
Vol.:(0123456789)

Software Quality Journal (2024) 32:1137–1174
https://doi.org/10.1007/s11219-024-09682-4

1 3

RESEARCH

Unraveling the code: an in‑depth empirical study
on the impact of development practices in auxiliary
functions implementation

Otávio Lemos1 · Fábio Silveira1 · Fabiano Ferrari2 · Tiago Silva1 · Eduardo Guerra3 ·
Alessandro Garcia4

Accepted: 24 May 2024 / Published online: 25 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Auxiliary functions in software systems, often overlooked due to their perceived simplicity,
play a crucial role in overall system reliability. This study focuses on the effectiveness of
agile practices, specifically the pair programming and the test-first programming practices.
Despite the importance of these functions, there exists a dearth of empirical evidence on
the impact of agile practices on their development, raising questions about their potential
to enhance correctness without affecting time-to-market. This paper aims to bridge this
gap by comparing the application of agile practices with traditional approaches in the con-
text of auxiliary function development. We conducted six experiments involving 122 par-
ticipants (85 novices and 37 professionals) who used both traditional and agile methods to
develop six auxiliary functions across three different domains. Our analysis of 244 imple-
mentations suggests the potential benefits of agile practices in auxiliary function develop-
ment. Pair programming showed a tendency towards improved correctness, while test-first
programming did not significantly extend the total development time, particularly among
professionals. However, these findings should be interpreted cautiously as they do not con-
clusively establish that agile practices outperform traditional approaches universally. As
indicated by our results, the potential benefits of agile practices may vary depending on
factors such as the programmer’s experience level and the nature of the functions being
developed. Further research is needed to fully understand the contexts in which these prac-
tices can be most effectively applied and to address the potential limitations of our study.

Keywords Pair programming · Test-first programming · TDD · Experimental software
engineering · Agile

Otávio Lemos, Fábio Silveira, Fabiano Ferrari, Eduardo Guerra and Alessandro Garcia authors
contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-024-09682-4&domain=pdf

1138 Software Quality Journal (2024) 32:1137–1174

1 3

1 Introduction

In the context of software engineering, auxiliary functions play a vital role as support-
ive actions within a system or component, aiding in the execution of primary functions.
These auxiliary functions, typically comprising a relatively small number of lines of code,
serve to assist other functions in fulfilling their tasks efficiently and effectively (Lemos
et al., 2011; IEEE, 1990).

Since these functions are relatively simple and usually self-contained, they are suppos-
edly less critical with respect to the main development path of a project. Consequently,
they are often assigned to less experienced developers (Begel & Simon, 2008; Dagenais
et al., 2010). Nevertheless, these functions tend to be used by important modules of the
system, and their failures can easily propagate to critical components, thus affecting the
overall reliability of the application. Their considerable economic impact underscores the
significance of such failures.

In fact, a study estimated that software defects cost the U.S. economy $2.08 trillion in
2020 (Krasner, 2021). Even though catastrophic software errors are fortunately scarce now-
adays, the possibility of chaos remains. Inadequate testing is one of the most critical fac-
tors contributing to poor software quality. Throughout software development history, many
examples of failures originating from auxiliary functions caused significant problems. In
2010, Microsoft’s Zune Media player presented a bug that caused tens of thousands of
devices to malfunction for a full day. The fault was discovered in a 15-LOC fragment of an
auxiliary conversion function of the time (Weimer et al., 2010). Apple’s iPhone and Sony’s
PlayStation3 both had issues with two auxiliary functions: daylight savings time update
and leap year detection. In Apple’s case, many users missed appointments due to incorrect
alarm triggers (Spence, 2011). For Sony, hundreds of thousands of players could not use
their consoles for extended periods (Cellan-Jones, 2010).

Given the characteristics of auxiliary functions and their potential impact on system
reliability, an essential question arises: can the application of agile practices during their
implementation enhance system reliability without compromising time-to-market? Two
of the most popular agile practices are pair programming and test-first programming. The
concept of pair programming requires integrating two people on a single computer to pro-
duce the code written for a project; concurrently, it is suggested that test-first programming
is implemented with each new snippet of code being developed (Beck, 2002). However,
developers may wonder whether to adopt these practices in developing auxiliary functions.

Over the past years, numerous studies have examined the application of agile princi-
ples across different contexts, taking into account a multitude of variables (e.g., Canfora
et al., 2007; Abrahamsson et al., 2005; George & Williams, 2003; Arisholm et al., 2007;
Hannay et al., 2009; Fucci et al., 2017; Munir et al., 2014; Fucci et al., 2018; Sun
et al., 2016; Rafique & Mišić, 2013; L. Salge & Berente, 2016; Saltz & Shamshurin, 2017;
Romano et al., 2019; Tosun et al., 2021; Xu & Correia, 2023). However, none of them
have directly emphasized auxiliary functions. Some studies (Hannay et al., 2009; Demir &
Seferoglu, 2021) show that system complexity (and, by extrapolation, its functions’ com-
plexity), flow experience, and coding quality are ones of the not yet well-studied factors
that seem to impinge on the effectiveness of pair programming. This also holds for other
practices, such as test-first programming – i.e., developing test cases prior to and to drive
the implementation of functional code (Beck, 2002).

We focus on pair and test-first programming because these practices have become
popular with the agile movement, even though their benefits are not self-evident. In

1139Software Quality Journal (2024) 32:1137–1174

1 3

fact, both have been considered the flagship and most influential practices of eXtreme
Programming, but also the most controversial ones (Madeyski, 2010; Zhong & Li, 2020;
Zieris & Prechelt, 2021). Since they may require more effort when compared to their
traditional counterparts (solo and test-last programming), many do not advocate their
application (Meyer, 2014), or suggest they be used eventually (e.g., for the development
of complex parts of the system (Trikha, 2014)). At the same time, both practices
allegedly improve software quality: pair programming through its live code inspection
aspect (Williams & Kessler, 2002), and test-first programming by requiring the continuous
creation and execution of automated test cases (Nagappan et al., 2008). While most studies
that evaluate agile practices focus on a single technique, we believe the investigation of two
key practices – which are, at the same time, controversial – can provide a more general idea
about the application of the agile philosophy to software development (in our case, in the
specific scenario of auxiliary functions). The investigation of two practices with the same
experimental design can also support a more general comparison between them.

We conducted two independent experiments to obtain evidence regarding the application
of agile practices in developing auxiliary functions: i) comparing pair programming with solo
programming; and ii) comparing test-first programming with test-last programming. First, we
carried out these experiments with students. Then, we replicated these experiments, including
37 professionals from diverse backgrounds. Adding a professional sample to our study allows
us to better generalize our results to a broader population of developers.

To compare results more effectively, we conducted our experiments using the repeated
measures – or within-subject – design (Montgomery, 2006), where each subject applies
both target approaches at two different times. Thus, comparisons can be made within
– rather than across – subjects, and paired hypothesis tests can be applied, providing
stronger statistical evidence.

The experiment examined the reliability and effort factors of 85 novice programmers
who performed experiments involving six auxiliary functions within three domains: array
manipulation, basic mathematics, and string manipulation. We also intentionally selected
narrowly-scoped functionality to represent auxiliary functions conservatively. To under-
stand how the programmers’ experience would impact results in a more extensive analysis,
each experiment was replicated twice with professionals, resulting in a total of six experi-
ment instances (two with novices and four with professionals).

The subject’s implementations were systematically executed on developed test sets to
evaluate the implemented functions’ reliability. To determine the effort required to imple-
ment functions, we recorded the time required to execute tasks for each subject. Further,
we evaluated the size and coverage of the test sets generated in the test-first programming
experiments as an additional reliability measurement.

Upon analyzing the data collected from these methods, we obtained insights into how
the use of agile practices affected the development of auxiliary functions. According to
the results, in our context, adopting these practices during the development of auxiliary
functions might benefit developers. For instance, compared to solo programmers, approxi-
mately twice more pair programmers delivered correct implementations for novices and
professionals. Test-first programming, conversely, caused the implementation of more
extensive and higher coverage test sets (for novices and professionals), and more correct
implementations (for professionals). An interesting observation about pair programming is
that such a practice made programmers more cautious with subtle bugs, causing the imple-
mentation of more robust code compared to solo programming. However, it must be noted
that both practices can sometimes negatively impact the effort in this context. The avail-
able evidence suggests that implementing agile practices in the development of auxiliary

1140 Software Quality Journal (2024) 32:1137–1174

1 3

functionalities can be a valuable approach. It indicates that it might even be the case of
using the agile practices 100% of the time since they seem effective even for functions that
would not be initial candidates to be developed with their use. This is especially true for
pair programming, which in several companies is applied only when dealing with complex
parts of the system. In any case, developers should always be aware of the additional effort
that the practices might bring, considering the trade-offs.

With respect to the difference between novices and professionals, we observed that pro-
fessionals benefited more from agile practices. For example, code implemented with test-
first programming was significantly more correct when compared to test-last programming
for such a sample. Additionally, for professionals, there was no significant difference in
terms of effort between test-first and test-last programming. Both effects – improved cor-
rectness and lack of additional effort – were not observed in the sample of novice program-
mers for test-first programming. Our investigation, which considers the perspectives of
both novice programmers and professionals, seeks to contribute to the body of knowledge
in the field of agile practices.

The remainder of this paper is organized as follows. Section 2 describes the fundamentals
of software testing and the target agile practices, and Sect. 3 summarizes some related work.
Next, Sect. 4 presents ethical implications, the subjects, experimental design, metrics, and sta-
tistical procedures of our study. Section 5 presents and analyzes the results of the experiments
comparing the software development techniques performed with novices and professionals.
Section 6 provides an in-depth analysis of these results, summarizing the outcomes in relation
to the initially formulated hypotheses and discussing the potential implications of these find-
ings. Next, Sect. 7 presents our study limitations. Finally, Sect. 8 concludes the paper.

2 Background

This section presents basic background on software testing (Sect. 2.1) and on the agile
practices addressed in this research, in particular, pair programming and test-first program-
ming (Sect. 2.2).

2.1 Software testing and testing techniques

The software testing activity aims to ensure the best possible quality of software products.
One of the reasons why testing has gained such denotative importance is that it consumes
about 50% of the expended effort on software development (Pressman & Maxim, 2020). In
recent years, the rise of Agile and DevOps methodologies has led to a shift towards con-
tinuous testing, where testing is integrated throughout the software development lifecycle.
This way, software testing becomes a more crucial part of the development process, ensur-
ing the software is thoroughly tested and validated before it is released to the end users.

For this paper, a test case is a collection of inputs, execution conditions, and expected
output for a program. Given an input, the expected output is evaluated using an oracle
that determines the correct program result. In our case, the oracle is implemented as
JUnit1 assertions.

1 http:// junit. org/ – accessed in July, 2023.

https://junit.org/

1141Software Quality Journal (2024) 32:1137–1174

1 3

A test case can be formally defined as the following ordered tuple: (I1, ..., In),EO > ,
where EO is the expected output of the software when inputs are (I1, ..., In).

According to Myers et al. (2004), software testing is the execution of a program against
test cases to reveal faults in the software. Testing techniques differ from each other accord-
ing to the artifact from which test cases are derived. The test cases for functional testing
are derived from the program’s specifications. In this paper, functional testing serves as the
foundational technique for constructing test cases, intending to evaluate the accuracy of the
implemented programs. Equivalence partitioning and boundary value analysis are the most
widely recognized functional-based testing selection criteria. Equivalence partitioning
divides a program’s input domain into a finite number of valid and invalid input classes.
Then, it is presumed that evaluating any other value within the same class is equivalent to
a test case with a representative value. This criterion requires either common or individual
test cases to cover valid classes, and requires individual test cases for each invalid class.
Boundary value analysis supplements equivalence partitioning by requiring test cases to
include values at the boundaries of equivalence classes (Myers et al., 2004). In this paper,
we used equivalence partitioning and boundary value analysis to create the test sets that
were used to evaluate the reliability of functions implemented by experimental subjects.

2.2 Pair programming and test‑first programming

Agile development methodologies, including eXtreme Programming (XP), Scrum, and
Feature-Driven Development, have emerged since the late 1990s (Williams, 2012). XP,
recognized as one of the most prevalent agile methods (Dingsøyr et al., 2012), accentu-
ates development practices wherein pair programming (PP) assumes a pivotal role. Pair
programming is a practice that requires two developers working together on the same task,
sharing one computer. Alternatively, in the current era of remote work and distributed
teams, this can also be carried out via distributed pair programming (DPP), where both
developers collaborate virtually using shared coding environments and communication
tools to work on the same section of the computer code. One of the main advantages of
pair programming is that it promotes knowledge sharing and learning between team mem-
bers. By working together, developers can share their expertise and learn from each other,
which can help to improve the overall quality of the code (Swamidurai & Umphress, 2012).
Additionally, pair programming can allegedly reduce errors and improve the speed and
efficiency of development.

Test-Driven Development (TDD), another widespread agile development prac-
tice (Beck, 2002), advocates the creation of test cases before the actual implementation
of production code. This paper focuses on such a practice, which will also henceforth be
referred to as test-first. Importantly, test-first does not require the use of a particular testing
technique; test cases are developed solely to drive the implementation. A consequence of
this practice is ensuring that the source code is thoroughly unit tested. This work compares
test-first to the more conventional practice of writing tests after production code (hence-
forth referred to as test-last).

TDD can be used as a software design technique, where tests are used for defining
APIs and class relationships, or it can be used only as a development technique (Guerra &
Aniche, 2016). In the latter case, tests defined before the production code are used to incre-
mentally guide the introduction of functionality. In the experiments described in our study,
we evaluated test-first programming only as a development technique since the functions’
signatures were previously specified (see Sect. 4).

1142 Software Quality Journal (2024) 32:1137–1174

1 3

3 Related work

This section presents studies that are related to ours. First, we focus on pair programming
(Sect. 3.1) and on test-first programming and TDD (Sect. 3.2). We then refer to other
related investigations (Sect. 3.3), preparing the groundwork for discussing our study’s main
findings in subsequent sections.

3.1 Studies related to pair programming (PP)

A comprehensive meta-analysis evaluating the effectiveness of PP in comparison to solo
programming was conducted by Hannay et al. (2009). The study analyzed quantitative
measures of quality, duration, and effort, drawing upon data from 18 studies involving stu-
dent and professional developers. The findings indicate a slight quality improvement and
a moderately positive effect on task duration2 with PP, despite a medium negative impact
on effort.3 The research also notes variances based on developer experience levels: junior
pairs showed a 73% quality increase at the cost of 111% more effort, and intermediate pairs
achieved a 28% reduction in duration. However, they expended 43% more effort, whereas
senior pairs experienced an 83% effort increase with no noticeable gains.

Salleh et al. (2010) reported the outcomes of a systematic literature review (SLR)
focused on the effectiveness of PP. In contrast to Hanny et al. (2009), Salleh et al. exam-
ined compatibility factors (e.g., the feel-good, personality, and skill level factors) and their
impact on the effectiveness of PP as an educational tool in Computer Science and Soft-
ware Engineering education. Four aspects were assessed: academic performance, technical
productivity, program/design quality, and learning satisfaction. The general findings sug-
gest that, in comparison to solo programming, PP proves to be more effective in terms of
technical productivity, learning satisfaction, and academic performance. However, no sig-
nificant differences were observed concerning program/design quality. Studies employing
internal and external quality metrics indicated a marginally positive effect of PP over solo
programming (Salleh et al. 2010).

Sun et al. (2016) carried out a survey with software professionals considering their
views regarding the effectiveness of PP practices versus the traditional solo programming
approach. The authors pointed out that pair composition and the project complexity influ-
ence PP effectiveness concerning efforts, defect rate, and overall cost of the project. More-
over, previous PP experience leads to a more positive view of this practice than those who
never experienced it.

Bella et al. (2013) conducted an experiment to evaluate the effect of PP on the qual-
ity and efficiency of defect corrections and its impact on the overall development pro-
cess of a developer team. The study was based on a 14-month dataset collected from a
team of professional developers working for an IT department of a large Italian manu-
facturing company in an agile software development project. The analysis showed that
new defects tend to decrease when PP is practiced, even though the nonparametric
statistical tests did not confirm the significance of this behavior. While these results

2 Duration typically refers to the total time required for individuals, pairs, and teams of developers to com-
plete tasks.
3 Effort is generally calculated by summing the time spent by each individual in a pair or team of develop-
ers, akin to our method of measuring effort, i.e., considering twice the time spent for pairs of programmers.

1143Software Quality Journal (2024) 32:1137–1174

1 3

may not mirror the statistical significance found in our study, they resonate with our
findings by demonstrating that PP potentially contributes to improve reliability.

Sillitti et al. (2012) presented an investigation on how PP practices affect how devel-
opers write code, analyzing the effects of the agile practice on developers’ attention
and productivity. By studying a team of 17 developers over ten months, they observed
that developers working in pairs: (a) spend more time in directly productive activi-
ties; (b) switch less often between tools; (c) have longer permanence in a tool before
switching to another one; and (d) tend to focus more on productive activities. Such
results align with ours since, in our experiments, the agile practice also improved the
developers’ performance.

Expanding on the concept of PP, the Global Software Engineering (GSE) concept has
emerged in recent years due to the globalization of IT, which has led companies to dis-
tribute their software development globally. In this context, PP began to be adopted by
distributed teams, resulting in the emergence of Distributed Pair Programming (DPP).
In DPP, two programmers collaborate to create software using tools that enable screen
sharing and communication via audio, text, and video. An SLR conducted by da Silva
Estácio and Prikladnicki (2015) examined DPP, highlighting the increasing industrial
adoption and the corresponding lack of empirical research. The authors highlighted the
need for more professional-oriented DPP research that bridges the theoretical and prac-
tical domains. Key research opportunities identified include investigating DPP effects
on coordination, communication, and cultural diversity and analyzing the function of
particular DPP-supporting tools. da Silva Estácio and Prikladnicki provided a compre-
hensive overview of the current state of research on DPP, including its benefits, chal-
lenges, and tools. It also identified areas where further research is needed. However, one
potential weakness is that the review focused primarily on studies exploring DPP from a
teaching perspective, with less emphasis on its use in industry.

A very recent SLR Xu and Correia (2023) provides a comprehensive analysis of
DPP, underscoring its growing importance in education and industry, particularly in
the context of the post-COVID-19 digital learning trend. The review reveals that indi-
vidual characteristics such as prior programming experience, perceived skill, gender,
personality, and pair compatibility significantly impact DPP effectiveness. The study
suggests further exploration of how task structures influence DPP effectiveness and
how this relates to computational thinking education.

While both SLRs provide comprehensive analyses of DPP, their scope, context, and
focal point are distinct. The former, by da Silva Estácio and Prikladnicki (2015), high-
lights the industrial application of DPP and the lack of empirical studies in this con-
text. In contrast, the latter, by Xu and Correia (2023), focuses more on the educational
implications of DPP, particularly in the digital learning environment post-COVID-19;
it considers the individual characteristics that influence the efficacy of DPP in a learn-
ing context. In this study, we focused solely on local PP. However, the same methodo-
logical approach can be applied to Distributed Pair Programming, allowing for com-
parative analysis and a thorough comprehension of the dynamics between local and
distributed settings.

3.2 Studies related to test‑first programming and TDD

Desai et al. (2008) examined TDD experiments within an academic context. They gen-
erally observed that, in a controlled experiment, when the control group employed

1144 Software Quality Journal (2024) 32:1137–1174

1 3

iterative test-last programming (i.e., continuous testing), no substantial differences
were detected in the quality of the resulting software. Conversely, when all code was
composed prior to the implementation of tests, signifying a strict test-last programming
approach, test-first programming surpassed the test-last method in terms of fault counts
(reduction ranging from 35% to 45%). Their experiment also reported modest gains (5%
to 10%) in productivity, favoring the test-first approach.

Erdogmus et al. (2005) performed an experiment focused on the test-first aspect of
TDD using 24 third-year undergraduate Computer Science students. They observed
that TDD increased productivity, even though they found no difference in code quality.
Compared to the control group (test-last programming), the subjects using test-first pro-
gramming produced a considerably larger set of tests (52% larger, on average). In par-
ticular, such results are consistent with our outcomes since test-first programming also
caused the production of more tests in our experiments. Regarding code quality, both
groups performed very similarly (the mean of the control group was only 2% higher).
Finally, the productivity of the test-first programming group was higher (28% higher
mean). With respect to these variables – quality and productivity – our results with
professionals were somehow different: subjects using test-first programming produced
significantly more correct implementations without additional cost in terms of develop-
ment time. This might be due to the expertise of programmers, as professionals tend to
benefit more from the agile practice.

In an SLR, Munir et al. (2014) classified the main studies into categories based on
two factors: relevance and rigor. Relevant studies, that is, those involving realistic set-
tings with industrial applicability, demonstrate that TDD benefits students and profes-
sional developers in terms of external quality at the expense of productivity. Precisely,
these outcomes correspond to our own. However, the authors suggest that industry
experiments involving real-world systems and long-term studies are necessary.

Bissi et al. (2016) presented a systematic review to identify publications that com-
pare the effects of TDD on internal and external software quality and productivity, com-
paring TDD with Test Last Development. The review found that most studies have iden-
tified an increase in internal and external software quality when using TDD. However,
there was an increase in productivity in the academic environment but a decrease in an
industrial scenario when using TDD.

Latorre (2014) conducted a quasi-experiment to investigate the impact of developers’
experience levels on their ability to learn and apply unit test-driven development (UTDD).
The primary objective was to assess the difficulty experienced by professionals in
learning UTDD and to evaluate the feasibility of employing this agile practice in real-
world projects. The results suggest that experienced developers can correctly apply UTDD
after a brief practice period, retaining the knowledge for use in their companies within
an industrial setting. Conversely, junior developers required additional self-learning
throughout the process. This finding aligns with our test-first study, as our experiments
also demonstrated that professional developers might benefit more from the agile practice
when compared to novices.

Fucci et al. (2018) conducted a TDD quantitative cohort study with 30 undergradu-
ate students (third-year) in Computer Science at the University of Bari, Italy, aiming to
measure the TDD effects on the external quality of software products and developers’
productivity. Even though the authors stated that non-significant statistical results were
observed, they recognized that the use of the TDD has produced significantly more tests
than the non-TDD process, confirming one of our findings.

1145Software Quality Journal (2024) 32:1137–1174

1 3

Baldassarre et al. (2021) also confirm two of our findings: it was observed that partici-
pants applying TDD produced significantly more tests, with a higher fault-detection capa-
bility than those using a non-TDD approach.

On the other hand, results obtained in study by Fucci et al. (2017) revealed little dif-
ference between the test-first behavior of TDD and the test-last behavior. More specifi-
cally, they tried to verify whether TDD affected the external quality of code, the number of
tests written, or the productivity of software developers. They have observed no statistical
difference between test-first and test-last. The authors argue that productivity and quality
improvements are more associated with granularity and uniformity than with the order in
which testing and code production is applied. Similar results are described in a study per-
formed by Karac et al. (2019), in which authors observed that the ability to break down
tasks into smaller parts and the practitioners’ familiarity with the tasks are highly coupled
to the impact of the TDD approach.

Tosun et al. (2021) performed an experiment with industry professionals using the TDD
and Incremental Test-Last Development (ITLD) approaches. They found that the type of
task significantly impacts on quality in TDD, with TDD being more suitable for smaller
tasks. The choice between TDD and ITLD depends on task size, developer experience, and
project goals. Further research is needed to understand these approaches’ pros and cons in
various contexts.

Santos et al. (2021) conducted experiments to compare TDD with control approaches,
primarily the waterfall model, regarding software quality. The findings suggest that TDD
generally yields higher quality. However, the degree of this advantage varies based on fac-
tors such as research methods, programming environments, evaluation lengths, units of
analysis, types of tasks, and participant types. The authors recommend further experiments
to investigate these variables. They also suggest future studies to consider the impact of the
development task and the order of TDD application.

Ghafari et al. (2020) argued the existence of some factors that cause disparities in TDD
research results and limit the application of this approach to practitioners. They pointed out
that the TDD definition, participants, tasks, type of projects, and comparisons are among
the factors identified in the literature. In this study, we tried to overcome some of these fac-
tors, for example, by including more experienced professionals in the experiments.

Romano et al. (2019) conducted a study on the affective reactions of beginner develop-
ers towards various development approaches. They discovered that novices tended to prefer
non-TDD development approaches over TDD and that the testing phase tended to make
developers using TDD less content.

3.3 Other related work

Lemos et al. (2018) evaluated the impact of software testing education on code reliabil-
ity. The authors used a very similar experimental design as the one applied in this paper:
students implemented an analogous set of auxiliary functions before and after learning
software testing concepts and techniques. The correctness of the produced code was then
compared. Results showed that exposure to testing knowledge can, in fact, impact on code
quality without a significant additional cost in terms of lines of code. An interesting evalu-
ation that could be made in the future is to measure the combined effect of software testing
knowledge and the use of the agile practices addressed in this paper.

To the best of our knowledge, the study presented in this paper and a previous study
conducted by the same authors (Lemos et al., 2012) represent the first effort to specifically

1146 Software Quality Journal (2024) 32:1137–1174

1 3

evaluate agile practices in the context of developing auxiliary functions. In addition,
compared to other studies of a similar nature, ours is one of the first to use repeated
measurements with a cross-over experimental design. Most studies tend to employ two-
group experimental design in which a control group employs a traditional approach, for
example, and a treatment group employs an agile approach. This kind of design is less
powerful than repeated measures because comparisons are made across – and not within
– subjects (differences observed in two-group experiments might be due to the variability of
subjects and not an effect of the evaluated approach). With repeated measures, extraneous
error variance is reduced because each subject serves as his/her own control. Our study
is also one of the few that applies systematic test case design to evaluate the correctness
of implementations produced by the subjects. Most studies use test cases developed in an
ad hoc manner, which might introduce bias to the analysis. Moreover, many experiments
involved only students, while ours also included a sample of 37 professional developers in a
single extensive analysis. In this sense, we believe our results are thus more generalizable.
Another particularity of our study is that it tackles two agile practices (pair and test-first
programming), while the majority of related work target only a single practice.

Concerning the achieved results, previous evidence regarding the effectiveness of pair
and test-first programming is somehow contradictory. Some of the aforementioned sur-
veys (Hannay et al., 2009; Salleh et al., 2010; Desai et al., 2008; Sun et al., 2016; Fucci
et al., 2018; Ghafari et al., 2019; Karac et al., 2019; Kazerouni et al., 2019) show that var-
ied scenarios lead to different effectiveness measures, sometimes favoring the agile prac-
tices, sometimes not. Our results show that, to implement auxiliary functionality, both agile
practices required a substantial increase in the development effort (except for professionals
when using test-first programming), but offered a counterpart in terms of significant cor-
rectness improvement and larger and higher coverage test sets.

4 Study setup

This study aims to examine the impact of pair versus solo programming and test-first ver-
sus test-last programming on the development of auxiliary functions. We evaluate these
practices concerning their reliability and effort factors. As discussed in Sect. 1, both prac-
tices are controversial within the software development community, so their benefits are
unclear (all the more when considering the development of auxiliary functions). As also
discussed in Sect. 1, auxiliary functions are an important target for investigation as they
might bring severe problems to software systems (applying good developmental practices
in their implementation might help prevent such problems).

We are thus interested in assessing whether agile practices can benefit develop-
ers in terms of improved reliability of auxiliary functions when compared to traditional
approaches. We also want to look into the possible additional cost involved in terms of
effort. Based on such goals, we focus our study in the following research questions:

Reliability-related questions. In the development of auxiliary functions:

R1 Does pair programming help obtain more correct implementations than solo
programming?

1147Software Quality Journal (2024) 32:1137–1174

1 3

R2 Does test-first programming help obtain more correct implementations than test-last
programming?

R3 Does test-first programming encourage the implementation of more test cases than
test-last programming?

R4 Do test cases produced by test-first programmers attain higher coverage than the ones
produced by test-last programmers?

Effort-related questions. In the development of auxiliary functions:

R5 Do pair programmers spend more time in the development of functions than solo
programmers?

R6 Do test-first programmers spend more time in the development of functions than test-
last programmers?

It should be observed that R4 complements R3, as larger test sets do not inherently guaran-
tee increased coverage test sets (i.e., redundancy in tests is possible). Our exploration pro-
gresses through six hypotheses, which derive from these research questions. The null (0)
and alternative (A) delineations for each hypothesis can be found in Table 1. It is important
to note that we have a hypothesis corresponding to each research question: hypothesis H

i
 is

associated with research question R
i

4.1 Ethical implications

Ethical considerations are paramount in academic research, especially when involving
human subjects or collecting personal data. It is standard protocol for researchers to assess
whether their study might introduce any significant ethical risks. When such risks are iden-
tified, the study typically requires an independent ethical review before its commencement.

After thoroughly examining the ethical guidelines from the participating universities
for this study, our team ascertained that our research introduced either no risks or only
minimal risks to the participants. Given this determination, we did not deem it necessary
to seek approval from a central Institutional Review Board (IRB). Nonetheless, we ensured
that all requisite steps were taken to maintain participant data’s anonymity, protection, and
confidentiality. To further clarify the context and our rationale: i) The core participants of
this study were students from the university’s software engineering and software testing
courses. ii) The tasks they engaged in for the purposes of this research were integral com-
ponents of the course curriculum, ensuring that no extraneous demands were placed upon

Table 1 Hypotheses formulated
for our experiments

H Hypothesis, SP Solo Programming, PP Pair Programming, TF Test-
First, TL Test-Last

Null hypothesis (0) Alternative Hypothesis (A)

H1 CorrectnessPP = CorrectnessSP CorrectnessPP > CorrectnessSP
H2 CorrectnessTF = CorrectnessTL CorrectnessTF > CorrectnessTL
H3 TestSizeTF = TestSizeTL TestSizeTF > TestSizeTL
H4 TestCovTF = TestCovTL TestCovTF > TestCovTL
H5 EffortPP = EffortSP EffortPP > EffortSP
H6 EffortTF = EffortTL EffortTF > EffortTL

1148 Software Quality Journal (2024) 32:1137–1174

1 3

them. iii) Importantly, we neither offered nor provided any form of monetary compensation
or other incentives for their involvement. iv) The recruitment process for the study was
invitation-based, with all participants giving their consent. They were well-informed of the
voluntary nature of their involvement and the academic intent behind collecting their input.
v) This process of obtaining consent was transparently witnessed by the entire cohort of
participants and faculty members, irrespective of whether the setting was a classroom or
an industry environment. vi) Our data collection was strictly limited. We gathered only the
function’s source code and details regarding the participants’ years of experience in spe-
cific domains like Java, agile development, pair programming, and test-first programming.
We refrained from collecting any other personal data, ensuring the impossibility of partici-
pant identification. vii) An interesting note is that some participants proactively indicated
their eagerness to view the study’s results. Considering all these factors, we are confident
that the study was conducted with utmost ethical integrity, thus obviating the need for for-
mal ethical approval.

4.2 Subjects, target functions, test sets, and tools

Figure 1 depicts the six experiment instances we conducted with their respective number of
subjects. Throughout the paper, we use the names used in the figure to refer to each experi-
ment. In a nutshell, Exp.PP refers to the pair programming experiment with students, while
Exp.TF refers to the test-first programming experiment with students. Rep.PP refers to the
pair-programming replication with professionals, while Rep.TF refers to the test-first pro-
gramming replication with professionals.

Subjects Since auxiliary functions tend to be natural candidates to be assigned to less
experienced developers (Dagenais et al., 2010; Williams & Kessler, 2002), we believe

Fig. 1 Diagram showing the six experiment instances conducted for our study (Exp = Experiment; R, Rep
= Replication; PP = Pair programming; TF = Test-first programming)

1149Software Quality Journal (2024) 32:1137–1174

1 3

students can form a good conservative sample for evaluating the agile practices in our con-
text. Therefore, in our first investigations we decided to invite Computer Science under-
graduates to participate in the experiments.

For the pair programming experiment (Exp.PP), only basic Java and pair programming
skills were required for the evaluation. Therefore, we selected 46 students that were in the
second semester of the program to participate in the pair programming experiment. On the
other hand, the test-first experiment (Exp.TF) required more knowledge about software engi-
neering and software testing (e.g., developers have to know what test cases are and how to
implement them). Since these skills are typically acquired at later stages of a Computer Sci-
ence degree program, and that was the case for our target program, we selected 39 students
that were in the sixth semester of the program to participate in the test-first programming
experiment. The experiments with novices thus involved 85 undergraduate students.

In an object-oriented Java programming course, the second-semester students received
a 50-minute module on pair programming instruction. The advanced training in test-first
programming for sixth-semester students consisted of two 100-minute JUnit/TDD modules
and multiple exercises. Students were required to demonstrate implementations with test
cases as part of the programming tasks. It is also essential to observe that the sixth-semes-
ter students had prior experience in software testing techniques (as a result of a 72-hour
mandatory undergraduate course).

Although PP and TDD are theoretically simple and widely taught, our empirical obser-
vations during the experiments revealed that many second-semester students lacked practi-
cal familiarity with these concepts. Despite being aware of the theory behind these prac-
tices, they often faced challenges when implementing them in real-world scenarios. As a
result, the pair programming experiment did not specifically focus on the testing approach
(i.e., test-first or test-last). In addition, only solo programming was used during the test-
first experiment. Consequently, it should be evident that the experiments and analyses
reported in our study are independent, i.e., they do not account for the compound effect of
agile practices.

As commented in Sect. 1, we wanted to understand how the programmers’ experience
would impact results in a more extensive analysis. Therefore, we decided to replicate the
initial experiments with professional developers. The replication with professionals (Rep.
PP and Rep.TF) involved 37 subjects. A tally of 20 participated in the pair program-
ming replication, while 17 participated in the test-first programming replication. In fact,
to ensure we had a more significant sample, both replications combined results from two
experiment instances run with a smaller number of subjects. For the pair programming
replication, the first run involved 10 professionals from different companies (R.PP1); while
the second run involved other 10 professionals working for a single company with expe-
rience with agile practices (R.PP2). For the test-first programming replication, a similar
combination took place: the first run involved 7 professionals from different companies (R.
TF1), and the second run involved 10 professionals from a single company with experience
with agile practices (R.TF2).

Since the experiments were conducted with the exact same design, it was possible to
consider the combinations as two single replications (Rep.PP and Rep.TF). Before we could
combine results, we had to make sure they were consistent across the two sets of subjects
for each replication. We did this by simulating an additional variable to the experiments
– run – and by looking at whether there was a significant difference in results when taking
into account such a variable. We then applied the non-parametrical Kruskall-Wallis test,

1150 Software Quality Journal (2024) 32:1137–1174

1 3

which verifies the probability that samples originate from the same distribution. With 95%
confidence level, the test indicated a non-significant difference for both replications when
we consider the variation of our main metric – correctness – across runs (p-values = 1
and 1 – PP/SP, and p-values = 0.3243 and 0.9508 – TF/TL programming). Therefore, we
decided to aggregate results from the smaller experiments in order to have more significant
sets of subjects.

Figure 2 shows the proportion of subjects at each level of experience in (1) Java, (2)
agile development, (3) pair programming, and (4) test-first programming (“Basic knowl-
edge” means that the subject received only training in the related practice/technology but
has not practiced it professionally).4 Note that our group of subjects has varied experi-
ence in the related practices/technology. This is important to improve the generalization
of our conclusions to a broader population. Moreover, although the sample contains less
experienced developers – some have only basic knowledge in the practices/technology
– almost half of them have one to four or more years of professional experience using such
approaches. Also, part of the subjects has more than six years of experience in some of the
practices/technology (17% of the subjects for Java, 6% of the subjects for agile develop-
ment, and 11% of the subjects for pair programming).

Target functions To choose representative functions for our study – functions that come
under the category of auxiliary functions as defined in Sect. 1 – we examined the Apache
Commons project, which provides libraries of reusable Java components.5 Moreover, we
chose functionality that could be easily retrieved via code search engines (e.g., Open Hub
(Black Duck Software Inc., 2014)), i.e., we attempted to identify commonly used auxiliary
functions that were not readily available in the Java API. These functions have been divided
into three categories: array manipulation (Array), fundamental mathematics (Math), and
string manipulation (String). We took two functionalities from each domain to attain a
more robust set. The auxiliary functions utilized in our research are detailed in Table 2.

Fig. 2 Proportions of professional developers that participated in our study at each experience level

4 Only a single subject that participated in our study did not respond to our survey and was thus not consid-
ered in the graphs.
5 http:// commo ns. apache. org/ – accessed in July, 2023.

https://commons.apache.org/

1151Software Quality Journal (2024) 32:1137–1174

1 3

Ta
bl

e
2

 A
ux

ili
ar

y
fu

nc
tio

ns
 u

se
d

in
 th

e
ex

pe
rim

en
t

D
om

ai
n

Fu
nc

tio
n

D
es

cr
ip

tio
n

Sa
m

pl
e

Te
st

 C
as

e

Te
st

 C
as

es

A
rr

ay
a 1

Ar
ra

y
eq

ua
lit

y:
 g

iv
en

 tw
o

ar
ra

ys
, t

he
 p

ro
gr

am
 sh

ou
ld

 re
tu

rn
 tr

ue
<

([
1,

 2
, 3

],
[1

, 2
, 3

])
, t

ru
e>

20
or

 fa
ls

e
ac

co
rd

in
g

to
 th

e
co

nt
en

ts
 o

f t
he

 a
rr

ay
s b

ei
ng

 e
qu

al
 o

r n
ot

.
a 2

Fi
rs

t i
nd

ex
 w

ith
 d

iff
er

en
t v

al
ue

: g
iv

en
 a

n
ar

ra
y

an
d

a
nu

m
be

r,
<

([
0,

 0
, 0

, 0
, 0

, 1
],

0)
, 5

12
th

e
pr

og
ra

m
 sh

ou
ld

 re
tu

rn
 th

e
fir

st
in

de
x

of
 th

e
ar

ra
y

th
at

co
nt

ai
ns

 a
 v

al
ue

 d
iff

er
en

t f
ro

m
 th

e
nu

m
be

r.
M

at
h

m
1

Po
we

r o
f t

wo
: g

iv
en

 a
 n

um
be

r,
th

e
pr

og
ra

m
 sh

ou
ld

 re
tu

rn
 tr

ue
<

(4
),

tr
ue

>
6

or
 fa

ls
e

ac
co

rd
in

g
to

 it
 b

ei
ng

 o
r n

ot
 a

 p
ow

er
 o

f t
w

o.
m

2
Fa

ct
or

ia
l:

gi
ve

n
a

nu
m

be
r,

th
e

pr
og

ra
m

 sh
ou

ld
 re

tu
rn

 it
s f

ac
to

ria
l.

<
(5

),
1
2
0

7
St

rin
g

s 1
C

ap
ita

liz
at

io
n

of
 p

hr
as

es
: g

iv
en

 a
 st

rin
g,

 th
e

pr
og

ra
m

 sh
ou

ld
<

(“
on

e
tw

o”
),

“O
ne

 T
w

o”
>

7
re

tu
rn

 th
e

sa
m

e
str

in
g

w
ith

 th
e

fir
st

le
tte

rs
 o

f w
or

ds
 c

ap
ita

liz
ed

.
s 2

M
ax

im
um

 c
om

m
on

 p
re

fix
: g

iv
en

 tw
o

str
in

gs
, t

he
 p

ro
gr

am
 sh

ou
ld

<
(“

pr
ef

 su
f”

, “
pr

ef
 fu

s”
),

“p
re

f”
>

11
re

tu
rn

 th
e

m
ax

im
um

 c
om

m
on

 p
re

fix
 b

et
w

ee
n

th
em

.

1152 Software Quality Journal (2024) 32:1137–1174

1 3

Our functions are also deliberately narrowly scoped, which is an additional character-
istic. The objective here is to perform a conservative evaluation: if a practice affects the
development of simpler auxiliary functions, we can expect that it will also have an effect
on more complex auxiliary functions. The designated functions are comparable in size and
scope to the day conversion feature that was defective in the already mentioned Microsoft’s
Zune media player6 (Weimer et al., 2010). A further benefit is that this type of function
enables the implementation of more systematic test case selection techniques, such as func-
tional testing.

Test sets To evaluate the subject’s programs, we created a comprehensive set of boundary-
value functional tests for each of the selected functions.7 The last column of Table 2 indi-
cates the number of test cases created for each function. To build the test sets, we applied
the equivalence partitioning and boundary-value analysis criteria.

These criteria were applied to select representative test cases for each test set, attempt-
ing to cover as many of the functional specificities of the functions as possible. To provide
an illustrative example of the test case development process, Table 3 shows the equivalence
classes and, where applicable, boundary values for the functionality. ar1 and ar2 are the
input arrays; |ar| represents the array size; and ar

x
[i] represents an element of the array. Int.

MIN and Int.MAX correspond to the minimum and maximum integer values. Given the
utilization of the Java programming language in the study, the highest and lowest possible
integer values were employed as boundary values for this particular data type. A similar
principle was also applied to other data types concerning other functions. Here, specific
values are not used to represent test cases independently of the programming language.

It is important to note that, for the professional sample, two types of test cases devel-
oped for the String manipulation functions were not taken into account for the presented

Table 3 Equivalence Classes and Boundary Values considered for testing Array Equality (a1)

Input Cond. Valid Classes Invalid Classes Boundary Values

|ar1| |ar1| > -1 (C1) |ar1| = 0 (B1)
ar1 is null No (C2) Yes (C3)
|ar2| |ar2| > -1 (C4) |ar2| = 0 (B2)
ar2 is null No (C5) Yes (C6)
|ar1|, |ar2| |ar1| > |ar2| (C7) |a1| - |a2| = 1 (B3)

|ar2| > |ar1| (C8) |a2| - |a1| = 1 (B4)
ar1[i] Int.MIN≤ ar1[i] ≤ Int.MAX (C9) ar1[i] = Int.MIN (B5)

ar1[i] = Int.MAX (B6)
ar2[i] Int.MIN≤ ar2[i] ≤ Int.MAX (C10) ar2[i] = Int.MIN (B7)

ar2[i] = Int.MAX (B8)

6 This function is cited because its source code is available online. Nonetheless, it is reasonable to presume
that the other functions listed in Sect. 1 are also of equivalent size. For example, a PlayStation-like leap year
detection function requires only a small number of code lines to be implemented.
7 All experimental artifacts, encompassing subjects’ programs, test sets, function descriptions, and more,
are accessible via the following link: http:// www. ict. unife sp. br/ fsilv eira/ data/ Softw areTe sting Exper iment_
data. zip.

http://www.ict.unifesp.br/fsilveira/data/SoftwareTestingExperiment_data.zip
http://www.ict.unifesp.br/fsilveira/data/SoftwareTestingExperiment_data.zip

1153Software Quality Journal (2024) 32:1137–1174

1 3

results (namely, the ones that tested for null strings and the ones that tested for empty
strings). We did this to normalize outcomes because these tests were failing for both agile
and traditional practices, for all subjects. This happened because these subjects were devel-
oping functions against contracts different from the ones we anticipated. It appears that the
professional sample expected that the client functions would have handled such exceptional
inputs and not by the String manipulation functions, which is a pretty reasonable contract.
In any case, it should be noted that, in this sense, some implementations from the students
were more resilient since they also handled those boundary values.

Tools The functions were implemented using the Eclipse8 IDE, while JUnit served as the
framework for developing test cases. The students were instructed to concentrate their
efforts solely on implementing the requested auxiliary functionality using the designated
techniques. Students were instructed, for instance, to implement functions as static methods
within a class with a predefined name. This was done because auxiliary functions typically
rely solely on parameter values to carry out their responsibilities. We used the Cobertura9
tool to evaluate the coverage attained by the developed test sets.

Test implementation For the subjects that needed to implement the function using the
test-first approach, it was required to create automated tests before the implementation.
However, creating automated tests was not a requirement for those that used the test-last
approach. Nothing about creating automated tests was mentioned in the pair programming
and solo programming experiment specifications.

4.3 Experimental design and procedure

We used repeated measurements with a cross-over experimental design for the conducted
experiments, with each subject implementing functions using both traditional and
agile methods. Such a design permits more control over the variation between subjects
(Montgomery, 2006). We randomized the students’ assignments in order to reduce the
variance in the differences between functions and approaches. To eliminate function

Fig. 3 Basic subject/treatment configurations used in our experiments

8 http:// eclip se. org/ – accessed in July, 2023.
9 http:// cober tura. github. io/ cober tura/ – accessed in July, 2023.

https://www.eclipse.org/
http://cobertura.github.io/cobertura/

1154 Software Quality Journal (2024) 32:1137–1174

1 3

asymmetry, it was determined that each function would be implemented using both
traditional and agile methods.

All investigations were conducted throughout two sessions. In the first session, a por-
tion of the students applied traditional approaches – solo or test-last programming – while
the remaining students applied agile practices – pair or test-first programming. In the sec-
ond session, the students switch approaches. This was done to eliminate order and learn-
ing effects; e.g., applying first solo programming and later pair programming may have
benefited one of the approaches; similarly, the test-first experiment utilized the same meth-
odology. In addition, subjects were required to implement functions from various domains
during the first and second sessions. In the second session, a subject who implemented
an Array Function in the first session would implement a Math or String function. When
implementing functionalities in the initial and subsequent sessions, we took this approach
to minimize the influence of one function domain over the others.

To facilitate understanding the adopted experimental design, Fig 3 depicts the basic
subject/treatment configurations adopted and Table 4 presents part of the assignments used
for the experiments. Note that the subjects are not the same for the two experiments; we
only maintained the first column for simplification. The same procedures were applied for
the replications with professionals.

4.4 Metrics

In this study, metrics were utilized to assess the reliability of the functions developed and
the effort exerted by the subjects during the application of each approach.

Reliability measurement Functional Test Set Success Level (FTSSL) correctness was one
of the metrics we used to measure reliability in our experiments. FTSSL assigns grades to
functions based on a scale with three values: 0 (Incorrect – all test cases fail), 0.5 (Neither
correct nor incorrect – some test cases fail, but not all), and 1 (Correct – all test cases pass).
We use this scale because, in our context, a failure is highly significant: since we are utiliz-
ing functional test sets, each test case encompasses a significant portion of the functional-
ity. In this manner, we are more concerned with functions that never fail, but we also want
to identify entirely incorrect functions. Functions that fail one or more test cases, but not
all, receive a score in the middle because they cannot be considered correct but at least
implement a portion of the functionality accurately. Then, we only grant the highest score
to functions that pass every test case. The FTSSL is an ordinal variable because there is a

Table 4 Partial task assignments
to subjects

S Pair Programming Exp. Test-First Exp.

1st Session 2nd Session 1st Session 2nd Session

A + F A + F A + F A + F

1 solo + s 1 pair + a 1 test-first + a 1 test-last + s 1
2 solo + s 2 test-first + a 2 test-last + s 2
3 pair a 1 solo + s 1 test-last + a 1 test-first + s 2
4 solo + m 1 test-last + a 2 test-first + s 1
...

1155Software Quality Journal (2024) 32:1137–1174

1 3

natural ordering between the values (having all test cases pass is preferable to having fewer
test cases pass, which is preferable to having all test cases fail).

As an additional measure of reliability, we evaluate the test sets generated by test-last
and test-first programming using the metrics of size and coverage. The size is calculated by
the number of test cases in the test set. We adopted the ordinary statement coverage crite-
rion for code coverage, which demands that every statement in the code be executed by at
least one test case.

Effort measurement Total Development Time (TDT) is the total number of minutes pro-
grammers require to develop a given function. This metric was utilized in our experiment.
Thus, the individual effort was equivalent to the duration in the pair programming experiment,
whereas the effort for the pair programmers was double the duration. This metric is a standard
and straightforward method for evaluating effort, being also utilized in other investigations.

4.5 Statistical analysis

A mere observation of the means or medians of sample observations is statistically insuf-
ficient to infer about the actual populations. This occurs because the observed differences
may be a result of random sampling. Statistical hypothesis tests can be used to determine
whether the observed differences are actually significant.

In our investigation, each subject independently utilized each method to develop the
functions. In this instance, the paired statistical hypothesis tests compare measurements
within subjects instead of between subjects. Compared to unpaired tests, paired tests are
thought to improve precision Montgomery (2006) significantly. Prior to selecting the most
appropriate test to apply, we must confirm the normality of our observations. Most con-
tinuous data observations in our experiments did not follow a normal distribution, as deter-
mined by the Shapi-ro-Wilk test. We chose the Wilcoxon/Mann–Whitney non-parametric
signed-rank paired test, which does not presume normal distributions because we also deal
with ordinal data in certain instances Shull et al. (2008). For statistical significance, we
adopted the conventional confidence level of 95%; thus, p-values below 0.05 are consid-
ered significant in our analyses. We utilized the R language10 for all statistical analyses.

5 Results and analysis

5.1 Experiment with novice programmers

Tables 5 and 6 present the results of our experiments with novice programmers (Exp.
PP and Exp.TF), and Tables 7 and 8 present the statistics for the pair programming and
test-first experiments with respect to correctness. The first two tables present results for
each subject, for each metric, and also mean values for the non-ordinal metrics (for Exp.
PP: Total Development Time – TDT, and for Exp.TF: TDT, Test Coverage, and Num-
ber of Test Cases). Tables 7 and 8, on the other hand, are contingency tables that show
the compared outcomes of subjects while using the traditional and agile approaches,

10 http:// www.r- proje ct. org/ - 07/06/2021.

https://www.r-project.org/

1156 Software Quality Journal (2024) 32:1137–1174

1 3

for correctness. For instance, the cell in row SP-I, column PP-I of Table 7 contains the
number of subjects that produced an incorrect function while using solo programming
and another incorrect function while using pair programming. The Frequency columns
and rows show the number of implementations produced at each Functional Test Set
Success Level (I, N, or C), for each approach. For instance, the cell in row Freq., col-
umn PP-I of Table 7 shows that a total of 0 pair programmers produced incorrect func-
tions in the experiment.

5.1.1 Reliability evaluation

For pair programming experiments with novices, the soloists implemented three completely
correct functions and three incorrect functions (6.5%). Conversely, pair programmers imple-
mented 8 correct functions (18% – more than twice as many as solo programmers) and 0
incorrect functions. The remaining implementations failed at least one test case, but not all.
We believe this was primarily because few students implemented functions that handled
exceptional inputs, such as null objects. Since our test cases also covered such inputs, the
majority of implementations failed on at least one of them.

Moving on, the Wilcoxon test revealed a statistically significant difference at the 95%
confidence level (df = 45, p-value = 0.04982) regarding the observed difference in terms of
correctness. This result supports the alternative hypothesis (H1-A) that pair programming

Table 5 Results of the pair programming experiment with novices – Exp.PP

FTSSL Functional Test Set Success Level, TDT Total Development Time, SP Solo Programming, PP Pair
Programming, I Incorrect, N Neither correct nor incorrect, C Correct

Subj. FTSSL TDT Subj. FTSSL TDT Subj. FTSSL TDT

SP PP SP PP SP PP SP PP SP PP SP PP

1 N N 25 50 17 N C 13 18 33 C N 10 26
2 N N 10 40 18 N N 8 22 34 N N 30 120
3 N N 20 20 19 N N 20 46 35 N C 22 50
4 I N 10 12 20 C N 20 50 36 N N 10 18
5 N N 5 18 21 N N 31 20 37 N N 13 120
6 N N 10 60 22 N C 13 8 38 N C 5 16
7 N N 29 50 23 N N 21 38 39 N N 19 44
8 I N 5 38 24 N N 11 60 40 N N 5 24
9 N N 9 22 25 N N 26 16 41 N N 12 44
10 N N 5 26 26 N N 5 44 42 N N 60 42
11 N N 25 46 27 N C 22 8 43 N N 5 40
12 I C 23 44 28 N N 110 50 44 C N 4 12
13 N N 15 120 29 N N 6 18 45 N N 5 34
14 N N 50 50 30 N N 27 42 46 N N 44 44
15 N N 15 8 31 N C 33 44
16 N C 30 24 32 N N 5 34
Mean time (considering all subjects) 19.59 37.91

1157Software Quality Journal (2024) 32:1137–1174

1 3

Table 6 Results of the test-first
experiment with novices – Exp.
TF

Subj. FTSSL TDT Cov # TC

TL TF TL TF TL TF TL TF

1 N N 35 45 0% 100% 0 8
2 N N 37 44 0% 100% 0 3
3 N N 22 33 0% 75% 0 3
4 N N 15 35 0% 100% 0 4
5 N N 13 25 0% 100% 0 4
6 N N 20 21 100% 88% 3 4
7 N N 18 16 100% 100% 6 2
8 N N 15 14 100% 100% 5 5
9 N N 12 15 100% 100% 2 3
10 N C 33 33 100% 100% 4 8
11 C C 29 25 100% 100% 5 5
12 N N 45 15 100% 100% 0 7
13 I N 15 10 84% 100% 2 3
14 N N 24 24 100% 100% 5 5
15 N I 16 60 0% 75% 0 1
16 N N 10 15 0% 100% 0 5
17 N N 46 60 0% 81% 0 5
18 N N 50 23 0% 100% 0 7
19 N N 47 21 100% 100% 2 3
20 N N 20 27 0% 100% 0 1
21 C N 18 37 88% 100% 2 6
22 N N 11 19 0% 100% 0 3
23 N N 8 23 0% 100% 0 4
24 N N 23 27 100% 100% 4 5
25 C C 18 21 100% 100% 6 14
26 N N 40 40 0% 100% 0 4
27 N N 40 20 100% 100% 5 3
28 N N 25 30 100% 100% 2 3
29 N C 8 25 100% 89% 4 4
30 C N 26 48 0% 91% 0 1
31 N N 20 37 100% 100% 4 5
32 N N 39 12 100% 100% 4 7
33 N N 20 32 70% 88% 4 4
34 N N 11 12 89% 100% 5 4
35 N I 32 40 0% 100% 0 1
36 N N 17 33 100% 100% 7 5
37 N N 38 33 100% 100% 1 5
38 I N 55 35 100% 100% 1 5
39 C N 30 50 0% 83% 0 7
Mean (considering all

subjects)
25.67 29.10 57% 97% 2.13 4.51

1158 Software Quality Journal (2024) 32:1137–1174

1 3

outperforms solo programming in terms of auxiliary function correctness. This is a sig-
nificant finding, as it appears that developers can benefit from pair programming even for
supportive functionality. In addition, the higher number of completely correct implementa-
tions for pair programmers demonstrates that they tend to be more cautious when imple-
menting auxiliary functions, considering exceptional inputs included in the test sets.

Regarding the test-first experiment with novices, it should be noted that both
approaches performed nearly identically in terms of correctness. The only difference
between test-last and test-first programmers was that test-last programmers delivered
one additional correct implementation. The Wilcoxon test did not indicate a statisti-
cally significant difference at the 95% confidence level (df = 38, p-value = 0.6554).
This result supports the null hypothesis (H2-0) that test-last programming and test-
first programming have equivalent effects on the correctness of auxiliary functionality.
Such evidence suggests that developers should proceed with caution in this area. As
discussed in Hypotheses H5 and H6, although test-first encouraged participants to gen-
erate more comprehensive test sets, this agile practice did not substantially affect func-
tional correctness. Other studies have shown that although test-first may lengthen the
development process, it also generally improves correctness (Baldassarre et al., 2021;
Edwards, 2004).

With respect to the size of the produced test sets, however, note that the means are
around 112% higher for test-first programming (see Table 6). The statistical test reveals a
significant difference at the 95% confidence level (df = 38, p-value = 0.00001708). This
result supports the alternative hypothesis (H3-A) that test-first programming is superior to
test-last programming concerning the size of the test set. Notably, the difference remains
significant after excluding results from test-last programmers who did not implement test
cases (test-last mean test set size = 3.77; test-first mean test set size = 4.91; Wilcoxon test:
p-value = 0.03216).

Table 7 Correctness statistics for
the pair programming experiment
with novices – Exp.PP

SP Solo Programming, PP Pair Programming, I Incorrect, N Neither
correct nor incorrect, C Correct

PP

I N C Freq.

SP I 0 2 1 3 (6.5%)
N 0 33 7 40 (87%)
C 0 3 0 3 (6.5%)
Freq. 0 (0%) 38 (82%) 8 (18%)

Table 8 Correctness statistics
for the test-first experiment with
novices – Exp.TF

TL Test Last, TF Test First, I Incorrect, N Neither correct nor incor-
rect, C Correct

TF

I N C Freq.

TL I 0 2 0 2 (5%)
N 2 28 2 32 (82%)
C 0 3 2 5 (13%)
Freq. 2 (5%) 33 (87%) 4 (7%)

1159Software Quality Journal (2024) 32:1137–1174

1 3

Regarding test statement coverage, observe that the agile approach outperformed the
traditional approach by 40%. At a confidence level of 95%, the statistical test reveals a sig-
nificant difference (df = 38, p-value = 0.00003341). This finding confirms the alternative
hypothesis (H4-A) that test-first programming is superior to test-last programming in terms
of test set coverage.

However, at this time, when we remove results from test-last programmers that pro-
duced no test cases, the difference becomes non-significant (test-last mean test set cover-
age = 97%; test-first mean test set coverage = 98%; Wilcoxon test: p-value = 0.1459).
We believe that this happens mostly because the functions targeted in our experiments are
small, in which case few test cases can easily reach a high coverage.

On the other hand, also note that similarly to the interpretations for H1, it might also be
the case that pair programmers produce higher quality software later in the evolution of a
project, even considering the more fine-grained metric adopted in this paper. Since, in our
experiment, the subjects only developed a single functionality, it may be that if they had
produced more code, pair programming would increase system correctness in the end. In
any case, our study indicates that developers should be cautious while resorting to pair pro-
gramming in the development of auxiliary functionality.

5.1.2 Effort evaluation

Regarding effort, observe that the mean total development time for pair programming was
approximately 94% longer than for solo programming (Table 5, “Mean time”). The Wilcoxon
test confirms a statistically significant difference between the means at the 95% confidence
level (df = 45, p-value = 0.000009278). This result supports the alternative hypothesis (H5

-A) that, in terms of effort, solitary programming outperforms pair programming.
The mean total development time for the test-first experiment was approximately 13%

longer than for the test-last approach. The Wilcoxon test again revealed a statistically sig-
nificant difference at the 95% confidence level (df = 38, p-value = 0.0463). Such a result
supports the alternative hypothesis (H6-0) that test-last programming outperforms test-first
programming in terms of effort. Similar to the findings of other studies, we find that test-
first programming appears to have a negative effect on effort.

5.2 Replications with professionals

Tables 9 and 10 present the results of our experiments with professional programmers, and
Tables 11 and 12 present the statistics for the pair programming and test-first experiments
with respect to correctness, for the same subjects.

5.2.1 Reliability evaluation

For the pair programming replication with professionals, with respect to correctness,
note that soloists implemented 6 functions that were completely correct and 2 that were
incorrect (10%). On the other hand, pair programmers implemented 12 functions that
were correct (exactly twice more than solo programmers), and 0 incorrect ones. All other
implementations failed on at least one test case, but not all. So again, we see that pair
programming yields better results, also for professionals. It is noteworthy that in both
experiments – with novices and professionals –, none of the pairs implemented completely
incorrect functions.

1160 Software Quality Journal (2024) 32:1137–1174

1 3

We ran the statistical test to check whether the observed differences were significant.
At 95% confidence level, the Wilcoxon test does indicate a significant difference in terms
of correctness (df = 19, p-value = 0.00298100). Such a result also favors the alternative
hypothesis (H1-A) that pair programming outperforms solo programming with respect
to the correctness of auxiliary functions. This confirms our key finding that even for

Table 9 Results of the pair
programming experiment with
professionals – Rep.PP

FTSSL Functional Test Set Success Level, TDT Total Development
Time, SP Solo Programming, PP Pair Programming, I Incorrect, N
Neither correct nor incorrect, C Correct

Subj. FTSSL TDT Subj. FTSSL TDT

SP PP SP PP SP PP SP PP

1 C C 19 32 11 C C 4 10
2 N C 20 32 12 N C 6 10
3 N N 26 14 13 N N 8 48
4 N N 15 14 14 N N 18 48
5 I N 8 40 15 I N 10 4
6 N N 30 40 16 N N 3 4
7 N C 5 58 17 N C 6 10
8 N C 9 58 18 N C 6 10
9 C C 16 20 19 C C 4 14
10 C C 10 20 20 C C 2 14
Mean time (all subjects) 11.00 25.00

Table 10 Results of the test-first
experiment with professionals –
Rep.TF

Subj. FTSSL TDT Cov # TC

TL TF TL TF TL TF TL TF

1 N N 31 48 100.00% 100.00% 1 1
2 N N 13 35 86.00% 100.00% 1 1
3 I N 50 50 0.00% 0.00% 0 1
4 N N 31 35 0.00% 0.00% 0 0
5 N N 23 28 100.00% 100.00% 2 3
6 N C 37 23 100.00% 100.00% 3 5
7 N C 50 35 100.00% 100.00% 7 6
8 I N 10 22 0.00% 85.71% 0 2
9 N N 12 24 0.00% 0.00% 0 0
10 C C 30 15 0.00% 85.71% 0 3
11 N N 16 12 0.00% 83.33% 0 2
12 N C 14 24 0.00% 100.00% 0 8
13 N C 2 4 0.00% 83.33% 0 3
14 N N 10 6 0.00% 85.71% 0 2
15 N N 12 11 0.00% 83.33% 0 1
16 C N 19 19 0.00% 100.00% 0 2
17 N N 8 13 0.00% 85.71% 0 5
Mean 21.65 23.76 29% 76% 0.82 2.65

1161Software Quality Journal (2024) 32:1137–1174

1 3

supportive functionality, it appears that pair programming can bring benefits to developers,
alike for professionals.

With regard to the test-first replication with professionals, note that at this time, we
had a deviation from the novices experiment: professional programmers performed much
better when using test-first programming than when using test-last programming. Note that
incorrect implementations were only produced while test-last programming was being used
(2 subjects, 11.7%). Also, test-first programmers produced more than twice as many cor-
rect implementations as test-last programmers: five test-first programmers (29.4%) against
two test-last programmers (11.8%). This is an important finding, as it indicates that profes-
sionals can benefit more from the agile technique than novices.

At 95% confidence level, the Wilcoxon test indicates a statistically significant differ-
ence (df = 16, p-value = 0.03630000). This result favors the alternative hypothesis (H2

-A) that test-first programming outperforms test-last programming with respect to the
correctness of auxiliary functions.

When we look at test set size and coverage, we also find interesting results. Test-
first programmers produced, on average, 2.65 test cases per function, while test-last pro-
grammers produced only 0.82. 12 subjects produced no test cases while using test-last
programming. This once again provides evidence that when tests are left for later, they
might not be written at all. The Wilcoxon test confirms a significant difference at 95%
confidence level (df = 16, p-value = 0.00135600).

Tests produced when test-first programming was being used got higher coverage than
when test-last programming was being used. On average, tests covered 47% more state-
ments with the agile technique. At 95% confidence level, the Wilcoxon test confirms a
statistically significant difference (df = 16, p-value = 0.00272400).

Table 11 Correctness statistics
for the pair programming
experiment with professionals –
Rep.PP

SP Solo Programming, PP Pair Programming, I Incorrect, N Neither
correct nor incorrect, C Correct

PP

I N C Freq.

SP I 0 2 0 2 (10%)
N 0 6 6 12 (60%)
C 0 0 6 6 (30%)
Freq. 0 (0%) 8 (40%) 12 (60%)

Table 12 Correctness statistics
for the test-first experiment with
professionals – Rep.TF

TL Test Last, TF Test First, I Incorrect, N Neither correct nor incor-
rect, C Correct

TF

I N C Freq.

TL I 0 2 0 2 (11.8%)
N 0 9 4 13 (76.4%)
C 0 1 1 2 (11.8%)
Freq. 0 (0%) 12 (70.6%) 7 (29.4%)

1162 Software Quality Journal (2024) 32:1137–1174

1 3

5.2.2 Effort evaluation

Regarding the effort evaluation for the pair programming replication with profession-
als, results were similar to the experiment with novices. On average, pair programmers
took approximately 2.3 times more development time to develop functions than solo pro-
grammers. With respect to the statistical analysis, at 95% confidence level, the Wilcoxon
test confirms a statistically significant difference between the means (df = 19, p-value =
0.00101700). Such a result favors the alternative hypothesis (H5-A) that solo program-
ming outperforms pair programming with respect to effort, also for professionals.

For the test-first replication with professionals, results were quite surprising and
diverse from the experiment with novices. At this time, test-first programmers per-
formed similarly to test-last programmers in terms of development time, with only a 10%
increase in total development time, on average. The Wilcoxon statistical test confirms a
non-significant difference at 95% confidence level (df = 16, p-value = 0.06746000).
This outcome indicates that more experienced professionals may take more advantage
from test-first programming than novices. Note that professionals produced more reli-
able implementations, both with respect to correctness and test case completeness, but
taking approximately the same time required when test-last programming was used.

5.3 Summary of results

Table 13 summarizes our results in terms of the hypotheses formulated for our study,
described in Table 1. Note that, except for two hypotheses, results were consistent across
novice and professional subjects. The deviations are in favor of the agile approaches. In
particular, test-first professional programmers benefited more from the practice since
they did not take significantly more time when compared with test-last programming.
Moreover, their implementations were also improved in terms of correctness, whereas
for novices, only test case completeness was improved by test-first programming. In the
next section, we discuss our findings in more detail.

6 Discussions

In this section, we conduct further analysis of our findings and discuss some of their pos-
sible implications. Discussions are grouped by subject.

Pair programming Our results with respect to pair programming were quite interesting.
In particular, for both samples – novices and professionals –, the agile practice yielded
significantly better results with respect to correctness when compared with solo program-
ming. An important implication of such a result is the following. Since our test cases also
covered exceptional inputs (e.g., null and boundary values) and pair programmers were
more successful at producing code that passed such tests, it can be argued that the agile
practice supports the production of more robust code. This is very important, particularly
in the case of auxiliary functions, because such modules tend to be used by several parts of
the system and should thus be reliable.

1163Software Quality Journal (2024) 32:1137–1174

1 3

Ta
bl

e
13

Su

m
m

ar
y

of
 th

e
re

su
lts

 o
f o

ur
 e

xp
er

im
en

ts
 in

 te
rm

s o
f t

he
 fo

rm
ul

at
ed

 h
yp

ot
he

se
s f

or
 b

ot
h

sa
m

pl
es

H
 H

yp
ot

he
si

s,
SP

 S
ol

o
Pr

og
ra

m
m

in
g,

 P
P

Pa
ir

Pr
og

ra
m

m
in

g,
 T

F
Te

st-
Fi

rs
t,

TL
 T

es
t-L

as
t

Ex
pe

ri
m

en
ts

 w
ith

 n
ov

ic
es

R
ep

lic
at

io
ns

 w
ith

 p
ro

fe
ss

io
na

ls

N
ul

l h
yp

ot
he

sis
 (0

)
A

lte
rn

at
iv

e
H

yp
ot

he
sis

 (A
)

N
ul

l h
yp

ot
he

sis
 (0

)
A

lte
rn

at
iv

e
H

yp
ot

he
sis

 (A
)

H
1

C
or

re
ct

ne
ss

P
P
 =

 C
or

re
ct

ne
ss

S
P

C
or

re
ct

ne
ss

P
P
 >

 C
or

re
ct

ne
ss

S
P

C
or

re
ct

ne
ss

P
P
 =

 C
or

re
ct

ne
ss

S
P

C
or

re
ct

ne
ss

P
P
 >

 C
or

re
ct

ne
ss

S
P

H
2

C
or

re
ct

ne
ss

T
F
 =

 C
or

re
ct

ne
ss

T
L

C
or

re
ct

ne
ss

T
F
 >

 C
or

re
ct

ne
ss

T
L

C
or

re
ct

ne
ss

T
F
 =

 C
or

re
ct

ne
ss

T
L

C
or

re
ct

ne
ss

T
F
 >

 C
or

re
ct

ne
ss

T
L

H
3

Te
stS

iz
e T

F
 =

 T
es

tS
iz

e T
L

Te
stS

iz
e T

F
 >

 T
es

tS
iz

e T
L

Te
stS

iz
e T

F
 =

 T
es

tS
iz

e T
L

Te
stS

iz
e T

F
 >

 T
es

tS
iz

e T
L

H
4

Te
stC

ov
er

ag
e T

F
 =

 T
es

tC
ov

er
ag

e T
L

Te
stC

ov
er

ag
e T

F
 >

 T
es

tC
ov

er
ag

e T
L

Te
stC

ov
er

ag
e T

F
 =

 T
es

tC
ov

er
ag

e T
L

Te
stC

ov
er

ag
e T

F
 >

 T
es

tC
ov

er
ag

e T
L

H
5

Ef
fo

rt P
P
 =

 E
ffo

rt S
P

Ef
fo

rt P
P
 >

 E
ffo

rt S
P

Ef
fo

rt P
P
 =

 E
ffo

rt S
P

Ef
fo

rt P
P
 >

 E
ffo

rt S
P

H
6

Ef
fo

rt T
F
 =

 E
ffo

rt T
L

Ef
fo

rt T
F
 >

 E
ffo

rt T
L

Ef
fo

rt T
F
 =

 E
ffo

rt T
L

Ef
fo

rt T
F
 >

 E
ffo

rt T
L

1164 Software Quality Journal (2024) 32:1137–1174

1 3

Since system reliability is the quality driver, a failed test case in our scenario is para-
mount, especially true for our experimental environment setting. Since we applied func-
tional testing, each test covers a significant portion of the functionality (i.e., an input or
output equivalence class or a boundary value). Therefore, a failed test case significantly
impacts the system’s validity. Again, in this sense, our results indicate that pair program-
ming could prevent problems in auxiliary functions such as those reported by significant
corporations, as discussed in Sect. 1.

The production of more robust code by pair programmers might be related to the live
code inspection aspect of such a practice. While one programmer is writing code, the other
performs an online parallel code review of the implementation at hand. This can improve
the chances of revealing bugs even before they are introduced. In fact, code review seems
to be an effective practice to reveal faults, as evidenced by other empirical studies (Bavota
& Russo, 2015). The application of pair programming enables code review earlier, possibly
without the need for additional review sessions later on in the project.

Another possible implication of our results is related to the use of pair programming by
the industry. In fact, the application of such a practice inside companies comes in different
flavors. As commented in Sect. 1, pair programming is a controversial practice: some
strongly advocate its use while others are more skeptical about it (e.g., some managers
believe it’s inefficient (Matheny, 2015; Williams & Kessler, 2002); also, in a book by
Bertrand Meyer, it is regarded as one of the new and not good practices put forward by
some agile proponents (2014)). A recent survey involving more than 300 developers
working with agile development shows that the use of such a practice is not consistent
among practitioners (Williams, 2012) (it appeared with a higher standard deviation when
respondents were asked to evaluate its importance within agile development).

Although some companies practice pair programming always, most seem to apply it
only when dealing with complex code (also known as situational or moderate pair pro-
gramming (Trikha, 2014)). In this sense, our study indicates that pure pair programming,
that is, the use of the agile practice 100% of the time, could be an option to be consid-
ered by developers. This is because it appears to be effective even for the implementation
of auxiliary functions, that is, parts of the system that would not be initial candidates for
being coded with a moderate approach to pair programming. Another option would be to
apply the practice periodically, regardless of the type of function. In fact, some companies
have a policy of having at least two engineers look at every piece of code that goes to pro-
duction. Pairing is one way to comply with such a policy, and pre-merge code review is
another (Brock, 2015). However, while the latter requires an additional step in the develop-
ment process, the first does not because it embeds inspection into the coding task itself.

With respect to effort, it is important to note that pair programmers required signif-
icantly more time to implement functions when compared with solo programmers. One
of the reasons that might explain such an outcome is that the target functionalities in our
experiments were narrowly scoped. Some studies show that pair programming starts to
yield better productivity after some development time, caused, for instance, by pair jelling
or when applied to high-complexity software projects (Sun et al., 2016). Since the target
functions required little time to develop, subjects did not have time to take advantage of
the technique from an effort perspective. Another factor that played a role here is that pair
programmers usually require an initial setup time before starting to program. For instance,
pairs tend to discuss the task at hand before starting to code (which can be seen as a very
positive practice). Moreover, since, in some cases, pairs were not even acquainted, they
sometimes had to introduce themselves and talk for a while before starting to work. Even

1165Software Quality Journal (2024) 32:1137–1174

1 3

though these actions might only take a few minutes, since we are targeting small functions,
they probably had an impact on the effort outcomes.

Some of the previous studies (Williams et al., 2000; Canfora et al., 2007; L. Salge &
Berente, 2016) reached different conclusions with respect to effort, with pairs developing
sometimes 40–50% faster than solo programmers. However, only programmers with long-
standing industry experience were included, whereas ours also included a sample of nov-
ice programmers. Canfora et al.’s experiment (2007), on the other hand, addressed pair
designing and maintenance tasks of models such as use cases and class diagrams, and not
programming. L. Salge and Berente’s studies (2016) indicated that even though pairs seem
to code programs faster than individuals, such an effect is not statistically significant. Pairs
generally produce higher-quality code.

These differences and, more importantly, the fact that we targeted narrowly-scoped
functionality might explain the results reached in our experiment.

Demir and Seferoglu (2021) investigated the impact of pair programming on the state
of flow (a state of heightened focus and immersion in activities) and the quality of code in
coding education. The study found that pair programming significantly improved the flow
state, leading to better concentration, enjoyment, and intrinsic motivation. This enhanced
flow state resulted in higher code quality compared to solo programming due to real-
time feedback and knowledge sharing. However, the paper also highlighted the need for
more research in different educational settings and with varied programming tasks to fully
understand the implications of pair programming. This call for further research, as well as
the observed improvement in code quality through pair programming, aligns with the find-
ings and recommendations of our paper.

Zieris and Prechelt (2021) explored the dynamics of pair programming (PP), arguing
that proficiency is not directly linked to experience. The authors recognized that pair pro-
gramming can have many benefits in the industry but also acknowledge that it involves
some skills that might take time to learn and improve. They aimed to provide a better
understanding of what makes pair programming successful by identifying key elements
of pair programming skills and problematic behavioral patterns that can affect its success.
They also mentioned open questions such as how PP novices manage to have good PP ses-
sions and which elements of PP skill can be acquired through what types of experience.

For pair programming, an additional point for further investigation is whether pairing
novice and experienced programmers would yield better results in our context. In the case
of auxiliary functionality, the different backgrounds might help to address the involved
nuances better. For instance, novice programmers might help soften the impact of program-
ming vices present in experienced programmers (e.g., as will be discussed, more profes-
sional programmers tended not to test their implementations when using test-last program-
ming); and experienced programmers might help overcoming skill deficiencies present in
novice programmers (e.g., novice test-first programmers did not benefit as much from the
practice as professionals).

Test‑first programming Our results with test-first programming were quite interesting as
well. In particular, both novices and professionals produced larger and higher-coverage test
sets when using such a practice. This is an important result in favor of the agile approach
since it encouraged the implementation of better and more test cases than test-last pro-
gramming. Test-first programming also significantly improved the correctness of imple-
mentations for professional programmers.

1166 Software Quality Journal (2024) 32:1137–1174

1 3

The fact that many test-last programmers did not write a single test for their
implementations – twelve professionals (around 70%) and sixteen novices (around 40%)
– can be seen as a negative effect of the traditional approach. It is also consistent with the
argument of test-first promoters that if you leave the task of testing programs to the end of
the developmental cycle, you might end up not testing them at all. It is interesting to see
that this can also hold for the development of auxiliary functions, such as the ones selected
for our experiments. It is also noteworthy that such an occurrence was more consistent
among professional developers, as 70% did not test their implementations with test-last
programming (against 40% from the novices sample).

Having at least a minimum set of tests for each function is generally seen as a posi-
tive characteristic of a software system. Indeed, two decades ago, Beck (2002) presci-
ently asserted that “any program feature without an automated test simply does not exist”.
This proclamation, still strikingly relevant today, emphasizes that the absence of regres-
sion tests for certain functions can significantly undermine the assurance typically sought
in the practice of TDD. Such promoted “safety net” might help alleviating the fear that
added code might have broken other parts of the system and can also improve its reliabil-
ity. Moreover, while regression testing the system, better test sets can improve the chances
of finding faults at the integration of auxiliary functions with other parts of the system
when these parts are changed later on in a project. Lower coverage test sets can fail to
reveal the introduced faults because the paths in the program that the changes could sensi-
tize might not be executed.

Note that although test-first programming promoted the implementation of larger and
higher-coverage test sets, it did not yield better results in terms of correctness for novices.
The development of auxiliary functions with lower complexity could have been impacted
this time. It might be the case that since developers perceived functions as easy to be
implemented, they tended to overlook their subtleties. However, this problem occurred less
in the context of pair programming, as one of the developers might be more careful than
the other about such nuances. It also occurred less for professional developers, as this sam-
ple was more successful with test-first programming than with test-last programming.

It must also be noted that test-first programming does not prescribe any testing technique
or criterion to be followed, and even though the novice programmers already had knowledge
about functional testing and other testing techniques, they might have developed test cases
only to drive the implementation. Also note that other properties of the implemented functions
that might have been affected by the practices were not analyzed (e.g., design quality factors,
which are sometimes pointed out to be enhanced by test-driven development).

Novice programmers also took significantly more time to develop functions when using
test-first programming. This is mainly due to the additional effort of having to develop test
cases first. As commented before, we noticed that, even though we encouraged subjects
to test their implementations while using the test-last approach, many did not develop any
tests. In fact, when we remove their results from the data set, the difference between the
mean times becomes non-significant. For test-last programming, it becomes 24.77, and for
test-first programming, 24.22 (Wilcoxon test: p-value = 0.5446). Since test-first program-
ming requires developers to drive the implementation with tests, differently from test-last
programming, the majority of subjects developed test cases while applying that approach.
It must be noted, however, that for professionals, no significant difference in terms of effort
was observed, even when we consider programmers that did not test their implementations
while using test-last programming.

1167Software Quality Journal (2024) 32:1137–1174

1 3

General comments The outcomes of our experiments seem to indicate two important
insights. For pair programming, it appears that indeed four eyes are better than two Bavota
and Russo (2015). That is, having two programmers working on a same implementation
helps avoiding faults that would otherwise go undetected by a single developer. This can be
related to the live code inspection aspect of the agile practice, as commented before. It is
also interesting to see that the agile practices performed very similarly: both improved the
reliability of auxiliary functions in terms of correctness and/or test set completeness, and
both sometimes required more effort in terms of development time.

Our results suggest that pair programming and test-first programming are thus impor-
tant practices to improve code quality, in particular by avoiding the introduction of subtle
bugs. One can even argue that the Goto Fail and HeartBleed Bland (2014) security bugs
that have appeared in the media, although not necessarily in auxiliary functions, could have
been avoided if these practices were used. For instance, it is reasonable to suppose that the
extra goto statement in the Goto Fail bug would be detected if two programmers were
developing the code. On the other hand, as discussed by Bland (2014), if unit tests were
being used to guide the design of such a block of code, the extra goto statement could
also be avoided.

It should be clear that our experiments take into account two main considerations while
developing software: reliability in terms of (1) functional correctness and (2) test set size
and coverage; and effort in terms of total development time. Agile practices might also
have an impact on other aspects, such as quality in terms of design metrics, knowledge dis-
semination, and programmer satisfaction Romano et al. (2019). This should also be taken
into account while considering the application of pair programming and test-first program-
ming to develop auxiliary functions.

In reference to the five categories of factors that were identified as contributing to
inconclusive TDD experiments by Ghafari et al. (2020), we present arguments that estab-
lish correlations between these categories and our study.

1. TDD Definition: In this research, we adopted a specific interpretation of TDD, focusing
on the initial stage where tests precede function implementation. This approach allowed
us to investigate the impacts of this test-first phase in a granular manner. However, our
study did not encompass the full spectrum of TDD practices, particularly iterative code
writing, and refactoring. This limitation may restrict the comprehensiveness of our
insights, emphasizing only the benefits and drawbacks of the test-first stage rather than
the entire TDD process. This caveat should be considered when interpreting our results.

2. Participants Selection: On the positive side, our participant selection process was
designed to include a varied mix of individuals, with different levels of programming
experience. This ensured a rich set of perspectives, potentially making our results more
representative of a broader population of developers, thus enhancing the external validity
of our findings. On the other hand, a limitation lies in the fact that not all participants
were seasoned TDD practitioners. While this allowed us to capture the learning curve
and potential difficulties faced by beginners, it also meant that we may not have fully
leveraged the benefits of TDD as would be done by seasoned practitioners. Therefore,
our results may lean towards the challenges and hurdles of TDD adoption rather than
its potential benefits when executed by seasoned practitioners. Consequently, the gen-
eralizability of our findings to contexts involving experienced TDD practitioners could
be limited.

1168 Software Quality Journal (2024) 32:1137–1174

1 3

3. Task Selection: The selection of tasks for TDD is pivotal for the outcome of the research.
In our studies, we did not limit ourselves to synthetic tasks (easily comparable, for exam-
ple, in terms of complexity). We used a variety of short tasks, including both synthetic and
real-world tasks, thus ensuring our results were not confined to a specific type of task. This
diversity in tasks used for our research contributes to enhancing the strength of our findings.

4. Type of Project: Our study primarily engaged in “greenfield” projects, where auxiliary
functionalities were developed from scratch. This approach allowed us to effectively
control the project environment and isolate the impacts of TDD practices. However, the
lack of examination in “brownfield” projects involving pre-existing codebases might
hinder the extrapolation of our findings to such contexts, which are common in the
software development industry.

5. Comparisons: We focused on comparing the test-first approach with the test-last
approach. This decision was based on our primary interest in the sequence of testing
and coding rather than the broader scope of the entire TDD process. Positively, this
allowed us to provide a clear and direct contrast between these two practices, thereby
generating specific insights that contribute to the existing body of knowledge on the
subject. The simplicity of our comparison also helped eliminate potential confounding
factors that might have clouded our findings.

In conclusion, despite potential ambiguities in TDD research due to five identified factors,
our studies have strived to address these issues. Our aim was to enhance the reliability and
validity of our findings, potentially offering significant insights into TDD application.

7 Study limitations

A study by Siegmund et al. (2015) discusses the trade-offs between internal and external
validity in software engineering experiments. According to their results, we can argue that
our study combines a good balance between these validity aspects. In particular, internal
validity was increased by controlling several variables (e.g., by using a set of well-defined
auxiliary functions and systematically developed test sets); and external validity was
increased by including a sample of 37 professional developers. Despite having a smaller
sample of professionals compared to novices, this discrepancy does not undermine our
study’s validity. It is important to note that our approach did not aim for a direct compari-
son between these groups, given that the level of experience could significantly affect the
effectiveness of the programming methodologies examined.

Therefore, issues with our experiments still need to be resolved. The following subsections
examine these limitations in light of the three kinds of validity threats listed by Wohlin et al.
(2000). There are various potential threats to an experiment in each area. We provide a list of
potential threats for each category, measures taken to decrease each risk, and recommenda-
tions for enhancements in subsequent assessments.

7.1 Internal validity

The lack of control over certain variables, such as the subjects’ skill (beyond being in
the same semester of the course) and the method of pairings (which was random), may
have posed a threat to our experiments’ internal validity. However, the repeated measures

1169Software Quality Journal (2024) 32:1137–1174

1 3

design employed in the study decreased the likelihood of skill level influencing our find-
ings, as the same students performed both test-last and test-first in solo and pair program-
ming roles. Nonetheless, the random pairing approach may have affected the pair program-
ming experiment. We believe that the sample size of 46 subjects performing solo and pair
programming mitigated the impact of this threat, as various skill-based pairings may have
taken place. We followed the dictum “block what you can, randomize what you cannot”
because blocking pairings based on skills could have resulted in a small sample size. To
eliminate this threat in future evaluations, we suggest blocking pairings based on skills, as
done in some studies. However, a larger sample size may be required for this method.

Mortality, which refers to dropouts from the experiment as discussed by Wohlin et al.
(2000), is another aspect of internal validity in our experiments with novices. Since 123
students were invited to participate in the primary experiments, the tasks did not corre-
spond to the initial assignments. This could affect the balance of the assignments that were
considered during the experiment’s design. Due to the large sample sizes in both investi-
gations (46 for the pair programming experiment and 39 for the test-first experiment), an
adequate balance can still be maintained. This is strengthened by the initial assignment set
that included redundant tasks in case some students dropped out.

7.2 External validity

Our participant selection process brought together a diverse group, enhancing the external
validity and broadening the potential applicability of our results. The representativeness of
the chosen functions, however, poses a threat to the external validity of our experiments.
Due to their simplicity, one could claim that the functionalities do not represent the popula-
tion of auxiliary functions. However, as stated previously, we intended to select functions
with a limited scope to conduct a conservative evaluation. Since agile practices have had an
impact on the development of specified functions in some instances, we can anticipate that
they will also have an impact on more complex functions. In any event, undertaking addi-
tional experiments with larger auxiliary functions is one way to reduce this threat further.
In the future, we intend to replicate our experiments using open-source systems with more
complex auxiliary functions.

7.3 Construct validity

Construct validity is the extent to which the operationalization of a study’s measures cor-
responds to the constructs in the real world. The construct validity of our pair program-
ming experiment involving novice participants was likely undermined by their minimal or
nonexistent prior experience with pair programming. Furthermore, most students had not
previously collaborated with their respective partners in a programming context. A poten-
tial deficiency of our study lies in not comparing our approach with Iterative Test Last
(ITL). ITL, much like TDD, fosters an iterative process, but the order of operations differs.
In ITL, tests are written immediately after implementing a small code change, as opposed
to before the code, as in TDD. Consequently, our findings regarding the effects of pair
programming may be conservative. It should also be noted that we separately analyzed the
agile practices. In other words, we did not study the combined effect of pair programming
and test-first programming.

1170 Software Quality Journal (2024) 32:1137–1174

1 3

8 Conclusion

The effectiveness and impact of agile practices on software engineering remain a topic
of ongoing research and debate in the software development community. Although most
studies claim that further research is needed to better understand the advantages and dis-
advantages of Test-Driven Development (TDD), they have not yet directly tackled the
development of auxiliary functionality with respect to the correctness gain and impact on
time-to-market.

Our empirical investigation involved a total of 37 professional developers and 85 students
and investigated the following factors: reliability in terms of functional correctness, test set
size and coverage, and effort in terms of total development time. In the pair programming
experiment with novices, the mean total development time was found to be 19.59 for solo
programming and 37.91 for pair programming. This indicates that pair programming might
require more time, but it also tends to increase reliability in terms of correctness.

In the test-first replication with professionals, results were quite surprising and diverse
from the experiment with novices. Test-first programmers performed similarly to test-last
programmers in terms of development time, with only a 10% increase in total development
time, on average. This outcome indicates that more experienced professionals may take
more advantage of test-first programming than novices. Note that professionals produced
more reliable implementations with respect to correctness and test case completeness but
took approximately the same time required when test-last programming was used.

These findings have exciting implications for the software engineering field, and we
believe our results are solid because our experiments balanced internal and external valid-
ity aspects. In particular, internal validity was increased by controlling several variables,
such as using a set of well-defined auxiliary functions and systematically developed test
sets. Results suggest that adopting pair programming and test-first programming can lead
to the production of more robust and reliable code. This is particularly relevant for devel-
oping auxiliary functions, which are often used by several system parts and thus need
reliability. However, our findings indicate that the experience level of the developers can
influence the effectiveness of agile practices such as PP and TDD. This underscores the
need for additional research to assess how these practices can be most effectively deployed
within diverse contexts and team structures. Moreover, these findings should be interpreted
cautiously due to the inconclusive studies in the literature. For example, others, highlighted
numerous factors potentially contributing to variations in TDD research outcomes, and
these factors subsequently impact the practice’s applicability to software practitioners.

In terms of future research, further investigation could focus on the impact of these
practices on more complex functions. Additionally, it would be beneficial to explore how
these practices can be combined for maximum effectiveness. For instance, how does PP
influence the effectiveness of test-first programming and vice versa? Furthermore, we will
replicate our study in the context of DPP (Distributed Pair-Programming) to see how it
fares when working with programmers in remote locations. This extension would enrich
our understanding of how agile practices adapt and contribute to a virtual work scenario,
which has become increasingly common in the software development landscape. Our
research contributes with a distinct empirical perspective to the ongoing discussions in
software engineering, subtly affirming the potential advantages of pair programming and
test-first programming in developing auxiliary functions to enhance code correctness and

1171Software Quality Journal (2024) 32:1137–1174

1 3

reliability. It enriches the existing body of knowledge, providing a fresh lens to the lit-
erature and gently nudging toward unexplored paths for future research, particularly in the
realm of agile development practices.

Author contributions All authors contributed equally to this work (study conception, design, material prep-
aration, data collection and analysis, and writing).

Funding Partial financial support was received from Fundação de Amparo à Pesquisa do Estado de São
Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Availability of data and materials The authors declare that the data (programs, test sets, function descrip-
tions, and more) supporting the findings of this study are available within the paper and are accessible via
the following link: http:// www. ict. unife sp. br/ fsilv eira/ data/ Softw areTe sting Exper iment_ data. zip.

Declarations

Conflicts of interest The authors have no relevant financial or non-financial interests to disclose.

References

Abrahamsson, P., Hanhineva, A., & Jäälinoja, J. (2005). Improving business agility through technical solu-
tions: a case study on test-driven development in mobile software development. In R. Baskerville, L.
Mathiassen, J. Pries-Heje, & J. DeGross (Eds.), IFIP Advances in Information and Communication
Technology (pp. 227–243). Germany: Springer.

Arisholm, E., Gallis, H., Dyba, T., & Sjoberg, D. I. (2007). Evaluating pair programming with respect to
system complexity and programmer expertise. IEEE Transactions on Software Engineering, 33, 65–86.
https:// doi. org/ 10. 1109/ TSE. 2007. 17

Baldassarre, M. T., Caivano, D., Fucci, D., Juristo, N., Romano, S., Scanniello, G., & Turhan, B. (2021).
Studying test-driven development and its retainment over a six-month time span. Journal of Systems
and Software, 176, 110937. https:// doi. org/ 10. 1016/j. jss. 2021. 110937

Bavota, G., & Russo, B. (2015). Four eyes are better than two: On the impact of code reviews on software
quality. 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME) (pp.
81–90). https:// doi. org/ 10. 1109/ ICSM. 2015. 73324 54

Beck, K. (2002). Test Driven Development: By Example. Inc, USA: Addison-Wesley Longman Publishing Co.
Begel, A., & Simon, B. (2008). Novice software developers, all over again. Proc. of the ICER ’08 (pp.

3–14). New York, NY, USA: ACM.
Bella, E., Fronza, I., Phaphoom, N., Sillitti, A., Succi, G., & Vlasenko, J. (2013). Pair programming and

software defects-a large, industrial case study. IEEE Transactions on Software Engineering, 39(7),
930–953. https:// doi. org/ 10. 1109/ TSE. 2012. 68

Bissi, W., Serra Seca Neto, A. G., & Emer, M. C. F. P. (2016). The effects of test driven development on
internal quality, external quality and productivity: A systematic review. Information and Software
Technology, 74, 45–54. https:// doi. org/ 10. 1016/j. infsof. 2016. 02. 004

Black Duck Software Inc. (2014). Open Hub Code Search. https:// www. openh ub. net/. Accessed 07 Jun 2021
Bland, M. (2014) Goto Fail, Heartbleed, and Unit Testing Culture. http:// marti nfowl er. com/ artic les/ testi ng-

cultu re. html. Accessed 07 Jun 2021
Brock, Z. (2015) What tech companies do a lot of pair programming? http:// qr. ae/ Rkh8Gl. Accessed 07

Jun 2021
Canfora, G., Cimitile, A., Garcia, F., Piattini, M., & Visaggio, C. A. (2007). Evaluating performances

of pair designing in industry. Journal of Systems and Software, 80, 1317–1327. https:// doi. org/ 10.
1016/j. jss. 2006. 11. 004

Cellan-Jones, R. (2010). Sony’s leap year bug. http:// www. bbc. co. uk/ blogs/ there porte rs/ roryc ellan jones/
2010/ 03/ sonys_ mille nnium_ bug. html. Accessed 07 Jun 2021

da Silva Estácio, B. J., & Prikladnicki, R. (2015). Distributed pair programming: A systematic literature
review. Information and Software Technology, 63, 1–10. https:// doi. org/ 10. 1016/j. infsof. 2015. 02. 011

http://www.ict.unifesp.br/fsilveira/data/SoftwareTestingExperiment_data.zip
https://doi.org/10.1109/TSE.2007.17
https://doi.org/10.1016/j.jss.2021.110937
https://doi.org/10.1109/ICSM.2015.7332454
https://doi.org/10.1109/TSE.2012.68
https://doi.org/10.1016/j.infsof.2016.02.004
https://www.openhub.net/
http://martinfowler.com/articles/testing-culture.html
http://martinfowler.com/articles/testing-culture.html
http://qr.ae/Rkh8Gl
https://doi.org/10.1016/j.jss.2006.11.004
https://doi.org/10.1016/j.jss.2006.11.004
http://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2010/03/sonys_millennium_bug.html
http://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2010/03/sonys_millennium_bug.html
https://doi.org/10.1016/j.infsof.2015.02.011

1172 Software Quality Journal (2024) 32:1137–1174

1 3

Dagenais, B., Ossher, H., Bellamy, R. K. E., Robillard, M. P., & Vries, J. P. (2010). Moving into a new
software project landscape. Proc. of the ICSE ’10 (pp. 275–284). New York, NY, USA: ACM.

Demir, Ö., & Seferoglu, S. S. (2021). A comparison of solo and pair programming in terms of flow
experience, coding quality, and coding achievement. Journal of Educational Computing Research,
58(8), 1448–1466. https:// doi. org/ 10. 1177/ 07356 33120 949788

Desai, C., Janzen, D., & Savage, K. (2008). A survey of evidence for test-driven development in aca-
demia. ACM SIGCSE Bulletin, 40, 97–101. https:// doi. org/ 10. 1145/ 13836 02. 13836 44

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. (2012). A decade of agile methodologies: Towards
explaining agile software development. Journal of Systems and Software, 85, 1213–1221. https://
doi. org/ 10. 1016/j. jss. 2012. 02. 033

Edwards, S. H. (2004). Using software testing to move students from trial-and-error to reflection-in-
action. SIGCSE Bulletin, 36, 26–30. https:// doi. org/ 10. 1145/ 10281 74. 971312

Erdogmus, H., Morisio, M., & Torchiano, M. (2005). On the effectiveness of the test-first approach to
programming. IEEE Transactions on Software Engineering, 31, 226–237. https:// doi. org/ 10. 1109/
TSE. 2005. 37

Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., & Juristo, N. (2017). A dissection of the test-driven
development process: Does it really matter to test-first or to test-last? IEEE Transactions on Soft-
ware Engineering, 43(7), 597–614. https:// doi. org/ 10. 1109/ TSE. 2016. 26168 77

Fucci, D., Romano, S., Baldassarre, M. T., Caivano, D., Scanniello, G., Turhan, B., & Juristo, N. (2018).
A longitudinal cohort study on the retainment of test-driven development. Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. ESEM
’18 (pp. 18–11810). New York, NY, USA: ACM. https:// doi. org/ 10. 1145/ 32392 35. 32405 02

George, B., & Williams, L. (2003). An initial investigation of test driven development in industry. Proc.
of the ACM SAC 2003. SAC ’03 (pp. 1135–1139). New York, NY, USA: ACM. https:// doi. org/ 10.
1145/ 952532. 952753

Ghafari, M., Eggiman, M., & Nierstrasz, O. (2019). Testability first! 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM) (pp. 1–6). https:// doi.
org/ 10. 1109/ ESEM. 2019. 88701 70

Ghafari, M., Gross, T., Fucci, D., & Felderer, M. (2020). Why research on test-driven development is
inconclusive? Proceedings of the 14th ACM / IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM). ESEM ’20. New York, NY, USA: Association for
Computing Machinery. https:// doi. org/ 10. 1145/ 33824 94. 34106 87

Guerra, E., & Aniche, M. (2016). Chapter 9 - achieving quality on software design through test-driven
development. In I. M. S. A. G. Tekinerdogan (Ed.), Software Quality Assurance (pp. 201–220).
Boston: Morgan Kaufmann. https:// doi. org/ 10. 1016/ B978-0- 12- 802301- 3. 00009-0

Hannay, J. E., Dybå, T., Arisholm, E., & Sjøberg, D. I. K. (2009). The effectiveness of pair program-
ming: A meta-analysis. Information and Software Technology, 51, 1110–1122. https:// doi. org/ 10.
1016/j. infsof. 2009. 02. 001

IEEE. (1990). Ieee standard glossary of softw. eng. terminology. IEEE Standard Glossary of Softw. Eng.
Terminology. New York: IEEE Computer Society Press.

Karac, E. I., Turhan, B., & Juristo, N. (2019). A controlled experiment with novice developers on the impact
of task description granularity on software quality in test-driven development. IEEE Transactions on
Software Engineering. https:// doi. org/ 10. 1109/ TSE. 2019. 29203 77

Kazerouni, A. M., Shaffer, C. A., Edwards, S. H., & Servant, F. (2019). Assessing incremental testing prac-
tices and their impact on project outcomes. Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. SIGCSE ’19 (pp. 407–413). New York, NY, USA: Association for Com-
puting Machinery. https:// doi. org/ 10. 1145/ 32873 24. 32873 66

Krasner, H. (2021). The cost of poor software quality in the us: A 2020 report. Technical Report CISQ-
TR-2021-01, Consortium for Information & Software Quality. Accessed 26 Mar 2021. https:// www.
it- cisq. org/ the- cost- of- poor- softw are- quali ty- in- the- us-a- 2020- report/

L. Salge, C.A., Berente, N. (2016). Pair programming vs. solo programming: What do we know after 15
years of research? In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp.
5398–5406. https:// doi. org/ 10. 1109/ HICSS. 2016. 667

Latorre, R. (2014). Effects of developer experience on learning and applying unit test-driven development. IEEE
Transactions on Software Engineering, 40(4), 381–395. https:// doi. org/ 10. 1109/ TSE. 2013. 22958 27

Lemos, O. A. L., Bajracharya, S., Ossher, J., Masiero, P. C., & Lopes, C. (2011). A test-driven approach to
code search and its application to the reuse of auxiliary functionality. Information and Software Tech-
nology, 53, 294–306.

Lemos, O. A. L., Ferrari, F. C., Silveira, F. F., & Garcia, A. (2012). Development of auxiliary functions:
Should you be agile? an empirical assessment of pair programming and test-first programming. 2012

https://doi.org/10.1177/0735633120949788
https://doi.org/10.1145/1383602.1383644
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1145/1028174.971312
https://doi.org/10.1109/TSE.2005.37
https://doi.org/10.1109/TSE.2005.37
https://doi.org/10.1109/TSE.2016.2616877
https://doi.org/10.1145/3239235.3240502
https://doi.org/10.1145/952532.952753
https://doi.org/10.1145/952532.952753
https://doi.org/10.1109/ESEM.2019.8870170
https://doi.org/10.1109/ESEM.2019.8870170
https://doi.org/10.1145/3382494.3410687
https://doi.org/10.1016/B978-0-12-802301-3.00009-0
https://doi.org/10.1016/j.infsof.2009.02.001
https://doi.org/10.1016/j.infsof.2009.02.001
https://doi.org/10.1109/TSE.2019.2920377
https://doi.org/10.1145/3287324.3287366
https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report/
https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report/
https://doi.org/10.1109/HICSS.2016.667
https://doi.org/10.1109/TSE.2013.2295827

1173Software Quality Journal (2024) 32:1137–1174

1 3

34th International Conference on Software Engineering (ICSE), (pp. 529–539). https:// doi. org/ 10.
1109/ ICSE. 2012. 62271 63

Lemos, O. A. L., Silveira, F. F., Ferrari, F. C., & Garcia, A. (2018). The impact of software testing education
on code reliability: An empirical assessment. Journal of Systems and Software, 137, 497–511. https://
doi. org/ 10. 1016/j. jss. 2017. 02. 042

Madeyski, L. (2010). Test-Driven Development: An Empirical Evaluation of Agile Practice (1st ed.). Berlin:
Springer.

Matheny, K. (2015). Why is it that when pair programming produces better code, almost no company prac-
tices it? http:// qr. ae/ RkhnlG. Accessed 07 Jun 2021

Meyer, B. (2014). Agile!: The Good, the Hype and the Ugly (1st ed.). Berlin: Springer.
Montgomery, D. C. (2006). Design and Analysis of Experiments. New York: John Wiley & Sons.
Munir, H., Moayyed, M., & Petersen, K. (2014). Considering rigor and relevance when evaluating test

driven development: A systematic review. Information and Software Technology, 56(4), 375–394.
https:// doi. org/ 10. 1016/j. infsof. 2014. 01. 002

Myers, G. J., Sandler, C., Badgett, T., & Thomas, T. M. (2004). The Art of Software Testing (2nd ed.). New
York: John Wiley & Sons.

Nagappan, N., Maximilien, E. M., Bhat, T., & Williams, L. (2008). Realizing quality improvement through
test driven development: Results and experiences of four industrial teams. Empirical Software Engi-
neering, 13(3), 289–302.

Pressman, R. S., & Maxim, B. R. (2020). Software Engineering: A Practitioner’s Approach. Berlin:
McGraw-Hill Education.

Rafique, Y., & Mišić, V. B. (2013). The effects of test-driven development on external quality and produc-
tivity: A meta-analysis. IEEE Transactions on Software Engineering, 39(6), 835–856. https:// doi. org/
10. 1109/ TSE. 2012. 28

Romano, S., Fucci, D., Baldassarre, M. T., Caivano, D., & Scanniello, G. (2019). An empirical assessment
on affective reactions of novice developers when applying test-driven development. In X. Franch, T.
Männistö, & S. Martínez-Fernández (Eds.), Product-Focused Software Process Improvement (pp.
3–19). Cham: Springer.

Salleh, N., Mendes, E., & Grundy, J. (2010). Empirical studies of pair programming for CS/SE teaching in
higher education: A systematic literature review. IEEE Transactions on Software Engineering. https://
doi. org/ 10. 1109/ TSE. 2010. 59. PrePrints.

Saltz, J.S., Shamshurin, I. (2017). Does pair programming work in a data science context? an initial case
study. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 2348–2354. https:// doi. org/
10. 1109/ BigDa ta. 2017. 82581 89

Santos, A., Vegas, S., Dieste, O., Uyaguari, F., Tosun, A., Fucci, D., Turhan, B., Scanniello, G., Romano,
S., Karac, I., Kuhrmann, M., Mandić, V., Ramač, R., Pfahl, D., Engblom, C., Kyykka, J., Rungi, K.,
Palomeque, C., Spisak, J., … Juristo, N. (2021). A family of experiments on test-driven development.
Empirical Software Engineering, 26(3), 42. https:// doi. org/ 10. 1007/ s10664- 020- 09895-8

Shull, F., Singer, J., & Sjøberg, D. I. K. (2008). Guide to Advanced Empirical Software Engineering. Secau-
cus, NJ, USA: Springer.

Siegmund, J., Siegmund, N., & Apel, S. (2015). Views on internal and external validity in empirical soft-
ware engineering. 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering
(Vol. 1, pp. 9–19). https:// doi. org/ 10. 1109/ ICSE. 2015. 24

Sillitti, A., Succi, G., & Vlasenko, J. (2012). Understanding the impact of pair programming on developers
attention: A case study on a large industrial experimentation. 2012 34th International Conference on
Software Engineering (ICSE) (pp. 1094–1101). https:// doi. org/ 10. 1109/ ICSE. 2012. 62271 10

Spence, N. (2011). Apple offers advice on iPhone alarm bug. http:// www. macwo rld. com/ artic le/ 11555 09/
dst_ bug_ iphone. html. Accessed 07 Jun 2021

Sun, W., Marakas, G., & Aguirre-Urreta, M. (2016). The effectiveness of pair programming: Software pro-
fessionals’ perceptions. IEEE Software, 33(4), 72–79. https:// doi. org/ 10. 1109/ MS. 2015. 106

Swamidurai, R., & Umphress, D. (2012). Collaborative-adversarial pair programming. ISRN. Software
Engineering. https:// doi. org/ 10. 5402/ 2012/ 516184

Tosun, A., Dieste, O., Vegas, S., Pfahl, D., Rungi, K., & Juristo, N. (2021). Investigating the impact of
development task on external quality in test-driven development: An industry experiment. IEEE Trans-
actions on Software Engineering, 47(11), 2438–2456. https:// doi. org/ 10. 1109/ TSE. 2019. 29498 11

Trikha, R. (2014). Pair Programming: Yay or Nay? http:// www. cyber coders. com/ insig hts/ pair- progr amming- yay-
or- nay. Accessed 07 Jun 2021

Weimer, W., Forrest, S., Le Goues, C., & Nguyen, T. (2010). Automatic program repair with evolutionary
computation. Communications of the ACM, 53, 109–116.

https://doi.org/10.1109/ICSE.2012.6227163
https://doi.org/10.1109/ICSE.2012.6227163
https://doi.org/10.1016/j.jss.2017.02.042
https://doi.org/10.1016/j.jss.2017.02.042
http://qr.ae/RkhnlG
https://doi.org/10.1016/j.infsof.2014.01.002
https://doi.org/10.1109/TSE.2012.28
https://doi.org/10.1109/TSE.2012.28
https://doi.org/10.1109/TSE.2010.59
https://doi.org/10.1109/TSE.2010.59
https://doi.org/10.1109/BigData.2017.8258189
https://doi.org/10.1109/BigData.2017.8258189
https://doi.org/10.1007/s10664-020-09895-8
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1109/ICSE.2012.6227110
http://www.macworld.com/article/1155509/dst_bug_iphone.html
http://www.macworld.com/article/1155509/dst_bug_iphone.html
https://doi.org/10.1109/MS.2015.106
https://doi.org/10.5402/2012/516184
https://doi.org/10.1109/TSE.2019.2949811
http://www.cybercoders.com/insights/pair-programming-yay-or-nay
http://www.cybercoders.com/insights/pair-programming-yay-or-nay

1174 Software Quality Journal (2024) 32:1137–1174

1 3

Williams, L. (2012). What agile teams think of agile principles. Communications of the ACM, 55(4), 71–76.
https:// doi. org/ 10. 1145/ 21338 06. 21338 23

Williams, L., & Kessler, R. (2002). Pair Programming Illuminated (p. 71). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc. Chap. 15.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the case for pair pro-
gramming. IEEE Software, 17(4), 19–25. https:// doi. org/ 10. 1109/ 52. 854064

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000). Experimentation in
Software Engineering: an Introduction. Norwell, MA, USA: Kluwer Academic Publishers.

Xu, F., & Correia, A.-P. (2023). Adopting distributed pair programming as an effective team learning
activity: a systematic review. Journal of Computing in Higher Education. https:// doi. org/ 10. 1007/
s12528- 023- 09356-3

Zhong, B., & Li, T. (2020). Can pair learning improve students’ troubleshooting performance in robotics
education? Journal of Educational Computing Research, 58(1), 220–248.

Zieris, F., & Prechelt, L. (2021). Two elements of pair programming skill. Proceedings of the 43rd Inter-
national Conference on Software Engineering: New Ideas and Emerging Results. ICSE-NIER ’21 (pp.
51–55). New York: IEEE Press. https:// doi. org/ 10. 1109/ ICSE- NIER5 2604. 2021. 00019

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Otávio Lemos1 · Fábio Silveira1 · Fabiano Ferrari2 · Tiago Silva1 · Eduardo Guerra3 ·
Alessandro Garcia4

 * Fábio Silveira
 fsilveira@unifesp.br

 Otávio Lemos
 otavio.lemos@unifesp.br

 Fabiano Ferrari
 fcferrari@ufscar.br

 Tiago Silva
 silvadasilva@unifesp.br

 Eduardo Guerra
 guerraem@gmail.com

 Alessandro Garcia
 afgarcia@inf.puc-rio.br

1 Science and Technology Institute, Federal University of São Paulo, São Paulo, Brazil
2 Computing Department, Federal University of São Carlos, São Carlos, Brazil
3 Faculty of Engineering, Free University of Bolzen-Bolzano, Bolzano, Italy
4 Informatics Department, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil

https://doi.org/10.1145/2133806.2133823
https://doi.org/10.1109/52.854064
https://doi.org/10.1007/s12528-023-09356-3
https://doi.org/10.1007/s12528-023-09356-3
https://doi.org/10.1109/ICSE-NIER52604.2021.00019

	Unraveling the code: an in-depth empirical study on the impact of development practices in auxiliary functions implementation
	Abstract
	1 Introduction
	2 Background
	2.1 Software testing and testing techniques
	2.2 Pair programming and test-first programming

	3 Related work
	3.1 Studies related to pair programming (PP)
	3.2 Studies related to test-first programming and TDD
	3.3 Other related work

	4 Study setup
	4.1 Ethical implications
	4.2 Subjects, target functions, test sets, and tools
	4.3 Experimental design and procedure
	4.4 Metrics
	4.5 Statistical analysis

	5 Results and analysis
	5.1 Experiment with novice programmers
	5.1.1 Reliability evaluation
	5.1.2 Effort evaluation

	5.2 Replications with professionals
	5.2.1 Reliability evaluation
	5.2.2 Effort evaluation

	5.3 Summary of results

	6 Discussions
	7 Study limitations
	7.1 Internal validity
	7.2 External validity
	7.3 Construct validity

	8 Conclusion
	References

