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Abstract
Model transformation, which is a program targeting at transforming an input model to an out-
put model, has been a critical basis for Model-Driven Engineering (MDE). The quality of model 
transformation programs directly affects the quality of software products built with MDE activi-
ties. Therefore, debugging model transformation programs has been crucial from the quality assur-
ance point of view. One of the key impediments to the model transformation debugging is the high 
complexity and scale of the input models. In order to ameliorate the burden on model transforma-
tion debugging, this study proposes an effective approach to systematically reduce input models of 
model transformation programs. By combining the advantages of input simplification approaches 
for traditional programs and also the characteristics of model transformation, our approach lever-
ages and adapts the delta debugging technique to model simplification. We conduct experiments 
to evaluate the proposed approach from two aspects: its effectiveness in model simplification, and 
its effects on model transformation debugging. Our experimental results confirm the positive con-
tributions of the approach in both aspects. It delivers promising reduction effectiveness, and it can 
also well support the fault localization in model transformations.

Keywords Model transformation · Delta debugging · Model reduction · Fault localization

1 Introduction

In recent years, Model-Driven Engineering (MDE) Naish et al. (2011) has garnered sig-
nificant interests and widespread attentions in both academic and industrial domains. As 
an emerging paradigm, MDE highlights the centrality of the model throughout the entire 
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software development life cycle. In this context, model transformation, which supports the 
manipulation and transformation of models, is the basis for automating MDE tasks Troya 
et al. (2022). As a result, the quality of model transformation is crucial to the quality of the 
final software product built with MDE approaches.

A model transformation is a program whose input and output are both models, and it 
aims at mapping the input model (which is also called source model) to the correspond-
ing output model (that is, the target model). Due to the importance of model transforma-
tions, recent years have seen the rise of debugging techniques applied to model transforma-
tion programs, including revealing failures of model transformation program (Cuadrado 
et al., 2018; He et al., 2016), identifying buggy code fragments Troya et al. (2018), fixing 
bugs (Cuadrado et al., 2018; VaraminyBahnemiry et al., 2021), etc.

Nevertheless, the debugging of model transformation programs faces its own challenges, 
one of which refers to the complexity and scale of the input model. The input source model 
of a model transformation program is often with complex structure, containing a variety of 
different elements, relationships and attributes. Moreover, to support a proper abstraction 
of entities in reality, a model may contain a large volume of information. Such an input 
model may provide inaccurate information for model transformation debugging, and may 
even slow down the progress of debugging and further hinder the understanding of the 
behavior of the model transformation program.

Lots of research attentions have been focused on the test inputs for model transformation 
programs. Some studies propose strategies for generating test inputs for debugging model 
transformations (Rule-Based,  2020; López & Cuadrado, 2023; He et  al.,  2019; Karimi 
et al., 2024), with the aim of obtaining significant improvements in test suite coverage and 
effectiveness. Some other studies propose to select high quality test inputs by strategically 
filtering out lower quality inputs (Alkhazi et al., 2020; Bauer et al., 2011). Differently, this 
study focuses on reducing existing test inputs in order to facilitate more effective model 
transformation debugging. That is, our approach complements existing studies.

Inspired by the positive effects of input simplification in traditional programs, this study 
proposes to reduce complex input models of model transformations in order to properly 
support the debugging process. Our approach is geared towards model transformation 
programs written by ATL (ATLas transformation language) Jouault et  al. (2006), which 
is one of the most popular model transformation languages. Our approach leverages the 
delta debugging technique Hodován and Kiss (2016), and reformulates and adapts the delta 
debugging procedure to model transformation programs. Our key insights is that by keep-
ing removing information of an input model that is irrelevant to the desired property (e.g, 
the failure-revealing capability), the resulting model may be helpful for effective and effi-
cient model transformation debugging.

We conduct a series of experiments to comprehensively evaluate our approach. At first, 
we investigate its effectiveness in model simplification, and our results demonstrate that 
our approach is able to reduce a given input model into a simplified one preserving the 
same failure-revealing capability. Moreover, our approach achieves promising reduction 
effectiveness, with average reduction rates ranging from 41.77% to 92.83%. Secondly, 
we investigate how and to what extent our approach can assist the model transformation 
debugging. We combine our approach with the spectrum-based fault localization (SBFL) 
technique in two different ways: applying our approach for simplifying input models of the 
input test suite of SBFL, and employing our approach as a test suite construction approach. 
Our experimental results confirm the positive contributions of our approach in both cases, 
revealing that our model simplification approach can well support the debugging of model 
transformation programs.
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The main contributions of this study are summarized as below.

• We propose an approach towards the simplification of source models of model trans-
formation programs. To the best of our knowledge, this is the first study where source 
model simplification is systematically studied with the goal of supporting the debug-
ging of model transformation programs.

• We conduct experiments to demonstrate the efficiency and effectiveness of the pro-
pose approach for model simplification. The results show that our approach is able to 
achieve quite high reduction rates.

• We conduct experiments to reveal the impacts of simplified input models for one of the 
debugging activity, fault localization. Our results confirms the positive effects of the 
proposed approach.

The rest of the paper is structured as follows. Section 2 introduces the background knowl-
edge and further describes our motivation. Section 3 describes the details of our approach. 
Then, Section  4 presents the experimental evaluation, including experimental setup and 
result analysis. Section 5 discusses some related works, and Section 6 concludes this study 
and discusses future work.

2  Background and motivation

2.1  ATL model transformation

In the context of model-to-model transformation, a model transformation program aims to 
automatically map one model into the other model. The model transformation procedure, 
as depicted in Fig. 1, takes a source model as its input and produces the corresponding tar-
get model as its output. Both the source and target models adhere to the definitions of their 
respective source and target metamodels.

Fig. 1  Model transformation paradigm
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Currently, there are several model transformation languages, including Henshin Arendt et al. 
(2010), AGG Taentzer (2003), Maude Clavel et al. (2007), QVT Greenyer and Kindler (2010) 
and ATL Jouault et al. (2006). Among them, ATL is a textual, rule-based model transformation 
language, which provides declarative and imperative language concepts, and is also accompa-
nied with meta-modeling standards supporting a fast integration into development platforms. 
These contribute to the widespread application of ATL in both academia and industry.

This study mainly focuses on the ATL model transformation. An ATL program primar-
ily comprises a collection of rules and helpers. Each rule outlines the process of creating 
the corresponding element in the target model based on a specific element from the source 
model. Meanwhile, helpers serve as auxiliary functions to support these transformations.

For the purpose of illustration, consider one ATL transformation, BibTex2DocBook  
INRIA (2005), as an example. BibTex2DocBook maps a BibTeXML model to a Doc-
Book model, which respectively describe the contents of a bibliographic file and a 
document. Fig.  2 presents the metamodels of BibTeXML and DocBook. As shown  
in Fig.  2a, the BibTeXML metamodel deals with the mandatory fields of each BibTeX 
entry (for instance, author, year, title, and journal for an article entry). Specifically, a bib-
liography is modeled by a BibTeX File element, which is composed of BibTeX Entries that 
are each associated with an id. All of the other entries inherit, directly or indirectly, from 
the BibTeX Entry element. The DocBook metamodel (Fig. 2b) represents a limited subset 
of the DocBook definition. Within this metamodel, a DockBook document is associated 
with a DocBook element, which is composed of several Books that, in turn, are composed 
of several Articles. An Article is composed of a set of sections (that is defined by Sect1), 
each of which is composed of paragraphs (class Para). To transform a BibTeXML model 
to a DocBook model, BibTex2DocBook utilizes 9 rules, the detailed code of two of those 
rules are further displayed in Fig.  3, where the rule Author generates a Para from each 
distinct author presented in the source BibTextXML model, while the rule UntitledEntry 
generates a Para from every non-titled entry of the source model.

2.2  Motivation

A model transformation program takes as input a source model, and produces a target model 
as an output. In this study, we will use the terms of source model and input model, inter-
changeably. To test a model transformation program, one type of commonly adopted ora-
cle is the OCL constraints, which specify patterns expected on the source model, the target 
model, or between the source and relevant target models Troya et al. (2022). For a given 
model transformation program and an OCL constraint, an input model is regarded to be 
failing if the execution of the transformation with this model leads to the violation of the 
OCL constraint. Analogously, running a model transformation program with a passing input 
model will not violate the relevant OCL constraint. A failing input model is one type of the 
basic information used for debugging the transformation program. However, if such an input 
model is complex in structure and is large in size, it may contain a large amount information 
that are irrelevant to the bugs. Such an input model may increase the burden in debugging 
the model transformation programs. Next, we will use an example to clarify this point.

We here still consider the illustrative ATL program, BibTex2DocBook, but with one 
of its rules being incorrectly implemented. The faulty rule, that is, Author, is depicted in 
Fig.  4, which, instead of generating a Para using the information of the corresponding 
Author information, generates an empty Para. To check the output of BibTex2DocBook, 
we employ the following OCL assertion: 
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Fig. 2  Metamodels of the BibTeX2DocBook (from Reference INRIA (2005))
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This OCL constraint specifies that for any Author in the source model, there should exist 
a Para in the target model that is named with the relevant Author’s name.

Obviously, the execution of the rule Author of BibTex2DocBook will result in incor-
rect information of the output model. One of the failing input for BibTex2DocBook to 
violate OCL1 is shown in Fig. 5a, which models a BibTex file containing Article, Unpub-
lished, Manual, Misc, and PhDThesis objects. Notably, the Article, Unpublished and 
PhDThesis objects involve the author information, which will trigger the execution of the 
rule Author. With an inspection into the execution trace, it is found that the execution of 
BibTex2DocBook with this source model as input covers 6 rules (including the faulty 
rule Author). We further reduce this source model, with the goal of obtaining a simpli-
fied model retaining the capability of violating OCL1. Consider the source model shown 
in Fig. 5b, which contains only parts of information of the one depicted in Fig. 5a, but its 
execution still violates OCL1. Particularly, the execution of the simplified source model 
on BibTex2DocBook covers only 3 rules. Obviously, compared to the original source 
model, the simplified model contains less information, but it still triggers the violation of 
the same OCL constraint. In other words, the latter contains less unnecessary information  

Fig. 3  BibTex2DocBook trans-
formation program (fragment)

Fig. 4  An erroneous ATL rule
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for revealing the program’s unexpected behavior, which in turn makes the debugging pro-
cess easier. From this perspective, compared with the original source model, the simplified  
model is more helpful for the user to understand how and why the ATL program fails.

3  Approach

In this section, we present the source model simplification approach. Our source model 
reduction approach is inspired by the delta debugging technique Zeller and Hildebrandt 
(2002), and we redefine the testing process to fit the context of the ATL model transformation.

3.1  Problem statement

We use P to denote a transformation program focuses on the converting of model A (with 
reference to the source metamodel MA ) to model B (with reference to the target metamodel 
MB ). Suppose O denotes one of the OCL constraints for the transformation, and let i be a 
failing input model for P and O.

Our approach aims to generate a reduced model, namely, i′ , from i, with respect to P and 
O, such that i′ is able to reveal the same failure information of P as i. More specifically, i′ 
is expected to have the following properties. 1) i′ is a sub-model of i, and the size of i′ is 
smaller than that of i; 2) i′ should be a valid model according to MA ; 3) the execution of P 
on i′ can leads to the violation of O.

Fig. 5  A source model and its simplified version
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3.2  Delta debugging model transformations

In software engineering, one of the widely-adopted automatic test case reduction technique 
is delta debugging (also known as the ddmin algorithm) Zeller and Hildebrandt (2002). For  
a target program and one of its failing test input, delta debugging aims to explore a mini-
mal test input that contains only parts of the information of the original failing test input, 
but still reveals the same defect. Specifically, for a given test input, the delta debugging 
technique splits it into a set of candidate inputs according to a specific policy, and then 
filters the candidate test inputs based on their validation results, iterating until it finds the 
smallest failing test input.

Nowadays, various improvements have been made based on the original ddmin algo-
rithms, yielding a broad range of applications of the delta debugging technique. Particular, 
one of the variants of the delta debugging technique is hierarchical delta debugging (HDD) 
Misherghi and Su (2006), which mainly focuses on minimizing inputs that can be repre-
sented in a tree structure.

For ATL model transformations, the input source models are usually represented fol-
lowing the XMI format, which thus can be expressed by a tree structure. Accordingly, we 
adapt the HDD technique for simplifying input source models of transformation programs. 
Fig. 6 describes the overall workflow of our approach, which takes as input an ATL pro-
gram, an OCL constraint and a failing input model, and finally generates a minimized fail-
ing input model. Our approach mainly consists of the following two phases.

• Source model reduction. This phase focuses on the reduction of the given input model 
into a set of candidate models. We adopt the HDD module to accomplish model reduc-
tions, which involves parsing the input model to build the tree structure, and further 
applying the ddmin algorithm to each level of the tree (starting from the top level and 
then continuing with each of the downward levels one by one).

• Failure-revealing capability checking. This phase checks each candidate models to deter-
mine whether the expected property is preserved by the model resulted from reduction. 
As aforementioned (Section 3.1), this study aims to minimize failing input model for sup-
porting the debugging of model transformation programs. Therefore, the checking of can-
didate models confirms whether the model has the same failure-revealing capability as  
the given input model.

Fig. 6  Source model reduction workflow
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These two phases interact with each other, where the former yields a set of candidate 
models, while the latter checks each of the candidate models, determining whether or not 
a candidate model can be further be processed in the subsequent reductions. This proce-
dure iteratively keeps reducing the given input model and checking the resulting candi-
date models against the target transformation program and OCL constraint. The whole 
procedure terminates when a minimal model preserving the expected failure-revealing 
capability is explored.

Algorithm 1  Failure-revealing Capability Checking

Notably, the failure-revealing capability checking plays an important role during the 
model reduction procedure. It decides which candidate models should be further pro-
cessed by the upcoming reductions, and also specifies the termination criterion for the 
whole reduction procedure. In order to generate a minimal source model that preserves 
the same failure-revealing capability as the given input model, we redesign the checking 
module employed by delta debugging, as described in Algorithm 1. Specifically, the check-
ing consists of two steps. At first, checking the conformance of the candidate model to the 
source metamodel (line 2). Only if the model conforms to the source metamodel, it can 
be a valid source model of the transformation program. Secondly, checking the model’s 
capability of revealing the program’s failure. This is accomplished by running the target 
model transformation with the model as input (line 4), and then checking the model and 
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the corresponding output target model against the relevant OCL constraint (line 5). If the 
model reveals the program’s violation of the OCL constraint, it retains the same failure-
revealing capability as the original input model.

3.3  Implementation

To facilitate automatic source model reduction, we implement our approach into a tool. 
We apply Picireny Hodován and Kiss (2016), a python3 package of the HDD algorithm, to 
build up the overall framework. We use ANTLRv4 Hodován and Kiss (2016) to parse the 
XMI file storing source models into a tree structure. We implement the failure-revealing 
capability checking via an automated testing procedure built upon ATL engine, and com-
bine the source model with the transformed target model to obtain a new joint model for 
OCL checking (by following the way adopted by Troya et al. (2018)).

4  Evaluation

In this section, we evaluate the proposed model simplification approach. Our evaluation 
aims to reveal the reduction effectiveness as well as the effects on model transformation 
debugging. Accordingly, we perform two different experiments. In the following, we first 
present our research questions, and then describe the experimental setup and report our 
experimental results.

4.1  Research questions

Our evaluation mainly focuses on the following two research questions.

• RQ1. How does our approach perform in simplifying input models for model trans-
formation programs? In this RQ, we will investigate and report the effectiveness and 
efficiency of our approach for reducing the failing source models of multiple different 
model transformation programs.

• RQ2. How and to what extent can our approach assist the automated debugging of 
model transformation program? This RQ aims to reveal the impacts of our approach on 
the automated debugging of model transformation programs. In this RQ, we will focus 
on one of the automated debugging techniques, the spectrum-based fault localization 
(SBFL), and explore two different ways of applying our approach to support SBFL: 
reducing the failing input models of the given test suite for SBFL, and making use of 
the intermediate candidate models to form a test suite for SBFL. Accordingly, we fur-
ther answer two subquestions as below.

– RQ2.1: To what extent the reduced failing input models can improve the effective-
ness of SBFL?

– RQ2.2: To what extent can the test suite derived from our approach can improve the 
effectiveness of SBFL?
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4.2  Subjects

To demonstrate the effectiveness of our approach and also to support a fair comparison 
with the baseline fault localization approach, our experiments utilize the subject programs 
released by Troya et  al. (2018). The experimental subjects comprise four distinct model 
transformation programs, UML2ER, BibTeX2DocBook, CPL2SPL, and Ecore2Maude, 
with a total number of 158 mutants. These four model transformation programs are repre-
sentative in ATL model transformation and are different in terms of application area, scale 
and ATL program content. For each subject program, there are 100 randomly generated 
source models, and some predefined OCL constraints (116 constraints in total).

4.3  Evaluation on reduction effectiveness

In this section, we investigate the effectiveness of our approach for reducing source models 
of transformation programs, in order to answer RQ1.

4.3.1  Experimental setup

Experimental procedure Our approach is applied to minimize each failing input model of 
our subject programs. As mentioned in Section 4.2, each of the four subject programs has 
multiple mutants, and is associated with a set of OCL constraints. For a given faulty pro-
gram (that is, the mutated program), since an input model may lead to the violation of var-
ying OCL constraints, the set of failing input models may be different when different OCL 
constraints are utilized. Therefore, we utilize the test suite (that contains 100 source mod-
els) to test each faulty program with respect to individual OCL constraint, so as to collect 
failing input models. After that, we apply our approach on each failing input model, and 
the relevant transformation program and OCL constraint, to construct the reduced model. 
In the experiments, a total number of 21, 705 failing input models are collected.

Evaluation metrics Following existing studies (Misherghi & Su, 2006; Wang et al., 2021), 
we use two types of metrics to respectively measure the effectiveness and the efficiency of 
our model reduction method: the reduction rate and the processing time. The reduction rate 
is calculated as below, where Sf  means the size of the source model after reduction, and Si 
means the in initial size of the input source model:

In this study, we measure the size of the source model from two dimensions: byte and 
token. File size is measured in bytes, whereas the size in token denotes the count of tags 
in the XMI file. For the processing time, it refers to the time cost used by our approach for 
producing the simplified model.

(1)Reduction_Ratio = 1 −
Sf

Si
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4.3.2  Results for RQ1

Table 1 presents the source model reduction results. For each subject program, the aver-
age size of the original failing input models, the average reduction rate and the average 
time cost are reported. It can be found that our approach exhibits varying effectiveness and 
efficiency for different subject programs. Overall, our approach achieves promising model 
reduction results, as can be observed that the average reduction rates are quite high, rang-
ing from 41.77% to 92.83%. On the other hand, it can be found that each model reduction 
can be accomplished within a certain limit of time. We further present the detailed size 
information of pairs of original and reduced models, in Fig. 7. For the subject transforma-
tion programs, most of the source models are around 1000 bytes, and some of the source 

Table 1  The results of source 
model reduction

Subject Program Initial size Reduction rate Total 
time cost 
(Seconds)

in byte Byte Token

BibTex2DocBook 2,711 92.29% 92.83% 279
CPL2SPL 967 72.81% 66.64% 380
Ecore2Maude 795 71.34% 59.34% 581
UML2ER 227 68.99% 41.77% 141

Fig. 7  Initial size and final size of source models for different transformation programs
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models are even of 6000 bytes. Nevertheless, the sizes of simplified models are all smaller 
than 220 bytes. These results confirm that our approach is effective for reducing source 
models of model transformation programs.

We further investigate the correlation between the initial size of models to be reduced 
and the reduction rate achieved by our approach. Fig. 8 depicts the analysis results. It is 
evident that as the initial size of the source model increases, the relevant reduction rate 
also increases. This trend can be observed from the experiments on every of our subject 
programs. It can also be observed from Fig. 8 that the reduction rate is also affected by 
the target subject programs, as for source models of different transformation programs that 
have similar initial size, the resulting reduction rates are still different.

Based on our experimental analysis, it can be concluded that the proposed approach 
can effectively reduce the source model for model transformation programs. Moreover, the 
reduction effectiveness may be affected by the size of the models to be reduced, as well as 
the target transformation program and the relevant OCL constraint.

4.4  Evaluation on fault localization

In this section, we conduct experiments by applying the proposed source model reduction 
approach to support SBFL. We apply our approach in two different paradigms, in order to 
respectively answer RQ2.1 and RQ2.2.

Fig. 8  Relationship between initial size and reduction rate
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4.4.1  Experimental setup

SBFL makes use of the test suite and the relevant coverage information to calculate the 
suspiciousness of program components. Therefore, the test suite impacts the effectiveness 
of SBFL. In this study, we apply our approach to improve or generate test suite for SBFL, 
in order to reveal how our approach can assist the fault localization in model transforma-
tion. Our experiments examine 18 popular SBFL methods, including Tarantula Jones and 
Harrold (2005), Ochiai Abreu et al. (2009), Dstar Wong et al. (2013), Rogers & Tanimoto 
Mao et al. (2014), Ochiai2 Assiri and Bieman (2017), Pierce Wong et al. (2016), Baroni-
Urbani and Buser Wong et al. (2012), Russel-Rao Qi et al. (2013), Op2 Naish et al. (2011), 
Phi Maxwell and Pilliner (1968), Zoltar Janssen et  al. (2009), Mountford Wong et  al. 
(2012), Arithmetic Mean Xie et al. (2013), Barinel Abreu et al. (2009), Kulczynski2 Naish 
et al. (2011), Simple Matching Wong et al. (2016), Braun-Banquet Wong et al. (2016) and 
Cohen Naish et al. (2011).

Experimental procedure For traditional programs, the delta debugging technique has 
been applied to reduce failing test cases for supporting SBFL Christi et al. (2018). In the 
field of model transformation, the effect of reduced failing input models on the SBFL is 
unclear. Therefore, RQ2.1 aims to investigate how and to what extent the reduced fail-
ing input models can improve the effectiveness of SBFL in model transformation. To this 
end, for each faulty model transformation program and an OCL constraint, we identify 
failing input models from the original test suite and further apply our approach to obtain 
the relevant simplified models. Then, we keep the passing input models of the test suite 
unchanged, but replace the original failing input models with their relevant simplified mod-
els, to form a new test suite, and further apply SBFL with the new test suite.

RQ2.2 considers the fact that a given test suite may not always be necessarily available for 
conducting fault localization. With the observation that the proposed source model reduction 
approach generates a large number of candidate models (some of which are passing, while 
some of which are failing) before reaching the final minimized failing input model, we propose 
to apply our approach as a test suite construction approach. That is, for a faulty program, an 
OCL constraint and a failing input model, we apply the proposed approach to reduce the given 
failing input models, and then randomly sampled a fixed number of models based on the set of 
candidate models, to form a test suite. This newly constructed test suite is then used as the input 
test suite for SBFL. In the experiments, we set the size of the constructed test suite as 100, in 
order to be consistent with the size of the original test suite provided for the subject programs.

In both experiments, we employ the basic SBFL approach for model transformation pro-
grams as a comparison baseline, and we reuse the data released by Troya et al. (2018) for 
comparison analysis.

Evaluation metric The effectiveness of SBFL is usually measured by EXAM score, 
which is the percentage of statements in the program that must be checked before reach-
ing the first faulty statement. The calculation of EXAM score is described as below, where 
NEX means the number of statements examined, and NALL means the number of the total 
statements:

A smaller EXAM score indicates a better fault localization effectiveness.

(2)EXAM score =
NEX

NALL
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4.4.2  Results for RQ2

In this section, we report our experimental results to answer RQ2.1 and RQ2.2, respectively.

Results for RQ2.1. Fig. 9 displays the box plots showing the EXAM scores obtained with 
the original test suite (red boxes, where the data come from Troya et al. (2018)) and those 
obtained by using the test suite involving reduced failing input models (blue boxes). It can 
be visually observed that the use of reduced failing test cases lead to lower EXAM scores 
for the majority of cases. We further conduct the Wilcoxon rank-sum test Field (2013) to 
statistically compare the SBFL effectiveness achieved by using different test suites. For 
a subject program and a SBFL technique, a comparison is conducted on a set of EXAM 
scores relating to the original test suite and a set of EXAM scores relating to the test suite 
having reduced failing input models, yielding a p-value. A p-value < 0.05 reveals that there 
is a statistically significant difference between the SBFL effectiveness resulted from using 
the above two types of test suites. In total, 72 comparisons are conducted, and the p-value 
is also displayed for each groups of data under comparison, in Fig. 9. In 35 out of 72 com-
parisons, a significant difference is observed and the superiority of the use of reduced 

Fig. 9  SBFL results with the use of the original test suite and the test suite involving reduced failing input 
models
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failing input models is confirmed. In the other comparisons, the use of both types of test 
suites yields comparable SBFL effectiveness.

On the other hand, we perform detailed pairwise comparison with respect to the indi-
vidual groups of faulty program and OCL constraint. That is, for a given transformation 
program and an OCL constraint, we compare the two SBFL results using the original test 
suite and the test suite with reduced failing input models. In the comparison, we consider 
three different cases: the best case, the worst case and the average case, where the faulty 
statement is treated as the first, the middle, and last one to be inspected when multiple 
statements have the same suspicious score with it. Table. 2 reports the comparison results. 
For all of the 18 SBFL techniques, the use of our approach for reducing failing input mod-
els leads to no increase in the EXAM scores for the majority of cases. Moreover, for most 
of the SBFL techniques, the use of our approach achieves better or comparable effective-
ness than the use of the original test suite for more than 70% cases.

To summarize, our experiments demonstrate the positive impacts of reducing failing 
input models for supporting SBFL. This suggests that the proposed approach can be com-
bined with SBFL in order to deliver better fault localization effectiveness.

Results for RQ2.2. To investigate the impacts of test suite derived from the proposed 
model reduction procedure on SBFL, we randomly select 10 groups of faulty program and 
OCL constraint for each subject programs. For each group, one failing input model is fur-
ther selected for performing the model reductions, from which a test suite is constructed 
by using the intermediate candidate models. Table 3 reports the comparison results of the 
SBFL effectiveness using the original test suite and the newly constructed test suite, where 
F1 to F18 represent the 18 types of SBFL techniques as displayed in the first column of 
Table. 2, respectively. A total number of 720 comparisons are conducted, among which 
the use of the newly generated test suite yields better SBFL results in 358 cases (which are 
highlighted in gray color in Table 2), while it yields worse results in 103 cases. That is, the 
newly generated test suites are able to positively support SBFL for most of cases.

In summary, our experimental results suggest that our source model simplification 
method can effectively serve as a test suite construction method for supporting the fault 
localization in model transformations.

5  Related work

5.1  Delta debugging

Delta debugging (DD) has a significant advantage in software debugging, it can signifi-
cantly reduce the scale of tests needed to locate the problem, therefore it is widely used in 
software fault diagnosis and isolation work (Zeller & Hildebrandt, 2002; Gupta et al., 2005; 
Zeller, 2002). In recent years, DD has also been used in various fields of debugging work. 
Rabin et al. (2021) used DD to minimize inputs to AI models in software engineering tasks, 
they proposed Sivand, a simple, model-agnostic methodology for interpreting a wide range 
of code intelligence models. Suneja et  al. (2021) presented a prediction-preserving input 
minimization approach to evaluate and compare the signal awareness of AI-for-code models. 
Win et al. (2023) on the other hand, applied DD to event-aware dynamic slicing for Android 
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Table 2  Pairwise comparison of SBFL effectiveness with the use of the original test suite and the test suite 
reduced by the proposed approach. B, W, and A respectively represent the best-, worst- and average- cases 
analysis. ≤ and > denote the case that with the use of our approach, SBFL yields a smaller or identical (bet-
ter or the same) and a larger (worse) EXAM score, respectively

SBFL techniques BibTex2DocBook CPL2SPL Ecore2Maude UML2ER

B W A B W A B W A B W A

Tarantula ≤ 91% 75% 76% 85% 71% 72% 92% 97% 97% 98% 97% 98%
> 9% 25% 24% 15% 29% 28% 8% 3% 3% 2% 3% 2%

Ochiai ≤ 79% 75% 75% 92% 75% 76% 100% 97% 97% 98% 85% 86%
> 21% 25% 25% 8% 25% 24% 0% 3% 3% 2% 15% 14%

Dstar ≤ 80% 75% 76% 92% 75% 75% 100% 97% 97% 80% 80% 76%
> 20% 25% 24% 8% 25% 25% 0% 3% 3% 20% 20% 24%

Rogers ≤ 78% 78% 78% 91% 69% 75% 100% 88% 88% 99% 86% 86%
> 22% 22% 22% 9% 31% 25% 0% 12% 12% 1% 14% 14%

Ochiai2 ≤ 95% 73% 75% 91% 74% 74% 100% 89% 89% 100% 88% 89%
> 5% 27% 25% 9% 26% 26% 0% 11% 11% 0% 12% 11%

Pierce ≤ 66% 84% 62% 72% 74% 75% 83% 71% 56% 93% 76% 78%
> 34% 16% 38% 28% 26% 25% 17% 29% 44% 7% 24% 22%

Baroni ≤ 92% 76% 78% 87% 71% 71% 100% 97% 97% 94% 82% 82%
> 8% 24% 22% 13% 29% 29% 0% 3% 3% 6% 18% 18%

Russel Rao ≤ 81% 77% 78% 93% 74% 76% 100% 97% 97% 91% 73% 73%
> 19% 23% 22% 7% 26% 24% 0% 3% 3% 9% 27% 27%

Op2 ≤ 76% 76% 76% 87% 85% 85% 100% 97% 97% 89% 76% 83%
> 24% 24% 24% 13% 15% 15% 0% 3% 3% 11% 24% 17%

Phi ≤ 76% 76% 76% 73% 76% 76% 100% 89% 89% 99% 88% 89%
> 24% 24% 24% 27% 24% 24% 0% 11% 11% 1% 12% 11%

Zoltar ≤ 79% 75% 75% 92% 75% 75% 100% 97% 97% 93% 80% 80%
> 21% 25% 25% 8% 25% 25% 0% 3% 3% 7% 20% 20%

Mountford ≤ 82% 76% 76% 63% 63% 75% 100% 97% 97% 99% 85% 85%
> 18% 24% 24% 37% 37% 25% 0% 3% 3% 1% 15% 15%

Arithmetic ≤ 76% 76% 76% 78% 75% 75% 100% 89% 89% 99% 88% 89%
> 24% 24% 24% 22% 25% 25% 0% 11% 11% 1% 12% 11%

Barinel ≤ 78% 77% 63% 81% 74% 67% 60% 87% 60% 74% 99% 74%
> 22% 23% 37% 19% 26% 33% 40% 13% 40% 26% 1% 26%

Kulcynski2 ≤ 79% 75% 75% 92% 75% 75% 100% 97% 97% 94% 81% 82%
> 21% 25% 25% 8% 25% 25% 0% 3% 3% 6% 19% 18%

Simple Matching ≤ 78% 78% 78% 91% 71% 71% 100% 88% 88% 99% 86% 87%
> 22% 22% 22% 9% 29% 29% 0% 12% 12% 1% 14% 13%

Braun-Banquet ≤ 88% 75% 76% 85% 69% 69% 100% 96% 96% 89% 79% 79%
> 12% 25% 24% 15% 31% 31% 0% 4% 4% 11% 21% 21%

Cohen ≤ 76% 75% 76% 76% 75% 74% 100% 89% 89% 98% 87% 87%
> 24% 25% 24% 24% 25% 26% 0% 11% 11% 2% 13% 13%
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Table 3  The comparison of SBFL effectiveness with the use of the original test suite and the test suite gen-
erated from the proposed model reduction procedure. ‘#. of FMs’ refers to the number of failed inputs in the 
original test suite)
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applications. Zhou et al. (2018)proposed an incremental debugging algorithm-based approach 
for debugging microservice systems, which aims to minimize the incremental faults caused by 
the environment for effective debugging.

The closest to our work is the study of Christi et al. (2018), they suggest using delta 
debugging based test case reduction to improve fault localization. In addition, Vince et al. 
(2021) suggest using the intermediate results generated during test case reduction by DD 
to assist in fault localization. However, most studies are based on traditional programs, 
there are no relevant DD-based source model simplification techniques in the field of 
model transformation.

5.2  Testing and debugging of model transformations

The correctness of software systems built with MDE approaches largely depends on the 
correctness of the operations executed using model transformations. Therefore, it is critical 
in MDE to test and debug model transformations. Compared to traditional programs, the 
debugging of model transformation is quite different. Stefan et al. explored the differences 
in complexity and scale between ATL and JAVA in model transformation Höppner et al. 
(2022), and they found that the more recent Java version makes development of transfor-
mations easier because less work is required to set up a working transformation. In addi-
tion, they also summarized the advantages and disadvantages of model transformation lan-
guages Götz et al. (2021), which can help researchers better understand the characteristics 
of model transformation programs.

Test input generation is important for model transformation debugging, many research-
ers are dedicated to exploring different model generation methods. A rule-based, configur-
able approach Rule-Based (2020) has been presented to automate model generation which 
addresses the stated requirements, it can be configured beforehand or during the generation 
process to produce sets of models that are diverse to a certain extent. Lopez et al. proposed  
a new model generator, M2 López and Cuadrado (2023), which fully focused on satisfy-
ing the structurally realistic property. He et al. (2019) presented an approach for efficient 
model generation, which can generate models of large size in reasonable times. In addition, 
Karimi et al. presented an approach Karimi et al. (2024) to generate models by applying 
an ant-colony-optimization, which requires only metamodels and an optional set of OCL 
constraints as input. Some studies propose to select high quality test inputs by strategi-
cally filtering out lower quality inputs. Alkhazi et al. (2020) proposed a test case selection 
approach for model transformations based on multi-objective search, designed to reduce 
duplication in the execution of test models. Bauer et al. (2011) presented a coverage analy-
sis approach for measuring test suite quality for model transformation chains, also aimed at 
selecting better test cases.

Fault localization is essential in debugging work, Troya et al. applied traditional spec-
trum based fault localization methods in model transformation programs and evaluate the 
results for multiple formulas Troya et al. (2018). Subsequently, they presented an enhanced 
contract language and a hybrid framework Muñoz et al. (2022), which can help locate tar-
get erroneous rules more accurately. Cuadrado et al. proposed a model transformation test-
ing tool called AnATLyzer Cuadrado et al. (2021), which is able to detect a wide range of 
non-trivial problems in ATL transformations by using constraint solving to improve the 
analysis precision.
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To the best of our knowledge, little research has been done on the simplification of 
source models, our approach is the first to use HDD algorithm in a model transformation 
program to reduce the input source model and assist debugging.

6  Conclusion and future work

To address the debugging challenges associated with scaled input source models in model 
transformation, in this study, we proposed an automatic source model simplification 
method, which is based on the Hierarchical delta debugging algorithm. We found that the 
simplification of the source model not only reduces a large amount of redundant infor-
mation not related to the target error, but also improves the accuracy of spectrum-based 
fault localization in the model transformation. In addition to this, we found that the source 
model simplification method can also be used as a source model generator to help us gen-
erate test suites when the original test cases are insufficient, and it has a great performance 
in fault localization.

However, there is still some considerable rooms for improvement in the execution time 
of our approach. Currently, the simplification process may generate numerous inputs that 
do not adhere to the metamodel specification, necessitating substantial time for analysis 
of their validity. In subsequent work, we plan to explore strategies for early exclusion of 
such inputs to enhance the efficiency of the reduction process. In addition, how to better 
mitigate the oracle problem in the model transformation domain is also critical for source 
model simplification. The implemented prototype is available on Github: https:// github. 
com/ JKOBEJ/ DDATL. git/.
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