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Abstract
Microservice architecture is a new technology for deploying large-scale applications and 
services in the cloud. But multivariate time series data with anomalies are increasingly 
generated in the cloud. Effectively diagnosing the runtime system anomalies is necessary 
to ensure the quality of service of microservice systems. Typical anomaly detection meth-
ods are effective in data quality and computing reliability of cloud computing. However, 
they all focus on one-class anomaly detection, which may not perform on practical micros-
ervice frameworks with diverse types of anomalies. Furthermore, locating the root cause 
of anomalies to eliminate after detection is essential. To address these issues, we propose 
an effective parallel convolutional anomaly multi-classification model (PCAC) based on 
an attention mechanism for fault diagnosis in microservice system. We first construct a par- 
allel convolutional structure that allows subnetworks to extract features independently. Then,  
channel and spatial attention mechanisms are applied in the parallel convolutional layers to  
mitigate the loss of feature representation. Finally, causal inference based on the anoma-
lous graph is used to locate the fault in the microservice system. The experimental results 
clearly show that the proposed model achieves the highest F1 scores on six public micros-
ervice datasets, improved by 37.9% in average macro-F1 and 4.4% in average micro-F1 
scores respectively, outperforming eight state-of-the-art methods.

Keywords Microservice · Attention mechanism · Anomaly multi-classification · Fault diagnosis

1 Introduction

With the rapid development of cloud computing technology, a substantial amount of 
multivariate time series data is generated in microservices stored system (Di  Francesco 
et  al.,  2017). The microservice structure involves creating multiple applications that can 
work interdependently. It creates a streamlined delivery pipeline that decomposes the 
application into multiple small services, speeding up development and maintenance and 
providing greater flexibility. The microservice’s distributed nature allows for its high scal-
ability properties.
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In real-world applications, a critical task is to detect anomalies in multivariate time 
series data in microservice systems. Diverse anomalies would be produced, such as mem-
ory leaks, network delays, and high CPU usage between the cooperations of microservice 
components. Currently, most anomaly detection methods aim at one-class anomalies (Wen 
et  al.,  2022; Chen et  al.,  2022; Song et  al.,  2023). Compared with traditional anomaly 
detection methods, multi-classification based on diverse anomalies in microservices archi-
tecture is becoming more complex. Convolutional neural networks (CNN) are used in gen-
eral time series classification methods. But CNNs may not perform well since they cannot 
capture spatial information completely or lack attention to the correlations between con-
volutional channels in feature extraction (Fauvel et al., 2021). The deep learning network 
GDN (Deng & Hooi, 2021) uses graphs to model multivariate time series spatial features 
but does not consider temporal features. Multivariable time series data has become a typi-
cal data type, but for multivariable streams, both time dependence and correlation between 
observations should be considered. Thus, how to extract both spatial and temporal features 
from monitoring data is the challenge of multivariate time series anomaly detection.

The attention mechanism plays an important role in deep neural networks. Because 
attention gives the model the ability to discriminate, the machine will pay attention 
to the information that is more critical to the current task in a lot of information (Woo 
et al., 2018). The attention mechanism increases the performance of extracting diverse fea-
tures and makes the neural network models more flexible.

An anomaly will propagate with the connection among microservices and eventually 
affect the whole system performance if the faults cannot be located in time. Log-based 
methods (Yang et al., 2021) detect and locate bugs based on log parsing. Even though dis-
covering more informational causes, they are hard to work in real time and require abnor-
mal information in log files. Thus, efficiently diagnosing the runtime system fault and 
being able to identify and locate it is a great challenge after anomaly detection. The graph 
structure provides the idea for fault diagnosis. We use a graph model and localize root 
causes with an algorithm similar to the random walk.

The main motivation is to accurately detect anomalies in the multivariate time series 
data from the monitoring data in microservices scenarios. And our main research ques-
tions are as follows: (1) How to improve the accuracy of anomalous multi-classification in 
microservice system? Specifically, microservice data collected from monitors are generally 
stored as multivariate time series; (2) when anomalies occur in the monitoring data, how to 
effectively identify the dimensions that have the greatest impact on generating the anom-
aly, to better locate the root cause? We approach a method to classify the various anomaly 
events in monitoring microservice data in the cloud and identify the abnormal time series 
that are most likely to be the causes of each anomaly in system. The proposed PCAC model 
includes two parts: anomaly detection and fault localization, as shown in Fig. 1. In the part 
of anomaly detection, there are two modules: feature capturing and anomaly multi-classify. 
First, we construct a convolutional structure, which contains two branches in parallel. To 
capture the association features in microservice data, one branch extracts the channel fea-
tures with attention, and another extracts the spatial feature with attention. Then, based on 
both features, anomaly multi-classification is achieved. Another part of fault localization 
includes anomalous graph and causal inference modules. In this part, we use causal infer-
ence methods to learn the fault propagation paths generated by graph methods.

The main contributions of this work are summarized as follows:

• To address the difficulty of extracting spatial and temporal features from multivariate 
time series, we designed a parallel convolution architecture, which can better capture 
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the spatio-temporal dependencies of multivariate time series simultaneously to achieve 
better anomaly detection for microservice system.

• To solve the problem of incomplete feature extraction in ordinary CNNs, we propose 
a method with channel and spatial attention mechanisms to extract features in subnet-
works independently and reduce the loss of feature representations.

• To effectively determine the fault cause after anomaly detection, we analyze and com-
pare several causal inference-based cause localization methods to identify the specific 
fault service.

• We conduct experiments on eight state-of-the-art baseline methods on six public 
microservice datasets, with a 37.9% improvement in average macro-F1 and a 4.4% 
improvement in average micro-F1 scores, respectively.

Section 2 reviews different anomaly detection methods for microservice systems. Sec-
tion 3 introduces the proposed model in detail. Section 4 evaluates the effectiveness of the 
model through comparative experiments and ablation experiments, analyzes the abnormal 
cause, and diagnoses the fault service. Section 5 summarizes the work and presents poten-
tial future research.

2  Related work

The study of anomaly detection has been carried out for several decades and is an active 
research area gaining increasing attention in deep learning. At the same time, many anom-
aly multi-classification methods for microservice system are proposed. We mainly review 
the related work on statistical model-based, machine learning-based, deep learning-based, 
and root cause localization methods.

2.1  Statics‑based method

Generalized autoregressive conditional heteroskedasticity (GARCH) (Engle,  1982) is a 
method for modeling the volatility caused by conditional mean and conditional hetero-
scedasticity of monitoring microservice metrics. It calculates each point’s anomaly score, 

Fig. 1  PCAC module structure
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clusters the points, and then detects multiple categories of anomalies in the microservice 
system. Principal component analysis (PCA) (Shyu et al., 2003) extracts data features by 
dimensionality reduction and achieves anomaly classification on the low-dimensional data.

2.2  Machine learning‑based methods

Support vector machine (SVM) (Kriegel et  al.,  2011) is a binary classification model. 
Multiple binary classifiers will be constructed in the microservice system to obtain the 
predicted probabilities by comparing each classifier in the testing set. The goal is to 
find a hyperplane with a maximum margin that can separate points of different classes. 
K-nearest neighbor (KNN) algorithm (Kiss et al., 2014) predicts the label of data by the 
labels of its K-nearest pre-marked neighbors. A decision tree (Lewis, 2000) is a classifi-
cation model that formulates the features and anomaly labels that indicate the relations 
among the data points.

2.3  Deep learning‑based method

Autoencoder (AE) (Fan et al., 2018; Xin et al., 2023) is a common neural network model 
that consists of an encoder and a decoder. The encoder extracts features by defining the 
neural architecture, and the decoder is similar to the encoder, to convert the encoding back 
to the original data. After training AE, the encoded features are used to train a classifier for 
anomaly classification. CNN (convolutional neural network) (LeCun et al., 1998) extracts 
microservice system monitoring metrics features by setting convolution kernels based on 
sliding windows and performs classification using the cross-entropy function. FCN (fully 
convolutional network) (Long et al., 2017) replaces fully connected layers with convolu-
tional layers based on the convolutional neural network. LSTM (long short-term memory) 
(Graves & Graves, 2012) is a variation of RNN (recurrent neural network), which mitigates 
the problem of exploding gradients to some extent. The output of LSTM will go through 
a fully connected layer and softmax function to convert it into the probability distribu-
tion of each category. TapNet (Zhang et al., 2020; Xu et al., 2022) uses LSTM and CNN 
stacking to model microservice system monitoring metrics and classify them via softmax. 
MTEXCNN (Assaf et al., 2019) employs three cascaded 2D convolutions to extract spa-
tial information, followed by a 1D convolution to extract temporal information as well as 
classify microservice system monitoring metrics. TranAD (Tuli et al., 2022) utilizes trans-
former-based adversarial training to detect anomalies, while GDN (Deng & Hooi, 2021) 
employs graph structure learning to capture the relationships between different sensors. 
Both TranAD and GDN are relatively novel methods for anomaly detection, demonstrating 
excellent performance. We apply the same modifications as those used for LSTM men-
tioned above to adapt these two models for multi-class anomaly classification, enabling a 
comparison with our proposed model.

2.4  Root cause localization method based on causal inference

The dependencies between services in a microservice application may cause the propaga-
tion of faults. Root cause localization helps our anomaly multi-classification models diag-
nose the source for anomalies and find the most fundamental reason for their occurrence. 
Based on the fault propagation paths, graphs methods to locate the root cause of fault are 
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developed. For example, AutoMap (Deng & Hooi, 2020) treats the different components 
in the system as individual nodes, and their interdependencies form a graph, and then 
finds the root cause based on the PC (Spirtes et al., 2000) algorithm and PageRank (Page 
et  al.,  1999) algorithm. Causeinfer (Chen et  al.,  2016) uses the PC algorithm to build a 
causal graph and then uses Breadth First Search (BFS) to infer the root cause of the causal 
graph. MicroDiag (Wu et  al.,  2021) uses linear non-Gaussian acyclic model (LiNGAM) 
(Hyvärinen et al., 2010) to learn the fault propagation relationship between microservices, 
build a fault propagation graph, and use PageRank to perform root cause localization on the 
propagation graph. The above methods ignore the capture of fault patterns of entity meas-
urement data. However, some faults in the measurement data related to entities during a 
system fault may affect the final root cause localization results (Dongjie et al., 2023). Thus, 
capturing the fault patterns of measurement data in root cause localization and improving 
localization accuracy become challenges.

3  Method

3.1  Overall architecture

The architecture of the proposed PCAC is shown in Fig.  2. PCAC is composed of four 
modules: feature capturing (1), anomaly multi-classification (2), anomalous graph (3), and 
inferred causal (4). The input T of the model is system metrics of multivariate time series 
from microservice data monitoring. Firstly, it enters the feature capturing module (1), 
which consists of the channel attention branch and spatial attention branch. Two branches 
in parallel process data and a weighted feature map are generated. Module (1) solves the 
problem of incomplete feature extraction and gains spatio-temporal dependencies. Then, 
anomaly multi-classification is achieved through the operations of flattening and softmax 
on the attention map in module (2). Module (2) uses the cross-entropy to update the param-
eters to reduce the loss of features. Based on the multi-classification results, the root cause 
analysis is carried out by an anomalous graph generation in module (3). Finally, the prob-
abilities of fault services are output in module (4) for cause location, effectively avoiding 
spreading among microservices.

Fig. 2  Architecture of PCAC 
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3.2  Feature capturing: parallel convolution with attention

Data is input into the upper and lower branches simultaneously. In the upper branch, 
the data is passed through two one-dimensional convolution operations and correspond-
ing activation functions before entering the channel attention function, which adjusts the 
importance of each channel in the model by learning attention weights and strengthens 
the ability to capture the correlation between multiple channels. In the lower branch, spa-
tial attention branch, the data undergoes the same process as in the upper branch and then 
enters the spatial attention function, which adds weights to different positions to enable the 
model to focus better on critical local features in the system metrics. Finally, the feature 
maps output by the two branches are concatenated to obtain the final feature map.

Conv1D represents the one-dimensional convolution, and ReLU represents the activation 
function ReLU. Feature map represents the weighted feature map obtained by concatenating the 
features from the channel attention and spatial attention branches based on attention mechanism. 
For the given input feature tensor F, we compute the channel attention map Mc(F) and the spatial 
attention map Ms(F) at two separate branches, then compute the attention map M(F) as follows:

Channel attention The process of channel attention based on attention mechanism 
(Fauvel et al., 2021) is shown in detail in Fig. 3. To aggregate the feature map in each 
channel, we take two global pools on the feature F and produce the channel attention 
feature Mc(F) . As shown in Fig. 3, the channel attention mainly includes a shared multi-
layer perceptron (MLP) network, a maximum pooling (MaxPool), and an average pool-
ing (AvgPool).

Firstly, use MaxPool and AvgPool to extract feature information and input them to the 
shared MLP network to obtain the corresponding MaxPool_OUT and AvgPool_OUT. 
After that, the MaxPool_OUT and AvgPool_OUT are spliced and activated by the sigmoid 
function to obtain the attention score matrix. Finally, multiply the attention score matrix 
with the original input feature tensor F to get the channel attention map Mc(F) . The calcu-
lation formula is as follows:

where � is the sigmoid function, and × is the matrix multiplication. Each channel has an 
attention score because channel attention adds weight to feature information. Using the sig-
moid function ensures that the scores of different channels are independent. The attention 

(1)M(F) = Mc(F) +Ms(F)

(2)Mc(F) = F × �(MLP(AvgPool(F)) +MLP(MaxPool(F)))

Fig. 3  Channel attention
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score matrix multiplies the original input, and then different weights are given according to 
the degree of importance. That means the original data is filtered and selected.

Spatial attention The proposed model introduces a spatial attention mechanism (Fauvel  
et  al.,  2021) to enhance the ability to capture features in different spatial locations. As 
shown in Fig. 4, the spatial attention map Ms(F) is calculated as follows:

where � is the softmax function. The spatial attention mechanism weights different features 
at different positions, considering the relationship between the score at each position and 
other positions. Using the softmax function ensures that the sum of the scores is 1, thereby 
ensuring global consistency.

3.3  Anomaly multi‑classification

The final attention map from parallel convention with attention module inputs the flatten 
and softmax function, respectively. Data is converted into one-dimension vectors through 
the flatten function and then output into probabilities p for multi-classification through the 
softmax function. That is, date is labeled as normal and abnormal. Furthermore, the abnor-
mal data is predictably labeled as different types of anomalies based on probabilities, such 
as memory leak, network delay, or high CPU hog, which usually occurs during service 
invocation in the microservice system.

In the training phase, the loss is calculated using a cross-entropy loss function defined 
as Eq.  4. We use the calculated loss to perform parameter updating. Using the cross-
entropy loss function as the optimization objective during training allows the model to 
continuously adjust its parameters during training to minimize the difference between the 
predicted probability and the actual label.

where n is the number of training samples, m is the number of classes, y represents the 
actual label, and p represents the probability of the label predicted by the model.

(3)Ms(F) = F × �(Conv1D(ReLU(Conv1D(F))))

(4)loss = −
1

n

n−1∑

i=0

m−1∑

j=0

yijlog(pij)

Fig. 4  Spatial attention
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In the testing phase, the test data is processed the same way as in the training phase, 
but the model is not updated. Instead, the macro-F1 and micro-F1 scores of the model 
are calculated.

3.4  Fault localization

Once anomalies are detected, the fault location engine in the microservice system starts to 
trace the execution paths and then locate faulty services. The engine is composed of two 
main procedures: anomalous graph construction and causal inference. Fault localization 
procedure is as follows:

Step 1: Select a causal inference algorithm and construct a directed acyclic graph (DAG) 
with minimum loss information as anomalous graph G based on data after anomaly 
multi-classification.
Step 2: Use PageRank algorithm on G to compute the score of each anomalous node.
Output: Anomalous graph G and probability of each anomalous node.

We choose four common causal inference algorithms to construct causal graphs in order 
to find the best one to root causes analysis, including Peter-Clark (PC) (Spirtes et al., 2000) 
algorithm, Greedy Equivalence Search (GES) (Chickering & Boutilier, 2003) algorithm, 
and linear non-Gaussian acyclic model (LINGAM) (Hyvärinen et al., 2010) algorithm, in 
which ICA-LINGAM (Shimizu et al., 2006) and Direct-LINGAM (Shimizu et al., 2011) 
are included. In order to locate the faulty services, a graph centrality algorithm named Pag-
eRank (Page et al., 1999) is used on the anomalous graph and outputs the probability of 
each anomalous node. In the root causal inference phase, these probabilities serve as the 
basis to diagnose which microservice is most likely to cause faults.

4  Experiments

4.1  Datasets and experimental setup

Datasets Sock Shop1 is a widely used microservice benchmark designed to test and evalu-
ate microservices technology. It consists of 13 microservices, in which we mainly choose 
the front-end, catalogue, users, orders, payment, and shipping. The microservice architec-
ture of Sock Shop is shown in Fig. 5. The complex connections between them make the 
multi-classification task of our model more challenging for those multivariate time series 
data in the microservice system. We deploy the Sock Shop using Kubernetes on multi-
ple virtual machines(VMs) in the cloud. The Kubernetes cluster includes one master node 
and three worker nodes. We deploy open-source monitoring and visualization tools Pro-
metheus2 and Grafana3 on the master node to monitor the application and collect data. 
Furthermore, we use the load generation tool Locust4 on the master node to simulate 

1 https:// github. com/ micro servi ces- demo/ micro servi ces- demo.
2 https:// github. com/ prome theus/ prome theus.
3 https:// github. com/ grafa na/ grafa na.
4 https:// locust. io/.

https://github.com/microservices-demo/microservices-demo
https://github.com/prometheus/prometheus
https://github.com/grafana/grafana
https://locust.io/
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workloads for the microservice application. All services of Sock Shop are deployed on the 
nodes allocated to different VMs automatically.

To simulate realistic scenarios, we inject three types of anomalies into our experiment: 
CPU hog, memory leak, and network latency (Mariani et al., 2018; Chen et al., 2015). The 
Pumba5 tool was utilized to simulate network failures, and Docker container resources 
were subjected to stress tests to induce anomalies. The duration of each anomaly ranged 
from 1 to 5 min, while the application ran normally for 10 to 30 min, after which the pro-
cess was repeated for each anomaly at least five times. Data is collected in real time every 
5  s, based on Prometheus configuration, including service-level and resource-level data. 
At the service level, the latency of each service is recorded. At the resource level, metrics 
related to container resources are collected, including CPU hog, memory leak, and network 
transmit bytes.

Table 1 shows the details of six microservice datasets, including the size of the training 
set and test set and the number of feature dimensions. The ratio of training and test size is 
seven to three. In addition, three types of anomaly proportions are represented.

Metrics We use marco-F1 and micro-F1 scores as evaluation indicators to verify the per-
formance of the model and compare it to other baseline anomaly detection methods. Both 
marco-F1 and micro-F1 are commonly used to evaluate models in multi-classification 
scenarios. Macro-F1 is calculated by average precision and recall score regardless of the 
importance of the different classes. Micro-F1 is suitable for a dataset with an unbalanced 
multi-classification distribution.

Baseline methods We compared different types of anomaly multi-classification models to 
validate the effectiveness of our model. These include (i) classical machine learning mod-
els GaussianNB, KNN, SVM, and SGD and (ii) the deep learning models CNN, DNN, 
LSTM, OmniAnomaly, transformer-based TranAD, and graph structure-based GDN. Tra-
nAD and GDN are relatively new anomaly detection models.

Fig. 5  The microservice architecture of Sock Shop

5 https:// github. com/ alexei- led/ pumba.

https://github.com/alexei-led/pumba
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Experimental settings All experiments are implemented in Python 3.7.11 and PyTorch 
1.6.0 using a single NVIDIA GeForce 940MX (12 G) GPU, Intel (R) Core (TM) i7-7500U 
CPU @ 2.70GHz, and 12 G RAM. The convolutional kernel size in Conv1D is 3, 5, the 
number of epochs is 80, the batch size is 128, and the neural networks are optimized by the 
Adam optimizer, with the initial learning rate set to 104.

4.2  Main results

We compare PCAC with eight baseline methods on six microservice datasets in Table 2 
and Fig. 6 in terms of macro-F1 and micro-F1. The best performance is bolded.

Table 2 shows that PCAC achieves the highest macro-F1 and micro-F1 scores overall in 
eight baseline methods on the six datasets. Furthermore, we provide the ranking of PCAC 
and all baseline methods on macro-F1. The micro-F1 specific ranking score differs slightly 
from the macro-F1, but the model ranking is the same. Our model exceeds the other meth-
ods from the ranking results, proving that our method is effective in multi-classify.

The details of anomaly detection results of our method are shown in Fig. 7. It can be 
seen that on catalogue, front-end, orders, payment, shipping, and users datasets from 
Fig. 7a–f, the detection error rate is only 1.95%, 3.18%, 2.78%, 1.59%, 2.86%, and 4.12%, 
respectively. Users dataset requires more accurate detection of CPU hog and memory leak. 
In summary, our method has demonstrated an average false alarm rate of only 2.75% on 
the six datasets, indicating its effectiveness for detecting the three types of anomalies and 
cascading them to achieve better performance in fault diagnosis.

Table 1  The details of datasets used in experiments

Microservice Train size Test size Feature 
dimension

CPU hog (%) Memory 
leak (%)

Network 
latency (%)

Catalogue 3229 1384 35 5.22 2.62 4.94
Front-end 3449 1478 36 4.87 5.38 4.18
Orders 3273 1403 35 3.89 3.08 7.12
Payment 3081 1320 36 4.66 5.18 4.11
Shipping 3097 1327 36 3.82 3.84 5.45
Users 3175 1360 36 3.97 3.75 2.69

Fig. 6  Performance comparison
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4.3  Ablation study

To investigate the impact of each component branch on the PCAC performance, we repeat the 
experiments without channel attention or spatial attention successively on the six datasets.

Channel attention The results of macro-F1 and micro-F1 in the experiment of PCAC and 
of PCAC without channel attention (CA) are shown in Fig. 8. The values of both macro-
F1 and micro-F1 of PCAC without CA decrease on all datasets. Particularly, a decrease of 
7.45% in macro-F1 and −2.10% in micro-F1 on the shipping dataset indicates that channel 
attention can increase the model’s attention to specific channels and improve performance.

Spatial attention Similarly, as shown in Fig. 9, the performance of PCAC is better than 
PCAC without spatial attention (SA) on most datasets. The values of macro-F1 and micro-
F1 decrease by 2.15% and 0.62% on the payment and front-end datasets, indicating that 
spatial attention is beneficial for capturing spatial information.

Table 2  Performance of baseline models and ours

Values in bold indicate the best performance

Catalogue Front-end Orders

Method Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

GaussianNB 0.712 0.712 0.826 0.928 0.731 0.718
KNN 0.879 0.965 0.877 0.958 0.883 0.964
SVM 0.886 0.956 0.901 0.967 0.891 0.966
SGD 0.894 0.967 0.899 0.966 0.89 0.966
CNN 0.876 0.96 0.854 0.949 0.828 0.948
DNN 0.885 0.964 0.886 0.961 0.864 0.959
LSTM 0.914 0.971 0.904 0.966 0.907 0.971
OmniAnomaly 0.235 0.886 0.23 0.852 0.234 0.88
GDN 0.235 0.886 0.23 0.852 0.234 0.88
TranAD 0.234 0.885 0.23 0.851 0.233 0.879
Ours 0.935 0.98 0.907 0.968 0.909 0.972

Payment Shipping Users Rank

Method Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GaussianNB 0.636 0.422 0.785 0.861 0.729 0.802 7.8
KNN 0.921 0.974 0.885 0.964 0.82 0.954 4.3
SVM 0.915 0.972 0.884 0.963 0.761 0.939 4
SGD 0.92 0.974 0.874 0.959 0.747 0.938 4.2
CNN 0.9 0.967 0.848 0.951 0.782 0.947 6.5
DNN 0.911 0.97 0.865 0.958 0.629 0.929 6
LSTM 0.923 0.974 0.894 0.966 0.831 0.955 2.1
OmniAnomaly 0.232 0.867 0.231 0.861 0.236 0.892 9
GDN 0.232 0.866 0.231 0.861 0.236 0.892 9
TranAD 0.232 0.866 0.231 0.861 0.235 0.891 10
Ours 0.951 0.984 0.909 0.971 0.842 0.958 1
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4.4  Parameter sensitivity analysis

Batch_size This represents the size of the batch. Sensitivity analysis of batch size is help-
ful for hyperparameter adjustment. We applied different batch sizes on the catalogue data-
sets used in the experiment. The experimental results are shown in Table 3.

It can be seen from Table  3 that the Macro-F1 score is the best when batch_size is 
128, but there is little difference in the Macro-F1 scores produced by other batch_sizes. It 
shows that the size of batch_size has little effect on the classification results of the model. 
However, the performance decreases when the batch_size is 256, while the performance is 
optimal when the batch_size is 128. Thus, the batch_size can be adjusted dynamically. In 
practice, we can choose different batch_sizes to make full use of computational resources 
without causing low computational efficiency.

Fig. 7  Confusion matrix of anomaly detection results under the different microservices

Fig. 8  Performance comparison between PCAC and PCAC without CA



933Software Quality Journal (2024) 32:921–938 

1 3

Reduction_ratio This controls the dimension reduction ratio of the fully connected layer 
in the channel attention module. For example, when reduction_ratio is 16, it means that the 
output dimension of the fully connected layer will be 1∕16 of the input dimension. We also 
performed an analysis on the catalogue dataset used in the experiment, and the experimen-
tal results are shown in Table 4.

It can be seen from Table 4 that the macro-F1 score is highest when the reduction_ratio 
is 16, but there is not much difference with the macro-F1 scores generated by other reduc-
tion_ratio values. Therefore, similar to batch_size, we can choose different reduction_ratio 
values according to the size of the dataset dimensions to balance the model’s performance 
and computational cost.

Parameter sensitivity experiments show that the two parameters batch_size and reduc-
tion_ratio in the model are stable, and their values do not have much influence on the 
results of anomaly detection. Therefore, the model proposed in this paper has strong robust-
ness, and the performance does not fluctuate greatly with the values of the two param-
eters. In practical applications, we can adjust the values of batch_size and reduction_ratio 
according to the computational cost consideration.

4.5  Fault location

In this subsection, we select the front-end dataset as a sample to complete the fault diag-
nosis based on the anomaly multi-classification results of our model. Firstly, we choose 
the common four algorithms, including PC, GES, ICA-LINGAM, and Direct-LINGAM, to 
find a directed acyclic graph corresponding to anomalies with minimum loss. Then, we use 
the PageRank algorithm to perform a random walk on the anomalous graph and calculate 
the probability of each anomaly node. Finally, based on the ranking of these probabilities, 
we analyze the most likely fault cause in the system.

Fig. 9  Performance comparison between PCAC and PCAC without SA

Table 3  Results of different 
batch_size on catalogue dataset

Batch_size Macro-F1 Micro-F1

32 0.922 0.975
64 0.921 0.975
128 0.935 0.980
256 0.915 0.971
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The anomalous graphs generated by the Direct-LINGAM algorithm are shown in 
Table 5. The nodes in the figure represent 0 (front-end), 1 (user), 2 (catalogue), 3 (orders), 
4 (carts), 5 (payment), and 6 (shipping), seven microservices.

Different microservices may cause various anomalies. We aim to obtain the most fundamen-
tal microservice that caused the anomaly and diagnose the source, so we choose the PageRank 
algorithm to perform in anomalous propagation graphs in Table 5 to calculate the probabilities 
of an abnormality occurring in each node, and finally, we select the top 5 nodes as the most fun-
damental cause of the anomaly. The results of PageRank are shown in Table 6.

The above table shows that different microservices may cause various anomalies, and 
the fraction of exceptions occurring for each microservice varies. For example, regard-
ing CPU anomalies, the most likely are orders and payment; memory anomalies, the 
most likely are front-end and shipping; and latency anomalies, the most likely are carts 
and front-end.

In the network, most failures may not be caused by a single cause. Specially, in 
microservice systems, an exception in any service may lead to the failure of a series 
of related services, because these microservices call each other and affect each other. 
Table 4 describes the probability of failure for each microservice. For example, network 
latency in someplace of microservice systems may be caused by 4 (carts) service and 0 
(front-end) service because the two services have a combined failure probability of 79%.

Metrics To quantify the performance of each algorithm on a set of anomalies A, we 
use two wide metrics: PR@k and AVG@k. PR@k represents the probability that the top 
k results given by an algorithm include the real root cause. A higher PR@k score, espe-
cially for small values of k, represents the algorithm correctly and identifies the root cause 
according to each anomaly a. AVG@k evaluates the overall performance of a method by 
computing the average PR@k. They are defined as follows:

(5)PR@k =
1

�A�
�

a∈A

∑
i<k R

a(i) ∈ Va

min(k, �Va�)

Table 4  Results of different 
reduction_ratio on catalogue 
dataset

Reduction_ratio Macro-F1 Micro-F1

4 0.921 0.974
8 0.918 0.973
16 0.935 0.980
32 0.923 0.974

Table 5  Anomalous graph CPU hog Memory leak Network latency

Anomalous 
graph
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Let Ra(i) be the rank of each cause, and Va be the set of the cause in a. This paper uses 
A = [�cpu hog�,� memory leak�,� network latency�] . Furthermore, Va is the real root cause, 
and Ra is the predicted root cause. We set k from 1 to 5 for PR@k and calculate AVG@5 as 
the average localization accuracy.

Table 7 shows the performance of cause locating three types of faults under different 
anomalous graphs.

It shows that the anomalous graph based on the Direct-LINGAM algorithm achieves 
the best in AVG@5 and effectively locates root causes in all three types of anomalies. The 
causal propagation graph obtained by the Direct-LINGAM algorithm can most accurately 
show the connection among different microservices. More other root cause algorithms 
would like to be investigated to improve the accuracy of fault diagnosis and be suitable for 
more diverse time series distributions.

(6)AVG@k =
1

k

∑

i≤j≤k

PR@j

Table 6  Probabilities of anomalous nodes

CPU hog Memory leak Network latency

Probabilities of anomalous nodes (3, 0.45)
(5, 0.21)
(4, 0.17)
(1, 0.07)
(0, 0.03)

(0, 0.43)
(6, 0.31)
(4, 0.08)
(1, 0.07)
(2, 0.04)

(4, 0.4)
(0, 0.39)
(2, 0.05)
(6, 0.04)
(1, 0.04)

Table 7  Performance of cause 
locating

Values in bold indicate the best performance

PC GES ICA-LINGAM Direct-LINGAM

CPU hog
PR@1 0 0 0 0.333
PR@2 0.167 0 0.167 0.333
PR@3 0.167 0.167 0.333 0.5
PR@4 0.167 0.5 0.333 0.667
PR@5 0.5 0.833 0.833 0.833
AVG@5 0.2 0.3 0.333 0.533
Memory leak
PR@1 0.167 0.167 0.167 0.333
PR@2 0.167 0.5 0.167 0.333
PR@3 0.333 0.5 0.333 0.5
PR@4 0.5 0.667 0.5 0.667
PR@5 0.5 0.833 0.833 0.833
AVG@5 0.333 0.533 0.4 0.533
Network latency
PR@1 0 0 0.167 0.333
PR@2 0.167 0.167 0.167 0.333
PR@3 0.333 0.5 0.333 0.5
PR@4 0.333 0.667 0.333 0.667
PR@5 0.5 1 0.667 0.833
AVG@5 0.267 0.467 0.333 0.533
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5  Summary

Since multivariate time series data monitored in microservices can be occasionally and 
unexpectedly abnormal, it is necessary to classify the anomalies and analyze the root 
cause. This paper proposes an effective convolutional model with attention using a paral-
lel structure to classify diversity anomalies and analyze the root cause from the classified 
anomaly data. Our model has better anomaly classification ability and achieved state-of-
the-art results on a detailed set of empirical studies. For future research, there is hope to 
design an unsupervised model to address the challenge of label collection in microser-
vices environments. Furthermore, we would like to explore the root cause of anomalies at 
a more granular level, not only at the service level but also based on the host and server. 
More generally, we will conduct in-depth work to increase the generalization and univer-
sality of the model in non-microservices environments in the future. This hopefully could  
be applied in non-microservices environments such as the Internet of Things (IoT) systems.
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