
Vol.:(0123456789)

Software Quality Journal (2024) 32:1175–1202
https://doi.org/10.1007/s11219-024-09684-2

1 3

RESEARCH

Enhancement and formal verification of the ICC mechanism
with a sandbox approach in android system

Jiaqi Yin1,3 · Sini Chen2 · Yixiao Lv2 · Huibiao Zhu2

Accepted: 30 May 2024 / Published online: 27 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Inter-Component Communication (ICC) plays a crucial role in facilitating information
exchange and functionality integration within the complex ecosystem of Android systems.
However, the security and safety implications arising from ICC interactions pose signifi-
cant challenges. This paper is an extended work building upon our previously published
research that focuses on the verification of safety properties in the ICC mechanism. We
address the previously observed issues of data leakage and privilege escalation by incorpo-
rating a sandbox mechanism and permission control. The sandbox mechanism provides an
isolated and controlled environment in which ICC components can operate while permis-
sion control mechanisms are introduced to enforce fine-grained access controls, ensuring
that only authorized entities have access to sensitive resources. We further leverage formal
methods, specifically communicating sequential processes (CSP), to verify several proper-
ties of the enhanced ICC mechanism. By employing CSP, we aim to systematically model
and analyze the flow of information, the behavior of components, and the potential vulner-
abilities associated with the enhanced ICC mechanism. The verification results highlight the
effectiveness of our approach in enhancing the security and reliability of ICC mechanisms,
ultimately contributing to the development of safer and more trustworthy Android Systems.

Keywords Android · Inter-Component Communication (ICC) · Inter-App Communication
(IAC) · Communicating Sequential Process (CSP) · PAT with C#

1 Introduction

The Inter-Component Communication (ICC) mechanism is a fundamental aspect of
Android systems, facilitating communication and collaboration between different com-
ponents within an application or across multiple applications. ICC enables the seamless

 * Sini Chen
 52265902002@stu.ecnu.edu.cn

 * Huibiao Zhu
 hbzhu@sei.ecnu.edu.cn

1 School of Software, Northwestern Polytechnical University, Xi’an, China
2 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
3 Yangtze River Delta Research Institute of NPU, Taicang, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-024-09684-2&domain=pdf

1176 Software Quality Journal (2024) 32:1175–1202

1 3

exchange of information, commands, and resources, thereby facilitating the integration
and functionality of diverse app components (Samhi et al., 2021).

The security of ICC holds paramount importance, attributable to the inherent risks
associated with unauthorized or malicious communication pathways (Bhandari et al.,
2017). Improper implementation (Gadient et al., 2019) or insufficient security meas-
ures in ICC may expose vulnerabilities, leading to a range of security threats such as
information disclosure, privilege escalation, and remote code execution (Biswas et al.,
2018; Bugiel et al., 2012; Zhou et al., 2013). Exploitation of such weaknesses could
grant attackers unauthorized access to sensitive data, enable manipulation of application
behavior, or compromise the overall security posture of the system.

Building upon our previous research (Lv et al., 2023) using process algebra Com-
municating Sequential Processes (CSP), we identified significant security vulnerabilities
inherent within the existing ICC mechanism, including data leakage and privilege escala-
tion. Our previous work served as a foundation for this research, inspiring us to explore
solutions that fortify the security posture of Android systems. Subsequently, a compre-
hensive analysis was conducted on the trace output from the model checker PAT, and we
identified several primary reasons contributing to security vulnerabilities within the ICC
mechanism. Henceforth, our verification in this paper aims to address its significance in
enhancing security within the Android system. By verifying the improved ICC mecha-
nism design, we aim to bolster the overall security posture of Android applications by
mitigating risks associated with inter-component communication vulnerabilities.

First, the simplicity of the intent matching mechanism, which solely examines the
Action and Category fields using a limited set of constants provided by the Android
API, enables malicious entities to make educated guesses. Furthermore, the receiving
process is overly straightforward, as the Android ecosystem does not require that an
Intent must carry the sender’s information. Consequently, recipients handle and process
Intents immediately upon receipt, creating an opportunity for malware exploitation.

To this end, we propose an enhanced model that leverages a sandbox mechanism.
This mechanism encapsulates ICC interactions within isolated containers, effectively
partitioning components and limiting their access to sensitive resources (Neuner et al.,
2014). By establishing these boundaries, we aim to mitigate the risk of unauthorized
data leakages and curb the propagation of potential security threats across the system.
Additionally, our extended architecture incorporates privilege control (Fang et al.,
2014), enabling a fine-grained permission management framework, as is illustrated in
Fig. 1. By implementing this mechanism, we provide administrators and application

Fig. 1 The integration of permission control

1177Software Quality Journal (2024) 32:1175–1202

1 3

developers with greater control over component access rights, ensuring that only author-
ized components can invoke critical functionalities and reducing the attack surface for
potential exploits.

In line with our methodology, we continue to employ CSP as a formal modeling and
verification technique for our extended ICC architecture. This enables us to rigorously
assess the security properties of our proposed model, ensuring its soundness and resilience
against potential threats.

By combining the advantages of the sandbox approach, privilege control, and formal
verification through CSP, we demonstrate the potential to significantly enhance the secu-
rity posture of the Android system’s ICC mechanism. Our work contributes to a more
robust and trustworthy mobile platform, empowering users, developers, and administrators
alike to operate within a safer ecosystem.

In this paper, our primary extensions and contributions are as follows:

1. Proposing a simple yet effective sandbox approach to address data access security con-
cerns, wherein different access permissions are allocated based on distinct data types.

2. Modelling and verifying the ICC mechanism integrated with the sandbox approach
through introducing the relevant security properties to ensure the security of its data.

3. Providing technical guidance for security issues related to permission control and associ-
ated mechanisms.

The structure of this paper is organized as follows. Section 2 presents a brief introduction
to the ICC mechanism in Android System, the process algebra CSP, and the verification
tool PAT. In Section 3, we illustrate the modeling process using CSP. Section 4 shows the
implementation of the model using PAT and verification of the properties. Finally, Sec-
tion 5 concludes the paper and determines the goal of future work.

2 Background

In this section, we provide a brief introduction to ICC, IAC mechanism, permission grant-
ing mechanism, CSP, PAT, and the sandbox approach.

2.1 ICC and IAC mechanism

– ICC Mechanism: The ICC mechanism in Android allows components within an app
or different apps to communicate with each other. It enables the exchange of data and
messages, promoting interaction and collaboration. In Android, ICC comprises two
types: Intra-app communication and Inter-app communication, as depicted in Figs. 2
and 3 respectively.

– IAC Mechanism: The IAC, or Inter-App Communication, refers specifically to com-
munication between different apps running on an Android device. Android provides
various mechanisms for IAC, including Content Providers, Broadcast Receivers, and
Shared Preferences (Chin et al., 2011).

1178 Software Quality Journal (2024) 32:1175–1202

1 3

Our research focuses on Intent-based communication, a high-level and loosely coupled
mechanism utilized for both inter-component and inter-app communication. Intents
(Developers, 2023) in Android are message objects that describe actions to be performed or
data to be exchanged between components or apps. They enable one component to request
an action from another component or transfer data. Intents facilitate actions such as starting
activities, launching services, and broadcasting events. Additionally, Intents can carry data or
parameters to be consumed by the receiving component (DiMarzio, 2008).

Fig. 2 The Communication
Architecture of Intra-App Com-
munication

Component1

App

Component : packageName.Component2

Extra : phase1, data1

Extra : phase2, data2

intent

Component2

Component1

App1

Component2

Action : A1

Category : C1

App2

Action : A1

Category : C1

Data : data

Android System

intent

Fig. 3 The Communication Architecture of Inter-App Communication

1179Software Quality Journal (2024) 32:1175–1202

1 3

Overall, the ICC and IAC mechanisms in Android play pivotal roles in enabling seam-
less communication and collaboration between app components as well as different apps.
The choice of mechanism depends on specific needs and requirements, determining the
level of interaction between components within apps or across apps. These mechanisms
facilitate the development of complex and interconnected systems, leading to rich and
interactive user experiences.

2.2 Permission granting mechanism

The permission granting mechanism functions as a user-centric control system, enabling
users to determine which permissions an application can access on their devices. Permis-
sions are access rights to specific resources or functionalities, such as accessing device
sensors, reading contacts, or using the camera. By granting or denying permissions, users
have the ability to protect their sensitive information and ensure that applications func-
tion within desired boundaries (Au et al., 2012). The permission granting mechanism com-
prises several steps, inlucding:

– Permission Request: When an Android application requires access to a sensitive
resource or functionality that requires a permission, it must declare the necessary per-
missions in its manifest file. For example, if an application needs access to the device’s
camera, it must include the CAMERA permission in its manifest.

– Permission Check: At runtime, when the application attempts to access the requested
resource or functionality, the Android system checks if the necessary permission has
been granted by the user.

– User Consent: The permission prompt displayed to the user includes information about
the permission being requested and the context in which it will be used. The user has
the discretion to either grant the permission or deny it based on their judgment and trust
in the application.

– Permission Grant: If the user grants the permission, the Android system marks it as
granted for the specific application. Subsequently, the application can freely access the
requested resource or functionality during its runtime. In this paper, we referred to the
permission control method proposed by Almomani and Al Khayer (2020) and com-
bined it with our original ICC architecture, as shown in Fig. 4.

2.3 CSP and PAT

The process algebra is a formal method that studies the communication between concur-
rent processes. In this paper, we use Communicating Sequential Process (CSP), proposed
by Turing Award winner Hoare (1985) to model the ICC mechanism in Android System. It
is a kind of process algebra, which has been successfully applied to verify a lot of parallel
systems (Lowe & Roscoe, 1997; Xu et al., 2021).

The syntax and definitions of CSP statements used in this paper are presented in
Table 1, where a represents an atomic action or event, b denotes a Boolean expression, c
stands for a channel, P and Q represent the processes.

PAT is a model checker suitable for analyzing and verifying various protocols and sys-
tems. It can check the deadlock freedom, reachability, and Linear temporal logic (LTL)
properties of the system, by automatically traversing the state of the system and providing a
counterexample path when the system does not meet the properties.

1180 Software Quality Journal (2024) 32:1175–1202

1 3

Fig. 4 The permission granting based on the protection level

Table 1 The syntax and its corresponding explanations used in this paper

Syntax Explanations

SKIP The process terminates successfully
STOP The process reaches a deadlock, making it unable to successfully terminate
a → P The process P can only be executed after the execution of the event a
c?x → P Before the execution of process P, this process expects to receive a message on the channel c

and assign it to the variable x
c!x → P The process first sends a variable x through the channel c to another process, and then executes

the process P
P ⊲ b ⊳ Q A process is executed as the process P or the process Q based on the value of the Boolean

expression b
P□ Q The external environment determines whether the process executes P or Q
P ∥ Q The process P and Q are executed concurrently
P Q The process Q is sequentially executed after the process P
P[|c|]Q The process P and Q are executed in parallel through channels in set c
P[[a ← b]] The event a in the process P is replaced by another event b

1181Software Quality Journal (2024) 32:1175–1202

1 3

2.4 Sandbox approaches

Security sandbox approach (da Costa et al., 2022) involves isolating and compartmental-
izing different software components, processes, or applications to ensure minimal mutual
interference, whose workflow is shown in Fig. 5. By employing techniques such as process
isolation, user permissions and virtualization, controlled environments are created, prohib-
iting unauthorized accesses, data tempering and other unintended interactions. To further
enhance the security, memory protection, isolated network communication, code signing,
and runtime permission control mechanisms can also be employed. These combined meas-
ures establish a multilayered defense against potential security threats, safeguarding user
data, and maintaining system integrity.

By isolating each app within its own sandboxed environment, sandbox methods prevent
unauthorized access and interference between applications. This isolation is crucial for pro-
tecting user data and privacy, ensuring that malicious apps cannot compromise the system,
and maintaining the overall stability and reliability of the Android ecosystem (Vasilescu
et al., 2014). Security sandboxing also helps enforce the principle of least privilege, where
apps only have access to the resources and data they genuinely need, reducing the risk of
security breaches and enhancing user trust in the platform (Sammler et al., 2019).

Henceforth, based on our prior verification work (Lv et al., 2023) and the specific
requirements outlined, in this paper, we are considering the implementation of per-
mission control within a sandbox methodology to achieve data isolation and protec-
tion among Android apps. To elaborate, we initially classify the data types transferred
between apps into two main categories: sensitive data and non-sensitive data. Sensitive
data includes information such as contacts, location, address book, and voice record-
ings. For instance, as illustrated in Fig. 5, when components from App2 seek to access
components within App1 (step 1), App2 is required to submit a request containing its
unique ID. App1, serving as the recipient, assesses the request (step 2) and distinguishes
whether the data requested is sensitive or non-sensitive (step 3). In cases involving non-
sensitive data, App1 can securely transmit the requested information directly to App2,

Android

Sandbox

Approach

Component2

App2

Component1

App1

12

3

4

5

6 7

Fig. 5 The Workflows of the Sandbox Approach

1182 Software Quality Journal (2024) 32:1175–1202

1 3

as validated in our prior research (Lv et al., 2023). Hence, we do not delve into the
details here. In the case of sensitive data, App1 employs the sandbox technology, which
is on the basis of the computational logic to generate new values to ensure non-repu-
diation of the requested party (step 4). This logic may involve applying functions that
generate new values, with the actual parameters of these functions including App2’s ID,
App1’s ID, the sensitive data within App1 to be accessed, and the timestamp when the
requested computation is carried out by App1 (step 5). Consequently, App2 receives the
data that has undergone processing within the sandbox technology (steps 6 & 7), ensur-
ing that sensitive data is transmitted without security leaks.

3 Modeling

In this section, we present a formal model of the ICC mechanism integrated with the
sandbox approach in the Android System using CSP. To streamline the model, we desig-
nate activities as instances of components in this paper, as activities are the most com-
mon components in Apps. To aid comprehension of the modeling process, we provide a
sequence diagram depicted in Fig. 6.

User APPs Activities AS

1.MSGcmd(install)

2.MSGreg

3.MSGret (success)

4.MSGret (success)

5.MSGcmd(start)
6.MSGintent 7a.1.MSGintent

8.MSGdata

9.MSGdata

11.MSGcmd(terminate)

12.MSGcmd(uninstall)
13.MSGunreg

14.MSGret (success)
15.MSGret(success)

7a.2.MSGintent

Register

Intra-APP

5.MSGcmd(start)
6.MSGintent

7b.1/7c.1.MSGintent

7b.2.MSGintent

7b.3.MSGintent

7b.4/7c.4.MSGintent

8.MSGdata

9.MSGdata

Process

Return

Inter-APP

LOOP

LOOP

PAR

Unregister

7c.2.MSGintent

7c.3.MSGintent Intruder

Fig. 6 The sequence diagram of the modeling

1183Software Quality Journal (2024) 32:1175–1202

1 3

From Fig. 6, it can be observed that the entire basic process is divided into register
(steps 1-4), unregister (steps 11-15), as well as parallel communication within intra-app
and inter-app (steps 5-9). Details are delineated in the following modeling.

3.1 Sets, messages, and channels

To model the ICC mechanism in Android System, we first define the sets, messages, and
channels which are used in our model.

First, we define all sets as follows:

– UserCMD contains all commands that the User sends to the APPs including install,
start, terminate, and uninstall.

– IntentCMD involves all commands that intents take, including startAc, processData,
retData.

– Ret includes two types of returned messages, including success and fail.
– Data is composed of all data content during communication.
– Src is comprised of all source types which are determined by the channel that starts the

activity, including SRC_APP, SRC_AS, ac0, ac1.
– Intent holds all intents that may be sent through the channels.
– Permission encompasses all permissions that may be assigned to the data, including 0

(passing without any check), 1 (calling the authentication verification algorithm), and 2
(checking the permission level to determine whether the data needs to ask for dynamic
authentication from the user). Note that this Permission category is designed to cater for
the permission granted mechanism in the sandbox approach we proposed in this paper.

– MsgFlag incorporates four flags used to label the type of message.
– AppPackage contains all names of App packages.
– ClassName depicts all class names of activities.
– Action contains all actions that are used in the system.
– Category embraces all categories that are used in the system.

Next, we define the following messages based on the above definitions:

MSGintent represents the set of messages carrying intents, where flags indicate the direc-
tion of intent, and similarly MSGpermission shows the set of messages containing permis-
sions. Msg1 indicates that it is sent from the APPs to the Activities. Msg2 refers to com-
munications between Activities. Msg3 is used to label the intents from the Activities to
the AS, which is exactly opposite to Msg4. MSGcmd represents the set of messages from
the User. MSGret represents the set of returned messages. MSGdata represents the set of

MSG = MSGintent ∪MSGcmd ∪MSGret ∪MSGdata ∪MSGreg ∪MSGunreg

MSGintent = {f .intent ∣ f ∈ MsgFlag, intent ∈ Intent}

MSGpermission = {f .permission ∣ f ∈ MsgFlag, permission ∈ Permission}

MSGcmd = {cmd ∣ cmd ∈ UserCMD}

MSGret = {ret ∣ ret ∈ Ret}

MSGdata = {data ∣ data ∈ Data}

MSGreg = {a.b.c.d ∣ a ∈ AppPackage, b ∈ ClassName, c ∈ Action, d ∈ Category}

MSGunreg = {a ∣ a ∈ AppPackage}

1184 Software Quality Journal (2024) 32:1175–1202

1 3

messages that transmit data. MSGreg and MSGunreg are the sets of registration and dereg-
istration requests sent by the APPs to the AS, respectively. MSG includes all messages
defined above.

Finally, we define the channels to simulate communications between processes. These
channels can be divided into two categories, COM_PATH and INTRUDER_PATH, which
are defined as follows and their homologous explanations are shown in Table 2:

– COM_PATH contains the normal channels without the intruder, including User_APP
i , APP i _AS , APP i_Ac j , Acij_AS, ACij_Acki , Sec_User_AS, and Sec_APP i_User.
Here, note that in the channel set COM_PATH, Sec_User_AS and Sec_APP i_User are
assumed to be the secure channels, i.e., these two channels cannot be intruderd or inter-
cepted.

– INTRUDER_PATH contains the fake channel Fake_AI used when an intruder is present.

3.2 Overall modeling

We first separate the intruder from our system and establish a model named System_total ,
which is composed of the User, the APPs, the Activities, and the Android System (AS).
In this paper, the APPs and the AS specifically refer to the processes in the system, which
have different meanings from Apps and Android System.

The process User uses the channel User_APP i to send commands to the process APPs,
and receives messages from them through the same channel. The APPs sends registration
and deregistration requests to the process AS, and receives success or fail messages from
the AS by the channel APP i_AS. It sends the start intent to the process Activities to start it,
and receives data from them via the channel APP i_Ac j . Usually, activities in the process
Activities communicate with each other using the channel Acij_Acki when they are in the
same App. However, if they are in different Apps, they send intents to the AS, and receive
them from the AS by the channel Acij_AS. The AS can process registration and deregistra-
tion requests, and work as a bridge for communication between different Apps. The com-
munication model of System_total is shown in the square frame of Fig. 7.

Table 2 The channels and its relevant explanations adopted in this paper

Channels Explanations

User_APPi the channel between the user and the applications (apps) with the number i
APPi_AS the channel between the applications with the number i and the android system AS
APPi_Acj the channel between the applications with the number i and the activity with the number j
Acij_AS the channel between the activity with the sequence ij and the android system AS
ACij_Acki the channel between the activity with the sequence ij from the first application and the

activity with the sequence ki
Sec_User_AS the secure channel between the user and the android system AS
Sec_APPi_User the secure channel between the application (app) with the number i and the user
Fake_AI the intruder channel between the Android system and the intruder

1185Software Quality Journal (2024) 32:1175–1202

1 3

When an intruder invades the system, it first forges fake registration information and
sends it to the AS via the channel Fake_AI. Then, on the one hand, it sends fake intents
to the AS through this channel to send spam messages to user’s Apps. On the other
hand, it can also receive intents from the AS, which should have been sent to the other
Apps, so that it can steal user’s privacy information.

Thus, System_total executing parallel to the process Intruder constructs the whole
System. System_I indicates the whole system with the intruder. The communication
model of the whole System is presented in Fig. 7.

In summary, we get the overall model.

System_total = df User[|COM_PATH|]APPs[|COM_PATH|]

Activities[|COM_PATH|]AS

System_I = df System_total[|INTRUDER_PATH|]Intruder

Fig. 7 The communication
model of the whole system

Activities

Android System

Intruder

APPs

User

System_total

_ _

_

_ _

_

1186 Software Quality Journal (2024) 32:1175–1202

1 3

3.3 User modeling

Since the user can either send commands to the Apps or receive messages from it, we
define three processes named User_reg , User_IntraApp , and User_InterApp to show the
registration, communications within applications, and communications among applica-
tions respectively. These subprocesses are defined as below.

The above User_reg represents a process where a user concurrently registers with two dif-
ferent applications, User_APP1 and User_APP2 , for installing permissions. In the first part,
the user interacts with channel User_APP1 by sending a message to request permission instal-
lation (install.permission1), receives a response message (msg41), and then returns to the reg-
istration process. Simultaneously, in the second part, the user follows a similar process with
User_APP2 , continuing the registration process with both applications in parallel. For brevity,
we omit explanations for User_IntraApp and User_InterApp as they are similar.

3.4 APP modeling

The APPs process involves multiple Apps running in parallel, with each App exhibiting five
states, i.e., “initial", “installing", “installed", “running", and “uninsalling", during its operation
(as illustrated in Fig. 8). When an App is not installed, it can receive the user’s installation
command and send a registration request to the AS. Subsequently, it transitions to the next
state, referred to as “installing". During the “installing" state, the App can become the state

User_reg = User_APP1!install.permission1 → User_APP1?msg41 → User_reg

□User_APP2!install.permission2 → User_APP2?msg42 → User_reg

User_IntraApp = User_APP1!start.permission1 → User_APP1?msg411{

retValue = msg411} → User_IntraApp

□User_APP2!start.permission2 → User_APP2?msg422{

retValue = msg422} → User_IntraApp

User_InterApp = Sec_APP1_User?app_11.token_app11 →

if (decide_to_send_token == true){

Sec_User_AS!app_11.token_app11 →

User_APP1!start.permission1 →

User_APP1?data{retValue = data} → User_InterApp}

else{

Sec_User_AS!app_11.null →

User_APP1!start.permission1 →

User_APP1?data{retValue = data} → User_InterApp}

Fig. 8 The State Diagram of the
App initial installing installed

runninguninstalling

1187Software Quality Journal (2024) 32:1175–1202

1 3

“installed" if it receives a success message, which it then forwards to the User. Otherwise, it
returns to its initial state “initial" after sending a failure message. Once installed, the user can
start or uninstall the App at any time by issuing the corresponding instructions. If the user
starts the App, it sends a start intent to the main activity and transitions to the subsequent state
named “running". In the “running" state, the App receives at least one message from its activi-
ties before eventually receiving a terminate command, which returns it to the “installed" state.
If the user opts to uninstall the App, it sends a deregistration request to the AS, transitioning
to the “uninstalling" state. Here, the App can revert to its initial state upon receiving a success
message, which it then communicates to the user. Otherwise, it returns to the “installed" state
after conveying a failure message.

According to the above description, the three relevant subprocesses APPs_reg ,
APPs_IntraApp and APPs_InterApp are defined as below:

APPs_reg = User_APP1?cmd11.p1 → if (cmd11 == install){

APP1_AS!install.permission1 → APP1_AS?ret41 → if (ret41 == success){

User_APP1!success → APPs_reg}else{fail1 → APPs_reg}

□User_APP2?cmd12.p2 → if (cmd12 == install){

APP2_AS!install.permission2 → APP2_AS?ret42 →

if (ret42 == success){ User_APP2!success → APPs_reg}

else{fail1 → APPs_reg} }

APPs_IntraApp = User_APP1?cmd11.p1 → if (cmd11 == start){

{intent_in_11 = newIntent(0, 0, startAc, 0, 5, 4, 0);} →

APP1_Ac1!Msg1.intent_in_11 → APP1_Ac1?data →

User_APP1!data → APPsIntraApp

□{intent_in_12 = newIntent(0, 0, startAc, 0, 5, 4, 0);} →

APP1_Ac2!Msg1.intent_in_12 →

APP1_Ac2?data → User_APP1!data → APPs_IntraApp}

□User_APP2?cmd12.p2 → if (cmd12 == start){

{intent_in_21 = newIntent(0, 0, startAc, 0, 5, 4, 0);} →

APP2_Ac1!Msg1.intent_in_21 → APP2_Ac1?data →

User_APP2!data → APPsIntraApp

□{intent_in_22 = newIntent(0, 0, startAc, 0, 5, 4, 0);} →

APP2_Ac2!Msg1.intent_in_22 → APP2_Ac2?data →

User_APP2!data → APPsIntraApp}

APPs_InterApp = {token_app1 = intent_from_1_to_2.GenerateRandomNumber()} →

Sec_APP1_User!app_1.token_app1 → User_APP1?cmd11.p1 →

if (cmd11 == start){

APP1_Ac1!Msg1.intent_from_1_to_2.p1 →

if (intent_from_1_to_2.getPermissionCategory() == 1){

APP1_Ac1?data →

{hash_value = intent_from_1_to_2.ComputeHash(data + tokenapp1);}

→ User_APP1!hash_value → APPs_InterApp}

else{APP1_Ac1?data → User_APP1!data → APPs_InterApp} }

1188 Software Quality Journal (2024) 32:1175–1202

1 3

Here, we take APPs_IntraApp process as an example. It delineates the communication
flow between two user applications (User_APP1 and User_APP2) and their respective
internal activities (APP1 and APP2). Specifically, User_APP1 initiates a command cmd11
to APP1, generating an intent intent_in_11 if cmd11 is start, which is then relayed to
APP1_Ac1 . Then, the data from APP1_Ac1 is passed back to User_APP1 , before the pro-
cess loops back to APPs_IntraApp . Alternatively, if cmd11 is not start, a similar sequence
of events follows for another command. Similarly, User_APP2 triggers a command cmd12
to APP2, creating an intent intent_in_21 if cmd12 is start, and transmitting it to APP2_Ac1 .
Then, the data received from APP2_Ac1 is conveyed back to User_APP2 , before returning
to APPs_IntraApp . Otherwise, if cmd12 is not start, a comparable sequence unfolds for
another command. The descriptions of the processes APPs_reg and APPs_InterApp mirror
the structure outlined in APPs_IntraApp . For brevity, we skip the detailed elaboration.

3.5 Activity modeling

Similar to the process APPs, the process Activities is composed of multiple activities run-
ning in parallel. For convenience, we omit some functions of the activity and simplify its
life cycle, in which situation an activity has three states. When an activity is not started,
it can receive a start intent from three kinds of sources. An activity can also be started by
another activity in the same App. In the last case, the IAC mechanism in Android System
helps an activity be started by activities in different Apps.

Any of the above three situations will bring the activity to the second state, in which it
reacts depending on the command in the start intent. If the command is to start an activity
in the same App, it sends a start intent to the target activity and waits for the returned data
from it by the symmetric channel. Similarly, if the command is to start an activity in dif-
ferent Apps, it sends a start intent to the AS and wait for the returned data. In these situa-
tions, it goes to the third state, where it processes the returned data and sends it back to the
source that started it. Another possible instruction in the intent is to process data.

Since there are three kinds of sources, we specifically define a process named Ret, in
which it sends the message to the APPs if the source is the App. It sends an intent to the
source activity when it was started by an activity in the same App. If the source is the AS, it
sends an intent back to it. Then, the activity returns to the initial state after it sends the mes-
sage back to the source.

1189Software Quality Journal (2024) 32:1175–1202

1 3

The subprocesses Activities_IntraApp and Activities_InterApp are modeled as below.

The Activities_InterApp process governs the interactions between APP1’s activity Ac1 and
external processes based on received intents. Initially, it listens for Msg1 intents from APP1_Ac1 ,
and extracts permission information. If the intent’s command is to start an activity startAc and
its target matches specific criteria (22 or 21), it triggers a call to a designated process, followed
by the creation of a new intent (intent_from_1_to_2). This new intent is then transmitted to
Ac11_AS , where it is processed and the resulting message msg is relayed back to APP1_Ac1 .
Alternatively, if the command is to process data processData, it directly calls the designated pro-
cess, sends the intent to Ac11_AS for processing, and proceeds with the loop. If the conditions
aren’t met, control is passed to Activities_IntraApp.

Activities_InterApp = APP1_Ac1?Msg1.intent.permission →

if (intent.getCmd() == startAc){

if (intent.getTarget() == 22 ∥ intent.getTarget() == 21){

{call(process, intent.getData(), intent.getDes());

intent_from_1_to_2 = newIntent(intent.getSrc(),

intent.getTarget(), processData, 0, intent.getData(),

intent.getRequestLevel(), intent.getPermissionCategory());} →

Ac11_AS!intent_from_1_to_2.permission → Ac11_AS?msg →

APP1_Ac1!msgTemp → Activities_InterApp}

else{Activities_IntraApp} }

else if (intent.getCmd() == processData){

{call(process, intent.getData(), intent.getDes());} →

Ac11_AS!intent_from_1_to_2.permission →

Ac11_AS?msg → APP1_Ac1!msgTemp → Activities_InterApp}

1190 Software Quality Journal (2024) 32:1175–1202

1 3

Activities_IntraApp = APP1_Ac1?Msg1.intent →

if (intent.getCmd() == startAc){if (intent.getTarget() == 0){

{intent.setCmd(processData);

call(process, intent.getData(), intent.getDes());

intent.setCmd(retData);} →

APP1_Ac1!msgTemp → Activities_IntraApp}

else{Activities_InterApp}}

else if (intent.getCmd() == processData){{intent.setCmd(processData);

call(process, intent.getData(), intent.getDes());

intent.setCmd(retData);} →

APP1_Ac1!msgTemp → Activities_IntraApp}

□APP1_Ac2?Msg1.intent → if (intent.getCmd() == startAc){

if (intent.getTarget() == 0){{intent.setCmd(processData);

call(process, intent.getData(), intent.getDes());

intent.setCmd(retData);} →

APP1_Ac2!msgTemp → Activities_IntraApp}

else{Activities_InterApp} }

else if (intent.getCmd() == processData){{intent.setCmd(processData);

call(process, intent.getData(), intent.getDes());

intent.setCmd(retData);} →

APP1_Ac1!msgTemp → Activities_IntraApp}

□APP2_Ac1?Msg1.intent → if (intent.getCmd() == startAc){

if (intent.getTarget() == 0){{intent.setCmd(processData);

call(process, intent.getData(), intent.getDes());

intent.setCmd(retData);} →

APP2_Ac1!msgTemp → Activities_IntraApp}

else{Activities_InterApp}}

else if (intent.getCmd() == processData){{intent.setCmd(processData);

call(process, intent.getData(), intent.getDes());

intent.setCmd(retData);} →

APP1_Ac1!msgTemp → Activities_IntraApp}

□APP2_Ac2?Msg1.intent → if (intent.getCmd() == startAc){

if (intent.getTarget() == 0){ {intent.setCmd(processData);

call(process, intent.getData(), intent.getDes());

intent.setCmd(retData);} →

APP2_Ac2!msgTemp → Activities_IntraApp}

else{Activities_InterApp} }

else if (intent.getCmd() == processData){{intent.setCmd(processData);

call(process, intent.getData(), intent.getDes());intent.setCmd(retData);} → APP1_Ac1!msgTemp → Activities_IntraApp}

1191Software Quality Journal (2024) 32:1175–1202

1 3

The Activities_IntraApp process oversees interactions within APP1‘s activity Ac1, trig-
gered by received Msg1 intents. Upon receiving an intent, it checks if the command is to
start an activity startAc. If so, and the target is 0, it modifies the intent’s command to pro-
cessData, invokes a designated process, and then changes the command to retData. Sub-
sequently, it forwards the modified message msgTemp back to APP1_Ac1 . If the command
is not to start an activity, control shifts to Activities_InterApp . Similarly, if the command
is to process data processData, it follows a comparable sequence of modifying the intent,
calling the designated process, changing the command to retData, and returning the mes-
sage to APP1_Ac1 , continuing the loop within Activities_IntraApp . Due to the uncertainty
stemming from the four parts comprising the Activities_IntraApp process, we utilize the
first part as an example for explanation, and omit the rest.

3.6 Android system modeling

Android System is the foundation and guarantee of the IAC mechanism. On one hand, it
can process registration and deregistration requests to maintain the register table. On the
other hand, it sends the intent to the right place by comparing the information in the intent
with the register table.

We define two subprocesses to simulate the function of the AS, in other words, the AS
is a process where Register, Unregister, and Matcher run in parallel. Register receives reg-
istration requests from Apps, if the information is correct and not repetitive, it records them
in the register table and return a success message to the App, otherwise, it will be a fail
message and the register table won’t update either.

Unregister works like Register, except it receives deregistration requests. Matcher
receives intents from activities, and then sends them to the right place according to the
register table. These processes share one register table, and the subprocesses AS_reg and
AS_InterApp are defined as below.

1192 Software Quality Journal (2024) 32:1175–1202

1 3

AS_reg = APP1_AS?msg21.p1 → APP1_AS!success → AS_reg

□APP2_AS?msg22.p2 → APP2_AS!success → AS_reg

AS_InterApp = Sec_User_AS?app_111.token_app111 →

{intent_from_1_to_2.StoreToken(app_111, token_app111);} →

Ac11_AS?intent.permission →

(if (intent_from_1_to_2.getPermissionCategory() == 0){

{call(process, intent.getData(), intent.getDes());} →

Ac11_AS!msgTemp → AS_InterApp}

else if (intent_from_1_to_2.getPermissionCategory() == 1){

{b = intent.VerifyIdentity(intent.getData() + token_app111, hash_value)} →

{call(authentication, b);} → if (isValid == true){

{call(process, intent.getData(), intent.getDes());} →

Ac11_AS!msgTemp → AS_InterApp}

else{{msgTemp = 0} → Ac11_AS!msgTemp → AS_InterApp}

}else{if (intent.getRequestLevel() − 23 < 0){

if ((intent.getRequestLevel() == 1&&permission.getL1() == 1) ∥

(intent.getRequestLevel() == 4&&permission.getL4() == 1) ∥

(intent.getRequestLevel() == 17&&permission.getL17() == 1)){

{call(process, intent.getData(), intent.getDes());} →

Ac11_AS!msgTemp → ASInterApp

}else{{msgTemp = 0} → Ac11_AS!msgTemp → AS_InterApp}

}else{if ((intent.getRequestLevel() == 23&&permission.getL23() == 1) ∥

(intent.getRequestLevel() == 27&&permission.getL27() == 1) ∥

(intent.getRequestLevel() == 28&&permission.getL28() == 1) ∥

(intent.getRequestLevel() == 29&&permission.getL29() == 1)){

{call(process, intent.getData(), intent.getDes());} →

Ac11_AS!msgTemp → AS_InterApp

}else{{grant = user.getGrant();} → if (grant == true){

{call(process, intent.getData(), intent.getDes());} →

Ac11_AS!msgTemp → ASInterApp

}else{{msgTemp = 0} → Ac11_AS!msgTemp → ASInterApp}}}})

1193Software Quality Journal (2024) 32:1175–1202

1 3

Here, the AS_InterApp process orchestrates interactions involving the exchange
of tokens and intents between Sec_User_AS and Ac11_AS . Initially, it receives
app_111.token_app111 from Sec_User_AS , which is then used to store a token StoreToken
for app_111 . Subsequently, it receives an intent’s permission information from Ac11_AS .
Depending on the permission category, different actions are taken: if it is category 0, a
process is called to handle the intent’s data, otherwise, when it is category 1, an identity
verification is performed before processing the intent’s data. In this case, if the request
level of the intent is less than 23, additional checks are made based on different permission
levels. For request level 23 or higher, further checks are conducted. If none of the condi-
tions are satisfied, a grant is verified from the user, allowing the subsequent processing of
the intent’s data. If the grant is not provided, the process halts.

3.7 Intruder modeling

An intruder disguises itself as an ordinary App and interact with the AS to achieve its
purpose.

Initially, it falsifies registration information and transmits it to the AS, whereupon the
AS logs this fabricated data in the registration table. The intruders have no reason to unin-
stall themselves, therefore, there is no channel to send deregistration requests.

On one hand, when a normal App sends intent with data to another App, the intent is
sent to the AS first, however, the fake information in the register table may lead it to the
wrong destination through the channel Fake_AI. That’s why intruders can get user’s pri-
vacy information through the AS. On the other hand, it proactively sends intents to the AS
whose destinations are activities in the user’s Apps. In this situation, the user’s App may
be started by the AS incorrectly if the destination matches exactly, which means it is mali-
ciously attacked.

The process Intruder is defined as follows, meanwhile, the AS is updated to
AS_InterApp_I.

1194 Software Quality Journal (2024) 32:1175–1202

1 3

Here, we explain the AS_InterApp_I process as an example. Initially, it inherits the
functionalities of AS_InterApp , establishing token storage and permission handling
between Sec_User_AS and Ac11_AS . Additionally, it adopts the channel Fake_AI to for-
ward received intents for further processing. Depending on the permission category, it
either initiates data processing or conducts an identity verification process before proceed-
ing. In the latter scenario, it includes conditional checks based on request levels and per-
mission levels, ensuring appropriate handling of intent data. Ultimately, it maintains a con-
tinuous loop of intent processing and communication with Ac11_AS , iterating through the
outlined decision pathways.

Intruder = Fake_AI?intent.permission →

fakeI{intentTemp = newIntent(11, 12, startAc, 22, 6, 4, 0)} →

Fake_AI!intentTemp.permission → Intruder

AS_InterApp_I = AS_InterApp()

□Sec_User_AS?app_111.token_app111 →

{intent_from_1_to_2.StoreToken(app_111, token_app111);} →

Ac11_AS?intent.permission → Fake_AI!intent.permission →

Fake_AI?intent.permission →

if (intent_from_1_to_2.getPermissionCategory() == 0){{call(process, intent.getData(), intent.getDes());} →

Ac11_AS!msgTemp → AS_InterApp_I}

elseif (intent_from_1_to_2.getPermissionCategory() == 1)

{{b = intent.VerifyIdentity(intent.getData() + tokenapp111, hashvalue)} →

{call(authentication, b);} → if (isValid == true){{call(process, intent.getData(), intent.getDes());} →

Ac11_AS!msgTemp → AS_InterApp_I}

else{{msgTemp = 0} → Ac11_AS!msgTemp → AS_InterAppI}

}else{if (intent.getRequestLevel() − 23 < 0){if ((intent.getRequestLevel() == 1&&permission.getL1() == 1) ∥

(intent.getRequestLevel() == 4&&permission.getL4() == 1) ∥

(intent.getRequestLevel() == 17&&permission.getL17() == 1)){{call(process, intent.getData(), intent.getDes());} →

Ac11_AS!msgTemp → ASInterAppI}else{{msgTemp = 0} → Ac11_AS!msgTempAS_InterApp_I}

}else{if ((intent.getRequestLevel() == 23&&permission.getL23() == 1) ∥

(intent.getRequestLevel() == 27&&permission.getL27() == 1) ∥

(intent.getRequestLevel() == 28&&permission.getL28() == 1) ∥

(intent.getRequestLevel() == 29&&permission.getL29() == 1)){{call(process, intent.getData(), intent.getDes());} →

Ac11_AS!msgTemp → ASInterAppI

}else{{grant = user.getGrant();} → if (grant == true){{call(process, intent.getData(), intent.getDes());} →

Ac11_AS!msgTemp → AS_InterApp_I

}else{{msgTemp = 0} → Ac11_AS!msgTemp → AS_InterApp_I}}}}

1195Software Quality Journal (2024) 32:1175–1202

1 3

4 Verification

In this section, we implement the model using the PAT model checker. Subsequently, we aim
to verify several fundamental yet crucial properties of the model established in the last section.

4.1 Implementation

We need to do some preparatory work before establishing the model in PAT.
First of all, we define the number of Apps in the system and the activities in each App.

We set the number of Apps to 2 (constant N), considering the possible state explosion.
Similarly, the max number of activities in each App is 2 (constant MM), and each App has
exactly M[i] activities, both of them are 2. In PAT, they are presented as follows:

Then, we list all enumerations introduced in Section 3. For brevity, we give one of the
statements as an example shown as below.

Next, some typical channels are defined as follows. Their buffer sizes are all set to zero,
which indicates that they are all synchronous communication channels. To prevent pro-
cess deadlock caused by resource competition on channels, we use arrays to denote mul-
tiple channels. For example, there are MM activities in each App, so we need MM ∗ MM
Acij_Acki channels for communications in a single App, in other words, N Apps need
N ∗ MM ∗ MM channels.

Finally, to make the program run normally and record some states in the program, we
define the variables userMsg, intruderMsg, msgTemp, and intentTemp. The definition of
intentTemp is as follows, where the Intent is a class defined by C#, whose parameters rep-
resent src, des, cmd, target, data, requestlevel, and permissionCategory, respectively.

We introduce the C# extension in PAT to describe the intent-matching mechanism on a
lower abstraction level, so as to improve the precision of our model. For instance, the func-
tion GenerateRandomNumber() is designed to produce the random number as the token,
the function ComputeHash(stringinput) is adopted to compute the hash value by classic
SHA algorithm, and the function VerifyIdentity is used to verify whether the original data
is the same as the hash data computed by the function ComputeHash. Part of the code is
demonstrated below.

#define N 2;

#define MM 2;

var M[N] = [2, 2];

enum{startAc, processData, retData};

channel User_Appi[N] 0;

channel APPi_AS[N ∗ MM] 0;

channel Acij_Acki[N ∗ MM ∗ MM] 0;

channel Fake_AI 0;

var < Intent > intentTemp = new Intent(0, 0, startAc, 0, 5, 4, 0);

1196 Software Quality Journal (2024) 32:1175–1202

1 3

To represent the procedure of intent transmission and data processing more intuitively,
we create a special rule to process the data in activities. First, we give each Activityi,j a
unique ID, which is i multiplied by MM, and then add j. Additionally, the Intruder also
gets an ID 4, since the max ID of normal activities is 3 in our model. Second, we store
our temporary data in the intent, and when an activity is processing the intent, it adds its
activity ID to the end of the data. For example, if an intent carrying the temporary data 5 is
processed by Activity1,1 whose ID is 3, the return intent carries the new data 53.

Here we present two typical situations, Intra-App Communication and IAC disturbed by
the Intruder.

In Table 3, an intent carrying user’s privacy data which indicates 5 is produced in state
a. It is sent to Ac0,0 and Ac0,1 successively. In state c, the intent is processed by Ac0,1 whose
ID is 1, therefore, the new data in the intent becomes 51. When the intent is returned to
Ac0,0 , the returned data is processed again and become 510 in state d since the activity’s
ID is 0. In the last state, the intent is brought back to the User, and the User finally gets
userMsg which is 510.

In Table 4, the first two steps are similar to the Intra-App Communication situation. In
state c, the intent is sent to the AS. After that, the intent is expected to be sent to Ac1,1 and
get new data 53 since the activity ID is 3. However, when the Intruder disturbs the commu-
nication, the intent is sent to the Intruder incorrectly. Therefore, in state d, the actual data is
54. Although the intent is sent back in state e to state g, the actual data is 540 at last rather
than 530. This simulation shows how the Intruder obtains and tampers with our data.

public static int GenerateRandomNumber()

{

Random random = new Random();

return random.Next(1, 1000);

}

public static string ComputeHash(stringinput)

{

using (SHA256 sha256 = SHA256.Create())

{

byte[] bytes = Encoding.UTF8.GetBytes(input);

byte[] hashBytes = sha256.ComputeHash(bytes);

return BitConverter.ToString(hashBytes).Replace(ε − ε, εε).ToLower();

}

}

public static bool VerifyIdentity(string originalData, string hashedData)

{

string computedHash = ComputeHash(originalData);

return computedHash.Equals(hashedData, StringComparison.OrdinalIgnoreCase);

}

1197Software Quality Journal (2024) 32:1175–1202

1 3

Table 3 Simulation of Intra-App Communication

User APP0 AS APP1 Intruder
User

Msg

Intent

Data

Ac0，0 Ac0，1 Ac1，0 Ac1，1

ID 0 1 2 3 4

a 0 5

b 0 5

c 0 51

d 0 510

e 510 510

Privacy Data = 5 ：Intent Place

Table 4 Simulation of IAC (Disturbed by the Intruder)

User APP0 AS APP1
Intruder

Except

Data

Actual

Data

Ac0，0 Ac0，1 Ac1，0 Ac1，1

ID 0 1 2 3 4

a X 5 5

b X 5 5

c X 5 5

d X 53 54

e X 53 54

f X 530 540

g X 530 540

Privacy Data = 5 X：Expected Place ：Actual Place
Expected UserMsg = 530 Actual UserMsg = 540

1198 Software Quality Journal (2024) 32:1175–1202

1 3

4.2 Properties verification

Here, we give the several different processes about System as below.

4.2.1 Deadlock freedom

Initially, we assess the deadlock freedom of our model. Smooth communication between
processes can only ensue when the system avoids entering a deadlock state, enabling sub-
sequent property verifications. In PAT, this property can be easily confirmed with the fol-
lowing statement.

4.2.2 Divergence freedom

Subsequently, we examine the divergence freedom of our model. Divergence freedom sig-
nifies the flexibility and fault tolerance within a system, enabling individual components to
evolve independently without compromising the overall functionality, stability, or security
of the system. In PAT, this property can be readily confirmed with the following statement.

4.2.3 Data reachability

The ICC mechanism involves two types of communication, depending on whether the
components are within the same app or not.

To simulate Intra-App Communication, we initiate Activity1,0 in APP1 and have it invoke
Activity1,1 with IDs 2 and 3, respectively. With our initial data defined as 5 and follow-
ing the aforementioned data processing rule, the user precisely receives the message 53.

System_reg = User_reg ∥ APPs_reg ∥ AS_reg

System_IntraApp = User_IntraApp ∥ APPs_IntraApp ∥ Activities_IntraApp

System_InterApp = User_InterApp ∥ APPs_InterApp

∥ Activities_InterApp ∥ AS_InterApp

System_total = System_reg□System_InterApp□System_IntraApp

System_InterApp_I = User_InterApp ∥ APPs_InterApp ∥

Activities_InterApp ∥ AS_InterApp_I

System_I = System_reg□System_InterApp_I□System_IntraApp

#assert System_total() deadlockfree;

#assert System_I() deadlockfree;

#assert System_total() divergencefree;

#assert System_I() divergencefree;

1199Software Quality Journal (2024) 32:1175–1202

1 3

Consequently, we employ the following statements to validate reachability in the case of
Intra-App Communication.

Similarly, to simulate Inter-App Communication, we initiate Activity0,0 in APP0 and
have it commence Activity1,1 with IDs 0 and 3, respectively. In this scenario, the user
receives the message 53. The ensuing statements serve to confirm the reachability in the
case of Inter-App Communication.

4.2.4 Data security

If an intruder is able to send an intent to our activity and obtain our activity ID, it signi-
fies that the data in our normal Apps is not secure. In our model, the intruder sends an
intent with the initial data set to 6, and its activity ID is 4. The intruder processes the data
using the same rule we defined earlier, suggesting that the intruder may receive the mes-
sage 63 in the event of data leakage. The following statements are employed to validate
data security.

4.3 Verification results

In accordance with our model’s implementation, the verification of these above proper-
ties is confirmed through Property Analysis Toolkit 3.5.1 (PAT), which is installed on a
Windows x64 PC with an Intel i7 CPU and 16GB memory. The corresponding verification
outcomes are presented in Table 5.

#define Data_Reachability_Intra_App

(retValue == 50 ∥ retValue == 51 ∥ retValue == 52 ∥ retValue == 53);

#assert System_total reaches Data_Reachability_Intra_App;

#define Data_Reachability_Inter_App

(retValue == 50 ∥ retValue == 51 ∥ retValue == 52 ∥ retValue == 53);

#assert System_total reaches Data_Reachability_Inter_App;

#define Data_Leakage

(intruderMsg == 60 ∥ intruderMsg == 61 ∥ intruderMsg == 62 ∥ intruderMsg == 63);

#assert System_I ⊧ []! Data_Leakage;

Table 5 Results of verification in PAT

Deadlock
Freedom

Divergence
Freedom

Data Reachability Data Leakage

Intra-App Inter-App Intra-App Inter-App

Result VALID VALID VALID VALID VALID VALID
Time 0.0048485s 0.0022826s 0.0009878s 0.0016384s 0.0133691s 0.0018275s
Transitions 184 144 14 14 246 247

1200 Software Quality Journal (2024) 32:1175–1202

1 3

Fortunately, all four properties have been substantiated as valid, effectively mitigat-
ing concerns related to data leakage and security issues identified in our earlier research.
The verification results not only attest to the robustness of our proposed permission con-
trol but also highlight the efficacy of integrating the sandbox approach with the original
ICC mechanism.

Actually, to the best of our knowledge, in the current Android system, security measures
such as application permission control and sandbox isolation are already in place. How-
ever, they often fall short of fully preventing attacks from malicious applications due to
vulnerabilities such as over-permission granting or sandbox escapes in practice. The ICC
mechanism integrated with sandbox approach proposed in this article primarily introduces
an algebraic approach to enhance the overall design security, thereby theoretically ensuring
data security.

5 Conclusion

In summary, this paper extended our previous research by specifically targeting data leak-
age and privilege escalation within the ICC mechanism. We primarily focused on theoreti-
cal analysis, introducing sandboxing and permission controls to effectively address these
challenges. Verification results from CSP validate the efficacy of our approach.

In our future work, we will simulate and refine the extended ICC mechanism to enhance
secure information sharing. Realistic use cases will showcase how our new sandbox mech-
anism effectively prevents or mitigates security threats.

Author contributions Jiaqi Yin and Sini Chen were responsible for experiment implementation and paper
writing, Yixiao Lv primarily provided guidance for conducting experiments, and Huibiao Zhu was in charge
of guiding and polishing papers.

Funding This work was partially supported by the National Natural Science Foundation of China (No. 62032024),
the “Digital Silk Road” Shanghai International Joint Lab of Trustworthy Intelligent Software (No. 22510750100),
Shanghai Trusted Industry Internet Software Collaborative Innovation Center, and China Basic Research Programs
of Taicang (No. TC2022JC14).

Data availability No datasets were generated or analysed during the current study.

Declarations

Competing interest The authors declare no competing interest.

References

Almomani, I. M., & Al Khayer, A. (2020). A comprehensive analysis of the android permissions system.
IEEE access, 8, 216671–216688.

Au, K. W. Y., Zhou, Y. F., Huang, Z., & Lie, D. (2012). Pscout: Analyzing the android permission specification.
In Proceedings of the 2012 ACM conference on Computer and communications security (pp. 217–228).

Bhandari, S., Jaballah, W. B., Jain, V., Laxmi, V., Zemmari, A., Gaur, M. S., Mosbah, M., & Conti, M. (2017).
Android inter-app communication threats and detection techniques. Computers & Security, 70, 392–421.

Biswas, S., Sohel, M., Sajal, M. M., Afrin, T., Bhuiyan, T., & Hassan, M. M. (2018). A study on remote
code execution vulnerability in web applications. In International Conference on Cyber Security and
Computer Science (ICONCS 2018) (pp. 50–57).

1201Software Quality Journal (2024) 32:1175–1202

1 3

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A. R., & Shastry, B. (2012). Towards taming
privilege-escalation attacks on android. In NDSS, 17, 19.

Chin, E., Felt, A. P., Greenwood, K., Wagner, D. (2011). Analyzing inter-application communication in
android. In Proceedings of the 9th international conference on Mobile systems, applications, and ser-
vices (pp. 239–252).

da Costa, F. H., Medeiros, I., Menezes, T., da Silva, J. V., da Silva, I. L., Bonifácio, R., Narasimhan, K., & Ribeiro,
M. (2022). Exploring the use of static and dynamic analysis to improve the performance of the mining sand-
box approach for android malware identification. Journal of Systems and Software, 183, 111092.

Developers A. Developer guides: Intents and intent filters. https:// devel oper. andro id. com/ guide/ compo nents/
inten ts- filte rs. html. Accessed in 2023.

DiMarzio, J. F. (2008). Android™ A Programmer’s Guide.
Fang, Z., Han, W., & Li, Y. (2014). Permission based android security: Issues and countermeasures. Com-

puters & Security, 43, 205–218.
Gadient, P., Ghafari, M., Frischknecht, P., & Nierstrasz, O. (2019). Security code smells in android icc.

Empirical Software Engineering, 24(5), 3046–3076.
Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall.
Lowe, G., & Roscoe, B. (1997). Using csp to detect errors in the tmn protocol. IEEE Transactions on Soft-

ware Engineering, 23(10), 659–669. https:// doi. org/ 10. 1109/ 32. 637148
Lv, Y., Yin, J., Chen, S., & Zhu, H. (2023). Formalization and verification of the icc mechanism in android

system using csp. In 2023 IEEE 34th International Symposium on Software Reliability Engineering
Workshops (ISSREW) (pp. 89–95). IEEE.

Neuner, S., Vander Veen, V., Lindorfer, M., Huber, M., Merzdovnik, G., Mulazzani, M., & Weippl, E. (2014).
Enter sandbox: Android sandbox comparison. Preprint retrieved from http:// arxiv. org/ abs/ 1410. 7749

Samhi, J., Bartel, A., Bissyandé, T. F., & Klein, J. (2021). Raicc: Revealing atypical inter-component com-
munication in android apps. In IEEE/ACM 43rd International Conference on Software Engineering
(ICSE) (pp. 1398–1409). https:// doi. org/ 10. 1109/ ICSE4 3902. 2021. 00126

Sammler, M., Garg, D., Dreyer, D., & Litak, T. (2019). The high-level benefits of low-level sandboxing.
Proceedings of the ACM on Programming Languages, 4(POPL), 1–32.

Vasilescu, M., Gheorghe, L., & Tapus, N. (2014). Practical malware analysis based on sandboxing. In 2014
RoEduNet Conference 13th Edition: Networking in Education and Research Joint Event RENAM 8th
Conference (pp. 1–6). IEEE.

Xu, J., Yin, J., Zhu, H., & Xiao, L. (2021). Modeling and verifying producer-consumer communication in
kafka using CSP. 7th Conference on the Engineering of Computer Based Systems.

Zhou, X., Demetriou, S., He, D., Naveed, M., Pan, X., Wang, X., Gunter, C.A., & Nahrstedt, K. (2013)
Identity, location, disease and more: Inferring your secrets from android public resources. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communications security (pp. 1017–1028)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Jiaqi Yin is currently an assistant professor in School of Software, North-
western Polytechnical University. He received his Ph. D degree in soft-
ware engineering in East China Normal University in 2022. His research
interests include process algebra, program verification, edge computng
and trustworthy AI.

https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html
https://doi.org/10.1109/32.637148
http://arxiv.org/abs/1410.7749
https://doi.org/10.1109/ICSE43902.2021.00126

1202 Software Quality Journal (2024) 32:1175–1202

1 3

Sini Chen is currently a Ph.D student in Shanghai Key Laboratory of
Trustworthy Computing, East China Normal University, Shanghai. She
received her B.S. degree in software engineering in East China Normal
University in 2021. Her research interests include process algebra, pro-
gram semantics, object-oriented systems and type systems.

Yixio Lv is currently a software engineer for a semiconductor company.
He received his B.S. degree in software engineering in East China Nor-
mal University in 2024. His research interests include process algebra
and Android systems.

Huibiao Zhu is currently a professor in East China Normal University,
Shanghai. He earned his Ph.D. degree in formal methods from London
South Bank University, London, in 2005.During these years, he has
studied various semantics and their linking theories for Verilog,
SystemC, web services and probability system. He was the Chinese PI of
the Sino-Danish Basic Research Center IDEA4CPS.

	Enhancement and formal verification of the ICC mechanism with a sandbox approach in android system
	Abstract
	1 Introduction
	2 Background
	2.1 ICC and IAC mechanism
	2.2 Permission granting mechanism
	2.3 CSP and PAT
	2.4 Sandbox approaches

	3 Modeling
	3.1 Sets, messages, and channels
	3.2 Overall modeling
	3.3 User modeling
	3.4 APP modeling
	3.5 Activity modeling
	3.6 Android system modeling
	3.7 Intruder modeling

	4 Verification
	4.1 Implementation
	4.2 Properties verification
	4.2.1 Deadlock freedom
	4.2.2 Divergence freedom
	4.2.3 Data reachability
	4.2.4 Data security

	4.3 Verification results

	5 Conclusion
	References

