
Vol.:(0123456789)

Software Quality Journal (2024) 32:961–984
https://doi.org/10.1007/s11219-024-09676-2

1 3

RESEARCH

A source model simplification method to assist model
transformation debugging

Junpeng Jiang1 · Mingyue Jiang1 · Liming Nie2 · Zuohua Ding1

Accepted: 24 April 2024 / Published online: 24 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Model transformation, which is a program targeting at transforming an input model to an out-
put model, has been a critical basis for Model-Driven Engineering (MDE). The quality of model
transformation programs directly affects the quality of software products built with MDE activi-
ties. Therefore, debugging model transformation programs has been crucial from the quality assur-
ance point of view. One of the key impediments to the model transformation debugging is the high
complexity and scale of the input models. In order to ameliorate the burden on model transforma-
tion debugging, this study proposes an effective approach to systematically reduce input models of
model transformation programs. By combining the advantages of input simplification approaches
for traditional programs and also the characteristics of model transformation, our approach lever-
ages and adapts the delta debugging technique to model simplification. We conduct experiments
to evaluate the proposed approach from two aspects: its effectiveness in model simplification, and
its effects on model transformation debugging. Our experimental results confirm the positive con-
tributions of the approach in both aspects. It delivers promising reduction effectiveness, and it can
also well support the fault localization in model transformations.

Keywords Model transformation · Delta debugging · Model reduction · Fault localization

1 Introduction

In recent years, Model-Driven Engineering (MDE) Naish et al. (2011) has garnered sig-
nificant interests and widespread attentions in both academic and industrial domains. As
an emerging paradigm, MDE highlights the centrality of the model throughout the entire

 * Mingyue Jiang
 mjiang@zstu.edu.cn

 Junpeng Jiang
 202130504100@mails.zstu.edu.cn

 Liming Nie
 nieliming@sztu.edu.cn

 Zuohua Ding
 zouhuading@hotmail.com

1 Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
2 Shenzhen Technology University, Shenzhen, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-024-09676-2&domain=pdf

962 Software Quality Journal (2024) 32:961–984

1 3

software development life cycle. In this context, model transformation, which supports the
manipulation and transformation of models, is the basis for automating MDE tasks Troya
et al. (2022). As a result, the quality of model transformation is crucial to the quality of the
final software product built with MDE approaches.

A model transformation is a program whose input and output are both models, and it
aims at mapping the input model (which is also called source model) to the correspond-
ing output model (that is, the target model). Due to the importance of model transforma-
tions, recent years have seen the rise of debugging techniques applied to model transforma-
tion programs, including revealing failures of model transformation program (Cuadrado
et al., 2018; He et al., 2016), identifying buggy code fragments Troya et al. (2018), fixing
bugs (Cuadrado et al., 2018; VaraminyBahnemiry et al., 2021), etc.

Nevertheless, the debugging of model transformation programs faces its own challenges,
one of which refers to the complexity and scale of the input model. The input source model
of a model transformation program is often with complex structure, containing a variety of
different elements, relationships and attributes. Moreover, to support a proper abstraction
of entities in reality, a model may contain a large volume of information. Such an input
model may provide inaccurate information for model transformation debugging, and may
even slow down the progress of debugging and further hinder the understanding of the
behavior of the model transformation program.

Lots of research attentions have been focused on the test inputs for model transformation
programs. Some studies propose strategies for generating test inputs for debugging model
transformations (Rule-Based, 2020; López & Cuadrado, 2023; He et al., 2019; Karimi
et al., 2024), with the aim of obtaining significant improvements in test suite coverage and
effectiveness. Some other studies propose to select high quality test inputs by strategically
filtering out lower quality inputs (Alkhazi et al., 2020; Bauer et al., 2011). Differently, this
study focuses on reducing existing test inputs in order to facilitate more effective model
transformation debugging. That is, our approach complements existing studies.

Inspired by the positive effects of input simplification in traditional programs, this study
proposes to reduce complex input models of model transformations in order to properly
support the debugging process. Our approach is geared towards model transformation
programs written by ATL (ATLas transformation language) Jouault et al. (2006), which
is one of the most popular model transformation languages. Our approach leverages the
delta debugging technique Hodován and Kiss (2016), and reformulates and adapts the delta
debugging procedure to model transformation programs. Our key insights is that by keep-
ing removing information of an input model that is irrelevant to the desired property (e.g,
the failure-revealing capability), the resulting model may be helpful for effective and effi-
cient model transformation debugging.

We conduct a series of experiments to comprehensively evaluate our approach. At first,
we investigate its effectiveness in model simplification, and our results demonstrate that
our approach is able to reduce a given input model into a simplified one preserving the
same failure-revealing capability. Moreover, our approach achieves promising reduction
effectiveness, with average reduction rates ranging from 41.77% to 92.83%. Secondly,
we investigate how and to what extent our approach can assist the model transformation
debugging. We combine our approach with the spectrum-based fault localization (SBFL)
technique in two different ways: applying our approach for simplifying input models of the
input test suite of SBFL, and employing our approach as a test suite construction approach.
Our experimental results confirm the positive contributions of our approach in both cases,
revealing that our model simplification approach can well support the debugging of model
transformation programs.

963Software Quality Journal (2024) 32:961–984

1 3

The main contributions of this study are summarized as below.

• We propose an approach towards the simplification of source models of model trans-
formation programs. To the best of our knowledge, this is the first study where source
model simplification is systematically studied with the goal of supporting the debug-
ging of model transformation programs.

• We conduct experiments to demonstrate the efficiency and effectiveness of the pro-
pose approach for model simplification. The results show that our approach is able to
achieve quite high reduction rates.

• We conduct experiments to reveal the impacts of simplified input models for one of the
debugging activity, fault localization. Our results confirms the positive effects of the
proposed approach.

The rest of the paper is structured as follows. Section 2 introduces the background knowl-
edge and further describes our motivation. Section 3 describes the details of our approach.
Then, Section 4 presents the experimental evaluation, including experimental setup and
result analysis. Section 5 discusses some related works, and Section 6 concludes this study
and discusses future work.

2 Background and motivation

2.1 ATL model transformation

In the context of model-to-model transformation, a model transformation program aims to
automatically map one model into the other model. The model transformation procedure,
as depicted in Fig. 1, takes a source model as its input and produces the corresponding tar-
get model as its output. Both the source and target models adhere to the definitions of their
respective source and target metamodels.

Fig. 1 Model transformation paradigm

964 Software Quality Journal (2024) 32:961–984

1 3

Currently, there are several model transformation languages, including Henshin Arendt et al.
(2010), AGG Taentzer (2003), Maude Clavel et al. (2007), QVT Greenyer and Kindler (2010)
and ATL Jouault et al. (2006). Among them, ATL is a textual, rule-based model transformation
language, which provides declarative and imperative language concepts, and is also accompa-
nied with meta-modeling standards supporting a fast integration into development platforms.
These contribute to the widespread application of ATL in both academia and industry.

This study mainly focuses on the ATL model transformation. An ATL program primar-
ily comprises a collection of rules and helpers. Each rule outlines the process of creating
the corresponding element in the target model based on a specific element from the source
model. Meanwhile, helpers serve as auxiliary functions to support these transformations.

For the purpose of illustration, consider one ATL transformation, BibTex2DocBook
INRIA (2005), as an example. BibTex2DocBook maps a BibTeXML model to a Doc-
Book model, which respectively describe the contents of a bibliographic file and a
document. Fig. 2 presents the metamodels of BibTeXML and DocBook. As shown
in Fig. 2a, the BibTeXML metamodel deals with the mandatory fields of each BibTeX
entry (for instance, author, year, title, and journal for an article entry). Specifically, a bib-
liography is modeled by a BibTeX File element, which is composed of BibTeX Entries that
are each associated with an id. All of the other entries inherit, directly or indirectly, from
the BibTeX Entry element. The DocBook metamodel (Fig. 2b) represents a limited subset
of the DocBook definition. Within this metamodel, a DockBook document is associated
with a DocBook element, which is composed of several Books that, in turn, are composed
of several Articles. An Article is composed of a set of sections (that is defined by Sect1),
each of which is composed of paragraphs (class Para). To transform a BibTeXML model
to a DocBook model, BibTex2DocBook utilizes 9 rules, the detailed code of two of those
rules are further displayed in Fig. 3, where the rule Author generates a Para from each
distinct author presented in the source BibTextXML model, while the rule UntitledEntry
generates a Para from every non-titled entry of the source model.

2.2 Motivation

A model transformation program takes as input a source model, and produces a target model
as an output. In this study, we will use the terms of source model and input model, inter-
changeably. To test a model transformation program, one type of commonly adopted ora-
cle is the OCL constraints, which specify patterns expected on the source model, the target
model, or between the source and relevant target models Troya et al. (2022). For a given
model transformation program and an OCL constraint, an input model is regarded to be
failing if the execution of the transformation with this model leads to the violation of the
OCL constraint. Analogously, running a model transformation program with a passing input
model will not violate the relevant OCL constraint. A failing input model is one type of the
basic information used for debugging the transformation program. However, if such an input
model is complex in structure and is large in size, it may contain a large amount information
that are irrelevant to the bugs. Such an input model may increase the burden in debugging
the model transformation programs. Next, we will use an example to clarify this point.

We here still consider the illustrative ATL program, BibTex2DocBook, but with one
of its rules being incorrectly implemented. The faulty rule, that is, Author, is depicted in
Fig. 4, which, instead of generating a Para using the information of the corresponding
Author information, generates an empty Para. To check the output of BibTex2DocBook,
we employ the following OCL assertion:

965Software Quality Journal (2024) 32:961–984

1 3

Fig. 2 Metamodels of the BibTeX2DocBook (from Reference INRIA (2005))

966 Software Quality Journal (2024) 32:961–984

1 3

This OCL constraint specifies that for any Author in the source model, there should exist
a Para in the target model that is named with the relevant Author’s name.

Obviously, the execution of the rule Author of BibTex2DocBook will result in incor-
rect information of the output model. One of the failing input for BibTex2DocBook to
violate OCL1 is shown in Fig. 5a, which models a BibTex file containing Article, Unpub-
lished, Manual, Misc, and PhDThesis objects. Notably, the Article, Unpublished and
PhDThesis objects involve the author information, which will trigger the execution of the
rule Author. With an inspection into the execution trace, it is found that the execution of
BibTex2DocBook with this source model as input covers 6 rules (including the faulty
rule Author). We further reduce this source model, with the goal of obtaining a simpli-
fied model retaining the capability of violating OCL1. Consider the source model shown
in Fig. 5b, which contains only parts of information of the one depicted in Fig. 5a, but its
execution still violates OCL1. Particularly, the execution of the simplified source model
on BibTex2DocBook covers only 3 rules. Obviously, compared to the original source
model, the simplified model contains less information, but it still triggers the violation of
the same OCL constraint. In other words, the latter contains less unnecessary information

Fig. 3 BibTex2DocBook trans-
formation program (fragment)

Fig. 4 An erroneous ATL rule

967Software Quality Journal (2024) 32:961–984

1 3

for revealing the program’s unexpected behavior, which in turn makes the debugging pro-
cess easier. From this perspective, compared with the original source model, the simplified
model is more helpful for the user to understand how and why the ATL program fails.

3 Approach

In this section, we present the source model simplification approach. Our source model
reduction approach is inspired by the delta debugging technique Zeller and Hildebrandt
(2002), and we redefine the testing process to fit the context of the ATL model transformation.

3.1 Problem statement

We use P to denote a transformation program focuses on the converting of model A (with
reference to the source metamodel MA) to model B (with reference to the target metamodel
MB). Suppose O denotes one of the OCL constraints for the transformation, and let i be a
failing input model for P and O.

Our approach aims to generate a reduced model, namely, i′ , from i, with respect to P and
O, such that i′ is able to reveal the same failure information of P as i. More specifically, i′
is expected to have the following properties. 1) i′ is a sub-model of i, and the size of i′ is
smaller than that of i; 2) i′ should be a valid model according to MA ; 3) the execution of P
on i′ can leads to the violation of O.

Fig. 5 A source model and its simplified version

968 Software Quality Journal (2024) 32:961–984

1 3

3.2 Delta debugging model transformations

In software engineering, one of the widely-adopted automatic test case reduction technique
is delta debugging (also known as the ddmin algorithm) Zeller and Hildebrandt (2002). For
a target program and one of its failing test input, delta debugging aims to explore a mini-
mal test input that contains only parts of the information of the original failing test input,
but still reveals the same defect. Specifically, for a given test input, the delta debugging
technique splits it into a set of candidate inputs according to a specific policy, and then
filters the candidate test inputs based on their validation results, iterating until it finds the
smallest failing test input.

Nowadays, various improvements have been made based on the original ddmin algo-
rithms, yielding a broad range of applications of the delta debugging technique. Particular,
one of the variants of the delta debugging technique is hierarchical delta debugging (HDD)
Misherghi and Su (2006), which mainly focuses on minimizing inputs that can be repre-
sented in a tree structure.

For ATL model transformations, the input source models are usually represented fol-
lowing the XMI format, which thus can be expressed by a tree structure. Accordingly, we
adapt the HDD technique for simplifying input source models of transformation programs.
Fig. 6 describes the overall workflow of our approach, which takes as input an ATL pro-
gram, an OCL constraint and a failing input model, and finally generates a minimized fail-
ing input model. Our approach mainly consists of the following two phases.

• Source model reduction. This phase focuses on the reduction of the given input model
into a set of candidate models. We adopt the HDD module to accomplish model reduc-
tions, which involves parsing the input model to build the tree structure, and further
applying the ddmin algorithm to each level of the tree (starting from the top level and
then continuing with each of the downward levels one by one).

• Failure-revealing capability checking. This phase checks each candidate models to deter-
mine whether the expected property is preserved by the model resulted from reduction.
As aforementioned (Section 3.1), this study aims to minimize failing input model for sup-
porting the debugging of model transformation programs. Therefore, the checking of can-
didate models confirms whether the model has the same failure-revealing capability as
the given input model.

Fig. 6 Source model reduction workflow

969Software Quality Journal (2024) 32:961–984

1 3

These two phases interact with each other, where the former yields a set of candidate
models, while the latter checks each of the candidate models, determining whether or not
a candidate model can be further be processed in the subsequent reductions. This proce-
dure iteratively keeps reducing the given input model and checking the resulting candi-
date models against the target transformation program and OCL constraint. The whole
procedure terminates when a minimal model preserving the expected failure-revealing
capability is explored.

Algorithm 1 Failure-revealing Capability Checking

Notably, the failure-revealing capability checking plays an important role during the
model reduction procedure. It decides which candidate models should be further pro-
cessed by the upcoming reductions, and also specifies the termination criterion for the
whole reduction procedure. In order to generate a minimal source model that preserves
the same failure-revealing capability as the given input model, we redesign the checking
module employed by delta debugging, as described in Algorithm 1. Specifically, the check-
ing consists of two steps. At first, checking the conformance of the candidate model to the
source metamodel (line 2). Only if the model conforms to the source metamodel, it can
be a valid source model of the transformation program. Secondly, checking the model’s
capability of revealing the program’s failure. This is accomplished by running the target
model transformation with the model as input (line 4), and then checking the model and

970 Software Quality Journal (2024) 32:961–984

1 3

the corresponding output target model against the relevant OCL constraint (line 5). If the
model reveals the program’s violation of the OCL constraint, it retains the same failure-
revealing capability as the original input model.

3.3 Implementation

To facilitate automatic source model reduction, we implement our approach into a tool.
We apply Picireny Hodován and Kiss (2016), a python3 package of the HDD algorithm, to
build up the overall framework. We use ANTLRv4 Hodován and Kiss (2016) to parse the
XMI file storing source models into a tree structure. We implement the failure-revealing
capability checking via an automated testing procedure built upon ATL engine, and com-
bine the source model with the transformed target model to obtain a new joint model for
OCL checking (by following the way adopted by Troya et al. (2018)).

4 Evaluation

In this section, we evaluate the proposed model simplification approach. Our evaluation
aims to reveal the reduction effectiveness as well as the effects on model transformation
debugging. Accordingly, we perform two different experiments. In the following, we first
present our research questions, and then describe the experimental setup and report our
experimental results.

4.1 Research questions

Our evaluation mainly focuses on the following two research questions.

• RQ1. How does our approach perform in simplifying input models for model trans-
formation programs? In this RQ, we will investigate and report the effectiveness and
efficiency of our approach for reducing the failing source models of multiple different
model transformation programs.

• RQ2. How and to what extent can our approach assist the automated debugging of
model transformation program? This RQ aims to reveal the impacts of our approach on
the automated debugging of model transformation programs. In this RQ, we will focus
on one of the automated debugging techniques, the spectrum-based fault localization
(SBFL), and explore two different ways of applying our approach to support SBFL:
reducing the failing input models of the given test suite for SBFL, and making use of
the intermediate candidate models to form a test suite for SBFL. Accordingly, we fur-
ther answer two subquestions as below.

– RQ2.1: To what extent the reduced failing input models can improve the effective-
ness of SBFL?

– RQ2.2: To what extent can the test suite derived from our approach can improve the
effectiveness of SBFL?

971Software Quality Journal (2024) 32:961–984

1 3

4.2 Subjects

To demonstrate the effectiveness of our approach and also to support a fair comparison
with the baseline fault localization approach, our experiments utilize the subject programs
released by Troya et al. (2018). The experimental subjects comprise four distinct model
transformation programs, UML2ER, BibTeX2DocBook, CPL2SPL, and Ecore2Maude,
with a total number of 158 mutants. These four model transformation programs are repre-
sentative in ATL model transformation and are different in terms of application area, scale
and ATL program content. For each subject program, there are 100 randomly generated
source models, and some predefined OCL constraints (116 constraints in total).

4.3 Evaluation on reduction effectiveness

In this section, we investigate the effectiveness of our approach for reducing source models
of transformation programs, in order to answer RQ1.

4.3.1 Experimental setup

Experimental procedure Our approach is applied to minimize each failing input model of
our subject programs. As mentioned in Section 4.2, each of the four subject programs has
multiple mutants, and is associated with a set of OCL constraints. For a given faulty pro-
gram (that is, the mutated program), since an input model may lead to the violation of var-
ying OCL constraints, the set of failing input models may be different when different OCL
constraints are utilized. Therefore, we utilize the test suite (that contains 100 source mod-
els) to test each faulty program with respect to individual OCL constraint, so as to collect
failing input models. After that, we apply our approach on each failing input model, and
the relevant transformation program and OCL constraint, to construct the reduced model.
In the experiments, a total number of 21, 705 failing input models are collected.

Evaluation metrics Following existing studies (Misherghi & Su, 2006; Wang et al., 2021),
we use two types of metrics to respectively measure the effectiveness and the efficiency of
our model reduction method: the reduction rate and the processing time. The reduction rate
is calculated as below, where Sf means the size of the source model after reduction, and Si
means the in initial size of the input source model:

In this study, we measure the size of the source model from two dimensions: byte and
token. File size is measured in bytes, whereas the size in token denotes the count of tags
in the XMI file. For the processing time, it refers to the time cost used by our approach for
producing the simplified model.

(1)Reduction_Ratio = 1 −
Sf

Si

972 Software Quality Journal (2024) 32:961–984

1 3

4.3.2 Results for RQ1

Table 1 presents the source model reduction results. For each subject program, the aver-
age size of the original failing input models, the average reduction rate and the average
time cost are reported. It can be found that our approach exhibits varying effectiveness and
efficiency for different subject programs. Overall, our approach achieves promising model
reduction results, as can be observed that the average reduction rates are quite high, rang-
ing from 41.77% to 92.83%. On the other hand, it can be found that each model reduction
can be accomplished within a certain limit of time. We further present the detailed size
information of pairs of original and reduced models, in Fig. 7. For the subject transforma-
tion programs, most of the source models are around 1000 bytes, and some of the source

Table 1 The results of source
model reduction

Subject Program Initial size Reduction rate Total
time cost
(Seconds)

in byte Byte Token

BibTex2DocBook 2,711 92.29% 92.83% 279
CPL2SPL 967 72.81% 66.64% 380
Ecore2Maude 795 71.34% 59.34% 581
UML2ER 227 68.99% 41.77% 141

Fig. 7 Initial size and final size of source models for different transformation programs

973Software Quality Journal (2024) 32:961–984

1 3

models are even of 6000 bytes. Nevertheless, the sizes of simplified models are all smaller
than 220 bytes. These results confirm that our approach is effective for reducing source
models of model transformation programs.

We further investigate the correlation between the initial size of models to be reduced
and the reduction rate achieved by our approach. Fig. 8 depicts the analysis results. It is
evident that as the initial size of the source model increases, the relevant reduction rate
also increases. This trend can be observed from the experiments on every of our subject
programs. It can also be observed from Fig. 8 that the reduction rate is also affected by
the target subject programs, as for source models of different transformation programs that
have similar initial size, the resulting reduction rates are still different.

Based on our experimental analysis, it can be concluded that the proposed approach
can effectively reduce the source model for model transformation programs. Moreover, the
reduction effectiveness may be affected by the size of the models to be reduced, as well as
the target transformation program and the relevant OCL constraint.

4.4 Evaluation on fault localization

In this section, we conduct experiments by applying the proposed source model reduction
approach to support SBFL. We apply our approach in two different paradigms, in order to
respectively answer RQ2.1 and RQ2.2.

Fig. 8 Relationship between initial size and reduction rate

974 Software Quality Journal (2024) 32:961–984

1 3

4.4.1 Experimental setup

SBFL makes use of the test suite and the relevant coverage information to calculate the
suspiciousness of program components. Therefore, the test suite impacts the effectiveness
of SBFL. In this study, we apply our approach to improve or generate test suite for SBFL,
in order to reveal how our approach can assist the fault localization in model transforma-
tion. Our experiments examine 18 popular SBFL methods, including Tarantula Jones and
Harrold (2005), Ochiai Abreu et al. (2009), Dstar Wong et al. (2013), Rogers & Tanimoto
Mao et al. (2014), Ochiai2 Assiri and Bieman (2017), Pierce Wong et al. (2016), Baroni-
Urbani and Buser Wong et al. (2012), Russel-Rao Qi et al. (2013), Op2 Naish et al. (2011),
Phi Maxwell and Pilliner (1968), Zoltar Janssen et al. (2009), Mountford Wong et al.
(2012), Arithmetic Mean Xie et al. (2013), Barinel Abreu et al. (2009), Kulczynski2 Naish
et al. (2011), Simple Matching Wong et al. (2016), Braun-Banquet Wong et al. (2016) and
Cohen Naish et al. (2011).

Experimental procedure For traditional programs, the delta debugging technique has
been applied to reduce failing test cases for supporting SBFL Christi et al. (2018). In the
field of model transformation, the effect of reduced failing input models on the SBFL is
unclear. Therefore, RQ2.1 aims to investigate how and to what extent the reduced fail-
ing input models can improve the effectiveness of SBFL in model transformation. To this
end, for each faulty model transformation program and an OCL constraint, we identify
failing input models from the original test suite and further apply our approach to obtain
the relevant simplified models. Then, we keep the passing input models of the test suite
unchanged, but replace the original failing input models with their relevant simplified mod-
els, to form a new test suite, and further apply SBFL with the new test suite.

RQ2.2 considers the fact that a given test suite may not always be necessarily available for
conducting fault localization. With the observation that the proposed source model reduction
approach generates a large number of candidate models (some of which are passing, while
some of which are failing) before reaching the final minimized failing input model, we propose
to apply our approach as a test suite construction approach. That is, for a faulty program, an
OCL constraint and a failing input model, we apply the proposed approach to reduce the given
failing input models, and then randomly sampled a fixed number of models based on the set of
candidate models, to form a test suite. This newly constructed test suite is then used as the input
test suite for SBFL. In the experiments, we set the size of the constructed test suite as 100, in
order to be consistent with the size of the original test suite provided for the subject programs.

In both experiments, we employ the basic SBFL approach for model transformation pro-
grams as a comparison baseline, and we reuse the data released by Troya et al. (2018) for
comparison analysis.

Evaluation metric The effectiveness of SBFL is usually measured by EXAM score,
which is the percentage of statements in the program that must be checked before reach-
ing the first faulty statement. The calculation of EXAM score is described as below, where
NEX means the number of statements examined, and NALL means the number of the total
statements:

A smaller EXAM score indicates a better fault localization effectiveness.

(2)EXAM score =
NEX

NALL

975Software Quality Journal (2024) 32:961–984

1 3

4.4.2 Results for RQ2

In this section, we report our experimental results to answer RQ2.1 and RQ2.2, respectively.

Results for RQ2.1. Fig. 9 displays the box plots showing the EXAM scores obtained with
the original test suite (red boxes, where the data come from Troya et al. (2018)) and those
obtained by using the test suite involving reduced failing input models (blue boxes). It can
be visually observed that the use of reduced failing test cases lead to lower EXAM scores
for the majority of cases. We further conduct the Wilcoxon rank-sum test Field (2013) to
statistically compare the SBFL effectiveness achieved by using different test suites. For
a subject program and a SBFL technique, a comparison is conducted on a set of EXAM
scores relating to the original test suite and a set of EXAM scores relating to the test suite
having reduced failing input models, yielding a p-value. A p-value < 0.05 reveals that there
is a statistically significant difference between the SBFL effectiveness resulted from using
the above two types of test suites. In total, 72 comparisons are conducted, and the p-value
is also displayed for each groups of data under comparison, in Fig. 9. In 35 out of 72 com-
parisons, a significant difference is observed and the superiority of the use of reduced

Fig. 9 SBFL results with the use of the original test suite and the test suite involving reduced failing input
models

976 Software Quality Journal (2024) 32:961–984

1 3

failing input models is confirmed. In the other comparisons, the use of both types of test
suites yields comparable SBFL effectiveness.

On the other hand, we perform detailed pairwise comparison with respect to the indi-
vidual groups of faulty program and OCL constraint. That is, for a given transformation
program and an OCL constraint, we compare the two SBFL results using the original test
suite and the test suite with reduced failing input models. In the comparison, we consider
three different cases: the best case, the worst case and the average case, where the faulty
statement is treated as the first, the middle, and last one to be inspected when multiple
statements have the same suspicious score with it. Table. 2 reports the comparison results.
For all of the 18 SBFL techniques, the use of our approach for reducing failing input mod-
els leads to no increase in the EXAM scores for the majority of cases. Moreover, for most
of the SBFL techniques, the use of our approach achieves better or comparable effective-
ness than the use of the original test suite for more than 70% cases.

To summarize, our experiments demonstrate the positive impacts of reducing failing
input models for supporting SBFL. This suggests that the proposed approach can be com-
bined with SBFL in order to deliver better fault localization effectiveness.

Results for RQ2.2. To investigate the impacts of test suite derived from the proposed
model reduction procedure on SBFL, we randomly select 10 groups of faulty program and
OCL constraint for each subject programs. For each group, one failing input model is fur-
ther selected for performing the model reductions, from which a test suite is constructed
by using the intermediate candidate models. Table 3 reports the comparison results of the
SBFL effectiveness using the original test suite and the newly constructed test suite, where
F1 to F18 represent the 18 types of SBFL techniques as displayed in the first column of
Table. 2, respectively. A total number of 720 comparisons are conducted, among which
the use of the newly generated test suite yields better SBFL results in 358 cases (which are
highlighted in gray color in Table 2), while it yields worse results in 103 cases. That is, the
newly generated test suites are able to positively support SBFL for most of cases.

In summary, our experimental results suggest that our source model simplification
method can effectively serve as a test suite construction method for supporting the fault
localization in model transformations.

5 Related work

5.1 Delta debugging

Delta debugging (DD) has a significant advantage in software debugging, it can signifi-
cantly reduce the scale of tests needed to locate the problem, therefore it is widely used in
software fault diagnosis and isolation work (Zeller & Hildebrandt, 2002; Gupta et al., 2005;
Zeller, 2002). In recent years, DD has also been used in various fields of debugging work.
Rabin et al. (2021) used DD to minimize inputs to AI models in software engineering tasks,
they proposed Sivand, a simple, model-agnostic methodology for interpreting a wide range
of code intelligence models. Suneja et al. (2021) presented a prediction-preserving input
minimization approach to evaluate and compare the signal awareness of AI-for-code models.
Win et al. (2023) on the other hand, applied DD to event-aware dynamic slicing for Android

977Software Quality Journal (2024) 32:961–984

1 3

Table 2 Pairwise comparison of SBFL effectiveness with the use of the original test suite and the test suite
reduced by the proposed approach. B, W, and A respectively represent the best-, worst- and average- cases
analysis. ≤ and > denote the case that with the use of our approach, SBFL yields a smaller or identical (bet-
ter or the same) and a larger (worse) EXAM score, respectively

SBFL techniques BibTex2DocBook CPL2SPL Ecore2Maude UML2ER

B W A B W A B W A B W A

Tarantula ≤ 91% 75% 76% 85% 71% 72% 92% 97% 97% 98% 97% 98%
> 9% 25% 24% 15% 29% 28% 8% 3% 3% 2% 3% 2%

Ochiai ≤ 79% 75% 75% 92% 75% 76% 100% 97% 97% 98% 85% 86%
> 21% 25% 25% 8% 25% 24% 0% 3% 3% 2% 15% 14%

Dstar ≤ 80% 75% 76% 92% 75% 75% 100% 97% 97% 80% 80% 76%
> 20% 25% 24% 8% 25% 25% 0% 3% 3% 20% 20% 24%

Rogers ≤ 78% 78% 78% 91% 69% 75% 100% 88% 88% 99% 86% 86%
> 22% 22% 22% 9% 31% 25% 0% 12% 12% 1% 14% 14%

Ochiai2 ≤ 95% 73% 75% 91% 74% 74% 100% 89% 89% 100% 88% 89%
> 5% 27% 25% 9% 26% 26% 0% 11% 11% 0% 12% 11%

Pierce ≤ 66% 84% 62% 72% 74% 75% 83% 71% 56% 93% 76% 78%
> 34% 16% 38% 28% 26% 25% 17% 29% 44% 7% 24% 22%

Baroni ≤ 92% 76% 78% 87% 71% 71% 100% 97% 97% 94% 82% 82%
> 8% 24% 22% 13% 29% 29% 0% 3% 3% 6% 18% 18%

Russel Rao ≤ 81% 77% 78% 93% 74% 76% 100% 97% 97% 91% 73% 73%
> 19% 23% 22% 7% 26% 24% 0% 3% 3% 9% 27% 27%

Op2 ≤ 76% 76% 76% 87% 85% 85% 100% 97% 97% 89% 76% 83%
> 24% 24% 24% 13% 15% 15% 0% 3% 3% 11% 24% 17%

Phi ≤ 76% 76% 76% 73% 76% 76% 100% 89% 89% 99% 88% 89%
> 24% 24% 24% 27% 24% 24% 0% 11% 11% 1% 12% 11%

Zoltar ≤ 79% 75% 75% 92% 75% 75% 100% 97% 97% 93% 80% 80%
> 21% 25% 25% 8% 25% 25% 0% 3% 3% 7% 20% 20%

Mountford ≤ 82% 76% 76% 63% 63% 75% 100% 97% 97% 99% 85% 85%
> 18% 24% 24% 37% 37% 25% 0% 3% 3% 1% 15% 15%

Arithmetic ≤ 76% 76% 76% 78% 75% 75% 100% 89% 89% 99% 88% 89%
> 24% 24% 24% 22% 25% 25% 0% 11% 11% 1% 12% 11%

Barinel ≤ 78% 77% 63% 81% 74% 67% 60% 87% 60% 74% 99% 74%
> 22% 23% 37% 19% 26% 33% 40% 13% 40% 26% 1% 26%

Kulcynski2 ≤ 79% 75% 75% 92% 75% 75% 100% 97% 97% 94% 81% 82%
> 21% 25% 25% 8% 25% 25% 0% 3% 3% 6% 19% 18%

Simple Matching ≤ 78% 78% 78% 91% 71% 71% 100% 88% 88% 99% 86% 87%
> 22% 22% 22% 9% 29% 29% 0% 12% 12% 1% 14% 13%

Braun-Banquet ≤ 88% 75% 76% 85% 69% 69% 100% 96% 96% 89% 79% 79%
> 12% 25% 24% 15% 31% 31% 0% 4% 4% 11% 21% 21%

Cohen ≤ 76% 75% 76% 76% 75% 74% 100% 89% 89% 98% 87% 87%
> 24% 25% 24% 24% 25% 26% 0% 11% 11% 2% 13% 13%

978 Software Quality Journal (2024) 32:961–984

1 3

Table 3 The comparison of SBFL effectiveness with the use of the original test suite and the test suite gen-
erated from the proposed model reduction procedure. ‘#. of FMs’ refers to the number of failed inputs in the
original test suite)

979Software Quality Journal (2024) 32:961–984

1 3

applications. Zhou et al. (2018)proposed an incremental debugging algorithm-based approach
for debugging microservice systems, which aims to minimize the incremental faults caused by
the environment for effective debugging.

The closest to our work is the study of Christi et al. (2018), they suggest using delta
debugging based test case reduction to improve fault localization. In addition, Vince et al.
(2021) suggest using the intermediate results generated during test case reduction by DD
to assist in fault localization. However, most studies are based on traditional programs,
there are no relevant DD-based source model simplification techniques in the field of
model transformation.

5.2 Testing and debugging of model transformations

The correctness of software systems built with MDE approaches largely depends on the
correctness of the operations executed using model transformations. Therefore, it is critical
in MDE to test and debug model transformations. Compared to traditional programs, the
debugging of model transformation is quite different. Stefan et al. explored the differences
in complexity and scale between ATL and JAVA in model transformation Höppner et al.
(2022), and they found that the more recent Java version makes development of transfor-
mations easier because less work is required to set up a working transformation. In addi-
tion, they also summarized the advantages and disadvantages of model transformation lan-
guages Götz et al. (2021), which can help researchers better understand the characteristics
of model transformation programs.

Test input generation is important for model transformation debugging, many research-
ers are dedicated to exploring different model generation methods. A rule-based, configur-
able approach Rule-Based (2020) has been presented to automate model generation which
addresses the stated requirements, it can be configured beforehand or during the generation
process to produce sets of models that are diverse to a certain extent. Lopez et al. proposed
a new model generator, M2 López and Cuadrado (2023), which fully focused on satisfy-
ing the structurally realistic property. He et al. (2019) presented an approach for efficient
model generation, which can generate models of large size in reasonable times. In addition,
Karimi et al. presented an approach Karimi et al. (2024) to generate models by applying
an ant-colony-optimization, which requires only metamodels and an optional set of OCL
constraints as input. Some studies propose to select high quality test inputs by strategi-
cally filtering out lower quality inputs. Alkhazi et al. (2020) proposed a test case selection
approach for model transformations based on multi-objective search, designed to reduce
duplication in the execution of test models. Bauer et al. (2011) presented a coverage analy-
sis approach for measuring test suite quality for model transformation chains, also aimed at
selecting better test cases.

Fault localization is essential in debugging work, Troya et al. applied traditional spec-
trum based fault localization methods in model transformation programs and evaluate the
results for multiple formulas Troya et al. (2018). Subsequently, they presented an enhanced
contract language and a hybrid framework Muñoz et al. (2022), which can help locate tar-
get erroneous rules more accurately. Cuadrado et al. proposed a model transformation test-
ing tool called AnATLyzer Cuadrado et al. (2021), which is able to detect a wide range of
non-trivial problems in ATL transformations by using constraint solving to improve the
analysis precision.

980 Software Quality Journal (2024) 32:961–984

1 3

To the best of our knowledge, little research has been done on the simplification of
source models, our approach is the first to use HDD algorithm in a model transformation
program to reduce the input source model and assist debugging.

6 Conclusion and future work

To address the debugging challenges associated with scaled input source models in model
transformation, in this study, we proposed an automatic source model simplification
method, which is based on the Hierarchical delta debugging algorithm. We found that the
simplification of the source model not only reduces a large amount of redundant infor-
mation not related to the target error, but also improves the accuracy of spectrum-based
fault localization in the model transformation. In addition to this, we found that the source
model simplification method can also be used as a source model generator to help us gen-
erate test suites when the original test cases are insufficient, and it has a great performance
in fault localization.

However, there is still some considerable rooms for improvement in the execution time
of our approach. Currently, the simplification process may generate numerous inputs that
do not adhere to the metamodel specification, necessitating substantial time for analysis
of their validity. In subsequent work, we plan to explore strategies for early exclusion of
such inputs to enhance the efficiency of the reduction process. In addition, how to better
mitigate the oracle problem in the model transformation domain is also critical for source
model simplification. The implemented prototype is available on Github: https:// github.
com/ JKOBEJ/ DDATL. git/.

Author contributions Junpeng Jiang implements the approach and conducts experiments, and also pre-
pares the draft version of the paper. Mingyue Jiang guides the whole procedure of this work, including the
approach design, the implementation details, and the revisions of the paper. Liming Nie and Zuohua Ding
review the paper and provide comments to improve the work.

Funding This work was supported by the National Nature Science Foundation of China (Grant
No.61802349, No. 62132014 and No. 61972359), the Zhejiang Provincial Natural Science Foundation of
China (Grant No. LY20F020021), and the Zhejiang Provincial Key Research and Development Program of
China (No.2022C01045).

Data availibility Original dataset for this research is included in Troya et al. (2018), and other results data is
available from the corresponding author on reasonable request.

Declarations

Competing interests The authors declare no competing interests.

References

Abreu, R., Zoeteweij, P., & Van Gemund, A. J. (2009). Spectrum-based multiple fault localization. In: 2009
IEEE/ACM International Conference on Automated Software Engineering, pp. 88–99.

Abreu, R., Zoeteweij, P., Golsteijn, R., & Van Gemund, A. J. (2009). A practical evaluation of spectrum-
based fault localization. Journal of Systems and Software, 82(11), 1780–1792.

Alkhazi, B., Abid, C., Kessentini, M., Leroy, D., & Wimmer, M. (2020). Multi-criteria test cases selection
for model transformations. Automated Software Engineering, 27, 91–118.

https://github.com/JKOBEJ/DDATL.git/
https://github.com/JKOBEJ/DDATL.git/

981Software Quality Journal (2024) 32:961–984

1 3

Arendt, T., Biermann, E., Jurack, S., Krause, C., & Taentzer, G. (2010). Henshin: advanced concepts and
tools for in-place emf model transformations. In: 13th International Conference on Model Driven
Engineering Languages and Systems, pp. 121–135.

Assiri, F. Y., & Bieman, J. M. (2017). Fault localization for automated program repair: effectiveness,
performance, repair correctness. Software Quality Journal, 25, 171–199.

Bauer, E., Küster, J. M., & Engels, G. (2011). Test suite quality for model transformation chains. In:
International Conference on Modelling Techniques and Tools for Computer Performance Evalua-
tion, pp. 3–19. Springer.

Christi, A., Olson, M. L., Alipour, M. A., & Groce, A. (2018). Reduce before you localize: Delta-debug-
ging and spectrum-based fault localization. In: 2018 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pp. 184–191.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., & Talcott, C. (2007). All
about maude-a high-performance logical framework: how to specify, program, and verify systems
in rewriting logic, Lecture Notes in Computer Science, 4350.

Cuadrado, J. S., Guerra, E., & Lara, J. (2018). Anatlyzer: an advanced ide for atl model transformations.
In: Proceedings of the 40th International Conference on Software Engineering: Companion Pro-
ceeedings, pp. 85–88.

Cuadrado, J. S., Guerra, E., & Lara, J. D. (2021). Anatlyzer: Static analysis of atl model transformations.
In Composing Model-Based Analysis Tools: Springer.

Cuadrado, J. S., Guerra, E., & Lara, J. (2018). Quick fixing atl transformations with speculative analysis.
Software & Systems Modeling, 17, 779–813.

Field, A. (2013). Discovering statistics using ibm spss statistics, 4th ed. Newbury Park, CA, USA: Sage
2013.

Götz, S., Tichy, M., & Groner, R. (2021). Claimed advantages and disadvantages of (dedicated) model trans-
formation languages: a systematic literature review. Software and Systems Modeling, 20, 469–503.

Greenyer, J., & Kindler, E. (2010). Comparing relational model transformation technologies: implement-
ing query/view/transformation with triple graph grammars. Software & Systems Modeling, 9, 21–46.

Gupta, N., He, H., Zhang, X., & Gupta, R. (2005). Locating faulty code using failure-inducing chops. In:
Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering,
pp. 263–272.

He, X., Zhang, T., Hu, C.-J., Ma, Z., & Shao, W. (2016). An mde performance testing framework based
on random model generation. Journal of Systems and Software, 121, 247–264.

He, X., Zhang, T., Pan, M., Ma, Z., & Hu, C.-J. (2019). Template-based model generation. Software &
Systems Modeling, 18, 2051–2092.

Hodován, R., & Kiss, Á. (2016). Modernizing hierarchical delta debugging. In: Proceedings of the 7th
International Workshop on Automating Test Case Design, Selection, and Evaluation, pp. 31–37.

Hodován, R., & Kiss, Á. (2016). Practical improvements to the minimizing delta debugging algorithm.
In: International Conference on Software Engineering and Applications, vol. 2, pp. 241–248.
SciTePress.

Höppner, S., Haas, Y., Tichy, M., & Juhnke, K. (2022). Advantages and disadvantages of (dedicated)
model transformation languages: A qualitative interview study. Empirical Software Engineering,
27(6), 159.

INRIA. (2005). ATL Transformation Example: BibTeXML to DocBook. Retrieved from https:// www. eclip se.
org/ atl/ atlTr ansfo rmati ons/ BibTe XML2D ocBook/ Examp leBib TeXML 2DocB ook[v00. 01]. pdf

Janssen, T., Abreu, R., & Van Gemund, A. J. (2009). Zoltar: a spectrum-based fault localization tool. In:
Proceedings of the 2009 ESEC/FSE Workshop on Software Integration and Evolution@ Runtime,
pp. 23–30.

Jones, J. A., & Harrold, M. J. (2005). Empirical evaluation of the tarantula automatic fault-localization
technique. In: Proceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering, pp. 273–282.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., & Valduriez, P. (2006). Atl: a qvt-like transformation
language. In: Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, pp. 719–720.

Karimi, M., Kolahdouz-Rahimi, S., & Troya, J. (2024). Ant-colony optimization for automating test
model generation in model transformation testing. Journal of Systems and Software, 208, 111882.

López, J. A. H., & Cuadrado, J. S. (2023). Generating structurally realistic models with deep autoregres-
sive networks. IEEE Transactions on Software Engineering, 49(4), 2661–2676.

Mao, X., Lei, Y., Dai, Z., Qi, Y., & Wang, C. (2014). Slice-based statistical fault localization. Journal of
Systems and Software, 89, 51–62.

https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook%5bv00.01%5d.pdf
https://www.eclipse.org/atl/atlTransformations/BibTeXML2DocBook/ExampleBibTeXML2DocBook%5bv00.01%5d.pdf

982 Software Quality Journal (2024) 32:961–984

1 3

Maxwell, A., & Pilliner, A. (1968). Deriving coefficients of reliability and agreement for ratings. British
Journal of Mathematical and Statistical Psychology, 21(1), 105–116.

Misherghi, G., & Su, Z. (2006). Hdd: hierarchical delta debugging. In: Proceedings of the 28th Interna-
tional Conference on Software Engineering, pp. 142–151.

Muñoz, P., Troya, J., Wimmer, M., & Kappel, G. (2022). Revisiting fault localization techniques for
model transformations: Towards a hybrid approach. Journal of Object Technology, 21(4).

Naish, L., Lee, H. J., & Ramamohanarao, K. (2011). A model for spectra-based software diagnosis. ACM
Transactions on software engineering and methodology (TOSEM), 20(3), 1–32.

Qi, Y., Mao, X., Lei, Y., & Wang, C. (2013). Using automated program repair for evaluating the effec-
tiveness of fault localization techniques. In: Proceedings of the 2013 International Symposium on
Software Testing and Analysis, pp. 191–201.

Rabin, M. R. I., Hellendoorn, V. J., & Alipour, M. A. (2021). Understanding neural code intelligence
through program simplification. In: Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 441–452.

Rule-Based, A. (2020). Generating large emf models efficiently. In: Proc. Int. Conf. Fundam. Approaches
Softw. Eng, pp. 224–244.

Suneja, S., Zheng, Y., Zhuang, Y., Laredo, J. A., & Morari, A. (2021). Probing model signal-awareness
via prediction-preserving input minimization. In: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering, pp. 945–955.

Taentzer, G. (2003). Agg: A graph transformation environment for modeling and validation of software.
In: International Workshop on Applications of Graph Transformations with Industrial Relevance,
pp. 446–453. Springer.

Troya, J., Segura, S., Burgueño, L., & Wimmer, M. (2022). Model transformation testing and debugging:
A survey. ACM Computing Surveys, 55(4), 1–39.

Troya, J., Segura, S., Parejo, J. A., & Ruiz-Cortés, A. (2018). Spectrum-based fault localization in model
transformations. ACM Transactions on Software Engineering and Methodology (TOSEM), 27(3), 1–50.

VaraminyBahnemiry, Z., Galasso, J., Belharbi, K., & Sahraoui, H. (2021). Automated patch generation
for fixing semantic errors in atl transformation rules. In: 2021 ACM/IEEE 24th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS), pp. 13–23.

Vince, D., Hodován, R., & Kiss, Á. (2021). Reduction-assisted fault localization: Don’t throw away the
by-products! In: ICSOFT, pp. 196–206.

Wang, G., Shen, R., Chen, J., Xiong, Y., & Zhang, L. (2021). Probabilistic delta debugging. In: Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp. 881–892.

Win, H. M., Tan, S. H., & Sui, Y. (2023). Event-aware precise dynamic slicing for automatic debugging
of android applications. Journal of Systems and Software, 198, 111606.

Wong, W. E., Debroy, V., Li, Y., & Gao, R. (2012). Software fault localization using dstar (d*). In: 2012
IEEE Sixth International Conference on Software Security and Reliability, pp. 21–30.

Wong, W. E., Debroy, V., Gao, R., & Li, Y. (2013). The dstar method for effective software fault locali-
zation. IEEE Transactions on Reliability, 63(1), 290–308.

Wong, W. E., Gao, R., Li, Y., Abreu, R., & Wotawa, F. (2016). A survey on software fault localization.
IEEE Transactions on Software Engineering, 42(8), 707–740.

Xie, X., Chen, T. Y., Kuo, F.-C., & Xu, B. (2013). A theoretical analysis of the risk evaluation formulas
for spectrum-based fault localization. ACM Transactions on software engineering and methodology
(TOSEM), 22(4), 1–40.

Zeller, A. (2002). Isolating cause-effect chains from computer programs. ACM SIGSOFT Software Engi-
neering Notes, 27(6), 1–10.

Zeller, A., & Hildebrandt, R. (2002). Simplifying and isolating failure-inducing input. IEEE Transac-
tions on Software Engineering, 28(2), 183–200.

Zhou, X., Peng, X., Xie, T., Sun, J., Li, W., Ji, C., & Ding, D. (2018). Delta debugging microservice
systems. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pp. 802–807.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

983Software Quality Journal (2024) 32:961–984

1 3

Junpeng Jiang received the BSc degree in computer science and
technology from the Central South University of Forestry and Tech-
nology. He is currently a Master’s student majoring in computer tech-
nology at Zhejiang Sci-Tech University. His research interests include
testing and debugging of model transformation programs.

Mingyue Jiang received the PhD degree from the Swinburne Univer-
sity of Technology, Australia. She is currently an associate professor
at Zhejiang Sci-Tech University, China. Her current research interests
include software testing, analysis, and debugging.

Liming Nie is an associate professor at Shenzhen Technology Univer-
sity since 2024. He graduated with a PhD from Dalian University of
Technology in 2019 and subsequently joined Zhejiang Sci-Tech Uni-
versity as a lecturer. His current research interests include intelligent
software engineering and applications, and trustworthy analysis of
open-source software projects.

984 Software Quality Journal (2024) 32:961–984

1 3

Zuohua Ding received the PhD degree in mathematics and MS
degree in computer science from the University of South Florida,
Tampa, FL, USA, in 1996 and 1998, re- spectively. He is currently a
Professor and the Director of the Laboratory of Intelli- gent Comput-
ing and Software Engineering, Zhejiang Sci-Tech University, Hang-
zhou, China, and has been a Research Professor at the National Insti-
tute for Systems Test and Productivity, USA, since 2001. From 1998
to 2001, he was a Senior Software Engineer with Advanced Fiber
Communication, USA. His research areas are system modeling, pro-
gram analysis, service computing and Petri nets. He has authored and
co-authored more than 70 papers.

	A source model simplification method to assist model transformation debugging
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 ATL model transformation
	2.2 Motivation

	3 Approach
	3.1 Problem statement
	3.2 Delta debugging model transformations
	3.3 Implementation

	4 Evaluation
	4.1 Research questions
	4.2 Subjects
	4.3 Evaluation on reduction effectiveness
	4.3.1 Experimental setup
	4.3.2 Results for RQ1

	4.4 Evaluation on fault localization
	4.4.1 Experimental setup
	4.4.2 Results for RQ2

	5 Related work
	5.1 Delta debugging
	5.2 Testing and debugging of model transformations

	6 Conclusion and future work
	References

