
Vol.:(0123456789)

Software Quality Journal (2024) 32:921–938
https://doi.org/10.1007/s11219-024-09672-6

1 3

RESEARCH

An effective parallel convolutional anomaly multi‑classification
model for fault diagnosis in microservice system

Xi Li1 · Peian Wen1 · Peng Chen1 · Juan Chen1 · Xuming Wen1 · Yunni Xia2

Accepted: 1 April 2024 / Published online: 21 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Microservice architecture is a new technology for deploying large-scale applications and
services in the cloud. But multivariate time series data with anomalies are increasingly
generated in the cloud. Effectively diagnosing the runtime system anomalies is necessary
to ensure the quality of service of microservice systems. Typical anomaly detection meth-
ods are effective in data quality and computing reliability of cloud computing. However,
they all focus on one-class anomaly detection, which may not perform on practical micros-
ervice frameworks with diverse types of anomalies. Furthermore, locating the root cause
of anomalies to eliminate after detection is essential. To address these issues, we propose
an effective parallel convolutional anomaly multi-classification model (PCAC) based on
an attention mechanism for fault diagnosis in microservice system. We first construct a par-
allel convolutional structure that allows subnetworks to extract features independently. Then,
channel and spatial attention mechanisms are applied in the parallel convolutional layers to
mitigate the loss of feature representation. Finally, causal inference based on the anoma-
lous graph is used to locate the fault in the microservice system. The experimental results
clearly show that the proposed model achieves the highest F1 scores on six public micros-
ervice datasets, improved by 37.9% in average macro-F1 and 4.4% in average micro-F1
scores respectively, outperforming eight state-of-the-art methods.

Keywords Microservice · Attention mechanism · Anomaly multi-classification · Fault diagnosis

1 Introduction

With the rapid development of cloud computing technology, a substantial amount of
multivariate time series data is generated in microservices stored system (Di Francesco
et al., 2017). The microservice structure involves creating multiple applications that can
work interdependently. It creates a streamlined delivery pipeline that decomposes the
application into multiple small services, speeding up development and maintenance and
providing greater flexibility. The microservice’s distributed nature allows for its high scal-
ability properties.

Xi Li and Peian Wen contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-024-09672-6&domain=pdf

922 Software Quality Journal (2024) 32:921–938

1 3

In real-world applications, a critical task is to detect anomalies in multivariate time
series data in microservice systems. Diverse anomalies would be produced, such as mem-
ory leaks, network delays, and high CPU usage between the cooperations of microservice
components. Currently, most anomaly detection methods aim at one-class anomalies (Wen
et al., 2022; Chen et al., 2022; Song et al., 2023). Compared with traditional anomaly
detection methods, multi-classification based on diverse anomalies in microservices archi-
tecture is becoming more complex. Convolutional neural networks (CNN) are used in gen-
eral time series classification methods. But CNNs may not perform well since they cannot
capture spatial information completely or lack attention to the correlations between con-
volutional channels in feature extraction (Fauvel et al., 2021). The deep learning network
GDN (Deng & Hooi, 2021) uses graphs to model multivariate time series spatial features
but does not consider temporal features. Multivariable time series data has become a typi-
cal data type, but for multivariable streams, both time dependence and correlation between
observations should be considered. Thus, how to extract both spatial and temporal features
from monitoring data is the challenge of multivariate time series anomaly detection.

The attention mechanism plays an important role in deep neural networks. Because
attention gives the model the ability to discriminate, the machine will pay attention
to the information that is more critical to the current task in a lot of information (Woo
et al., 2018). The attention mechanism increases the performance of extracting diverse fea-
tures and makes the neural network models more flexible.

An anomaly will propagate with the connection among microservices and eventually
affect the whole system performance if the faults cannot be located in time. Log-based
methods (Yang et al., 2021) detect and locate bugs based on log parsing. Even though dis-
covering more informational causes, they are hard to work in real time and require abnor-
mal information in log files. Thus, efficiently diagnosing the runtime system fault and
being able to identify and locate it is a great challenge after anomaly detection. The graph
structure provides the idea for fault diagnosis. We use a graph model and localize root
causes with an algorithm similar to the random walk.

The main motivation is to accurately detect anomalies in the multivariate time series
data from the monitoring data in microservices scenarios. And our main research ques-
tions are as follows: (1) How to improve the accuracy of anomalous multi-classification in
microservice system? Specifically, microservice data collected from monitors are generally
stored as multivariate time series; (2) when anomalies occur in the monitoring data, how to
effectively identify the dimensions that have the greatest impact on generating the anom-
aly, to better locate the root cause? We approach a method to classify the various anomaly
events in monitoring microservice data in the cloud and identify the abnormal time series
that are most likely to be the causes of each anomaly in system. The proposed PCAC model
includes two parts: anomaly detection and fault localization, as shown in Fig. 1. In the part
of anomaly detection, there are two modules: feature capturing and anomaly multi-classify.
First, we construct a convolutional structure, which contains two branches in parallel. To
capture the association features in microservice data, one branch extracts the channel fea-
tures with attention, and another extracts the spatial feature with attention. Then, based on
both features, anomaly multi-classification is achieved. Another part of fault localization
includes anomalous graph and causal inference modules. In this part, we use causal infer-
ence methods to learn the fault propagation paths generated by graph methods.

The main contributions of this work are summarized as follows:

• To address the difficulty of extracting spatial and temporal features from multivariate
time series, we designed a parallel convolution architecture, which can better capture

923Software Quality Journal (2024) 32:921–938

1 3

the spatio-temporal dependencies of multivariate time series simultaneously to achieve
better anomaly detection for microservice system.

• To solve the problem of incomplete feature extraction in ordinary CNNs, we propose
a method with channel and spatial attention mechanisms to extract features in subnet-
works independently and reduce the loss of feature representations.

• To effectively determine the fault cause after anomaly detection, we analyze and com-
pare several causal inference-based cause localization methods to identify the specific
fault service.

• We conduct experiments on eight state-of-the-art baseline methods on six public
microservice datasets, with a 37.9% improvement in average macro-F1 and a 4.4%
improvement in average micro-F1 scores, respectively.

Section 2 reviews different anomaly detection methods for microservice systems. Sec-
tion 3 introduces the proposed model in detail. Section 4 evaluates the effectiveness of the
model through comparative experiments and ablation experiments, analyzes the abnormal
cause, and diagnoses the fault service. Section 5 summarizes the work and presents poten-
tial future research.

2 Related work

The study of anomaly detection has been carried out for several decades and is an active
research area gaining increasing attention in deep learning. At the same time, many anom-
aly multi-classification methods for microservice system are proposed. We mainly review
the related work on statistical model-based, machine learning-based, deep learning-based,
and root cause localization methods.

2.1 Statics‑based method

Generalized autoregressive conditional heteroskedasticity (GARCH) (Engle, 1982) is a
method for modeling the volatility caused by conditional mean and conditional hetero-
scedasticity of monitoring microservice metrics. It calculates each point’s anomaly score,

Fig. 1 PCAC module structure

924 Software Quality Journal (2024) 32:921–938

1 3

clusters the points, and then detects multiple categories of anomalies in the microservice
system. Principal component analysis (PCA) (Shyu et al., 2003) extracts data features by
dimensionality reduction and achieves anomaly classification on the low-dimensional data.

2.2 Machine learning‑based methods

Support vector machine (SVM) (Kriegel et al., 2011) is a binary classification model.
Multiple binary classifiers will be constructed in the microservice system to obtain the
predicted probabilities by comparing each classifier in the testing set. The goal is to
find a hyperplane with a maximum margin that can separate points of different classes.
K-nearest neighbor (KNN) algorithm (Kiss et al., 2014) predicts the label of data by the
labels of its K-nearest pre-marked neighbors. A decision tree (Lewis, 2000) is a classifi-
cation model that formulates the features and anomaly labels that indicate the relations
among the data points.

2.3 Deep learning‑based method

Autoencoder (AE) (Fan et al., 2018; Xin et al., 2023) is a common neural network model
that consists of an encoder and a decoder. The encoder extracts features by defining the
neural architecture, and the decoder is similar to the encoder, to convert the encoding back
to the original data. After training AE, the encoded features are used to train a classifier for
anomaly classification. CNN (convolutional neural network) (LeCun et al., 1998) extracts
microservice system monitoring metrics features by setting convolution kernels based on
sliding windows and performs classification using the cross-entropy function. FCN (fully
convolutional network) (Long et al., 2017) replaces fully connected layers with convolu-
tional layers based on the convolutional neural network. LSTM (long short-term memory)
(Graves & Graves, 2012) is a variation of RNN (recurrent neural network), which mitigates
the problem of exploding gradients to some extent. The output of LSTM will go through
a fully connected layer and softmax function to convert it into the probability distribu-
tion of each category. TapNet (Zhang et al., 2020; Xu et al., 2022) uses LSTM and CNN
stacking to model microservice system monitoring metrics and classify them via softmax.
MTEXCNN (Assaf et al., 2019) employs three cascaded 2D convolutions to extract spa-
tial information, followed by a 1D convolution to extract temporal information as well as
classify microservice system monitoring metrics. TranAD (Tuli et al., 2022) utilizes trans-
former-based adversarial training to detect anomalies, while GDN (Deng & Hooi, 2021)
employs graph structure learning to capture the relationships between different sensors.
Both TranAD and GDN are relatively novel methods for anomaly detection, demonstrating
excellent performance. We apply the same modifications as those used for LSTM men-
tioned above to adapt these two models for multi-class anomaly classification, enabling a
comparison with our proposed model.

2.4 Root cause localization method based on causal inference

The dependencies between services in a microservice application may cause the propaga-
tion of faults. Root cause localization helps our anomaly multi-classification models diag-
nose the source for anomalies and find the most fundamental reason for their occurrence.
Based on the fault propagation paths, graphs methods to locate the root cause of fault are

925Software Quality Journal (2024) 32:921–938

1 3

developed. For example, AutoMap (Deng & Hooi, 2020) treats the different components
in the system as individual nodes, and their interdependencies form a graph, and then
finds the root cause based on the PC (Spirtes et al., 2000) algorithm and PageRank (Page
et al., 1999) algorithm. Causeinfer (Chen et al., 2016) uses the PC algorithm to build a
causal graph and then uses Breadth First Search (BFS) to infer the root cause of the causal
graph. MicroDiag (Wu et al., 2021) uses linear non-Gaussian acyclic model (LiNGAM)
(Hyvärinen et al., 2010) to learn the fault propagation relationship between microservices,
build a fault propagation graph, and use PageRank to perform root cause localization on the
propagation graph. The above methods ignore the capture of fault patterns of entity meas-
urement data. However, some faults in the measurement data related to entities during a
system fault may affect the final root cause localization results (Dongjie et al., 2023). Thus,
capturing the fault patterns of measurement data in root cause localization and improving
localization accuracy become challenges.

3 Method

3.1 Overall architecture

The architecture of the proposed PCAC is shown in Fig. 2. PCAC is composed of four
modules: feature capturing (1), anomaly multi-classification (2), anomalous graph (3), and
inferred causal (4). The input T of the model is system metrics of multivariate time series
from microservice data monitoring. Firstly, it enters the feature capturing module (1),
which consists of the channel attention branch and spatial attention branch. Two branches
in parallel process data and a weighted feature map are generated. Module (1) solves the
problem of incomplete feature extraction and gains spatio-temporal dependencies. Then,
anomaly multi-classification is achieved through the operations of flattening and softmax
on the attention map in module (2). Module (2) uses the cross-entropy to update the param-
eters to reduce the loss of features. Based on the multi-classification results, the root cause
analysis is carried out by an anomalous graph generation in module (3). Finally, the prob-
abilities of fault services are output in module (4) for cause location, effectively avoiding
spreading among microservices.

Fig. 2 Architecture of PCAC

926 Software Quality Journal (2024) 32:921–938

1 3

3.2 Feature capturing: parallel convolution with attention

Data is input into the upper and lower branches simultaneously. In the upper branch,
the data is passed through two one-dimensional convolution operations and correspond-
ing activation functions before entering the channel attention function, which adjusts the
importance of each channel in the model by learning attention weights and strengthens
the ability to capture the correlation between multiple channels. In the lower branch, spa-
tial attention branch, the data undergoes the same process as in the upper branch and then
enters the spatial attention function, which adds weights to different positions to enable the
model to focus better on critical local features in the system metrics. Finally, the feature
maps output by the two branches are concatenated to obtain the final feature map.

Conv1D represents the one-dimensional convolution, and ReLU represents the activation
function ReLU. Feature map represents the weighted feature map obtained by concatenating the
features from the channel attention and spatial attention branches based on attention mechanism.
For the given input feature tensor F, we compute the channel attention map Mc(F) and the spatial
attention map Ms(F) at two separate branches, then compute the attention map M(F) as follows:

Channel attention The process of channel attention based on attention mechanism
(Fauvel et al., 2021) is shown in detail in Fig. 3. To aggregate the feature map in each
channel, we take two global pools on the feature F and produce the channel attention
feature Mc(F) . As shown in Fig. 3, the channel attention mainly includes a shared multi-
layer perceptron (MLP) network, a maximum pooling (MaxPool), and an average pool-
ing (AvgPool).

Firstly, use MaxPool and AvgPool to extract feature information and input them to the
shared MLP network to obtain the corresponding MaxPool_OUT and AvgPool_OUT.
After that, the MaxPool_OUT and AvgPool_OUT are spliced and activated by the sigmoid
function to obtain the attention score matrix. Finally, multiply the attention score matrix
with the original input feature tensor F to get the channel attention map Mc(F) . The calcu-
lation formula is as follows:

where � is the sigmoid function, and × is the matrix multiplication. Each channel has an
attention score because channel attention adds weight to feature information. Using the sig-
moid function ensures that the scores of different channels are independent. The attention

(1)M(F) = Mc(F) +Ms(F)

(2)Mc(F) = F × �(MLP(AvgPool(F)) +MLP(MaxPool(F)))

Fig. 3 Channel attention

927Software Quality Journal (2024) 32:921–938

1 3

score matrix multiplies the original input, and then different weights are given according to
the degree of importance. That means the original data is filtered and selected.

Spatial attention The proposed model introduces a spatial attention mechanism (Fauvel
et al., 2021) to enhance the ability to capture features in different spatial locations. As
shown in Fig. 4, the spatial attention map Ms(F) is calculated as follows:

where � is the softmax function. The spatial attention mechanism weights different features
at different positions, considering the relationship between the score at each position and
other positions. Using the softmax function ensures that the sum of the scores is 1, thereby
ensuring global consistency.

3.3 Anomaly multi‑classification

The final attention map from parallel convention with attention module inputs the flatten
and softmax function, respectively. Data is converted into one-dimension vectors through
the flatten function and then output into probabilities p for multi-classification through the
softmax function. That is, date is labeled as normal and abnormal. Furthermore, the abnor-
mal data is predictably labeled as different types of anomalies based on probabilities, such
as memory leak, network delay, or high CPU hog, which usually occurs during service
invocation in the microservice system.

In the training phase, the loss is calculated using a cross-entropy loss function defined
as Eq. 4. We use the calculated loss to perform parameter updating. Using the cross-
entropy loss function as the optimization objective during training allows the model to
continuously adjust its parameters during training to minimize the difference between the
predicted probability and the actual label.

where n is the number of training samples, m is the number of classes, y represents the
actual label, and p represents the probability of the label predicted by the model.

(3)Ms(F) = F × �(Conv1D(ReLU(Conv1D(F))))

(4)loss = −
1

n

n−1∑

i=0

m−1∑

j=0

yijlog(pij)

Fig. 4 Spatial attention

928 Software Quality Journal (2024) 32:921–938

1 3

In the testing phase, the test data is processed the same way as in the training phase,
but the model is not updated. Instead, the macro-F1 and micro-F1 scores of the model
are calculated.

3.4 Fault localization

Once anomalies are detected, the fault location engine in the microservice system starts to
trace the execution paths and then locate faulty services. The engine is composed of two
main procedures: anomalous graph construction and causal inference. Fault localization
procedure is as follows:

Step 1: Select a causal inference algorithm and construct a directed acyclic graph (DAG)
with minimum loss information as anomalous graph G based on data after anomaly
multi-classification.
Step 2: Use PageRank algorithm on G to compute the score of each anomalous node.
Output: Anomalous graph G and probability of each anomalous node.

We choose four common causal inference algorithms to construct causal graphs in order
to find the best one to root causes analysis, including Peter-Clark (PC) (Spirtes et al., 2000)
algorithm, Greedy Equivalence Search (GES) (Chickering & Boutilier, 2003) algorithm,
and linear non-Gaussian acyclic model (LINGAM) (Hyvärinen et al., 2010) algorithm, in
which ICA-LINGAM (Shimizu et al., 2006) and Direct-LINGAM (Shimizu et al., 2011)
are included. In order to locate the faulty services, a graph centrality algorithm named Pag-
eRank (Page et al., 1999) is used on the anomalous graph and outputs the probability of
each anomalous node. In the root causal inference phase, these probabilities serve as the
basis to diagnose which microservice is most likely to cause faults.

4 Experiments

4.1 Datasets and experimental setup

Datasets Sock Shop1 is a widely used microservice benchmark designed to test and evalu-
ate microservices technology. It consists of 13 microservices, in which we mainly choose
the front-end, catalogue, users, orders, payment, and shipping. The microservice architec-
ture of Sock Shop is shown in Fig. 5. The complex connections between them make the
multi-classification task of our model more challenging for those multivariate time series
data in the microservice system. We deploy the Sock Shop using Kubernetes on multi-
ple virtual machines(VMs) in the cloud. The Kubernetes cluster includes one master node
and three worker nodes. We deploy open-source monitoring and visualization tools Pro-
metheus2 and Grafana3 on the master node to monitor the application and collect data.
Furthermore, we use the load generation tool Locust4 on the master node to simulate

1 https:// github. com/ micro servi ces- demo/ micro servi ces- demo.
2 https:// github. com/ prome theus/ prome theus.
3 https:// github. com/ grafa na/ grafa na.
4 https:// locust. io/.

https://github.com/microservices-demo/microservices-demo
https://github.com/prometheus/prometheus
https://github.com/grafana/grafana
https://locust.io/

929Software Quality Journal (2024) 32:921–938

1 3

workloads for the microservice application. All services of Sock Shop are deployed on the
nodes allocated to different VMs automatically.

To simulate realistic scenarios, we inject three types of anomalies into our experiment:
CPU hog, memory leak, and network latency (Mariani et al., 2018; Chen et al., 2015). The
Pumba5 tool was utilized to simulate network failures, and Docker container resources
were subjected to stress tests to induce anomalies. The duration of each anomaly ranged
from 1 to 5 min, while the application ran normally for 10 to 30 min, after which the pro-
cess was repeated for each anomaly at least five times. Data is collected in real time every
5 s, based on Prometheus configuration, including service-level and resource-level data.
At the service level, the latency of each service is recorded. At the resource level, metrics
related to container resources are collected, including CPU hog, memory leak, and network
transmit bytes.

Table 1 shows the details of six microservice datasets, including the size of the training
set and test set and the number of feature dimensions. The ratio of training and test size is
seven to three. In addition, three types of anomaly proportions are represented.

Metrics We use marco-F1 and micro-F1 scores as evaluation indicators to verify the per-
formance of the model and compare it to other baseline anomaly detection methods. Both
marco-F1 and micro-F1 are commonly used to evaluate models in multi-classification
scenarios. Macro-F1 is calculated by average precision and recall score regardless of the
importance of the different classes. Micro-F1 is suitable for a dataset with an unbalanced
multi-classification distribution.

Baseline methods We compared different types of anomaly multi-classification models to
validate the effectiveness of our model. These include (i) classical machine learning mod-
els GaussianNB, KNN, SVM, and SGD and (ii) the deep learning models CNN, DNN,
LSTM, OmniAnomaly, transformer-based TranAD, and graph structure-based GDN. Tra-
nAD and GDN are relatively new anomaly detection models.

Fig. 5 The microservice architecture of Sock Shop

5 https:// github. com/ alexei- led/ pumba.

https://github.com/alexei-led/pumba

930 Software Quality Journal (2024) 32:921–938

1 3

Experimental settings All experiments are implemented in Python 3.7.11 and PyTorch
1.6.0 using a single NVIDIA GeForce 940MX (12 G) GPU, Intel (R) Core (TM) i7-7500U
CPU @ 2.70GHz, and 12 G RAM. The convolutional kernel size in Conv1D is 3, 5, the
number of epochs is 80, the batch size is 128, and the neural networks are optimized by the
Adam optimizer, with the initial learning rate set to 104.

4.2 Main results

We compare PCAC with eight baseline methods on six microservice datasets in Table 2
and Fig. 6 in terms of macro-F1 and micro-F1. The best performance is bolded.

Table 2 shows that PCAC achieves the highest macro-F1 and micro-F1 scores overall in
eight baseline methods on the six datasets. Furthermore, we provide the ranking of PCAC
and all baseline methods on macro-F1. The micro-F1 specific ranking score differs slightly
from the macro-F1, but the model ranking is the same. Our model exceeds the other meth-
ods from the ranking results, proving that our method is effective in multi-classify.

The details of anomaly detection results of our method are shown in Fig. 7. It can be
seen that on catalogue, front-end, orders, payment, shipping, and users datasets from
Fig. 7a–f, the detection error rate is only 1.95%, 3.18%, 2.78%, 1.59%, 2.86%, and 4.12%,
respectively. Users dataset requires more accurate detection of CPU hog and memory leak.
In summary, our method has demonstrated an average false alarm rate of only 2.75% on
the six datasets, indicating its effectiveness for detecting the three types of anomalies and
cascading them to achieve better performance in fault diagnosis.

Table 1 The details of datasets used in experiments

Microservice Train size Test size Feature
dimension

CPU hog (%) Memory
leak (%)

Network
latency (%)

Catalogue 3229 1384 35 5.22 2.62 4.94
Front-end 3449 1478 36 4.87 5.38 4.18
Orders 3273 1403 35 3.89 3.08 7.12
Payment 3081 1320 36 4.66 5.18 4.11
Shipping 3097 1327 36 3.82 3.84 5.45
Users 3175 1360 36 3.97 3.75 2.69

Fig. 6 Performance comparison

931Software Quality Journal (2024) 32:921–938

1 3

4.3 Ablation study

To investigate the impact of each component branch on the PCAC performance, we repeat the
experiments without channel attention or spatial attention successively on the six datasets.

Channel attention The results of macro-F1 and micro-F1 in the experiment of PCAC and
of PCAC without channel attention (CA) are shown in Fig. 8. The values of both macro-
F1 and micro-F1 of PCAC without CA decrease on all datasets. Particularly, a decrease of
7.45% in macro-F1 and −2.10% in micro-F1 on the shipping dataset indicates that channel
attention can increase the model’s attention to specific channels and improve performance.

Spatial attention Similarly, as shown in Fig. 9, the performance of PCAC is better than
PCAC without spatial attention (SA) on most datasets. The values of macro-F1 and micro-
F1 decrease by 2.15% and 0.62% on the payment and front-end datasets, indicating that
spatial attention is beneficial for capturing spatial information.

Table 2 Performance of baseline models and ours

Values in bold indicate the best performance

Catalogue Front-end Orders

Method Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

GaussianNB 0.712 0.712 0.826 0.928 0.731 0.718
KNN 0.879 0.965 0.877 0.958 0.883 0.964
SVM 0.886 0.956 0.901 0.967 0.891 0.966
SGD 0.894 0.967 0.899 0.966 0.89 0.966
CNN 0.876 0.96 0.854 0.949 0.828 0.948
DNN 0.885 0.964 0.886 0.961 0.864 0.959
LSTM 0.914 0.971 0.904 0.966 0.907 0.971
OmniAnomaly 0.235 0.886 0.23 0.852 0.234 0.88
GDN 0.235 0.886 0.23 0.852 0.234 0.88
TranAD 0.234 0.885 0.23 0.851 0.233 0.879
Ours 0.935 0.98 0.907 0.968 0.909 0.972

Payment Shipping Users Rank

Method Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GaussianNB 0.636 0.422 0.785 0.861 0.729 0.802 7.8
KNN 0.921 0.974 0.885 0.964 0.82 0.954 4.3
SVM 0.915 0.972 0.884 0.963 0.761 0.939 4
SGD 0.92 0.974 0.874 0.959 0.747 0.938 4.2
CNN 0.9 0.967 0.848 0.951 0.782 0.947 6.5
DNN 0.911 0.97 0.865 0.958 0.629 0.929 6
LSTM 0.923 0.974 0.894 0.966 0.831 0.955 2.1
OmniAnomaly 0.232 0.867 0.231 0.861 0.236 0.892 9
GDN 0.232 0.866 0.231 0.861 0.236 0.892 9
TranAD 0.232 0.866 0.231 0.861 0.235 0.891 10
Ours 0.951 0.984 0.909 0.971 0.842 0.958 1

932 Software Quality Journal (2024) 32:921–938

1 3

4.4 Parameter sensitivity analysis

Batch_size This represents the size of the batch. Sensitivity analysis of batch size is help-
ful for hyperparameter adjustment. We applied different batch sizes on the catalogue data-
sets used in the experiment. The experimental results are shown in Table 3.

It can be seen from Table 3 that the Macro-F1 score is the best when batch_size is
128, but there is little difference in the Macro-F1 scores produced by other batch_sizes. It
shows that the size of batch_size has little effect on the classification results of the model.
However, the performance decreases when the batch_size is 256, while the performance is
optimal when the batch_size is 128. Thus, the batch_size can be adjusted dynamically. In
practice, we can choose different batch_sizes to make full use of computational resources
without causing low computational efficiency.

Fig. 7 Confusion matrix of anomaly detection results under the different microservices

Fig. 8 Performance comparison between PCAC and PCAC without CA

933Software Quality Journal (2024) 32:921–938

1 3

Reduction_ratio This controls the dimension reduction ratio of the fully connected layer
in the channel attention module. For example, when reduction_ratio is 16, it means that the
output dimension of the fully connected layer will be 1∕16 of the input dimension. We also
performed an analysis on the catalogue dataset used in the experiment, and the experimen-
tal results are shown in Table 4.

It can be seen from Table 4 that the macro-F1 score is highest when the reduction_ratio
is 16, but there is not much difference with the macro-F1 scores generated by other reduc-
tion_ratio values. Therefore, similar to batch_size, we can choose different reduction_ratio
values according to the size of the dataset dimensions to balance the model’s performance
and computational cost.

Parameter sensitivity experiments show that the two parameters batch_size and reduc-
tion_ratio in the model are stable, and their values do not have much influence on the
results of anomaly detection. Therefore, the model proposed in this paper has strong robust-
ness, and the performance does not fluctuate greatly with the values of the two param-
eters. In practical applications, we can adjust the values of batch_size and reduction_ratio
according to the computational cost consideration.

4.5 Fault location

In this subsection, we select the front-end dataset as a sample to complete the fault diag-
nosis based on the anomaly multi-classification results of our model. Firstly, we choose
the common four algorithms, including PC, GES, ICA-LINGAM, and Direct-LINGAM, to
find a directed acyclic graph corresponding to anomalies with minimum loss. Then, we use
the PageRank algorithm to perform a random walk on the anomalous graph and calculate
the probability of each anomaly node. Finally, based on the ranking of these probabilities,
we analyze the most likely fault cause in the system.

Fig. 9 Performance comparison between PCAC and PCAC without SA

Table 3 Results of different
batch_size on catalogue dataset

Batch_size Macro-F1 Micro-F1

32 0.922 0.975
64 0.921 0.975
128 0.935 0.980
256 0.915 0.971

934 Software Quality Journal (2024) 32:921–938

1 3

The anomalous graphs generated by the Direct-LINGAM algorithm are shown in
Table 5. The nodes in the figure represent 0 (front-end), 1 (user), 2 (catalogue), 3 (orders),
4 (carts), 5 (payment), and 6 (shipping), seven microservices.

Different microservices may cause various anomalies. We aim to obtain the most fundamen-
tal microservice that caused the anomaly and diagnose the source, so we choose the PageRank
algorithm to perform in anomalous propagation graphs in Table 5 to calculate the probabilities
of an abnormality occurring in each node, and finally, we select the top 5 nodes as the most fun-
damental cause of the anomaly. The results of PageRank are shown in Table 6.

The above table shows that different microservices may cause various anomalies, and
the fraction of exceptions occurring for each microservice varies. For example, regard-
ing CPU anomalies, the most likely are orders and payment; memory anomalies, the
most likely are front-end and shipping; and latency anomalies, the most likely are carts
and front-end.

In the network, most failures may not be caused by a single cause. Specially, in
microservice systems, an exception in any service may lead to the failure of a series
of related services, because these microservices call each other and affect each other.
Table 4 describes the probability of failure for each microservice. For example, network
latency in someplace of microservice systems may be caused by 4 (carts) service and 0
(front-end) service because the two services have a combined failure probability of 79%.

Metrics To quantify the performance of each algorithm on a set of anomalies A, we
use two wide metrics: PR@k and AVG@k. PR@k represents the probability that the top
k results given by an algorithm include the real root cause. A higher PR@k score, espe-
cially for small values of k, represents the algorithm correctly and identifies the root cause
according to each anomaly a. AVG@k evaluates the overall performance of a method by
computing the average PR@k. They are defined as follows:

(5)PR@k =
1

�A�
�

a∈A

∑
i<k R

a(i) ∈ Va

min(k, �Va�)

Table 4 Results of different
reduction_ratio on catalogue
dataset

Reduction_ratio Macro-F1 Micro-F1

4 0.921 0.974
8 0.918 0.973
16 0.935 0.980
32 0.923 0.974

Table 5 Anomalous graph CPU hog Memory leak Network latency

Anomalous
graph

935Software Quality Journal (2024) 32:921–938

1 3

Let Ra(i) be the rank of each cause, and Va be the set of the cause in a. This paper uses
A = [�cpu hog�,� memory leak�,� network latency�] . Furthermore, Va is the real root cause,
and Ra is the predicted root cause. We set k from 1 to 5 for PR@k and calculate AVG@5 as
the average localization accuracy.

Table 7 shows the performance of cause locating three types of faults under different
anomalous graphs.

It shows that the anomalous graph based on the Direct-LINGAM algorithm achieves
the best in AVG@5 and effectively locates root causes in all three types of anomalies. The
causal propagation graph obtained by the Direct-LINGAM algorithm can most accurately
show the connection among different microservices. More other root cause algorithms
would like to be investigated to improve the accuracy of fault diagnosis and be suitable for
more diverse time series distributions.

(6)AVG@k =
1

k

∑

i≤j≤k

PR@j

Table 6 Probabilities of anomalous nodes

CPU hog Memory leak Network latency

Probabilities of anomalous nodes (3, 0.45)
(5, 0.21)
(4, 0.17)
(1, 0.07)
(0, 0.03)

(0, 0.43)
(6, 0.31)
(4, 0.08)
(1, 0.07)
(2, 0.04)

(4, 0.4)
(0, 0.39)
(2, 0.05)
(6, 0.04)
(1, 0.04)

Table 7 Performance of cause
locating

Values in bold indicate the best performance

PC GES ICA-LINGAM Direct-LINGAM

CPU hog
PR@1 0 0 0 0.333
PR@2 0.167 0 0.167 0.333
PR@3 0.167 0.167 0.333 0.5
PR@4 0.167 0.5 0.333 0.667
PR@5 0.5 0.833 0.833 0.833
AVG@5 0.2 0.3 0.333 0.533
Memory leak
PR@1 0.167 0.167 0.167 0.333
PR@2 0.167 0.5 0.167 0.333
PR@3 0.333 0.5 0.333 0.5
PR@4 0.5 0.667 0.5 0.667
PR@5 0.5 0.833 0.833 0.833
AVG@5 0.333 0.533 0.4 0.533
Network latency
PR@1 0 0 0.167 0.333
PR@2 0.167 0.167 0.167 0.333
PR@3 0.333 0.5 0.333 0.5
PR@4 0.333 0.667 0.333 0.667
PR@5 0.5 1 0.667 0.833
AVG@5 0.267 0.467 0.333 0.533

936 Software Quality Journal (2024) 32:921–938

1 3

5 Summary

Since multivariate time series data monitored in microservices can be occasionally and
unexpectedly abnormal, it is necessary to classify the anomalies and analyze the root
cause. This paper proposes an effective convolutional model with attention using a paral-
lel structure to classify diversity anomalies and analyze the root cause from the classified
anomaly data. Our model has better anomaly classification ability and achieved state-of-
the-art results on a detailed set of empirical studies. For future research, there is hope to
design an unsupervised model to address the challenge of label collection in microser-
vices environments. Furthermore, we would like to explore the root cause of anomalies at
a more granular level, not only at the service level but also based on the host and server.
More generally, we will conduct in-depth work to increase the generalization and univer-
sality of the model in non-microservices environments in the future. This hopefully could
be applied in non-microservices environments such as the Internet of Things (IoT) systems.

Acknowledgements The authors would like to thank all the staff and students of the School of Computer
and Software Engineering in Xihua University for their contribution during this research process.

Author contribution Problem formulation: Xi Li, Peng Chen. The proposed algorithm: Peng Chen, Peian
Wen. Computer simulations: Xi Li, Peian Wen, Juan Chen. Article preparation: Xi Li, Xuming Wen.
Review: Peng Chen, Yunni Xia. All the authors read and approved the final manuscript.

Funding This research is supported by the National Natural Science Foundation under Grant No.62376043,
Science and Technology Program of Sichuan Province under Grant No.2020JDRC0067, No.2023JDRC0087
and No.24NSFTD0025, and Chunhui Project of Ministry of Education of China under Grant No.Z2011085.

Data availability The data used during the current study are available from the corresponding author on
reasonable request.

Code availability The codes used during the current study are available from the corresponding author on
reasonable request.

Declarations

Ethics approval Not applicable

Consent to participate Not applicable

Consent for publication Not applicable

Conflict of interest The authors declare no competing interests.

References

Assaf, R., Giurgiu, I., Bagehorn, F., & Schumann, A. (2019). MTEX-CNN: Multivariate time series expla-
nations for predictions with convolutional neural networks. In: 2019 IEEE International Conference on
Data Mining (ICDM), pp. 952–957. IEEE

Chen, P., Liu, H., Xin, R., Carval, T., Zhao, J., Xia, Y., & Zhao, Z. (2022). Effectively detecting operational
anomalies in large-scale IoT data infrastructures by using a GAN-based predictive model. The Com-
puter Journal, 65(11), 2909–2925.

Chen, P., Qi, Y., & Hou, D. (2016). CauseInfer: Automated end-to-end performance diagnosis with hier-
archical causality graph in cloud environment. IEEE Transactions on Services Computing, 12(2),
214–230.

937Software Quality Journal (2024) 32:921–938

1 3

Chen, P., Xia, Y., Pang, S., & Li, J. (2015). A probabilistic model for performance analysis of cloud infra-
structures. Concurrency and Computation: Practice and Experience, 27(17), 4784–4796.

Chickering, D. M., & Boutilier, C. (2003). Optimal structure identification with greedy search. Journal of
Machine Learning Research, 507–554.

Deng, A., & Hooi, B. (2020). AutoMAP: Diagnose your microservice-based web applications automati-
cally. In: Proceedings of The Web Conference 2020, pp. 246–258.

Deng, A., & Hooi, B. (2021). Graph neural network-based anomaly detection in multivariate time series. In:
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 35, pp. 4027–4035.

Di Francesco, P., Malavolta, I., & Lago, P. (2017). Research on architecting microservices: Trends, focus,
and potential for industrial adoption. In: 2017 IEEE International Conference on Software Architecture
(ICSA), pp. 21–30. IEEE

Dongjie, W., Zhengzhang, C., Jingchao, N., Liang, T., Zheng, W., Yanjie, F., & Haifeng, C. (2023). Hierar-
chical graph neural networks for causal discovery and root cause localization. In: Proceedings of 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. https:// doi. org/ 10. 48550/ arXiv.
2302. 01987

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United
Kingdom inflation. Econometrica: Journal of the Econometric Society, 987–1007.

Fan, C., Xiao, F., Zhao, Y., & Wang, J. (2018). Analytical investigation of autoencoder-based methods for
unsupervised anomaly detection in building energy data. Applied Energy, 211, 1123–1135.

Fauvel, K., Lin, T., Masson, V., Fromont, É., & Termier, A. (2021). XCM: An explainable convolutional
neural network for multivariate time series classification. Mathematics, 9(23), 3137.

Graves, A., & Graves, A. (2012). Long short-term memory. Supervised Sequence Labelling with Recurrent
Neural Networks, 37–45.

Hyvärinen, A., Zhang, K., Shimizu, S., & Hoyer, P. O. (2010). Estimation of a structural vector autoregres-
sion model using non-Gaussianity. Journal of Machine Learning Research, 11(5), 1709–1731.

Kiss, I., Genge, B., Haller, P., & Sebestyén, G. (2014). Data clustering-based anomaly detection in industrial
control systems. In: 2014 IEEE 10th International Conference on Intelligent Computer Communica-
tion and Processing (ICCP), pp. 275–281. IEEE.

Kriegel, H.-P., Kroger, P., Schubert, E., & Zimek, A. (2011). Interpreting and unifying outlier scores. In:
Proceedings of the 2011 SIAM International Conference on Data Mining (ICDM), pp. 13–24. SIAM.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document rec-
ognition. Proceedings of the IEEE, 86(11), 2278–2324.

Lewis, R. J. (2000). An introduction to classification and regression tree (CART) analysis. In: Annual Meet-
ing of the Society for Academic Emergency Medicine in San Francisco, California (Acad Emerg Med),
vol. 14. Citeseer

Long, J., Shelhamer, E., & Darrell, T. (2017). Fully convolutional networks for semantic segmentation.
Mariani, L., Monni, C., Pezzé, M., Riganelli, O., & Xin, R. (2018). Localizing faults in cloud systems. In:

2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST), pp.
262–273. IEEE

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to
the web. Stanford Digital Libraries Working Paper.

Shimizu, S., Hoyer, P. O., & Hyvärinen, A. (2006). A linear non-Gaussian acyclic model for causal discov-
ery. Journal of Machine Learning Research, 7, 2003–2030.

Shimizu, S., Inazumi, T., Sogawa, Y., Hyvarinen, A., Kawahara, Y., Washio, T., Hoyer, P. O., & Bollen, K.
(2011). DirectLiNGAM: A direct method for learning a linear non-gaussian structural equation model.
Journal of Machine Learning Research, 12(2), 1225–1248.

Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., & Chang, L. (2003). A novel anomaly detection scheme based
on principal component classifier. Technical Report, Miami Univ Coral Gables Fl Dept of Electrical
and Computer Engineering.

Song, Y., Xin, R., Chen, P., Zhang, R., Chen, J., & Zhao, Z. (2023). Identifying performance anomalies in
fluctuating cloud environments: A robust correlative-GNN-based explainable approach. Future Gen-
eration Computer Systems, 145, 77–86.

Spirtes, P., Glymour, C. N., & Scheines, R. (2000). Causation, prediction, and search [electronic resource].
Tuli, S., Casale, G., & Jennings, N. R. (2022). TranAD: Deep transformer networks for anomaly detection in

multivariate time series data. arXiv preprint arXiv: 2201. 07284.
Wen, P., Yang, Z., Wu, L., Qi, S., Chen, J., & Chen, P. (2022). A novel convolutional adversarial frame-

work for multivariate time series anomaly detection and explanation in cloud environment. Applied
Sciences, 12(20), 10390.

Woo, S., Park, J., Lee, J.-Y., & Kweon, I. S. (2018). CBAM: Convolutional block attention module. In: Pro-
ceedings of the European Conference on Computer Vision (ECCV), pp. 3–19.

https://doi.org/10.48550/arXiv.2302.01987
https://doi.org/10.48550/arXiv.2302.01987
http://arxiv.org/abs/2201.07284

938 Software Quality Journal (2024) 32:921–938

1 3

Wu, L., Tordsson, J., Bogatinovski, J., Elmroth, E., & Kao, O. (2021). MicroDiag: Fine-grained perfor-
mance diagnosis for microservice systems. In: Proceedings of 2021 IEEE/ACM International Work-
shop on Cloud Intelligence, pp. 31–36.

Xin, R., Liu, H., Chen, P., & Zhao, Z. (2023). Robust and accurate performance anomaly detection and pre-
diction for cloud applications: A novel ensemble learning-based framework. Journal of Cloud Com-
puting, 12(1), 1–16.

Xu, X., Chen, P., Xia, Y., Long, M., Peng, Q., & Long, T. (2022). MRoCO: A novel approach to structured
application scheduling with a hybrid vehicular cloud-edge environment. In: 2022 IEEE International
Conference on Services Computing (SCC), pp. 84–92. IEEE

Yang, Z., Ying, S., Wang, B., Li, Y., Dong, B., Geng, J., & Zhang, T. (2021). A system fault diagnosis
method with a reclustering algorithm. Scientific Programming. https:// doi. org/ 10. 1155/ 2021/ 66178 82

Zhang, X., Gao, Y., Lin, J., & Lu, C.-T. (2020). TapNet: Multivariate time series classification with atten-
tional prototypical network. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
vol. 34, pp. 6845–6852.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Xi Li1 · Peian Wen1 · Peng Chen1 · Juan Chen1 · Xuming Wen1 · Yunni Xia2

 * Peng Chen
 chenpeng@mail.xhu.edu.cn

 * Yunni Xia
 xiayunni@hotmail.com

 Xi Li
 lixi@mail.xhu.edu.cn

 Peian Wen
 wenpeian@stu.xhu.edu.cn

 Juan Chen
 chenjuan@mail.xhu.edu.cn

 Xuming Wen
 wenxuming@mail.xhu.edu.cn

1 School of Computer and Software Engineering, Xihua University, Jinzhou Road, Chengdu 610039,
Sichuan, China

2 College of Computer Science, Chongqing University, Shazheng Street, Chongqing 400044,
Chongqing, China

https://doi.org/10.1155/2021/6617882

	An effective parallel convolutional anomaly multi-classification model for fault diagnosis in microservice system
	Abstract
	1 Introduction
	2 Related work
	2.1 Statics-based method
	2.2 Machine learning-based methods
	2.3 Deep learning-based method
	2.4 Root cause localization method based on causal inference

	3 Method
	3.1 Overall architecture
	3.2 Feature capturing: parallel convolution with attention
	3.3 Anomaly multi-classification
	3.4 Fault localization

	4 Experiments
	4.1 Datasets and experimental setup
	4.2 Main results
	4.3 Ablation study
	4.4 Parameter sensitivity analysis
	4.5 Fault location

	5 Summary
	Acknowledgements
	References

