (OCR) tasks (Tanaka et al., 2023). By comparing the characteristics of the NER and 
OCR task to the image classification in our case study, we can explore the features of M3S 
that work differently from the case study we presented.

The performance metrics are one crucial aspect that differs from our case study. The 
performance metrics of image classification mainly rely on classical ones, such as accu-
racy, precision, and recall while The OCR’s accuracy varies between characters and word-
level error rates. This difference is also true for other ML tasks, such as the mean square 
error (MSE) for regression and intersection-over-union (IoU) for semantic segmentation. 
While the analysis side of this difference can be handled by the Value, ML Task, and 
Goal views, implementation in the integrated training pipeline will differ. A modification 
or extension to facilitate the variation of ML performance metrics is necessary to fit the 
requirements of individual projects.

The same is also true for the available solutions to improve the quality of the ML model. 
The DNN repair in the case study works mainly for image classification problems and only 
one variant among all possible DNN repair tools, as each technique has its own parameters 
and processes. Additionally, different ML tasks may not have the same solutions available. 
Moreover, even the same type of solution, such as data augmentation, will have variations 
for different types of data required by each ML task. An extension is necessary to facilitate 
the specific needs of solutions for each possible case because exhaustively providing all 
possible solutions is expensive.

In conclusion, the limitation in handling the myriad of ML tasks lies in the implementa-
tion. Although other works have explored the versatility of M3S on the analysis side, chal-
lenges on the implementation side have yet to be solved. In the future, a general, extensi-
ble interface between the modeling side and the training pipeline should be investigated to 
enable an efficient extension of the integrated pipeline to facilitate different configurations 
of the ML performance and parameters into integrated solutions.
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7.4 � Limitation‑platform‑agnosticism

The support tool in the case study and controlled experiment is based on the Astah* 
System Safety and DVC. We selected this platform due to its suitability for the reuse of 
existing functions. However, this also raises a concern about the platform-agnosticism 
of M3S and its usability among other software development processes and tools. The 
concern is important as developers commonly have existing processes and tools work-
ing. This subsection will address such concerns and guide future works in this direction.

For analysis and modeling, we suggest that any modeling tool that supports model 
analysis can be utilized. Since modeling approaches are not developed in a platform-
specific manner, they should work in any modeling environment. However, applying 
the metamodel and integration into the training pipeline may be challenging. The meta-
model-based modeling approach of M3S requires a modeling environment that supports 
such functions either natively or via custom functionality. Integration also needs a cus-
tom communication function, which requires extensible modeling tools. Two common 
modeling environments come with those functions: Sparx Systems Enterprise Archi-
tect4 and Eclipse Modeling Framework5. However, other modeling environments with 
those features are also possible to support M3S.

Various ML training pipelines can be implemented in the integrated training pipe-
line. We argue that our metamodel facilitates the integration of the modeling part with 
the training pipeline based on similar research by (Idowu et al., 2022). M3S’ integrated 
metamodel works in a similar manner to Idowu’s proposed general metamodel for 
experiment management tools aimed at general integration. The integrated metamodel 
connects artefacts generated by the pipeline, which is managed by experiment manage-
ment tools, into the concepts inside the models. This allows for the implementation of 
the integrated pipeline using different platforms because such pipelines support the gen-
eral artifacts of ML training described in the integrated metamodel (Idowu et al., 2023).

The present case study and controlled experiment did not consider the extensibility pro-
cess of the framework, as described in subsection 4.3. A case study involving customiza-
tion and extension has been discussed briefly (Husen et al., 2023). The extension process 
should allow developers to evaluate and customize M3S to their needs and constraints, 
including the use of existing processes and tools. Moreover, efforts have been made to gen-
eralize currently implemented solutions (Runpakprakun et al., 2023).

7.5 � Limitation ‑ internal solution uncertainty

Uncertainty due to the probabilistic nature of ML models is a crucial problem in ML sys-
tem development. M3S aims to support decision-making and management by documenting 
the decisions made during the development and operation of ML systems. The extensive 
nature of M3S should support understanding the impact of varying ML performance due to 
uncertainties and other aspects. Additionally, M3S should be able to evaluate if previously 
utilized solutions are still relevant under new conditions.

5  https://​eclip​se.​dev/​model​ing/​emf/.

4  https://​sparx​syste​ms.​com/.

https://eclipse.dev/modeling/emf/
https://sparxsystems.com/


1281Software Quality Journal (2024) 32:1239–1285	

1 3

However, the solution’s internal uncertainty remains in the decision-making. This situ-
ation is especially true during the DNN repair process in the controlled experiment. The 
non-deterministic nature of the method leads to low confidence for participants working 
with M3S as they retried the repair. They found that their configuration was inconsistent 
with their expectations. Combined with the black-box approach provided by the integrated 
tool, the perception of how the solution works was too vague for the developers’ comfort.

8 � Conclusion and future works

This paper proposes and evaluates M3S, which is an approach to facilitate a consistent and com-
prehensive analysis of ML systems. Herein, we elucidate the benefits of M3S through a case 
study and experiment. The evaluation demonstrated that M3S clarifies existing decisions and 
enhances the performance evaluation of ML models. The case study involved a series of guided 
decisions through different views from the top business goals into executable solutions and test-
able ML performance requirements, while the experiment confirmed the evaluation ease of the 
ML performance requirements and the related higher-level decisions.

Moreover, the consistency between decisions and implementation is managed effi-
ciently during training. The decisions made in the models directly influence the execution 
of solutions implemented in the training pipeline (e.g., the solution part of the safety case). 
However, M3S provides limited assistance in navigating the internal uncertainty of solu-
tions, resulting in a less positive response regarding the trustworthiness of solution imple-
mentation. This limitation may have several origins, such as the lack of transparency in the 
internal processes. Further improvements in the solution implementation are necessary.

Finally, the generality of the framework to handle different ML tasks remains unclear. 
Although there are some indications of generality, the evaluation is insufficient to draw a 
proper conclusion. In the future, experiments on the benefits and limitations of utilizing 
M3S for ML tasks other than classification are necessary to demonstrate the generality of 
the framework.

Other future tasks include exploring more views and the extensibility of M3S, as well as 
improving the implementation of integrated solutions. One direction is to generalize sup-
ported modeling, integrated solutions, and experimentation environments. A second direc-
tion is to provide a plug-and-play approach to the extensibility of M3S. A third direction is 
to evaluate the universality of the M3S framework, especially on different ML tasks, and to 
extend the case study to include continuous monitoring.
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