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Abstract
Deep learning frameworks serve as the cornerstone for constructing robust deep learning  
systems. However, bugs within these frameworks can have severe consequences, nega-
tively affecting various applications. Accurately classifying and understanding these 
bugs is essential to ensure framework reliability. By doing so, developers can proactively 
take appropriate measures to mitigate potential risks associated with specific bug types  
in both current and future software releases. Despite the significance of bug report clas-
sification, existing methods fall short in terms of performance, rendering them impractical 
for real-world applications. To address this limitation, we propose a bug report classifi-
cation framework for deep learning frameworks, called LLM–BRC, leveraging OpenAI’s 
latest embedding model, text-embedding-ada-002. Our LLM–BRC framework achieves an 
impressive accuracy range of 92% to 98.75% in bug report classification for three deep 
learning frameworks: TensorFlow, MXNET, and PaddlePaddle. This represents a substan-
tial improvement of 17.21% to 69.15% compared to existing methods. Furthermore, we 
conduct a comprehensive investigation into the impact of different bug report components 
and different models.
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1 Introduction

Deep learning frameworks play a crucial role in building robust deep learning systems 
(Zhang et al., 2020). With the rapid advancement of deep learning technology, the demand 
for deep learning frameworks has experienced exponential growth (Guo et al., 2018). This 
expansion encompasses the incorporation of new interfaces, the enhancement of function-
alities, and the optimization of compatibility with a wide array of hardware devices and 
underlying drivers. Throughout this evolutionary process, the continuous iteration of code 
and version updates inevitably introduces bugs into deep learning frameworks (Zhang et al., 
2018). Bugs in deep learning frameworks can have a significant and wide-reaching impact 
on a larger user base compared to specific deep learning models. Particularly in safety- and 
security-critical domains like autonomous driving (Chen et al., 2015) and healthcare (Cai 
et al., 2014), the consequences of these bugs can be more severe. Therefore, ensuring the 
reliability of deep learning frameworks is of utmost importance.

Numerous studies have been conducted to gain insights into the characteristics of bugs 
in deep learning frameworks and provide assistance in their resolution. For instance, Jia 
et  al. (2021) conducted an analysis of bugs in TensorFlow based on 202 bug fixes. The 
findings revealed that bugs in TensorFlow can be classified into 6 distinct categories based 
on symptoms and 11 distinct categories based on root causes. In (Islam et al., 2019), Islam 
et al. examined five deep learning libraries, namely Caffe (Jia et al., 2014), Keras (Lux & 
Bertini, 2019), TensorFlow (Girija, 2016), Theano (Team et al., 2016) and Torch (Collobert 
et  al., 2002). They analyzed 2,716 posts from Stack Overflow and 500 bug fix commits 
from GitHub to identify commonly occurring bug types in deep learning frameworks. 
According to the classification results, there are five different bug types, including API 
bugs, Coding bugs, Data bugs, Structural bugs, and Non model structural bugs. In (Du 
et  al., 2022), we conducted a classification of bug reports in TensorFlow, MXNET, and 
PaddlePaddle based on fault-triggering conditions. Bugs were categorized into Bohrbugs 
(BOHs) and Mandelbugs (MANs), taking into account the conditions of fault activation 
and error propagation. Moreover, within the MAN category, bugs were further classified as 
either non-aging related Mandelbugs (NAMs) or aging-related bugs (ARBs).

However, the bug classification process in the aforementioned studies was all performed 
manually. As the number of bug reports in deep learning frameworks continues to increase, 
manually classifying all bug reports becomes impractical. Therefore, the development 
of bug report classification methods becomes essential. In (Xia et al., 2014), the authors 
employed the bag-of-words model to represent bug reports and utilized machine learn-
ing classifiers to classify them. However, the bag-of-words model neglects the contextual 
semantic information present in bug reports, resulting in inadequate classification results.

To address this limitation and effectively utilize the semantic information embed-
ded within bug reports, we proposed the DeepSIM method in Du et  al. (2021). Deep-
SIM employed a word2vec semantic model that was trained based on over two million 
bug reports. However, the effectiveness of DeepSIM is hindered by the constrained size 
of the training corpus utilized for the semantic model. To address the aforementioned 
issues, we propose a Large Language Model-based Bug Report Classification framework 
(LLM–BRC) for deep learning frameworks. Large language models (LLMs), particularly 
GPT-3 and GPT-4 (Brown et al., 2020; Radford et al., 2018, 2019) have proven transforma-
tive in numerous fields and have made remarkable contributions in domains ranging from 
mathematics (Frieder et al., 2023) and communication (Guo et al., 2023) to even medicine 
(Nov et al., 2023). In particular, the prowess of LLMs lies in their ability to revolutionize 
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text processing across diverse tasks, substantially propelling the fields of natural language 
understanding and generation to new heights (Ray, 2023). One of the core strengths of 
LLMs is their mastery of language representation through dense vector embeddings. By 
capturing intricate semantic meaning and contextual information, these embeddings allow 
for a more nuanced understanding of language and context-aware language processing.

In our framework, we leverage the text-embedding-ada-002 model, which is the second-
generation embedding model announced by OpenAI on December 15, 2022, to represent 
bug reports and facilitate bug report classification. Based on this model, bug reports can 
be transformed into embeddings of a dimension size of 1,536. These embedding vectors 
are then fed into a feed-forward neural network (FFN) for bug report classification. Unlike 
traditional machine learning classifiers, FFN excels at capturing intricate patterns and 
dependencies within the data, enabling it to learn highly representative and discriminative 
features. This allows for enhanced accuracy of bug report classification and the ability to 
handle high-dimensional input data efficiently. Finally, the effectiveness of LLM–BRC is 
evaluated on bug reports from three deep learning frameworks.

In summary, this article makes the following main contributions.

1. We present LLM–BRC, a Large Language Model-based Bug Report Classification 
framework that combines a large language model with a deep learning classifier. 
Through this method, we achieved accurate classification of bugs in deep learning 
frameworks, with an accuracy ranging from 92% to 98.75%.

2. We explore the factors influencings classification results, including information from 
different components of bug reports and types of language models, to further promote 
the practical application of this method.

3. In order to facilitate bug report classification research, we have open-sourced both the 
data and the method, which can be accessed at the following webpage: https:// sites. 
google. com/ view/ llmbp/.

The rest of the paper is organized as follows. Section II presents the proposed approach. 
Section III provides an overview of the experimental setup. Section IV describes the evalu-
ation and analysis of the results. In section V, we discuss the threats to validity. Section VI 
presents the related work. Finally, the last section concludes the paper.

2  Our approach

In this section, we propose a bug report classification framework called LLM–BRC. 
The overall procedure of LLM–BRC  is depicted in Fig.  1. As shown in the figure, 
LLM–BRC comprises three sequential steps: data preparation, LLM-based bug report rep-
resentation, and bug report classification. In the data preparation phase, we start by extract-
ing information from bug reports in deep learning frameworks’ GitHub repositories, using 
a custom-designed web crawl tool. Next, the preprocessed bug reports are fed into the 
OpenAI’s text-embedding-ada-002 model, which transforms the natural language text into 
dense embedding vector representations. These embeddings capture the semantic meaning 
and contextual information present in the bug reports. Finally, a FFN is constructed and 
trained using labeled bug reports. The FFN utilizes the learned embeddings to perform the 
bug report classification task. In the subsequent parts of this section, we provide a detailed 
explanation of each step of LLM–BRC.

https://sites.google.com/view/llmbp/
https://sites.google.com/view/llmbp/
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2.1  Data preparation

We initiate the data preparation process by crawling bug reports based on their Bug-ID 
from the GitHub repositories of TensorFlow, MXNET, and PaddlePaddle. This crawl 
phase considers a total of 3,110 bug reports from these three deep learning frame-
works, which were previously labeled in our previous work (Du et al., 2022). Since text 
is the dominant feature contained in bug reports, we collect natural language informa-
tion including title, description, and comments from each bug report. Among them, the 
title provides a concise summary of the entire bug report, offering a brief overview of 
the entire bug report. The description section contains a detailed account of the issue, 
including observed software anomalies, the software runtime environment, reproduction 
steps, and other relevant details. Furthermore, the comment section comprises discus-
sions and exchanges among developers, the report submitter, and other interest parties. 
These comments provide valuable insights and additional information related to the 
reported issue.

2.2  LLM‑based bug report representation

After extracting bug reports, we obtain a corpus of text data. To represent these texts effec-
tively, we utilize a powerful pre-trained large language model called text-embedding-ada-002. 
By applying text-embedding-ada-002 to the texts, we obtain dense and low-dimensional 
embedding vectors that serve as compact representations of the original bug reports.

Specifically, text-embedding-ada-002 model employs the Transformer architecture 
(Ashish et al., 2017) to convert input into a 1,536-dimensional vector. Firstly, each input 
bug report is tokenized and segmented into tokens. Next, the tokens pass through 96 
decoder layers, each comprising a masked multi-head self-attention mechanism and a feed-
forward neural network. The multi-head self-attention layer computes self-attention on the 
input sequential data, generating feature representations for each position in the sequence. 
The feed-forward network performs fully connected calculations on the feature vectors at 
each position, producing new feature representations. Its crucial role is to provide nonlin-
ear transformations.

Fig. 1  Detailed structure of  LLM-BRC
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The decoder layers start by applying h different linear projections to the Query, Key, and 
Value. The resulting attention values for each head i are calculated as follows:

where Q , K , and V  represent the query vector, key vector, and value vector, respectively.
The attention mechanism used in the transformer employs scaled dot-product attention, 

which can be defined as:

where, dk represents the dimension of the query/key vectors.
The resulting attention values from all the heads are concatenated together, resulting in 

a single multi-head attention output:

where WO is a weight matrix used to combine the multi-head attention outputs.
Additionally, the decoder includes an additional masked multi-head self-attention layer. 

This layer prevents the model from seeing future information during sequence prediction. 
Hence, the final output of the decoder can be represented as:

where y represents the input sequential data, x refers to the output sequence from the 
encoder, MHA denotes the multi-head self-attention layer, FFN represents the feed forward 
layer, LN represents the layer normalization layer, and MMHA signifies the masked multi-
head self-attention layer.

Finally, the output of the attention layer undergoes processing through a feed-forward 
neural network. The position-wise feed-forward network is a fully connected feed-forward 
neural network where each word at a position passes through the same network indepen-
dently. It essentially consists of two fully connected layers. After passing through all the 
decoder layers, the final output is generated by the last decoder layer. This output contains 
the contextual information of the bug reports and serves as the ultimate embedding vector 
representation for bug reports. This embedding vector will be used for subsequent classifi-
cation tasks.

2.3  Bug report classification

In this section, we conduct the bug report classification task at three levels, as depicted 
in Fig. 2. At the first level, we classify bug reports into two categories: bugs and non-
bugs. As depicted in Herzig et  al. (2013), not all bug reports contain actual bugs. 
Therefore, bug reports related to requests for new features or enhancements, documen-
tation issues (e.g., missing information, outdated documentation, or harmless warn-
ing outputs), compile-time issues (e.g., cmake errors or linking errors), operator errors 
or duplicate reports are considered non-bugs and should be filtered out. Based on the 
complexity of fault activation and/or error propagation conditions, we predict bugs into 
Bohrbugs (BOHs) and Mandelbugs (MANs) in the second level (Grottke & Trivedi, 
2005). Finally, within the MAN category, we further differentiate between aging-related 

(1)headi = attention(QW
Q

i
,KWK

i
,VWV

i
)

(2)Attention(Q,K,V) = softmax(
QKT

√

(dk)
)V

(3)MultiHead(Q,K,V) = concat(head1, ..., headh)W
O

(4)DecoderLayer(y) = LN(y +MMHA(y) +MHA(y, x) + FFN(y))
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bugs (ARBs) and non-aging related Mandelbugs (NAMs) depending on whether the 
bug contributes to the software aging phenomenon. The definitions of BOH, MAN, and 
ARB are as follows (Du et al., 2022; Cotroneo et al., 2013).

Bohrbug (BOH) A bug that consistently manifests under well-defined conditions. The acti-
vation and/or error propagation of BOHs is simple.

Mandelbug (MAN) A bug that cannot always be manifested even under exact conditions. 
In contrast to BOHs, the activation and/or error propagation of MANs is complex.

Aging‑related bug (ARB) A fault that leads to the accumulation of errors either inside the 
running application or its system-context environment, resulting in an increased failure rate 
and/or degraded performance.

Non‑aging related bug (NAM) If a bug belongs to the MAN category but is not an ARB, 
it is classified as a NAM.

To perform the classification task, we construct a FFN classifier. FFN is particu-
larly useful for classification tasks because they can learn complex non-linear decision 
boundaries between classes. By adjusting the weights and biases during training, the 
network can effectively map input data to the correct output class labels. As depicted 
in Fig. 1, the network architecture consists of four layers, an input layer, a hidden layer 

Fig. 2  Classification tasks performed
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with 256 neurons, a second hidden layer with 128 neurons, and an output layer with a 
number of neurons equal to the number of unique classes in the target variable.

The first layer’s input shape is determined by the number of features in the input data. 
The activation function used in both the hidden layers is the Rectified Linear Unit (ReLU), 
which is commonly used in deep learning models due to its ability to handle non-linear 
data. As for the output layer, it uses the Softmax activation function, converting the layer’s 
output into a probability distribution across different classes.

3  Experimental setup

3.1  Dataset

Table 1 presents the dataset used to evaluate the LLM-BRC framework. This dataset con-
sists of bug reports collected from three popular deep learning frameworks: TensorFlow, 
MXNET, and PaddlePaddle. Specifically, we collected a total of 1,978 bug reports from 
the TensorFlow’s GitHub repository1, 777 bug reports from MXNET’s GitHub repository2, 
and 355 bug reports from PaddlePaddle’s GitHub repository3. For each bug report, we 
extracted the title, description and comment components, resulting in a total of 3,110 bug 
reports. The detailed information of the selected bug reports is presented in Table 1.

3.2  Comparison methods

In this section, we introduce the method used for comparison with our proposed approach, 
DeepSIM, which is a semantic information-based bug report classification method (Du 
et al., 2021). DeepSIM is currently the state-of-the-art method for automatically classifying 
bugs based on fault triggering conditions. In addition, the authors have conducted a com-
prehensive comparison between DeepSIM and other existing machine learning methods in 
Du et al. (2021), demonstrating the superior effectiveness of DeepSIM. Consequently, this 
paper selects DeepSIM as the benchmark for comparison.

DeepSIM: This method begins by training a word2vec semantic model on a vast dataset 
comprising over two million bug reports collected from 9 open-source software projects. Each 
word in the text is then transformed into a word vector using the word2vec model. Subse-
quently, all word vectors are concatenated to form a two-dimension vector representation of 
the text data. Finally, a convolutional neural network classifier is trained on these text embed-
dings to predict the categories of bug reports.

Table 1  Details of Bug Reports Project Level 1 Level 2 Level 3

Bug Non-bug BOH MAN ARB NAM

TensorFlow 953 1,025 745 157 88 69
MXNET 391 386 270 114 34 80
PaddlePaddle 208 147 152 47 19 28

1  https:// github. com/ tenso rflow/ tenso rflow/ issues
2  https:// github. com/ apache/ incub ator- mxnet/ issues
3  https:// github. com/ Paddl ePadd le/ Paddle/ issues

https://github.com/tensorflow/tensorflow/issues
https://github.com/apache/incubator-mxnet/issues
https://github.com/PaddlePaddle/Paddle/issues


992 Software Quality Journal (2024) 32:985–1005

1 3

3.3  Evaluation metrics

In this study, we employ accuracy, precision, recall, and F-measure as evaluation metrics to 
assess the performance of LLM-BRC. These metrics are calculated based on the confusion 
matrix, which records the correctly and incorrectly predicted instances for each class. The key 
components in the confusion matrix are denoted as follows: TP for true positive, FP for false 
positive, FN for false negative, and TN for true negative. The calculation of the selected met-
rics is as follows.

Accuracy Accuracy is the proportion of correctly predicted instances relative to all 
instances and is defined as:

Precision Precision estimates the proportion of instances correctly predicted as a particu-
lar class among all instances classified into that class. This metric assesses the predictive 
power of the algorithm and is defined as:

Recall Recall measures the proportion of correctly predicted members over all actual class 
members. It is calculated as:

F‑measure The F-measure is a composite metric that combines both precision and recall. 
It provides a balanced assessment of the algorithm’s performance by considering the trade-
off between precision and recall. The F-measure is defined as:

We utilize the K-fold function from the sklearn library (Pedregosa et al., 2011) to perform 
cross-validation and randomly split the bug reports into training and test sets. The K-fold func-
tion divides the dataset into K equal-sized folds. During each iteration of the cross-validation 
process, one fold is used as the test set, while the remaining K-1 folds are combined to form 
the training set. This process is repeated K times, and in our experiments, we set K = 5.

4  Evaluation and analysis

4.1  Main results

This section presents the experimental results obtained using the LLM–BRC framework 
for bug report classification in the TensorFlow, MXNET, and PaddlePaddle frameworks. 

As shown in Table  2,  LLM–BRC  LLM—achieves an impressive accuracy of over 
92% across all classification tasks within all three deep learning (DL) frameworks. This 
significant achievement highlights LLM-BRC’s ability to effectively extract and learn 

Accuracy =
TN + TP

TP + TN + FP + FN
.

Precision =
TP

TP + FP
.

Recall =
TP

TP + FN
.

F − measure =
TP

TP + 0.5 ∗ (FP + FN)
.
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from features in bug reports. Among all three DL frameworks, the classification results 
for the TensorFlow framework are the most impressive. For the bug/non-bug classifica-
tion,  LLM–BRC  achieves an accuracy of 92.56%. The precision value of 92.46% indi-
cates a high proportion of correctly classified bug reports among all classified bug reports. 
The recall value of 93.02% suggests that LLM–BRC effectively captures a large portion 
of actual bug instances. These results contribute to an F-measure of 92.73%, indicating a 
good balance between precision and recall. In comparison, the PaddlePaddle framework 
exhibits the most unfavorable classification results. This difference can be attributed to the 
wider popularity and use of TensorFlow, which has fostered a relatively mature develop-
ment community. As a result, TensorFlow benefits from a larger number and higher quality 
of bug reports. PaddlePaddle, on the other hand, is characterized by a smaller corpus of 
bug reports that tend to be of lower quality. This difference in the dataset directly affects 
classification results.

Based on the above results, it is evident that the quantity and quality of bug reports 
are significant determinants of classification performance. TensorFlow, benefiting 
from the highest quantity and quality of bug reports, achieves the most precise classi-
fication results. In contrast, PaddlePaddle, with fewer and lower-quality bug reports, 
shows comparatively less accurate classification outcomes.

To further evaluate the effectiveness of the LLM-BRC framework, we conduct a 
detailed comparative analysis with the state-of-the-art DeepSIM method. Utilizing identi-
cal bug reports as input for both LLM-BRC and DeepSIM, the classification results for the 
TensorFlow dataset are illustrated in Fig. 3. From the results, it is evident that the LLM-
BRC framework outperforms the DeepSIM method on all four metrics. Specifically, LLM-
BRC exhibits a substantial increase in classification accuracy of 17.21% to 69.15% across 
three distinct classification tasks when compared to DeepSIM. Notably, in the bug/non-bug 
classification task, LLM-BRC demonstrates a marked improvement, enhancing accuracy 
by 69.15%, precision by 68.97%, recall by 68.15%, and F-measure by 69.12%. Overall, 
these results distinctly highlight LLM-BRC ’s consistent effectiveness across various clas-
sification tasks, underscoring its potential for practical implementation in the field. The 
primary factor contributing to LLM-BRC’s superior performance is its core integration 
of an advanced large language model, which underscores the model’s adeptness at under-
standing complex linguistic nuances and producing embeddings that richly encapsulate 
textual information, thereby driving its superior classification performance.

Table 2  Classification Results of LLM–BRC

Project Task accuracy precision recall F-measure

TensorFlow bug/non-bug 92.56% 92.46% 93.02% 92.73%
MAN/BOH 98.47% 98.70% 99.47% 99.08%
ARB/NAM 98.75% 98.75% 98.75% 98.75%

MXNET bug/non-bug 94.74% 94.86% 94.94% 94.88%
MAN/BOH 94.81% 95.31% 96.00% 95.65%
ARB/NAM 93.91% 95.29% 96.25% 95.76%

PaddlePaddle bug/non-bug 93.42% 88.71% 89.52% 89.05%
MAN/BOH 94.36% 96.45% 96.00% 96.20%
ARB/NAM 92.00% 92.50% 96.67% 94.29%
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4.2  Ablation study

We conduct ablation studies to analyze the effectiveness of each component in LLM–BRC, 
including the influence of different components of bug reports, the influence of classifiers 
and embedding models embedded in LLM–BRC.

4.2.1  Ablation on Bug Report Components

In this section, we investigate the impact of different bug report components on bug report 
classification results. Bug reports typically consist of various components, including the 
title, description, and comments. In order to assessing the impact of individual components 
on the performance of bug report classification, we conducted a series of experiments to 
isolate and evaluate the contribution of each component (i.e., title, description, and com-
ments) towards overall accuracy.

Analyzing how these components influence bug report classification performance 
can provide valuable insights into the importance of each component in predicting bugs 
accurately. We conduct experiments using four different input configurations: ❶title 
only, ❷description only, ❸comments only, and ❹a combination of the title, description, 
and comments. In this section, to ensure consistency and enable a fair comparison of the 
results, all experiments were conducted based on the SVC classifier.

As depicted in Fig. 4, in the context of TensorFlow bug prediction, incorporating infor-
mation from all bug report components consistently leads to the highest performance 
across the bug/non-bug, BOH/MAN, and ARB/NAM classification tasks. For the bug/non-
bug prediction task, we observe varying levels of accuracy when using different bug report 
components individually. The accuracy achieved using only the title information is 55.59%, 

Fig. 3  Comparison of Classification Results between LLM-BRC and DeepSIM

Fig. 4  Classification results based on different bug report components (TensorFlow)
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while leveraging only the description information results in an accuracy of 53.87%. How-
ever, incorporating solely the comments demonstrates a significant improvement, reach-
ing an accuracy of 65.61%. Notably, combining all three components as inputs substan-
tially boosts the accuracy to 74.8%. Moreover, employing all bug report components leads 
to the highest precision (i.e., 75.44%), recall (i.e., 76.15%), and F-measure (i.e., 75.78%) 
scores. Similarly, for the BOH/MAN prediction task, utilizing all bug report components 
leads to the best predictive results. The accuracy, precision, recall, and F-measure values 
are 92.79%, 92.19%, 99.73%, and 95.81%, respectively. Regarding the ARB/NAM predic-
tion task, the utilization of all bug report components results in the highest accuracy (i.e., 
88.53%), recall (i.e., 95.6%), and F-measure (i.e., 88.12%) scores. However, the recall val-
ues are higher when only using the title and description information.

As for the prediction of MXNET bugs, as shown in Fig. 5, utilizing all bug report com-
ponents results in the best bug/non-bug and BOH/MAN prediction outcomes. For the 
bug/non-bug prediction task, the accuracy, precision, recall, and F-measure obtained are 
76.07%, 78.95%, 70.73%, and 74.6%, respectively. For the BOH/MAN task, the accuracy, 
precision, recall, and F-measure are 77.87%, 78.4%, 94.31%, and 85.77%, respectively. 
Regarding the ARB/NAM prediction, utilizing all bug report components yields the high-
est accuracy, recall, and F-measure, while the precision obtained is slightly lower than that 
of using only title and description information.

Regarding the prediction of PaddlePaddle bugs, as shown in Fig. 6, we observed that 
when performing the bug/non-bug task, the highest accuracy and precision were achieved 
when utilizing all bug report components. However, incorporating comments leads to a 
decrease in recall and F-measure. Similarly, for the BOH/MAN prediction, the best predic-
tive resultswere also obtained by utilizing all bug report components, followed by using 
only comments. As for the ARB/NAM prediction, utilizing all bug report components 
leads to the highest recall and F-measure scores.

Fig. 5  Classification results based on different bug report components (MXNET)

Fig. 6  Classification results based on different bug report components (PaddlePaddle)
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In summary, our analysis clearly indicates that each component of a bug report contrib-
utes valuable information to the bug report classification process. In addition, it is of 
utmost importance to consider all available bug report components when applying the 
LLM-BRC method for bug report classification. By integrating multiple components of 
information in bug reports, we can effectively enhance the performance of bug report 
classification models, leading to more reliable and accurate classification results.

4.2.2  Ablation on classifiers

In this section, we compare the FFN classifier embedded in LLM–BRC with 6 tradi-
tional machine learning classifiers commonly used in previous studies (Frattini et al., 
2016; Du et al., 2017).

As illustrated in Tables 3, 4 and 5, the FFN classifier has the most obvious advan-
tage among the seven classifiers evaluated. Especially for the classification of the 
PaddlePaddle framework’s bug reports, the FFN classifier has the most obvious 
advantages. Compared with other 6 classifiers, the accuracy of the FFN classifier is 
28.25%-48.97%, 23.88%-41.17% and 29.38% higher for bug/non-bug, BOH/MAN, 

Table 3  Prediction Results of Different Classifiers (TensorFlow)

Task Classifier accuracy precision recall F-measure

Bug/
non-bug

SVC 74.80% 75.44% 76.15% 75.78%
RFC 67.64% 67.03% 73.41% 70.04%
LOG 73.38% 73.53% 75.46% 74.48%
GNB 68.80% 69.49% 70.67% 70.02%
DTC 57.98% 59.64% 57.58% 58.52%
KNN 63.01% 65.64% 59.14% 62.19%
MLP 92.56% 92.46% 93.02% 92.73%

Impro 23.74%-59.64% 22.56%-
55.03%

22.15%-
61.55%

22.37%-
58.46%

BOH/
MAN

SVC 92.79% 92.19% 99.73% 95.81%
RFC 86.42% 86.00% 99.87% 92.42%
LOG 89.82% 89.14% 99.87% 94.20%
GNB 90.69% 95.07% 93.65% 94.32%
DTC 80.72% 88.92% 87.70% 88.27%
KNN 90.91% 92.45% 96.96% 94.64%
MLP 98.47% 98.70% 99.47% 99.08%

Impro 6.12%-21.99% 7.06%-11.00% -0.26%-13.42% 3.41%-12.25%
ARB/
NAM

SVC 88.53% 82.10% 95.60% 88.12%
RFC 84.70% 83.20% 82.64% 82.81%
LOG 86.61% 84.44% 85.38% 84.71%
GNB 83.43% 77.48% 89.89% 82.80%
DTC 72.58% 70.60% 70.99% 70.02%
KNN 74.56% 91.28% 47.80% 61.37%
MLP 98.75% 98.75% 98.75% 98.75%

Impro 11.54%-36.06% 20.28%-39.87% 3.29%-39.10% 12.06%-41.03%
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and ARB/NAM classification tasks, respectively. Similar trends are observed in the 
MXNET and TensorFlow frameworks. These results not only verify the effective-
ness of the FFN classifier within the LLM–BRC framework, but also indicate its pro-
nounced superiority in handling datasets with smaller sample sizes.

The results clearly show that the FFN outperforms the other 6 classifiers, demon-
strating its effectiveness in predicting bugs across different frameworks. These find-
ings underline the potential of deep learning approaches like FFN in bug prediction 
tasks and their capability to provide substantial performance improvements over tra-
ditional machine learning methods. 

4.2.3  Ablation on embedding models

In this section, we conduct a comparative analysis of various embedding models, includ-
ing the OpenAI embedding model text-embedding-ada-002, which is employed in 
our LLM–BRC  framework, alongside two other prevalent embedding models: word2vec 
and BERT. Table 5 provides a detailed overview of these models. Word2vec, notably, has 

Table 4  Prediction Results of 
Different Classifiers (MXNET)

Task Classifier accuracy precision recall F-measure

Bug/
non-bug

SVC 76.07% 78.95% 70.73% 74.60%
RFC 67.64% 67.03% 73.41% 70.04%
LOG 73.38% 73.53% 75.46% 74.48%
GNB 73.62% 76.58% 67.62% 71.79%
DTC 60.88% 60.68% 60.39% 60.40%
KNN 72.72% 79.52% 61.13% 68.94%
MLP 94.74% 94.86% 94.94% 94.88%

Impro 24.54%-
55.62%

20.15%-
56.33%

34.23%-
57.21%

27.18%-
57.09%

BOH/
MAN

SVC 77.87% 78.40% 94.81% 85.77%
RFC 86.42% 86.00% 99.87% 92.42%
LOG 89.82% 89.14% 99.87% 94.20%
GNB 78.39% 85.51% 83.70% 84.49%
DTC 74.49% 79.54% 85.93% 82.56%
KNN 72.64% 78.80% 83.70% 81.15%
MLP 94.81% 95.31% 96.00% 95.65%

Impro 5.56%-
30.52%

6.92%-
20.95%

-3.88%-
14.70%

1.54%-
17.87%

ARB/
NAM

SVC 79.88% 77.93% 100.00% 87.53%
RFC 84.70% 83.20% 82.64% 82.81%
LOG 86.61% 84.44% 85.38% 84.71%
GNB 81.58% 82.03% 96.25% 88.17%
DTC 57.91% 70.66% 68.75% 69.49%
KNN 72.02% 82.94% 76.25% 78.96%
MLP 93.91% 95.29% 96.25% 95.76%

Impro 8.43%-
62.17%

12.85%-
34.86%

12.73%-
40.00%

13.04%-
37.80%
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been instrumental in the evolution of natural language processing (NLP) and word embed-
ding technology, introducing distributed word representations that are learned from exten-
sive text data. It has thus become a foundational element in NLP research and applications. 
For our experiments, we selected the GoogleNews-vectors-negative300 model of word-
2vec, generating 300-dimensional vectors, renowned for its simplicity and effectiveness. 
The BERT model represents a paradigm shift in NLP, utilizing bidirectional training and 
Transformer architecture to achieve deeply contextualized word embeddings. We utilized 
the bert-base-uncased variant, producing 768-dimensional word vectors. BERT’s flexibil-
ity for fine-tuning has yielded substantial enhancements across diverse NLP tasks. Lastly, 
the OpenAI text-embedding-ada-002 model, utilized in our experiments, generates embed-
dings of dimension 1,536.

To ensure the consistent experimental conditions, we employ the same SVC classifier and 
utilize identical bug information, which includes the title, description, and comments of bug 
reports, throughout this section. By maintaining a consistent setup, we can confidently com-
pare the performance of different language models. In Fig. 7, we present the classification 
results of the TensorFlow framework, where it is evident that the text-embedding-ada-002 
model consistently outperforms the BERT and word2vec models on all three classification 
tasks, i.e., bug/non-bug, BOH/MAN, and ARB/NAM. The text-embedding-ada-002 model, 
compared with the BERT model, improved the classification accuracy by 10.99% to 44.30%, 
and compared with word2vec, the classification accuracy improved by 9.52% to 36.07% 
in all three classification tasks. Among the three classification tasks, the text-embedding-
ada-002 model exhibits the most significant advantage for the ARB/NAM classification task. 
The classification based on the text-embedding-ada-002 model surpass the BERT model by 
44.30% in terms of accuracy and exceed the word2vec model by 36.07%.

The text-embedding-ada-002 model’s evident advantage in the ARB/NAM clas-
sification task highlights its exceptional capability to handle datasets with limited 
samples. This is crucial as obtaining large labeled datasets for bug classification can 
be challenging and time-consuming. In addition, the text-embedding-ada-002 model 
is particularly outstanding in terms of recall and F-measure improvements, which 

Table 5  Details of Pre-trained 
Language Models

Model Detail Dimension

word2vec GoogleNews-vectors-negative300 300
BERT bert-base-uncased 768
OpenAI text-embedding-ada-002 1,536

Fig. 7  Comparison of prediction results based on different LLMs
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indicates that it excels in effectively addressing the class imbalance issue. These 
strengths make the text-embedding-ada-002 model particularly beneficial for bug 
classification tasks, especially when dealing with small datasets and imbalanced 
class distributions.

5  Threats to Validity

Threats to Internal Validity The quality of bug reports used in this study can affect the 
internal validity. Since bug reports are written by various users and developers, there may 
be variations in their quality. Low-quality bug reports, containing incomplete or mislead-
ing information, might impact the performance of the proposed method. To mitigate this 
threat, we adopted the K-fold cross-validation technique, which helps reduce the impact of 
randomness and provides a more robust evaluation of the framework.

Threats to External Validity There is a risk to the external validity of the research, as the 
classification results obtained from TensorFlow, MXNET, and PaddlePaddle might differ 
when applied to other frameworks with distinct features. We have appropriately acknowl-
edged this threat and are cautious not to overgeneralize conclusions to all deep learning 
frameworks, thereby mitigating the potential impact on external validity.

Threats to Construct Validity A threat to construct validity lies in the interpretability of 
deep learning classifiers. The black-box nature of deep learning models makes explaining 
their decision-making process challenging. This issue may undermine the credibility of the 
classification results of our proposed framework. In recent years, researchers have intro-
duced various methods to explain the deep learning process, which may partially alleviate 
this problem.

6  Related Work

Empirical Study of Bugs in Deep Learning Frameworks In recent years, researchers have 
made significant progress in analyzing bugs within deep learning frameworks, exploring both 
general and specific bug types. Typically, the classification criteria for general bugs depend 
on their underlying causes and impacts. Chen et al. (2022) conducted a study on 1,000 bugs 
in TensorFlow, PyTorch, MXNet, and DL4J, categorizing them based on 13 root causes and 
6 symptoms. Jia et al. (2021) conducted a study on bugs in TensorFlow. They analyzed 202 
bug fix submissions, out of which 84 had corresponding bug reports. The authors classified 
bugs into 11 types based on root causes and identified 6 different bug symptoms. Apart from 
TensorFlow, Islam et al. (2019) also investigated Caffe, Keras, Theano, and Torch, analyzing 
2,716 posts from Stack Overflow and 500 bug fix submissions from GitHub. They identified 
6 main root causes and 6 bug symptoms, with crashes being the most common bug symptom 
in deep learning frameworks. Yang et  al. (2022) analyzed 1,127 bug reports from 8 deep 
learning frameworks, developing a bug classification system to explore root causes and mani-
festations of bugs from the source code perspective.
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Makkouk et  al. (2022) investigated performance bugs in TensorFlow and PyTorch, analyz-
ing the proportion difference and underlying root causes of performance and non-performance 
bugs. Tambon et  al. (2021) classified silent bugs in deep learning frameworks. Silent bugs 
refer to bugs that occur in the framework without causing crashes, hangs, or warnings but still 
negatively impact the quality of the framework. They collected 77 reproducible silent bugs 
from TensorFlow’s Keras repository and analyzed their occurrences and impact on deep learn-
ing programs. Ren et  al. (2020) classified and compared system-related bugs in both deep 
learning frameworks and traditional software. According to their findings, configuration bugs 
were prevalent in traditional software systems but rare in intelligent computing frameworks. 
Liu et al. (2022) studied aging-related bugs (ARBs) in TensorFlow, MXNet, PaddlePaddle, 
and MindSpore by manually screening 138 ARBs out of 13,694 bug reports. Du et al. (2022) 
performed the first comprehensive empirical study on fault triggering conditions in Tensor-
Flow, MXNet, and PaddlePaddle, analyzing 3,555 bug reports their GitHub repositories.

Automatic Classification of Bug Reports In (Antoniol et  al., 2008), Antonial et  al. 
employed the TF-IDF bag-of-words model along with machine learning classifiers to dis-
tinguish bugs from other kinds of issues. They conducted their experiments on bug reports 
from Mozilla, Eclipse, and JBoss, achieving classification results ranging from 77 to 82%. 
Pingclasai et al. (Pingclasai et al., 2013) applied topic modeling to pre-process bug reports 
from the HTTP Client, Jackrabbit, and Lucene projects. The resulting F-measure scores 
were in the range of 66%-76%, 65%-77%, and 71%-82%, respectively. In (Otoom et  al., 
2019), Otoom et al. aimed to develop a classifier capable of categorizing newly received 
bug reports into corrective (bug fixing) report, and perfective (major maintenance) report. 
To achieve this, they proposed a feature set based on keyword occurrences.

In addition to classify bug reports into actual bugs and non-bugs, Wen et  al. (2016) 
proposed CoLUA, which classified bug reports into configuration-related or non-con-
figuration-related. CoLUA first extracted words with higher weights in bug report texts 
using feature selection algorithms such as information gain and chi-square. Then, they used 
methods like naive Bayes, logistic regression, and decision trees for automatic classifica-
tion of configuration bugs. In (Frattini et  al., 2016), Frattini et  al. automated bug report 
classification using two Naive Bayes and Bayesian Network classifiers. They categorized 
bugs into workload-dependent and environment-dependent types based on reproducibility. 
However, the aforementioned approaches were built on the bag-of-words model, neglecting 
the semantic information in bug reports. To address this limitation, Du et al. (2022) intro-
duced the DeepSIM method, which combined the word2vec semantic model with a deep 
learning classifier for automatic Mandelbug classification. Additionally, in Li et al. (2021), 
the authors proposed the ARB-BERT method, which fine-tuned the BERT model to extract 
more comprehensive and accurate semantic information from bug report texts, completing 
the representation and automatic classification of aging-related bugs.

7  Conclusions

In this paper, we presented LLM–BRC, a Large-Language Model-based Bug Report Clas-
sification framework. In LLM–BRC, we employed the latest large-language model text-
embedding-ada-002 from OpenAI to capture the semantic information of bug reports 
and represented each bug report as an embedding vector. Subsequently, we constructed a 
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Feed-Forward Neural Network as the classifier, utilizing the embedding vectors generated 
by the LLM as input, thereby obtaining the bug report classification results. We evalu-
ated LLM–BRC on a total of 3,110 bug reports collected from TensorFlow, MXNET, and 
PaddlePaddle. The experimental results demonstrated the effectiveness of our method in 
bug report classification for deep learning frameworks, achieving an impressive accuracy 
range of 92% to 98.75%. Moreover, we investigated various factors that influence bug 
report classification performance, including components of bug reports, classifiers and dif-
ferent language models. The conclusions contributed to the field of bug report classifica-
tion and offered valuable guidance for researchers and practitioners in improving the bug 
report classification performance.
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