
Vol.:(0123456789)

Software Quality Journal (2024) 32:791–819
https://doi.org/10.1007/s11219-024-09671-7

1 3

RESEARCH

Quantitative evaluation of molecular generation
performance of graph‑based GANs

Jinli Zhang1 · Zhenbo Wang1 · Zongli Jiang1 · Man Wu2 · Chen Li3 ·
Yoshihiro Yamanishi3

Accepted: 1 April 2024 / Published online: 25 April 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Deep generative models have been widely used in molecular generation tasks because they
can save time and cost in drug development compared with traditional methods. Previous
studies based on generative adversarial network (GAN) models typically employ rein-
forcement learning (RL) to constrain chemical properties, resulting in efficient and novel
molecules. However, such models have poor performance in generating molecules due to
instability in training. Therefore, quantitative evaluation of existing molecular generation
models, especially GAN models, is necessary. This study aims to evaluate the performance
of discrete GAN models using RL in molecular generation tasks and explore the impact
of different factors on model performance. Through evaluation experiments on QM9 and
ZINC datasets, the results show that noise sampling distributions, training epochs, and
training data volumes can affect the performance of molecular generation. Finally, we pro-
vide strategies for stable training and improved performance for GAN models.

Keywords Quantitative evaluation · Molecular generation · Generative adversarial
network · Reinforcement learning

1 Introduction

Studies on new drug development have always been subject to the limitations of traditional
research methods in the field of medicine. Traditional methods require significant financial
and time investments (Sarpong et al., 2023), relying on continuous experimentation and opti-
mization to identify suitable compounds. The inefficiency of this approach can be frustrat-
ing (Walker, 1998). Additionally, the discrete and complex nature of chemical space makes

 * Man Wu
 wu.man.wi5@am.ics.keio.ac.jp

 * Chen Li
 li.chen.z2@a.mail.nagoya-u.ac.jp

1 Faculty of Information Technology, Beijing University of Technology, Beijing, China
2 Department of Information and Computer Science, Keio University, Yokohama, Japan
3 Graduate School of Informatics, Nagoya University, Nagoya, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-024-09671-7&domain=pdf

792 Software Quality Journal (2024) 32:791–819

1 3

it even more challenging for traditional methods to find effective drug candidates. These
challenges have prompted researchers to seek more efficient and innovative approaches to
accelerate the drug development process (Kim et al., 2016; Li & Yamanishi, 2023). In recent
years, deep learning has been widely used in stock price prediction (Zhang et al., 2019),
software reliability (Chen et al., 2022), recommendation systems (An et al., 2023; Li
et al., 2018, 2023), and medical systems (Jiang et al., 2022; Zhao et al., 2022). The devel-
opment of deep learning provides effective solutions to drug generation research challenges
(Bagal et al., 2021; De Cao & Kipf, 2018; Li et al., 2021). Compared to traditional methods,
deep learning approaches offer several advantages in accelerating the drug discovery process
(Rifaioglu et al., 2021). They enable rapid screening and prediction of molecular properties
and activities, allowing researchers to identify potential drugs from a large pool of candidate
compounds. Deep learning methods also provide valuable information to guide experimen-
tal design and optimization efforts. Furthermore, deep learning-based methods automate and
optimize labor-intensive experimental processes, enhancing research and development effi-
ciency while minimizing resource wastage. By leveraging predictions and simulations, the
number of trial-and-error experiments in the laboratory can be reduced, leading to shorter
development cycles and cost savings.

In deep learning approaches, the generative models based on Variational Autoencoders
(VAEs) (Gómez-Bombarelli et al., 2018; Kingma & Welling, 2013; Shi et al., 2020) cap-
ture the underlying patterns and structures of molecules, and then reconstruct and decode
them to generate desired new molecules. However, VAEs have limitations in that their
main objective is to minimize the difference between the generated outputs and the input
data, which may prioritize the generation of data closely similar to the real data rather than
truly learning how to generate novel and diverse data. This emphasis on minimizing recon-
struction error can hinder the model’s ability to explore and generate novel and unique data
points. Therefore, VAEs may have shortcomings in fully capturing the underlying distribu-
tion and generating outputs beyond the scope of the training dataset. The inspiration behind
the diffusion model comes from physics. In physics, gas molecules diffuse from areas of
high concentration to areas of low concentration, similar to the loss of information due to
interference from noise. Therefore, by introducing noise and then attempting to denoise
it, we can reconstruct the underlying data itself. Over a period of time and multiple itera-
tions, the model learns to generate new samples given some noisy input. The principle is to
learn the information decay caused by noise and then use the learned patterns to generate
samples. This concept also applies to latent variables as it aims to learn the distribution of
noise rather than the distribution of data. Diffusion models have recently found applica-
tions in molecular generation tasks as well.

An alternative approach is based on generative adversarial networks (GANs) (Goodfellow
et al., 2020; Guimaraes et al., 2017; Kadurin et al., 2017; Sanchez-Lengeling et al., 2017; You
et al., 2018; Yu et al., 2017), comprising a generator and a discriminator. The generator pro-
duces samples and forwards them to the discriminator for assessment, with the discriminator
providing judgments based on the quality of the generated samples. The generator adjusts its
generation strategy based on feedback from the discriminator to enhance sample quality. The
discriminator continuously refines its discrimination accuracy using the performance of gen-
erated and real samples. Through iterative training, the generator and discriminator progres-
sively improve their abilities, ultimately reaching a dynamic equilibrium. The processes of deep
generative models are depicted in Fig. 1. In the context of molecule generation, reinforcement
learning (RL) (Williams, 1992) is commonly utilized to impose constraints on generated mole-
cules, optimizing their properties. This approach offers the advantage of enabling the generated
molecules to possess desired properties. However, GANs are susceptible to mode collapse, and

793Software Quality Journal (2024) 32:791–819

1 3

when combined with RL, the model becomes more unstable. Prolonged training may lead to
the generation of molecules limited to only a few types. Different models exhibit distinct advan-
tages and limitations. It is crucial in the task of molecule generation to accurately evaluate a
model, identify its strengths, and assess its weaknesses. Only through precise evaluation can we
leverage a model’s strengths while mitigating its negative effects, thereby generating molecules
that better align with our expectations.

In contrast to the conventional GAN model, the discrete GAN model is primarily uti-
lized for processing discrete data types such as text or categorical labels. Molecules, being
a form of highly sparse data, are well-suited for analysis using the discrete GAN model.
The evaluation of GAN quality is a multifaceted task that typically involves considering
various factors. It is imperative to assess the quality of generated samples by comparing
them to real samples. Moreover, evaluating distribution matching is crucial as GANs strive
to align the distribution of generated samples with that of real samples. When addressing
specific tasks like molecule generation, it becomes essential to assess the diversity, effec-
tiveness, and other relevant metrics associated with the generated molecules. Specifically
in the context of molecule generation, an evaluation of the distribution of generated mol-
ecules in comparison to the original dataset is necessary. This is commonly achieved by
calculating diverse chemical metrics to compare the distributions between the generated
molecules and the original data. A closer similarity in the distributions of these metrics
indicates a more effective learning of distribution characteristics by the generator. Further-
more, beyond the comprehensive evaluation metrics for molecule generation mentioned
above, assessing individual generated samples plays a pivotal role in molecular generation

Fig. 1 Three commonly used deep generative models: VAE models, diffusion models, and GAN models.
a VAE models consist of two parts: the encoder and the decoder. The encoder maps input data to a latent
variable representation in the latent space, while the decoder reconstructs the original input data based on
these latent variables. b Diffusion models mainly consist of a forward process and a backward process. The
forward process continuously adds noise to the input data, and as time steps approach infinity, it eventually
becomes pure noise. The backward process is the denoising and recovery process. It is also the process of
generating the target. c GAN models consist of two parts: the generator and the discriminator. The goal of
GAN is to train the generator to generate realistic data samples, while the discriminator tries its best to dis-
tinguish the differences between the samples generated by the generator and real samples

794 Software Quality Journal (2024) 32:791–819

1 3

tasks. The primary objective of such tasks is to generate molecules that exhibit similar
properties to the training data while also demonstrating novel characteristics. Typically,
effectiveness, uniqueness, and novelty are employed for evaluation purposes. Effectiveness
gauges the model’s capacity to understand the fundamental structure of molecules, while
uniqueness helps determine if the model solely captures partial features, providing insights
into mode collapse. Novelty, on the other hand, evaluates the model’s capability to explore
the chemical space.

This study primarily focuses on evaluating the performance of discrete GAN models in
molecular generation tasks. These types of models maintain the structure of classical GAN
models, consisting of a generator and a discriminator, with the addition of RL-based opti-
mization. The main contributions of this study are as follows:

• This study primarily focuses on evaluating deep learning models for drug design, par-
ticularly graph-based RL-driven GANs.

• We evaluate the discrete GAN models by examining their generated molecular properties, as
well as their overall effectiveness, uniqueness, and novelty, among other evaluation metrics.

• To evaluate the models, we use two datasets and conduct extensive experiments by
selecting multiple factors that influence the model’s generative capability. These exper-
iments further contribute to assessing the model’s generative ability.

2 Related work

2.1 Performance evaluation using VAEs

Previously, in molecular generation tasks, methods based on VAE models have received
considerable attention. CharVAE (Gómez-Bombarelli et al., 2018) is a character-level VAE
that has demonstrated good performance in molecular generation tasks using SMILES data.
GramVAE (Kusner et al., 2017) is a grammar-based VAE capable of generating diverse
molecules that adhere to grammar rules while also possessing interpretability. Compared
to other molecular generation methods, GramVAE exhibits better control over the structure
and properties of generated molecules. GraphVAE (Simonovsky & Komodakis, 2018) is
a type of VAE specifically designed for generating and learning representations of graph-
structured data. In the field of molecular chemistry, GraphVAE has been applied to molec-
ular generation and design, allowing for the generation of diverse compounds with favora-
ble properties. In social network analysis, GraphVAE is capable of discovering community
structures and identifying key nodes. In recommendation systems, GraphVAE can provide
personalized recommendations. Overall, GraphVAE demonstrates excellent performance
in generating and learning graph-structured data. It can generate diverse and reasonable
graph samples and can be controlled and optimized according to specific tasks. GraphAF
(Shi et al., 2020) is a flow-based autoregressive model utilized for molecular graph genera-
tion. It is composed of an autoregressive flow model and a graph neural network. GraphAF
has the capability to generate diverse and reasonable molecular structures, overcoming
the limitations of traditional rule-based or search-based models that struggle to generate
diverse molecules. GraphAF incorporates a control mechanism, enabling users to generate
molecular graphs with specific properties by setting specific conditions or goals. Further-
more, GraphAF leverages flow transformation techniques, accelerating the speed of molec-
ular generation, and demonstrating high efficiency and scalability.

795Software Quality Journal (2024) 32:791–819

1 3

2.2 Performance evaluation using diffusion models

Diffusion models have recently found applications in molecular generation and drug discov-
ery tasks as well. The Molecular Diffusion Model (MDM) (Huang et al., 2023) addresses the
challenges of capturing interatomic interaction potentials and lack of diversity. MDM combines
enhanced encoding of varying strength of interatomic forces with a dual-equivalent encoder.
To enhance the diversity of generated samples, they introduce latent variables in the diffusion
and generation processes, leading to superior performance on drug-like datasets compared to
state-of-the-art (SOTA) models. GEOLDM (Xu et al., 2023) achieves impressive performance
in multiple molecular generation benchmark tests by capturing critical roto-translational equiva-
lence constraints through the construction of a point-structured latent space with invariant sca-
lars and equivariant tensors. In order to make the generation of molecules more flexible and
controllable, EEGSDE (Bao et al., 2022) adopts an equivariant SDE as the framework, guided
by a meticulously designed energy function. The generated molecules, at each step, are tailored
towards quantum properties, molecular structures, and even their combinations. Additionally,
gradient descent is applied to the energy function to encourage the generated molecules to have
low energy. Guided by the energy function, EEGSDE is more favorable than the current SOTA
molecular structure model, EDM (Hoogeboom et al., 2022), for applications such as drug dis-
covery or material exploration. GCDM (Morehead & Cheng, 2023) proposed a novel approach
for generating three-dimensional molecular structures using a diffusion process that takes into
account the molecular geometric shape. The model encodes the two-dimensional structure of
the molecule using graph convolutional neural networks and then generates a three-dimensional
structure compatible with the input two-dimensional structure through diffusion. This method
has been demonstrated to create high-quality 3D structures that compete with SOTA methods
while requiring fewer computational resources. It shows potential application prospects in drug
discovery and materials design.

2.3 Performance evaluation using GANs

In contrast to VAE models, GAN models are comprised of two primary elements: a gen-
erator network and a discriminator network. The generator network accepts random noise
as input and produces synthetic data samples with the objective of generating molecules
that closely resemble real SMILES strings. On the other hand, the discriminator network
functions as a binary classifier, attempting to differentiate between real and generated
molecules. Unlike traditional GAN models, ORGAN (Guimaraes et al., 2017) leverages
RL to optimize using reward functions. This allows the ORGAN model to achieve bet-
ter results in sequence generation tasks and specifically optimize for certain objectives,
such as generating high-quality and diverse sequence data. This allows the ORGAN model
to achieve better results in sequence generation tasks and optimize specifically for certain
objectives, such as generating high-quality and diverse sequence data. MolGAN (De Cao
& Kipf, 2018) is a molecular generation model that utilizes deep deterministic policy gra-
dients (DDPG) (Lillicrap et al., 2015) and an improved Wasserstein GAN (WGAN) to
generate molecules. MolGAN exhibits high effectiveness, meaning that the generated mol-
ecules are chemically valid and can be successfully synthesized and utilized. Additionally,
MolGAN is capable of generating diverse chemical structures by producing multiple types
of molecules. However, due to the issue of mode collapse in WGAN, the generated mol-
ecules may lack sufficient uniqueness. MolCycleGAN (Maziarka et al., 2020) leverages JT-
VAE (Jin et al., 2018) to learn the topological information of molecules and then utilizes

796 Software Quality Journal (2024) 32:791–819

1 3

CycleGAN (Zhu et al., 2017) to learn the physicochemical properties of molecules. This
enables the generation of molecules with desired properties. DNMG (Song et al., 2023) is
a GAN model that incorporates transfer learning, and the molecules it generates have better
binding affinity and improved physicochemical properties towards target proteins.

3 Model description

The architecture of the model, as depicted in Fig. 2, follows the fundamental structure of
RL-based discrete GAN models. These models typically consist of three components: a
generator G� , a discriminator D� , and a reward network R̂𝜓 . To generate valid molecules,
the generator samples from a prior distribution or noise and generates an annotated graph G
to represent a molecule. The nodes and edges of G are annotated with information regard-
ing atom types and bond types, respectively. The discriminator is trained to differentiate
between samples from the dataset and those generated by the generator. By employing an
improved version of WGAN, the generator G� and discriminator D� are trained to enable
the generator to match the empirical distribution and produce valid molecules.

The role of the reward network in discrete GAN models is particularly significant
and cannot be overlooked. It serves to approximate the reward function of a sample and

Fig. 2 Overview architecture of Graph-based RL-driven GANs. a The generator samples noise from
a Gaussian or uniform distribution. b After obtaining the samples, the generator is processed by a GNN,
which generates two matrices: the adjacency matrix representing edge information and the node matrix rep-
resenting node information. c The discriminator receives the matric generated by the generator and the mat-
ric from the real dataset and calculates the Wasserstein distance between the two data distributions. d The
training data is initially sampled from the dataset and obtained in the form of SMILES strings. Then, an
external tool is used to convert the string-formatted data into graph-structured data, which is represented by
two matrices respectively indicating edge information and node information. e The reward network receives
data generated by the generator and uses the actor-critic algorithm to compute rewards. These rewards,
combined with the Wasserstein distance from the discriminator, form the joint loss used to train the genera-
tor. Additionally, the reward network also receives data from the dataset and trains itself by comparing it
against real scores

797Software Quality Journal (2024) 32:791–819

1 3

employs RL techniques to optimize molecule generation, addressing the challenges posed
by non-differentiable metrics. Unlike the discriminator, the reward network assigns scores
to both the dataset and generated samples, based on specific properties. Its primary func-
tion is to align the assigned scores for each molecule with the scores provided by exter-
nal software, effectively assigning rewards to every generated molecule. Notably, when an
invalid molecule is inputted into the reward network, it is assigned a score of zero, as the
graph representation cannot depict a compound.

3.1 Generator

In this model, we employ a generator based on the graph neural network architecture for
evaluation. The generator consists of a 3-layer MLP with hidden units of [128; 256; 512]
respectively, and uses hyperbolic tangent (tanh) as the activation function. The generator
typically samples from noise to generate molecular graphs based on the sampled noise
input, which includes node feature matrices and adjacency matrices. The final component
of the generator is a multi-layer perceptron, enabling it to simultaneously predict an entire
graph, thereby improving the speed of molecule generation and property optimization. We
impose a limitation on the number of nodes in the generated graph to a finite range. For
each input noise z, G� produces two densely connected and continuous objects: X ∈ ℝ

N×T
to specify atom types, and AN×N×Y to specify bond types. The variables X and A can be
probabilistically interpreted, where each node and edge type is represented by probabilities
derived from categorical distributions over types. To create a molecule, we sample from
these two adjacency matrices to obtain discrete objects: X̃ and Ã . Then, these two discrete
graph structures are passed to the discriminator and reward network, and the generator loss
is computed as:

Here, z represents the data sampled from random noise, and G�(z) represents the molecular
representation generated by the generator. For the generator, its objective is to minimize
the output values when the generated data G�(z) is evaluated by the discriminator.

3.2 Discriminator and reward network

The discriminator and reward network parts of the model under evaluation both adopt the
same relation-based graph convolutional neural network (Schlichtkrull et al., 2018) archi-
tecture (with non-shared parameters). This architecture supports graphs with multiple edge
types. Although the two networks receive the same data, their functions are different. Both
networks utilize a relational GCN encoder comprising two layers and [64; 32] hidden units,
respectively, for processing the input graphs. Following this, we calculate a 128-dimensional
graph-level representation, which is subsequently processed by a 2-layer MLP with dimen-
sions [128; 1] and tanh activation function for the hidden layer. In the reward network, we
additionally apply a sigmoid activation function to the output.

Generally, a GCN-based model takes graph-structured data as input. In the task of mol-
ecule generation, each atom in the molecule corresponds to a node i in the graph structure
G = (V,E) , and its relevant feature is represented as Xi. The features of these atoms are com-
bined into a feature matrix X of size N × D (where N represents the number of nodes, and D

(1)LG�
= Ez∼pz(z)

log(1 − D�(G�(z))).

798 Software Quality Journal (2024) 32:791–819

1 3

represents the number of input features), which is then jointly represented with the adjacency
matrix A to form a graph structure. Subsequently, a node-level output Z is obtained, which is
an N × F feature matrix (where F represents the number of output features for each node).
Finally, graph-level outputs can be achieved through certain types of pooling operations. The
graph convolution process can be expressed by the following formula:

Here, H(l+1) is the feature representation matrix for the (l+1)-th layer, A is the adjacency
matrix, D is the degree matrix the diagonal elements are the degree of each node, and
W

(l) the weight matrix for the l− th layer. The feature matrix H(l) is first subjected to a lin-
ear transformation H(l)

W
(l) , and then the adjacency matrix A is used to represent the con-

nection between nodes. The operation D̂−
1

2 ÂD̂
−

1

2 is used to obtain the information trans-
mission between nodes, and finally the (l+1)-th layer feature representation matrix H(l+1)
is obtained through an activation function. When using relational GCN, the propagation
method at each layer for nodes is as follows:

where h(�)
i

 is the signal of the node i at layer, xi and xj are the feature representations of node
i and node j, respectively. f (�)

s
 is a linear transformation function that acts as a self-connection

between layers. The model further utilized an edge type-specific affine function f (�)
y

 for each
layer. Ni denotes the set of neighbors for node i. The normalization factor 1/|Ni| ensures that
activations are on a similar scale irrespective of the number of neighbors.

After passing through multiple layers of graph convolutions (Li et al., 2015), we combined
the embeddings of nodes to form a vector representation that represents the entire graph:

where � is the logistic sigmoid function, i, and j are Multi-Layer Perceptrons (MLPs) with
a linear output layer and ⊙ denotes element-wise multiplication. Then, hG is a vector rep-
resentation of the graph G and it is further processed by an MLP to produce a graph-level
scalar output∈ (−∞,+∞) for the discriminator and in range of [0, 1] for the reward net-
work. The loss function of the discriminator, in comparison to the generator, is as follows:

Here, the symbol x represents the samples from the real dataset, thus this formula aims for
the discriminator to assign higher scores to the real s. By combining the formulas of the
discriminator and the generator, the loss function of GAN as follows:

When the generated data can better deceive the discriminator, the value of the loss func-
tion is smaller. Conversely, when the discriminator has a stronger ability to distinguish, the
value of the loss function is larger. After a series of iterations and games, the system even-
tually reaches an equilibrium point.

(2)f (H(l+1),A) = �

(
D̂

−
1

2 ÂD̂
−

1

2H
(l)
W

(l)

)
.

(3)h
(�+1)

i
= tanh

(
f (�)
s

(
h
(�)

i
, xi

)
+

N∑

j=1

Y∑

y=1

Ãijy

||Ni
||
f (�)
y

(
h
(�)

j
, xj

))
,

(4)hG = tanh

(
∑

v∈V

𝜎
(
i
(
h
(L)
v
, xv

))
⊙ tanh

(
j
(
h
(L)
v
, xv

))
)
,

(5)LD�
= Ex∼pdata(x)

log(D�(x)).

(6)L = Ex∼pdata(x)
log(D(x)) + Ez∼pz(z)

log(1 − D(G(z))).

799Software Quality Journal (2024) 32:791–819

1 3

3.3 Reinforcement learning algorithm

In this study, we evaluated a discrete GAN model. The generator is theoretically capable of
learning the distribution of the training data and generating samples similar to real data. In
molecule generation tasks, it is essential to ensure that generated molecules comply with
chemical rules while possessing specific chemical properties.

To address this issue, many models use RL (Williams, 1992) methods. RL is a machine
learning method used to train an agent to learn an optimal strategy by interacting with the
environment. In molecule generation tasks, the generator is considered an agent that selects
an action (generating a molecule) based on the current state (prior samples) and updates
its policy based on rewards (chemical properties) given by the environment. The goal of
RL is to learn to generate high-quality molecules by maximizing the cumulative reward. A
reward function is designed using RL to evaluate the chemical properties of the generated
molecules and adjust the generator’s policy based on the evaluation results. This process
can be implemented using discrete RL algorithms such as Q-learning or Policy Gradient.
By iteratively training the generator and continuously optimizing the reward function and
policy, we can ensure that the generated molecules comply with chemical rules and possess
specific chemical properties.

In RL, a policy defines the decision-making process of an agent. A stochastic policy
entails the agent probabilistically selecting from a range of possible actions while in a spe-
cific state, allowing for variability in actions even within the same state. The utilization of
a stochastic policy offers the benefit of exploring new strategies by iteratively making ran-
dom selections to uncover improved policies. Conversely, a deterministic policy involves
the agent choosing a fixed action when in a particular state, as opposed to selecting actions
randomly based on a probability distribution. Deterministic policies are often preferred
when dealing with continuous action spaces due to their capacity to retain past experiences
and progress towards more optimal directions.

To introduce constraints, we implemented the DDPG algorithm for evaluating the
model. This off-policy Actor-Critic algorithm is particularly well-suited for handling high-
dimensional action spaces when generating graphs. In the strategy outlined in this paper,
the generator G� , acting as an agent, takes prior sample z as input, rather than the environ-
mental state s typically used in reinforcement learning. Consequently, the molecular graph
generated by the generator is treated as an action (a = G) and fed into the reward network.
Furthermore, since the action is solely determined by the generated graph G , there is no
need to evaluate the quality of state-action pairs. Based on this, we utilize a trainable and
differentiable reward function R̂𝜓 (G) to predict real-time rewards. Additionally, we intro-
duce an external evaluation system that provides actual rewards for the actions generated
by the generator, namely the molecular graph. The reward network is trained using mean
squared error. Exploiting this, we train the generator by maximizing the predicted rewards,
which are differentiable and provide gradients towards the desired metrics. In adversarial
training, the loss function LRL is defined as follows:

where RReal represents the real reward for the current molecule provided by an external sys-
tem, and R̂𝜓 (G) is the reward predicted by the reward network.

(7)LRL = �

[(
RReal − R̂𝜓 (G)

)2]
,

800 Software Quality Journal (2024) 32:791–819

1 3

4 Performance evaluation

In order to comprehensively evaluate the generation performance of the model, this study
mainly calculates two types of sample evaluation indicators, which are sample statistics
and sample attributes, and evaluates the quality of the model’s generation by comparing it
with the training data.

4.1 Evaluation metrics for sample statistics

For the statistical evaluation of generated samples (Samanta et al., 2018), we mainly calcu-
late the following four indicators: Validity, uniqueness, novelty, and diversity.

• Validity refers to the proportion of valid molecules in a batch of data generated by the
generator, as determined by external software, relative to the total number of sampled
data. The calculation formula is as follows:

Here, the symbol NSample represents the number of sampled data from the generator, and
the symbol NValid represents the number of valid molecules generated by the generator.
By evaluating the value of validity, we can assess how well the model has learned the
basic structure of molecules in the training data. Only by conducting statistical analysis
on validity can the subsequent evaluation process be meaningful.

• Uniqueness is calculated by determining the ratio between the number of unique sam-
ples and the total number of valid samples. The calculation formula is as follows:

Here, the symbol NRepeated represents the number of repeated samples in the generated
valid samples, and SUniqueness represents the proportion of unique samples that exist in
the generated valid samples. Uniqueness can be used to verify whether the model has
accurately learned the distribution of the training data. For GAN models, it can be used
to evaluate whether mode collapse has occurred.

• Novelty measures the proportion of unique valid samples that are not present in the
training dataset. It can evaluate a model’s exploratory ability, which is an important
criterion for generating new molecules. The calculation formula is as follows:

Here, symbol NUnique−Orignal represents the number of unique samples in the generated
data that are not present in the training data, while symbol NUnique represents the num-
ber of unique and valid molecules.

• Diversity is usually defined as the average Tanimoto distance between the Morgan fin-
gerprints of newly generated molecules (Rogers & Tanimoto, 1960).

(8)SValidity =
NValid

NSample

(9)SUniqueness =
NValid − NRepeated

NValid

(10)SNovelty =
NUnique−Orignal

NUnique

801Software Quality Journal (2024) 32:791–819

1 3

4.2 Evaluation metrics for property optimization

Evaluating the model based on the attributes of generated molecules is an important task,
especially when the goal is to generate molecules with specific attributes. We evaluate the
model using some commonly used molecular attribute evaluation methods, specifically
Drug-likeness (QED), Logarithm of the partition coefficient (LogP), and Synthesizability
(SA), for assessing the generated molecules.

• Quantitative Estimation of Drug-likeness (QED) (Bickerton et al., 2012) is a metric
used in drug discovery and medicinal chemistry to assess the drug-likeness of small
molecules. QED is a numerical value that quantifies the similarity of a given compound
to known drugs based on several molecular descriptors. QED is intuitive, transparent,
easily implementable in many practical settings, and allows ranking of compounds
based on their relative scores. Extensive work in drug design has shown the potential of
QED for assessing the drug-like properties of molecules targeted at specific molecular
targets, making it a key assessment method for drug similarity.

• Logarithm of the partition coefficient (LogP) (Comer & Tam, 2001), is a param-
eter used to evaluate and describe the lipophilicity of a compound. LogP refers to the
logarithm of the partition coefficient, which represents the distribution behavior of a
molecule between a nonpolar solvent (e.g., oil) and water at the interface. A higher
LogP value indicates a molecule that is more hydrophobic, while a lower LogP value
indicates a molecule that is more hydrophilic.

• Synthesizability (SA) (Ertl & Schuffenhauer, 2009), is a commonly used evaluation
metric to assess the synthetic feasibility of generated molecules. The SA metric meas-
ures the complexity and difficulty of a molecule’s chemical synthesis. It helps deter-
mine whether there are suitable synthetic routes to produce the generated molecule and
evaluates its achievability. The SA metric is of significant importance in drug design
and compound optimization. It aids in screening compounds with good synthetic poten-
tial and feasibility, thereby improving the efficiency of drug development.

5 Numerical experiments

We conducted a series of experiments on the established benchmark using two chemical
datasets, ZINC and QM9. Additionally, we explored and investigated the effects of various
factors (such as noise sampling distributions, training epochs, and training data volumes)
on the performance of the model.

5.1 Datasets

In the evaluation of the model, we utilized the ZINC (Irwin et al., 2012) and QM9
(Ramakrishnan et al., 2014) datasets.

• ZINC dataset is a widely used and publicly available chemical database primarily
used for drug discovery and chemical research. This dataset contains a large number of
molecular data, and each molecule has associated chemical properties. The ZINC data-
set covers various types of atoms. Specifically, it includes common atomic elements

802 Software Quality Journal (2024) 32:791–819

1 3

found in organic compounds, such as carbon (C), hydrogen (H), oxygen (O), nitrogen
(N), sulfur (S), and more. In terms of the number of molecules in the dataset, ZINC
contains approximately 250,000 molecular data points. Each molecule has its specific
structure, chemical properties, and activity information. These pieces of information
can be used to evaluate the potential effects of drug candidate compounds, compare the
similarity between different compounds, and study the relationship between molecular
structure and properties.

• QM9 dataset is a subset of the extensive GDB-17 (Ramakrishnan et al., 2014) chemi-
cal database, which consists of a remarkable 166.4 billion molecules. Within the QM9
dataset, there are 133,885 organic compounds that contain a maximum of nine heavy
atoms, including carbon (C), oxygen (O), nitrogen (N), and fluorine (F). QM9 provides
accurate and detailed quantum chemical features specifically tailored for small organic
molecules. The QM9 dataset is highly valuable for conducting theoretical calculations
and property prediction research on organic molecules. It provides abundant informa-
tion that can be utilized for developing molecule models, designing new organic mate-
rials, and optimizing catalysts. Additionally, the QM9 dataset has been extensively
employed in the development of machine learning and deep learning methods, enabling
efficient prediction of organic molecular properties and material discovery.

For the two datasets, we randomly extracted one-tenth of the data from each dataset to form
new datasets for evaluation. We named these new datasets as ZINC_25k and QM9_13k,
respectively. This approach serves two purposes: firstly, it reduces the training time by
working with smaller datasets, and secondly, it enables us to compare the results with the
original datasets for a better assessment of the model’s performance. Overall, the QM9
dataset focuses on quantum chemical research of organic molecules, providing abundant
molecular property information suitable for theoretical calculations and property predic-
tion. On the other hand, the ZINC dataset has a broader scope, encompassing various types
of molecules, and is primarily used for drug discovery and chemical research.

5.2 Hyperparameters

For the structure of each component in the model under evaluation, we maintain consist-
ency across all experiments. For the ZINC dataset, we set the following parameters: N =
40 represents the maximum node count, which corresponds to the length of the molecule.
T = 9 represents the number of different atom types, and Y = 4 represents the various bond
types between atoms (single, double, triple, and no bond). This ensures that all molecules
in the dataset can be adequately represented. In the case of the QM9 dataset, we set N = 9
and T = 5, as compared to ZINC, QM9 data is shorter with fewer types of atoms.

The generator samples from a standard normal distribution and then passes
through a three-layer MLP with hidden unit sizes set to [128, 256, 512]. Subsequently,
it goes through the tanh activation function. Finally, the last layer is linearly pro-
jected to match the dimensions of X and A and normalized using softmax in the last
dimension softmax(x)i = exp(xi)∕

∑D

i=1
exp(xi).

For both the discriminator and the reward network, we employ relational graph convolu-
tional networks to process the input graphs, with hidden unit sizes set to [64, 32]. The final
two-layer MLP has dimensions [128, 1]. Specifically, for the reward network, we activate
the output using a sigmoid function.

803Software Quality Journal (2024) 32:791–819

1 3

We have set the following standards for evaluating the model: the sampling method is set
to random sampling, the number of training epochs is set to 150, and the training data consists
of one-tenth of the original dataset, which is mentioned earlier as ZINC_25k and QM9_13k.
Then, we evaluate the model by varying its parameters based on these standards.

5.3 Experimental results

Evaluation results under different sampling methods We evaluated the model using two
different sampling methods: normal sampling and uniform sampling, on two subsets of
ZINC datasets and QM9 datasets. Normal sampling means sampling from a normal dis-
tribution, while uniform sampling means sampling from a uniform distribution. The train-
ing epochs are set to 150. For each sampling method, we evaluate the performance of the
model with sample sizes ranging from 100 to 1000. All data highlighted in bold in the
tables represent the optimal results for that indicator.

Table 1 presents the evaluation results using different sampling methods on the
ZINC_25k subset. Based on the Validity metrics, the model consistently generates mole-
cules with a validity rate above 72.30% under the normal sampling method, outperforming
the uniform sampling method. This suggests that the model is more capable of generat-
ing valid molecules under normal sampling. Furthermore, as the sample size increases, the
validity of the generated molecules does not decrease, indicating that the model has learned
the basic structure of molecules. Regarding uniqueness, although the metric is higher for
uniform sampling with a sample size of 1000, in reality, the normal sampling method gen-
erates a greater number of unique and valid molecules. As for novelty and diversity, while
the model performs well on both methods, overall, it exhibits better performance on the
normal sampling method.

Table 2 presents the evaluation results using different sampling methods on the
QM9_13k subset. The experimental process is the same as that used for the ZINC_25k

Table 1 Evaluation results of different sampling methods on the ZINC_25k subset

Sampling method Sampling size Validity ↑ Uniqueness ↑ Novelty ↑ Diversity ↑

Normal 100 79 (79.00%) 69 (87.34%) 67 (97.10%) 0.94
300 238 (79.33%) 193 (81.09%) 185 (95.85%) 0.94
500 396 (79.20%) 294 (74.24%) 276 (93.88%) 0.94
700 561 (80.14%) 387 (68.98%) 365 (94.32%) 0.94
900 715 (79.44%) 425 (59.44%) 394 (92.71%) 0.94
1000 795 (79.50%) 453 (56.98%) 412 (90.95%) 0.94

Uniform 100 75 (75.00%) 63 (84.00%) 59 (93.65%) 0.91
300 224 (74.66%) 183 (81.69%) 170 (92.90%) 0.91
500 364 (72.80%) 275 (75.54%) 252 (91.64%) 0.91
700 502 (71.71%) 351 (69.92%) 312 (88.89%) 0.91
900 617 (68.55%) 386 (62.56%) 342 (88.60%) 0.91
1000 685 (68.50%) 401 (58.54%) 351 (87.53%) 0.91

804 Software Quality Journal (2024) 32:791–819

1 3

subset discussed earlier. In terms of effectiveness metrics, the model performs well on both
sampling methods, with a high rate of valid molecule generation surpassing 62%. Addi-
tionally, the generated molecules exhibit a novelty of over 90%, indicating that the model
has not only learned the correct molecular structures but also how to generate molecules
that meet the requirements.

Considering both experiments, the overall performance of the model on the ZINC dataset
is slightly better than that on the QM9 dataset, particularly in terms of generating valid mol-
ecules. The model demonstrates stronger learning capabilities for real molecules. It should be
noted that in terms of uniqueness metrics, the model experiences a decrease as the sampling
size increases for both datasets. The model performs better under normal noise sampling con-
ditions compared to uniform noise sampling. This may be because normal noise can better
cover the entire input space compared to uniform noise, thereby enhancing the model’s explor-
atory and diversifying capabilities. It is more likely to guide the model to learn in different
directions, helping to prevent the model from getting trapped in local optima.

Evaluation results under different training epochs For GAN models, stopping the train-
ing at an appropriate time can lead to better performance. We evaluated the model’s per-
formance using 50, 100, 150, and 200 training epochs. The training was conducted on two
subsets: ZINC_25k and QM9_13k.

Table 3 presents the evaluation results of the model on the ZINC_25k subset for differ-
ent training epochs. We can clearly observe that the model’s performance is not optimal
when the training epochs are less than 150. In terms of uniqueness, the model’s effective-
ness at 100 training epochs is even worse than that at 50 epochs. This is evident even when
considering that the generated molecules have similar validity, indicating the instability of
the model at this stage, which demonstrates the difficulty of training GAN models. How-
ever, as the training epochs increase to 150, the validity metric shows minimal fluctua-
tions across the three sample sizes, and the decrease in uniqueness is smaller compared to
that with fewer training epochs. Additionally, the rate of generating novel molecules does
not decrease as a result. This suggests that the model performs exceptionally well and sta-
bly under the current training conditions. On the other hand, when we increase the train-
ing epochs to 200, the overall performance of the model starts to decline, resulting in a

Table 2 Evaluation results of different sampling methods on the QM9_13k subset

Sampling method Sampling size Validity ↑ Uniqueness ↑ Novelty ↑ Diversity ↑

Normal 100 72 (72.00%) 71 (92.21%) 66 (92.96%) 0.92
300 232 (77.33%) 184 (79.31%) 176 (95.65%) 0.91
500 378 (75.60%) 277 (73.28%) 257 (92.78%) 0.92
700 542 (77.43%) 372 (68.63%) 346 (93.01%) 0.92
900 698 (77.56%) 434 (62.18%) 409 (94.24%) 0.92
1000 766 (76.60%) 444 (57.96%) 415 (93.47%) 0.92

Uniform 100 59 (59.00%) 55 (93.22%) 51 (92.73%) 0.92
300 187 (62.33%) 148 (79.14%) 145 (97.97%) 0.92
500 329 (65.80%) 230 (69.91%) 218 (94.78%) 0.92
700 438 (62.57%) 287 (65.53%) 264 (91.99%) 0.91
900 579 (64.33%) 351 (60.62%) 330 (94.02%) 0.92
1000 656 (65.60%) 374 (57.01%) 354 (94.65%) 0.92

805Software Quality Journal (2024) 32:791–819

1 3

significant number of invalid molecules, which is evident in the validity metric. In conclu-
sion, the evaluation results of this experiment indicate that the model’s performance does
not continuously improve with an increase in training epochs. The model achieves rela-
tively optimal performance when trained for 150 epochs.

Table 4 presents the evaluation results of the model on the QM9_13k subset for different
training epochs. Similarly, when the training epochs are set to 100, there is a slight improve-
ment in the model’s performance compared to 50 epochs, but it is not significant. However, as
we further increase the training epochs to 150, there is a noticeable improvement in the model’s
performance. Although the improvement in validity is not substantial, with an overall increase
of around 2%, there is a significant improvement in the uniqueness metric. When the sample
size is 1000, the improvement reaches 10%. Moreover, the novelty metric of the model does
not show a significant decline. On the other hand, when the training epochs reach 200, the
same issue occurs, with a significant decline in the overall performance of the model. It even

Table 3 Evaluation results of different train epochs on the ZINC_25k subset

Epochs Sampling size Validity ↑ Uniqueness ↑ Novelty ↑ Diversity ↑

50 100 75 (75.00%) 66 (88.00%) 62 (93.93%) 0.92
500 371 (74.20%) 243 (65.49%) 227 (93.41%) 0.92
1000 751 (75.10%) 350 (46.60%) 315 (90.00%) 0.92

100 100 77 (77.00%) 62 (80.51%) 59 (95.16%) 0.92
500 380 (76.00%) 226 (59.47%) 212 (93.80%) 0.92
1000 763 (76.30%) 356 (46.65%) 334 (93.82%) 0.89

150 100 79 (79.00%) 69 (87.34%) 67 (97.10%) 0.92
500 396 (79.20%) 294 (74.24%) 276 (93.88%) 0.94
1000 795 (79.50%) 453 (56.98%) 412 (90.95%) 0.92

200 100 63 (63.00%) 56 (88.887%) 53 (94.64%) 0.93
500 326 (65.20%) 239 (73.31%) 228 (95.39%) 0.93
1000 651 (65.10%) 361 (55.15%) 341 (94.45%) 0.93

Table 4 Evaluation results of different train epochs on the QM9_13k subset

Epochs Sampling size Validity ↑ Uniqueness ↑ Novelty ↑ Diversity ↑

50 100 75 (75.00%) 65 (86.67%) 62 (95.38%) 0.92
500 348 (69.60%) 277 (58.33%) 257 (95.57%) 0.92
1000 733 (73.30%) 327 (44.61%) 314 (96.02%) 0.92

100 100 74 (74.00%) 65 (87.84%) 64 (98.46%) 0.91
500 376 (75.20%) 214 (56.91%) 205 (95.79%) 0.92
1000 735 (73.50%) 346 (47.07%) 329 (95.09%) 0.92

150 100 77 (77.00%) 66 (91.67%) 59 (89.39%) 0.92
500 378 (75.60%) 277 (73.28%) 257 (92.78%) 0.91
1000 766 (76.60%) 444 (57.96%) 415 (93.47%) 0.92

200 100 56 (59.00%) 55 (93.22%) 51 (92.73%) 0.92
500 329 (65.80%) 230 (69.91%) 218 (94.78%) 0.91
1000 656 (65.60%) 374 (57.01%) 354 (94.65%) 0.92

806 Software Quality Journal (2024) 32:791–819

1 3

performs the worst among all the training epochs. This demonstrates the instability of the model
and highlights the importance of performance evaluation from another perspective.

Based on the recent two experiments, both on the ZINC_25k subset and the QM9_13k
subset, it can be observed that the model achieves optimal performance at around 150
training epochs. However, as the training epochs continue to increase, a varying degree
of performance decline occurs, especially in terms of the validity of generated molecules.
This could be due to long training epochs leading to the issue of mode collapse, where the
generator starts generating similar or even identical samples, lacking diversity and creativ-
ity. It could also be caused by improper adjustment of the learning rate, resulting in the
model getting stuck in a local optimum. However, upon closer comparison between the
two experiments, slight differences can still be observed. For instance, when the training
epochs increase from 50 to 100 on the ZINC_25k subset, there is a slight improvement in
the model’s performance, whereas on the QM9_13k subset, there is no significant improve-
ment until the training epochs reach 150. This may indicate that the model performs more
stably on the ZINC_15k dataset, with performance gradually improving within a certain
range of training epochs. This could be attributed to the fact that molecules in this dataset
are longer, requiring more time for the model to learn their information.

Evaluation results under different data volumes The volume of the dataset has a certain
impact on the model’s ability to learn data distribution and molecular structures. Therefore,
this study evaluates the performance of the model on homologous datasets with different
data volumes, namely the ZINC dataset and its subsets, as well as the QM9 dataset and its
subsets. Without further clarification, random sampling is used as the sampling method,
and the training epochs are set to 150. In addition, for the purpose of distinguishing, we
will refer to the original ZINC dataset as ZINC_250k and the QM9 dataset as QM9_130k.

Table 5 presents the evaluation results of the model on ZINC_25k and ZINC_250k
datasets. It is evident that compared to training with a smaller dataset, the model exhibits a
significant improvement in generating valid molecules when trained with a larger amount
of training data. Even when the sampling data reaches its maximum, the validity metric
remains above 82% and higher. This indicates that the model has learned more comprehen-
sive structural information and sample distribution of molecules. Moreover, the occurrence

Table 5 The evaluation results of training data volumes on the ZINC dataset

Training data Sampling size Validity ↑ Uniqueness ↑ Novelty ↑ Diversity ↑

ZINC_25k 100 79 (79.00%) 69 (87.34%) 67 (97.10%) 0.94
300 238 (79.33%) 193 (81.09%) 185 (95.85%) 0.94
500 386 (77.20%) 294 (74.24%) 276 (93.88%) 0.94
700 536 (76.57%) 387 (68.98%) 365 (94.32%) 0.94
900 658 (73.11%) 425 (59.44%) 394 (92.71%) 0.94
1000 723 (72.30%) 453 (56.98%) 412 (90.95%) 0.94

ZINC_250k 100 85 (85.00%) 80 (94.11%) 36 (45.00%) 0.93
300 251 (83.67%) 216 (86.05%) 98 (45.00%) 0.93
500 412 (82.40%) 335 (81.31%) 142 (42.39%) 0.93
700 576 (82.28%) 416 (72.22%) 183 (43.99%) 0.93
900 753 (83.67%) 501 (66.53%) 218 (43.51%) 0.93
1000 823 (82.30%) 524 (63.67%) 226 (43.12%) 0.93

807Software Quality Journal (2024) 32:791–819

1 3

of mode collapse is not prominent on the ZINC_250k dataset. The uniqueness of generated
molecules has not decreased due to the increase of valid molecules. In fact, it performs
better than the results obtained from training on the ZINC_25k dataset under the same
conditions. This suggests that with a sufficient amount of data, the model can learn more
abundant information, leading to better performance. As for the novelty metric, a signifi-
cant decrease is observed on the ZINC_250k dataset, which aligns with expectations. This
is because as the dataset size increases, the molecular space becomes more constrained,
resulting in a weaker exploration ability of the model.

Table 6 presents the evaluation results of the model on QM9_13k and QM9_130k data-
sets. From the data in the table, it can be observed that on the QM9_130k dataset, as the
training data size increases, the model demonstrates better performance compared to train-
ing with a smaller dataset. In terms of the effectiveness metric, the model’s performance
improves by approximately 3% under the conditions of larger training data. Additionally,
its performance on the uniqueness metric is slightly better than the training results on the
smaller dataset. Similarly, both the model’s novelty metric results and those on the ZINC
dataset show a significant decrease, indicating that there is still room for improvement in
the model’s exploration ability.

Based on the two experiments conducted above, we can draw the conclusion that the
performance of the model is related to the training data size. The larger the dataset, the
more accurate the model learns the data distribution information and molecular structures,
resulting in the generation of more valid molecules. Moreover, increasing the training data
size also allows the model to reduce the generation of duplicate molecules. The decrease in
diversity is the main area of model optimization. Encouraging the model to explore a more
comprehensive chemical space and generate entirely novel molecules is a key problem to
be addressed in the future.

Evaluation results of the important module In addition to the experiments mentioned
above, we also conducted tests on the WGAN and reward network used in this paper. We
replaced the Wasserstein distance with the JS divergence of the original GAN, and the
evaluation results are presented in Table 7 and Fig. 3. The figure displays the uniqueness

Table 6 The evaluation results of training data volumes on the QM9 dataset

Training data Sampling size Validity ↑ Uniqueness ↑ Novelty ↑ Diversity ↑

QM9_13k 100 77 (77.00%) 66 (91.67%) 59 (89.39%) 0.92
300 232 (77.33%) 184 (79.31%) 176 (95.65%) 0.91
500 378 (75.60%) 277 (73.28%) 257 (92.78%) 0.92
700 542 (77.43%) 372 (68.63%) 346 (93.01%) 0.92
900 698 (77.56%) 434 (62.18%) 409 (94.24%) 0.92
1000 766 (76.60%) 444 (57.96%) 415 (93.47%) 0.92

QM9_130k 100 81 (81.00%) 75 (92.59%) 27 (36.00%) 0.92
300 241 (80.33%) 192 (79.67%) 66 (34.38%) 0.92
500 404 (80.80%) 297 (73.51%) 129 (43.43%) 0.92
700 566 (80.86%) 389 (68.73%) 162 (41.65%) 0.92
900 749 (83.22%) 475 (63.42%) 204 (42.95%) 0.91
1000 796 (79.60%) 489 (61.43%) 225 (44.98%) 0.92

808 Software Quality Journal (2024) 32:791–819

1 3

and novelty metrics of the models generated on the ZINC dataset under two different con-
ditions. Since we found that the validity metric was minimally affected in the experiment,
it was not shown. From the figure, it can be seen that the uniqueness metric of molecules
is significantly affected by WGAN, which is explainable. This is because WGAN is certain
to play a positive role in mitigating mode collapse. As for the novelty metric, although the
use of JS divergence shows higher maturity, this is also based on proportions; in terms of
quantity, using the Wasserstein distance is still better than JS divergence.

Table 7 The evaluation results of distance measurement methods on the ZINC dataset

Measurement data Method size Validity ↑ Uniqueness ↑ Novelty ↑ Diversity ↑

Wasserstein distance 100 85 (85.00%) 80 (94.11%) 36 (45.00%) 0.93
300 251 (83.67%) 216 (86.05%) 98 (45.00%) 0.93
500 412 (82.40%) 335 (81.31%) 142 (42.39%) 0.93
700 576 (82.28%) 416 (72.22%) 183 (43.99%) 0.93
900 753 (83.67%) 501 (66.53%) 218 (43.51%) 0.93
1000 823 (82.30%) 524 (63.67%) 226 (43.12%) 0.93

JS divergence 100 87 (87.00%) 68 (78.16%) 32 (47.06%) 0.80
300 254 (84.66%) 169 (66.53%) 78 (46.15%) 0.75
500 425 (85.00%) 231 (54.35%) 115 (49.78%) 0.74
700 588 (84.00%) 284 (48.30%) 132 (46.48%) 0.73
900 766 (85.11%) 335 (43.37%) 158 (47.16%) 0.75
1000 843 (84.30%) 354 (42.00%) 164 (46.32%) 0.74

Fig. 3 Comparison of evaluation metrics with and without using WGAN on the ZINC dataset. The lines
marked with asterisks represent the Wasserstein distance, while those marked with circles represent the JS
distance

809Software Quality Journal (2024) 32:791–819

1 3

For the evaluation of the reward network, we only conducted experiments on molecu-
lar properties that have a significant impact. Figures 4, 5 and 6 respectively show the dis-
tributions of QED, LogP, and SA scores of molecules generated by the standard model
and the model without using the reward network. The green bars in the figures repre-
sent the number of molecules generated by the standard model, while the corresponding
red bars represent the number of molecules generated without using the reward network.
From the three figures, it is evident that the properties of molecules generated by the
model are affected when the reward network part is removed. Overall, the drug-likeness
and overall score of the molecules show a significant decrease, and the water solubility
also weakens.

Figure 7 shows the comparison of the distribution of QED scores between the mole-
cules generated by the model on the ZINC dataset and the molecules in the original train-
ing dataset. Similarly, Figs. 8 and 9 show the comparison of LogP scores and SA scores
respectively. The generated data was sampled using the normal method, trained for 150
epochs, and a total of 580 molecules were sampled. From the figures, it can be observed
intuitively how well the model has learned from the original data. For all three evaluation
metrics, the model is capable of generating samples that closely resemble the original data.
Figures 10, 11 and 12 show the comparison of the distribution of QED scores, LogP scores
and SA scores between the molecules generated by the model on the ZINC dataset and the
molecules in the original training dataset respectively. Figure 13 shows the generated and
real molecules on the QM9 dataset, respectively. The generated molecular graph exhibits

Fig. 4 Distribution of QED scores between generated samples with the standard model and the model with-
out using the reward network

810 Software Quality Journal (2024) 32:791–819

1 3

Fig. 6 Distribution of SA scores between generated samples with the standard model and the model without
using the reward network

Fig. 5 Distribution of LogP scores between generated samples with the standard model and the model with-
out using the reward network

811Software Quality Journal (2024) 32:791–819

1 3

Fig. 7 Distributions of QED scores between the generated samples and samples the ZINC dataset

Fig. 8 Distributions of LogP scores between the generated samples and samples in the ZINC dataset

812 Software Quality Journal (2024) 32:791–819

1 3

Fig. 9 Distributions of SA scores between the generated samples and samples in the ZINC dataset

Fig. 10 Distributions of QED scores between the generated samples and samples in the QM9 dataset

813Software Quality Journal (2024) 32:791–819

1 3

Fig. 11 Distributions of LogP scores between the generated samples and samples in the QM9 dataset

Fig. 12 Distributions of SA scores between the generated samples and samples in the QM9 dataset

814 Software Quality Journal (2024) 32:791–819

1 3

some similarity with real data, but the generated molecules by the RL-based discrete GAN
tend to have a high diversity than the original training dataset.

6 Conclusion

This study evaluates the use of RL-based discrete GAN models for molecular generation
tasks on two different datasets. We also conduct a detailed performance evaluation of the
model by varying the sampling method, number of training epochs, and training data vol-
umes. Through analysis of statistical and attribute values in the experimental results, it is
observed that, under the condition of other variables being constant, the model achieves
better performance when using the normal sampling method. When evaluating the model
by controlling other variables and varying the number of training epochs, the best perfor-
mance is achieved when the number of epochs is set to 150 for both datasets. Performance
deteriorates beyond this value. Increasing the training data volumes improves the model’s
performance but also leads to a notable decrease in the novelty of generated molecules,
indicating a key area for model optimization.

When comparing the two datasets, a common observation is that the unique valid mol-
ecule rate decreases as the sampling quantity increases, indicating the persistence of mode
collapse in the model. However, there are differences between the datasets. The overall

(a) (b)

Fig. 13 20 real and generated molecules from the QM9 dataset

815Software Quality Journal (2024) 32:791–819

1 3

performance of the model on the ZINC dataset is superior to that on the QM9 dataset.
This can be attributed to the ZINC dataset containing more realistic and diverse molecules
with larger molecular weights, allowing the model to learn more about the distribution and
molecular structure information of the original data.

Based on the above conclusions, the evaluated model in this paper still suffers from
mode collapse. Since molecular data is typically sparse and high-dimensional, data aug-
mentation and preprocessing techniques can be employed to improve the training effec-
tiveness of GANs. For example, data augmentation techniques can be used to increase
the size of the training set or dimensionality reduction methods can be applied to reduce
the dimensionality of the data, thereby enhancing the learning efficiency of GANs.
Additionally, conditional GANs can be utilized to introduce conditional information,
such as specific chemical properties or structural constraints. By controlling this con-
ditional information, we can guide the generator to generate more diverse molecular
structures and avoid the issue of mode collapse.

Acknowledgements We would like to acknowledge the financial support provided by two grants, the JSPS
KAKENHI Grant Number JP22K21285, Japan and the International Research Fellow of Japan Society for
the Promotion of Science (Postdoctoral Fellowships for Research in Japan [Standard]), which made this
research possible.

Author contributions Jinli Zhang: methodology, writing, and supervision. Zhenbo Wang: software, experi-
ments, analysis, and writing. Zongli Jiang: supervision and proofreading. Man Wu: supervision and proof-
reading. Chen Li: conceptualization of this study, methodology, writing, and supervision. Yoshihiro Yaman-
ishi: supervision and proofreading.

Funding This work was supported by the JSPS KAKENHI Grant Number JP22K21285, Japan and the
International Research Fellow of Japan Society for the Promotion of Science (Postdoctoral Fellowships for
Research in Japan [Standard]).

Availability of data and material The authors confirm that the data supporting the findings of this study are
available within the article.

Code availability Source code is available on request.

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

An, Z., Tan, Y., Zhang, J., Jiang, Z., & Li, C. (2023). A session recommendation model based on heteroge-
neous graph neural network. International Conference on Knowledge Science, Engineering and Man-
agement (pp. 160–171). Springer.

Bagal, V., Aggarwal, R., Vinod, P., & Priyakumar, U. D. (2021). MolGPT: Molecular generation using a
transformer-decoder model. Journal of Chemical Information and Modeling, 62(9), 2064–2076.

Bao, F., Zhao, M., Hao, Z., Li, P., Li, C., & Zhu, J. (2022). Equivariant energy-guided SDE for inverse
molecular design. Preprint retrieved from http:// arxiv. org/ abs/ 2209. 15408

http://arxiv.org/abs/2209.15408

816 Software Quality Journal (2024) 32:791–819

1 3

Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemi-
cal beauty of drugs. Nature chemistry, 4(2), 90–98.

Chen, L., Zheng, J., Okamura, H., & Dohi, T. (2022). Software reliability prediction through encoder-
decoder recurrent neural networks. International Journal of Mathematical, Engineering and Manage-
ment Sciences, 7(3), 325.

Comer, J., & Tam, K. (2001). Lipophilicity profiles: theory and measurement. Pharmacokinetic Optimiza-
tion in Drug Research: Biological, Physicochemical, and Computational Strategies, 275–304.

De Cao, N., & Kipf, T. (2018). MolGAN: An implicit generative model for small molecular graphs. Preprint
retrieved from http:// arxiv. org/ abs/ 1805. 11973

Ertl, P., & Schuffenhauer, A. (2009). Estimation of synthetic accessibility score of drug-like molecules
based on molecular complexity and fragment contributions. Journal of Cheminformatics, 1, 1–11.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla,
D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., & Aspuru-Guzik, A. (2018). Automatic chemical
design using a data-driven continuous representation of molecules. ACS Central Science, 4(2), 268–276.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio,
Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.

Guimaraes, G.L., Sanchez-Lengeling, B., Outeiral, C., Farias, P. L. C., & Aspuru-Guzik, A. (2017). Objec-
tive-reinforced generative adversarial networks (organ) for sequence generation models. Preprint
retrieved from http:// arxiv. org/ abs/ 1705. 10843

Hoogeboom, E., Satorras, V. G., Vignac, C., & Welling, M. (2022). Equivariant diffusion for molecule gen-
eration in 3D. International Conference on Machine Learning (pp. 8867–8887). PMLR.

Huang, L., Zhang, H., Zhang, T., & Wong, K.-C. (2023). MDM: Molecular diffusion model for 3D molecule
generation. Proceedings of the AAAI Conference on Artificial Intelligence, 37, 5105–5112.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A free tool to
discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757–1768.

Jiang, Z., Xu, J., Zhang, J., Ma, F., & Li, J. (2022). Dual memory network for medical dialogue generation.
In 2022 IEEE 24th International Conference on High Performance Computing & Communications; 8th
International Conference on Data Science & Systems; 20th International Conference on Smart City; 8th
International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/
DSS/SmartCity/DependSys) (pp. 110–117). IEEE.

Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph gen-
eration. International Conference on Machine Learning (pp. 2323–2332). PMLR.

Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A., & Zhavoronkov, A. (2017). druGAN: An advanced
generative adversarial autoencoder model for de novo generation of new molecules with desired
molecular properties in silico. Molecular Pharmaceutics, 14(9), 3098–3104.

Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker,
B. A., et al. (2016). Pubchem substance and compound databases. Nucleic Acids Research, 44(D1),
1202–1213.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. Preprint retrieved from http:// arxiv.
org/ abs/ 1312. 6114

Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. Interna-
tional Conference on Machine Learning (pp. 1945–1954). PMLR.

Li, C., Cao, Y., Zhu, Y., Cheng, D., Li, C., & Morimoto, Y. (2023). Ripple knowledge graph convolutional
networks for recommendation systems. Preprint retrieved from http:// arxiv. org/ abs/ 2305. 01147

Li, C., He, M., Qaosar, M., Ahmed, S., & Morimoto, Y. (2018). Capturing temporal dynamics of users’ pref-
erences from purchase history big data for recommendation system. 2018 IEEE International Confer-
ence on Big Data (Big Data) (pp. 5372–5374). IEEE.

Li, C., & Yamanishi, Y. (2023). SpotGAN: A reverse-transformer GAN generates scaffold-constrained mol-
ecules with property optimization. Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (pp. 323–338). Springer.

Li, C., Yamanaka, C., Kaitoh, K., & Yamanishi, Y. (2021). Transformer-based objective-reinforced genera-
tive adversarial network to generate desired molecules. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22 (pp. 3884–3890)

Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2015). Gated graph sequence neural networks. Preprint
retrieved from http:// arxiv. org/ abs/ 1511. 05493

Lillicrap, T.P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015).
Continuous control with deep reinforcement learning. Preprint retrieved from http:// arxiv. org/ abs/
1509. 02971

Maziarka, Ł, Pocha, A., Kaczmarczyk, J., Rataj, K., Danel, T., & Warchoł, M. (2020). Mol-CycleGAN:
A generative model for molecular optimization. Journal of Cheminformatics, 12(1), 1–18.

http://arxiv.org/abs/1805.11973
http://arxiv.org/abs/1705.10843
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2305.01147
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971

817Software Quality Journal (2024) 32:791–819

1 3

Morehead, A., & Cheng, J. (2023). Geometry-complete diffusion for 3D molecule generation. Preprint
retrieved from http:// arxiv. org/ abs/ 2302. 04313

Ramakrishnan, R., Dral, P. O., Rupp, M., & Von Lilienfeld, O. A. (2014). Quantum chemistry structures
and properties of 134 kilo molecules. Scientific Data, 1(1), 1–7.

Rifaioglu, A. S., Cetin Atalay, R., Cansen Kahraman, D., Doğan, T., Martin, M., & Atalay, V. (2021).
MDeePred: Novel multi-channel protein featurization for deep learning-based binding affinity pre-
diction in drug discovery. Bioinformatics, 37(5), 693–704.

Rogers, D. J., & Tanimoto, T. T. (1960). A computer program for classifying plants. Science, 132(3434),
1115–1118.

Samanta, B., De, A., Ganguly, N., & Gomez-Rodriguez, M. (2018). Designing random graph models
using variational autoencoders with applications to chemical design. Preprint retrieved from http://
arxiv. org/ abs/ 1802. 05283

Sanchez-Lengeling, B., Outeiral, C., Guimaraes, G. L., & Aspuru-Guzik, A. (2017). Optimizing distri-
butions over molecular space. An objective-reinforced generative adversarial network for inverse-
design chemistry (organic). ChemRxiv.

Sarpong, D., Boakye, D., Ofosu, G., & Botchie, D. (2023). The three pointers of research and develop-
ment (r &d) for growth-boosting sustainable innovation system. Technovation, 122, 102581.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., & Welling, M. (2018). Modeling rela-
tional data with graph convolutional networks. The Semantic Web: 15th International Conference,
ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15 (pp. 593–607). Springer.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., & Tang, J. (2020) GraphAF: A flow-based autoregres-
sive model for molecular graph generation. Preprint retrieved from http:// arxiv. org/ abs/ 2001. 09382

Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards generation of small graphs using vari-
ational autoencoders. Artificial Neural Networks and Machine Learning–ICANN 2018: 27th Inter-
national Conference on Artificial Neural Networks, Rhodes, Greece, October 4–7, 2018, Proceed-
ings, Part I 27 (pp. 412–422). Springer.

Song, T., Ren, Y., Wang, S., Han, P., Wang, L., Li, X., & Rodriguez-Patón, A. (2023). DNMG: Deep molecu-
lar generative model by fusion of 3D information for de novo drug design. Methods, 211, 10–22.

Walker, A. R. (1998). Epidemiology and health implications of obesity, with special reference to African
populations. Ecology of Food and Nutrition, 37(1), 21–55.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Reinforcement Learning, 5–32.

Xu, M., Powers, A. S., Dror, R. O., Ermon, S., & Leskovec, J. (2023). Geometric latent diffusion models for
3D molecule generation. International Conference on Machine Learning (pp. 38592–38610). PMLR.

You, J., Ying, R., Ren, X., Hamilton, W., & Leskovec, J. (2018). GraphRNN: Generating realistic graphs
with deep auto-regressive models. International Conference on Machine Learning (pp. 5708–
5717). PMLR.

Yu, L., Zhang, W., Wang, J., & Yu, Y. (2017). SeqGAN: Sequence generative adversarial nets with pol-
icy gradient. In Proceedings of the AAAI Conference on Artificial Intelligence (p. 31)

Zhao, B., Jiang, Z., Zhang, J., Ma, F., & Li, J. (2022). Medical dialogue generation via extracting heter-
ogenous information. In 2022 IEEE 24th International Conference on High Performance Computing
& Communications; 8th International Conference on Data Science & Systems; 20th International
Conference on Smart City; 8th International Conference on Dependability in Sensor, Cloud & Big
Data Systems & Application (HPCC/DSS/SmartCity/DependSys) (pp. 201-IEEE). 194.

Zhang, X., Li, C., & Morimoto, Y. (2019). A multi-factor approach for stock price prediction by using
recurrent neural networks. Bulletin of Networking, Computing, Systems, and Software, 8(1), 9–13.

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer
Vision (pp. 2223–2232)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

http://arxiv.org/abs/2302.04313
http://arxiv.org/abs/1802.05283
http://arxiv.org/abs/1802.05283
http://arxiv.org/abs/2001.09382

818 Software Quality Journal (2024) 32:791–819

1 3

Jinli ZHANG received her PhD Degree from Beijing University of
Technology, China, in 2019. She undertook joint doctoral training at
Drexel University in the United States in 2018, 2019, and 2020. Since
2020, she has been working as a faculty member at the School of
Computer Science, Faculty of Informatics, Beijing University of
Technology, China. Her research interests include deep learning and
bioinformatics mining.

Zhenbo WANG received the B.S degree in Internet of Things Engineer-
ing from Shandong University of Science and Technology, China, in
2021. He is currently working toward the M.S degree in Computer Sci-
ence and Technology with the Faculty of Information Technology, Bei-
jing University of Technology, China. His research interests include
machine learning and deep learning.

Zongli JIANG is a professor at the School of Computer Science, Fac-
ulty of Informatics, Beijing University of Technology. He has served
as Vice Chairman of the Teaching Guidance Committee for Computer
Majors in Higher Education Institutions under the Ministry of Educa-
tion, as well as positions such as President and Vice President of the
National Association of Computer Education in Higher Education
Institutions. He has been awarded various honors, including the
National Teaching Master Award and the CCF Outstanding Education
Award. He has edited four national planning textbooks and one
national quality textbook. His research interests include artificial
intelligence and machine learning.

Man WU received her Ph.D. degree from Nara Institute of Science
and Technology, Japan, in 2022. Since 2022, she has been a research
fellow at the Faculty of Science and Technology, Keio University,
Japan. Her research interests include deep learning and accelerators.

819Software Quality Journal (2024) 32:791–819

1 3

Chen LI received his PhD in engineering from Hiroshima University,
Japan, in 2019. He served as a research fellow at the Graduate School
of Advanced Science and Engineering, Hiroshima University, from
2019 to 2021, and subsequently at the Department of Bioscience and
Bioinformatics, Faculty of Computer Science and Systems Engineer-
ing, Kyushu Institute of Technology, Japan, from 2021 to 2023. Since
2023, he has been a JSPS research fellow at the Graduate School of
Informatics, Nagoya University, Japan. His research interests include
deep learning and data mining.

Yoshihiro YAMANISHI received the PhD degree from Kyoto Univer-
sity, in 2005. He was a post-doctoral fellow at the Ecole des Mines de
Paris from 2005 to 2006. He was assistant professor at Kyoto Univer-
sity from 2006 to 2007. He was a permanent researcher at Mines Par-
isTech and Curie Institute from 2008 to 2012. Since 2012, he was an
associate professor (principal investigator) at the Medical Institute of
Bioregulation, Kyushu University, Japan. From 2018 to 2023, he was
a full professor with the Department of Bioscience and Bioinformat-
ics, Kyushu Institute of Technology, Japan. Since 2023, he has been a
full professor with the Department of Complex Systems Science,
Graduate School of Informatics, Nagoya University, Japan. His
research interest is in statistical machine learning methods for bioin-
formatics, chemoinformatics, and genomic drug discovery.

	Quantitative evaluation of molecular generation performance of graph-based GANs
	Abstract
	1 Introduction
	2 Related work
	2.1 Performance evaluation using VAEs
	2.2 Performance evaluation using diffusion models
	2.3 Performance evaluation using GANs

	3 Model description
	3.1 Generator
	3.2 Discriminator and reward network
	3.3 Reinforcement learning algorithm

	4 Performance evaluation
	4.1 Evaluation metrics for sample statistics
	4.2 Evaluation metrics for property optimization

	5 Numerical experiments
	5.1 Datasets
	5.2 Hyperparameters
	5.3 Experimental results

	6 Conclusion
	Acknowledgements
	References

