
Vol.:(0123456789)

Software Quality Journal (2024) 32:821–845
https://doi.org/10.1007/s11219-024-09670-8

1 3

RESEARCH

KAD: a knowledge formalization‑based anomaly detection
approach for distributed systems

Xinjie Wei1 · Chang‑ai Sun1 · Xiao‑Yi Zhang1

Accepted: 21 March 2024 / Published online: 10 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Large-scale distributed systems are becoming key engines of the IT industry due to their scalabil-
ity and extensibility. A distributed system often involves numerous complex interactions among
components, suffering anomalies such as data inconsistencies between components and unantici-
pated delays in response times. Existing anomaly detection techniques, which extract knowledge
from system logs using either statistical or machine learning techniques, exhibit limitations. Statis-
tical techniques often miss implicit anomalies that are related to complex interactions manifested
by logs, whereas machine learning techniques lack explainability and they are usually sensitive to
log variations. In this paper, we propose KAD, a knowledge formalization-based anomaly detec-
tion approach for distributed systems. KAD includes a general knowledge description language
(KDL), leveraging the general structure of system logs and extended Backus-Naur form (EBNF)
for complex knowledge extraction. Particularly, the semantic set is constructed based on the bidi-
rectional encoder representation from the transformer (BERT) model to improve the expressive
capabilities of KDL in knowledge description. In addition, KAD incorporates distributed schedul-
ing computation module to improve the efficiency of anomaly detection processes. Experimental
results based on two widely used benchmarks show that KAD can accurately describe the knowl-
edge associated with anomalies, with a high F1-score in detecting various anomaly types.

Keywords  Distributed systems · Domain-specific language · Anomaly detection ·
Industrial evidence

1  Introduction

In commercial IT systems, distributed architectures, such as Hadoop (Apache
Hadoop, 2023), Spark (Apache Spark, 2023), and Ray (Moritz et al., 2018; Liang
et al., 2023), have been widely adopted. However, the interactions among numerous

 *	 Chang‑ai Sun
	 casun@ustb.edu.cn

	 Xinjie Wei
	 xinjiewei@xs.ustb.edu.cn

	 Xiao‑Yi Zhang
	 xiaoyi@ustb.edu.cn

1	 School of Computer and Communication Engineering, University of Science and Technology
Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-024-09670-8&domain=pdf

822	 Software Quality Journal (2024) 32:821–845

1 3

components in these systems often lead to anomalies, such as data inconsistencies and
delayed response times. These anomalies may lead to application crashes or degradation
of user satisfaction, potentially resulting in significant economic losses (Haoming &
Yuguo, 2020).

Anomaly detection traditionally involves two primary techniques: statistical-based
and learning-based techniques. Statistical-based techniques (Ali et al., 2023) analyze
the statistical properties such as averages or standard deviations from system logs,
metrics, code, or traces and then identify some patterns based on these properties as
features. Finally, they try to detect anomalies based on the assumption that anomalies
often deviate from the expected patterns. Learning-based techniques (Gómez
et al., 2023) leverage machine learning algorithms to identify anomalies. They train a
model on a dataset that represents normal behaviors, and then use the model to identify
the anomaly data that deviate significantly from the learned knowledge.

In distributed systems, logs are commonly used for troubleshooting (Le &
Zhang, 2022) since they record system states and critical events at runtime. The hidden
abundant information in logs offers a good view to analyze system problems. Hence, by
mining knowledge in a large amount of logs, log-based anomaly detection techniques can
help to enhance system health, stability, and availability. To obtain the knowledge that
can be used to detect anomalies from logs, statistical-based anomaly detection techniques
convert information in logs into a piece of interpretable knowledge based on specific
language for identifying anomalies within distributed systems. For example, Majeed
et al. (2019) utilize the Ariel Query Language (AQL) to describe knowledge for
monitoring network activities and identifying potential threats. Similarly, Hristov et al.
(2021) employ the Search Processing Language (SPL) to describe knowledge in Splunk
Enterprise to detect anomalies. These techniques provide precise and interpretable
anomaly detection results. However, they may overlook implicit anomalies, those that
are not directly discernible or fall outside the existing domain knowledge. Conversely,
learning-based techniques leverage machine learning models, such as support vector
machines, transformer models, and convolutional neural networks (CNNs), to extract
knowledge from logs. For example, Nedelkoski et al. (2020) use a transformer model to
differentiate between normal and abnormal log representations. Lu et al. (2018) apply
word embedding and CNNs to encode logs into feature matrices for knowledge mining.
These techniques can reveal complex knowledge hidden within logs. However, they
suffer from limited interpretability; the knowledge extracted by these models often lacks
clear interpretation, making it challenging to comprehend the rationale behind detected
anomalies. Additionally, these techniques may fail to capture the fundamental nature of
distributed systems due to the absence of domain-specific knowledge. Moreover, learning-
based models are inherently sensitive to the quality of input data: noisy data can lead to
erroneous knowledge extraction.

In summary, both statistical-based and learning-based anomaly detection techniques
offer unique strengths but are constrained by significant limitations. This paper seeks to
introduce a more robust, interpretable, and high-quality knowledge extraction technique
for distributed systems, addressing the limitations of existing techniques. Specifically,
we identify three major challenges:

1.	 The absence of a general knowledge description language: Existing techniques often
rely on domain-specific knowledge description languages such as Ariel Query Language
(AQL) (IBM, 2023) for IBM QRadar and Search Processing Language (SPL) (Splunk

823Software Quality Journal (2024) 32:821–845	

1 3

Enterprise, 2023) for Splunk, which limits their applicability. Therefore, a general
knowledge description language is desired to describe complex knowledge for various
distributed systems.

2.	 The lack of a general approach for knowledge extraction: Existing techniques typi-
cally use system-specific knowledge description languages and extraction methods,
requiring a specific knowledge extraction approach for each system.

3.	 The difficulty in capturing knowledge changes: Existing techniques struggle to cap-
ture knowledge changes due to system updates.

To address these challenges, we propose KAD, a knowledge formalization-based anom-
aly detection approach for distributed systems. KAD introduces a general knowledge
description language, KDL, to standardize the knowledge and simplify its representa-
tion, thus improving the interpretability. KDL uses the extended Backus-Naur form
(EBNF) (Tietz & Annighoefer, 2022) to formalize elements extracted from the general
log structures, such as timestamps, log templates, and variants. The log template is
comprised of fixed strings manifesting scheduling actions. The timestamps and vari-
ants describe the relationship between log templates. KDL enhances expressive abili-
ties of the knowledge, and can describe complex knowledge, such as temporal order,
quantitative relationships, parameter associations, non-associations, logical disjunc-
tions, recursive structures, and so on. Additionally, to improve the robustness of KAD,
KDL defines the semantic set, which employs the BERT model (Devlin et al., 2019)
to describe sets of log templates with similar semantic information. It is labeled with
unique and human-readable strings that capture the semantic information. After obtain-
ing the KDL knowledge, KAD employs a distributed scheduling computation method to
further improve the efficiency of anomaly detection.

We evaluate KAD by conducting a series of experiments on two benchmark distrib-
uted systems—Ray and Hadoop. The results show that KDL is versatile in extracting
complex knowledge from various distributed systems. In addition, KAD achieves a high
F1-score (1 in Hadoop and 0.95 in Ray), and it can capture knowledge changes related
to system updates.

In summary, this paper presents the following contributions:

1.	 We propose a general knowledge description language, KDL, for describing complex
knowledge extracted from distributed logs using the general log structure and EBNF.

2.	 We introduce the semantic set, enhanced by the BERT model, to improve the expressive
capabilities of KDL.

3.	 We propose KAD, a knowledge formalization-based anomaly detection approach for
distributed systems, which employs distributed scheduling computation to enhance the
efficiency of anomaly detection.

4.	 We report on a series of experiments to evaluate the effectiveness, efficiency, and robust-
ness of KAD on Ray and Hadoop distributed systems.

The rest of this paper is organized as follows. Section 2 introduces the background about
knowledge-based anomaly detection and the motivation of this paper. Section 3 presents
the KAD framework. Section 4 reports on the experimental evaluation. Related works are
reviewed in Section 5. Finally, Section 6 concludes the paper and outlines some future
work directions.

824	 Software Quality Journal (2024) 32:821–845

1 3

2 � Background and motivation

In this section, we introduce the anomaly detection of the distributed system and the moti-
vation of this paper.

2.1 � Anomaly detection of distributed systems

A distributed system consists of software components spreading over different computers
but running as a single entity (Hidayati et al., 2023). It clusters a group of computers
working together to appear as a single computer to the end user. These machines have a
shared state, operate concurrently, and can fail independently without affecting the whole
system’s running status.

In distributed systems, logs play an important role in data replication (Le &
Zhang, 2022). Multiple components work together to ensure the high availability of the
provided services. To enable replication of system activities, a log is generated to record
the occurrence of every event, which normally includes a timestamp, a template, asso-
ciated parameter values, and other information. The log template is comprised of fixed
strings manifesting some scheduling actions, while the parameter values specify the
context. For example, the log data “2021-07-14 09:30:48, 800 sservice_based_acces-
sor.cc:392: Subscribing update operations of actor, actor id=cad70dc, job id=0080”
describes the update of the actor component. The log template of this log is “Subscrib-
ing update operations of actor, actor id=, job id=” and the associated parameter values
include the values of “actor id” and “job id.”

An anomaly is an unexpected event or observation significantly deviating from the nor-
mal data. It may result in poor system performance such as high CPU consumption and
high latency. Anomaly detection in a distributed system is typically enacted based on runt-
ime information, such as logs.

Classical statistical-based or learning-based anomaly detection techniques attempt to
extract behavioral knowledge of anomalies from system logs (Le & Zhang, 2022). They
normally first collect logs during execution and obtain some knowledge from these logs
based on different techniques, such as statistic analysis techniques or machine learning
techniques. The knowledge is then used to detect anomalies when logs deviate from the
normal knowledge or match the anomaly knowledge.

2.2 � Motivation

Consider a case in the Ray distributed system, where a simple change in the syntax of a
log. For instance, the log for reporting node disconnections originally is as follows:

“Node [NodeID] disconnected,”

and it is updated to the following:

“Disconnected: Node [NodeID].”

Despite the change in syntax, the semantic meaning of reporting a node disconnection
remains the same.

825Software Quality Journal (2024) 32:821–845	

1 3

However, this modification poses some challenges for existing anomaly detection tech-
niques: Statistical-based techniques typically rely on predefined knowledge from logs. In
this case, a change in the log might not align with the established knowledge, leading to
the technique missing this anomaly. Learning-based techniques depend on training models
with historical data, which includes predefined logs. When the log changes, as in this case,
the model might fail to recognize the new log as it deviates from the “learned” knowledge.

This case highlights a critical challenge in existing anomaly detection techniques: the
lack of a general and robust technique to detect anomalies in distributed systems. It is valu-
able to construct more effective knowledge that can be used to detect more types of anoma-
lies. Therefore, we propose a knowledge formalization approach for anomaly detection. It
aims to improve the expressiveness of knowledge and to detect anomalies in evolving dis-
tributed systems.

3 � Overview

KAD aims to effectively, efficiently, and robustly detect anomalies in various distributed
systems by leveraging knowledge from logs. As illustrated in Fig. 1, KAD comprises four
parts:

	 (i)	 Knowledge construction: KAD employs the extended Backus-Naur form (EBNF) to
establish the general knowledge description language—KDL, and then use KDL to
extract some knowledge sets based on the experience library provided by distributed
system experts.

	 (ii)	 Knowledge parsing: The extracted knowledge sets are then transformed into log tem-
plate vectors and knowledge entities based on a knowledge parsing algorithm. Particu-
larly, during the construction of template vectors, the BERT model is used to extract
the semantic information of log templates to improve the expressive capabilities.

	 (iii)	 Log preprocessing: KAD uses log-monitoring tools (e.g., Elastic Stack) to collect
and parse the logs obtained from the distributed system. Then, the BERT model is

Fig. 1   Framework of KAD

826	 Software Quality Journal (2024) 32:821–845

1 3

used again to preprocess logs, expanding the log template vectors to improve the
efficiency of subsequent knowledge matching.

	 (iv)	 Knowledge matching: Finally, the constraint solver is applied to match the structured
log vectors and the KDL knowledge to generate the anomaly detection report.

In the following parts, each phrase in the KAD approach is introduced, including knowl-
edge construction (Section 3.1), knowledge parsing (Section 3.2), log preprocessing (Sec-
tion 3.3), and knowledge matching (Section 3.4).

3.1 � Knowledge extraction

The knowledge extraction phase is illustrated in Fig. 2. Firstly, we identify the general ele-
ments among logs to obtain a general log structure. Then, elements related to the knowl-
edge are extracted from the general log structure, such as timestamps, log types, log tem-
plates, variables, and other information. Next, the knowledge description language (KDL)
is formally defined through the extended Backus-Naur form (EBNF). Finally, the experi-
ence library is used to generate the knowledge sets based on KDL.

3.1.1 � Log structuring

The log structuring phase is fundamental to the knowledge extraction phase in the KAD
framework, transforming unstructured or semi-structured logs into the format conducive to
analysis.

Logs are typically unstructured or semi-structured text produced by logging statements
in the source code, which poses a significant challenge in anomaly detection distributed
systems due to their varied structures. The purpose of log structuring is to convert these
logs into a structured format, thereby facilitating effective analysis. In our study, Drain (He
et al., 2017) is used for the log transformation since it is a widely adopted log parsing
technique that employs a fixed depth tree (FDT) and a clustering algorithm to automate the
structuring of log data.

As illustrated in Fig. 3, a typical log comprises two main components: the log header
and the log contents. The log header, determined by the logging framework (e.g., SLF4J),
usually includes elements such as the timestamp (e.g., “2021-07-14 09:30:48800”),
log type (e.g., “D”), process ID (e.g., “352591”), thread ID (e.g., “352767”), and output
module (e.g., “service_based_accessor.cc:392”). The log content, written by developers,
describes specific system runtime events. It generally consists of a log template, which is a
fixed string indicating runtime events (e.g., “Subscribing update operations of actor, actor
id=, job id=”), and variable values that provide context to these events (e.g., “Cda70dc-
75c0f18c9c2bff494f9280080” and “f9280080”).

Fig. 2   Knowledge extraction

827Software Quality Journal (2024) 32:821–845	

1 3

To facilitate the construction of KDL, it is imperative to establish a general log structure
GLS , as defined in Definition 1.

Definition 1  (General Log Structure) Let GLS denote the framework that standardizes the
structure of the log provided by ⟨T , LT ,V ,O⟩ , where T denotes the timestamp, LT denotes
the log template, V denotes the sets of variable values within LT, and O denotes the other
information in the log, such as log type and output module.

3.1.2 � Element extraction

Element extraction is a critical phase that describes the knowledge extracted from distrib-
uted system logs. This phase focuses on identifying specific elements within the general
log structure GLS , each playing a pivotal role in the knowledge representation.

The extraction process isolates three primary elements from GLS : log template LT  ,
timestamp T  , and variable values V  .

1.	 LT involves the system runtime activities, serving as a guide to locate and interpret
logs within distributed systems. This element is crucial for understanding the activity
dynamics of the system and detecting anomalies.

2.	 T represents the temporal information of the log, recording the timing of each event
in the system. It is instrumental in establishing timing constraints ConsT between
LT  s, thus enabling the understanding of log sequences and timings.

Fig. 3   Example of log structuring

828	 Software Quality Journal (2024) 32:821–845

1 3

3.	 V represents the variable values within LT s, denoting variable constraints ConsV such as
equality and inclusion. V is essential for capturing the dynamic changes in logs, which
can indicate deviations from normal system activities.

Logs in distributed systems are subject to continuous changes due to system updates, thus
it is essential to regularly update the corresponding log templates to improve the expres-
sive capabilities of the knowledge. Additionally, experts may not be familiar with all log
templates in each system; thus, a method to manage these templates effectively and reduce
reliance on domain-specific knowledge is necessary.

To address these challenges, we introduce the concept of a “Semantic Set” SS , as
defined in Definition 2. The semantic set is designed to encapsulate a group of log tem-
plates that collectively express a specific system runtime activity.

Definition 2  (Semantic Set) Let SS denote the set of log templates that reveals a common
system activity provided by ⟨LT ,Cons⟩ , where LT is the same as defined in Difination 1.
Cons denotes the constraints within LT  s, Cons ∈ {ConsT ,ConsV ,ConsL}, in which ConsT
denotes the timing constraint, ConsV denotes the variable constraint, and ConsL denotes the
logic constraint (such as negation, conjunction, or recursion).

SS allows for a more nuanced and flexible representation of system activities, signifi-
cantly enhancing the expressive capabilities of the extracted knowledge.

3.1.3 � Formal modeling

The formal modeling phase is a critical step in the process of knowledge extraction, in
which we define the general knowledge description language KDL based on the elements
extracted from the general log structure GLS.

The knowledge description language KDL is a general language containing various
components crucial for knowledge representation, as defined in Definition 3.

Definition 3  (Knowledge Description Language) Let KDL denote the general knowledge
description language provided by ⟨SS,Cons,Ann,Know⟩ , where SS and Cons are the same
as defined in Definition 2, Ann denotes annotations , and Know is the association of SS,
Cons, and Ann.

The formal modeling of KDL is implemented using the extended Backus-Naur form
(EBNF) (Tietz & Annighoefer, 2022), which is a family of notations, any of which can be
used to express context-free grammar, and can be used to make a formal description of a
formal language such as a computer programming language.

The formalization of KDL employs the extended Backus-Naur form (EBNF), a sophisti-
cated notation known for its capability to express context-free grammars. EBNF’s flexibil-
ity and precision make it an suitable tool for crafting a formal description of complex lan-
guages, including those used in computer programming. The formalization of KDL using
EBNF can help to create a structured and general language for knowledge description. The
EBNF grammar for KDL is illustrated in Fig. 4.

829Software Quality Journal (2024) 32:821–845	

1 3

1.	 Knowledge: The knowledge of “anomaly” is comprised of optional annotations “anom-
alyAnnotation” and a sequence of log templates “sequences.” The “anomalyAnnota-
tion” includes a specific tag “anomalyAnnotaionTag” and a “paramList” to record the
information of variables (optional). The “sequences” is a combination of semantic sets
“semantics” and their corresponding constraints “constraint.”

2.	 Annotation: KDL provides an annotation functionality to facilitate the presentation of
knowledge. Particularly, the annotations added by system experts using KDL are more
understandable. This includes knowledge annotations “anomalyAnnotation,” template
annotations “templateAnnotation,” and concealable notes “COMMENT” and “LINE_
COMMENT.” Furthermore, KDL contains the custom operators for performing specific
operations, thereby improving its ability to describe complex knowledge.

3.	 Constraint: KDL defines three types of constraints:

	 (i)	 Timing constraint denotes the sequential order of objects (such as log templates
and semantic sets). “ a =⟩b ” indicates a precedes b, and “ a⟨= b ” denotes the
reverse, where a and b are the objects.

Fig. 4   EBNF grammar of KDL

830	 Software Quality Journal (2024) 32:821–845

1 3

	 (ii)	 Variable constraint denotes variable relationships between objects. “ −⟩string−⟩ ”
indicates that the left object precedes the right, with “string” represent-
ing the variable constraint. For example, “left.getAttribute(actorId)=right.
getAttribute(actorId)” indicates identical actor IDs in both objects.
“ ⟨−string⟨− ” represents the opposite arrangement.

	 (iii)	 Logic constraint contains non-constraint “!”, or-constraint “||” and “|”, and
recursive constraints “recursionPrefix.” The non-constraint indicates the
absence of an object, the or-constraint indicates the occurrence of at least one
of the objects, and the recursive constraint denotes multiple occurrences of an
object under specific recursive conditions.

4.	 Semantic set: The semantic set “semantics” refers to a collection of templates “tem-
plate” that reflect similar activities. Each template within “semantics” may contain
annotations ‘‘TemplateAnnotation”, a type specifier “type”, the content of the log tem-
plate “string”, and optionally, associated constraints. These elements collectively define
the semantic set, providing a structured and detailed representation of log activities.

Figure 5 presents an example of knowledge representation. The anomaly is a kind of
request frequent, recorded by tags = “Request frequent”; the root cause of the anomaly
is that the number of access requests exceeds 100 times within 60 seconds, presented
by the sentences @RootCause (Label = “Access request”), getCount(@RootCause
> 100), and timeDiff(@RootCause, @RootCause, s) < 60. Consequently, this anomaly
lead to the failure of request connection, recorded by @SemanticSet (Label = “Con-
nection failed”). The annotations “@Anomaly,” “@RootCause,” and “@SemanticSet”
serve as contextual markers in the knowledge representation. The custom operators
“getCount(@RootCause)” and “timeDiff(@RootCause, @RootCause, s)” describe com-
plex constraints within the knowledge. These operators can help to express the com-
plex relationships, enabling a more comprehensive and flexible representation of the
knowledge from various domains. The semantic sets in Fig. 5 are detailed in Fig. 6. The
set labeled “Access request” includes two log templates that describe web request fail-
ures, connected by the logical “||” constraint. Additionally, the set labeled “Connection
failed” comprises a single log template that characterizes a failed connection request.
These semantic sets can help to encapsulate complex system activities within a struc-
tured and interpretable format.

3.1.4 � Knowledge construction

The knowledge construction phase leverages the experience library, a repository con-
taining detailed records and analyses of anomalies observed during system operations.

Fig. 5   Example of KDL knowledge

831Software Quality Journal (2024) 32:821–845	

1 3

This library serves as an important resource for the generation of knowledge for anomaly
detection. Firstly, anomalies recorded in the experience library are systematically catego-
rized based on their types, which can help to understand the nature and characteristics of
different anomalies. Secondly, log templates and their associated constraints are extracted
from the experience library. For example, a log template denoted as LTA will always be
followed by another log template denoted as LTB , within a predefined time frame. This
sequence can help to understand and predict the occurrence of anomalies. Thirdly, KDL
is employed to generate knowledge that encapsulates these log templates, constraints, and
other relevant information, including contextual annotations. This step transforms raw
data into structured, interpretable knowledge. Additionally, constraints and annotations in
the knowledge can be fine-tuned to optimize the accuracy of knowledge. Finally, the KDL
knowledge needs to be validated using historical logs, which can help to ensure the reli-
ability of the knowledge.

3.2 � Knowledge parsing

After obtaining the KDL knowledge, KAD compiles them for further knowledge matching.
Specifically, each log template in the knowledge is converted into log template vectors contain-
ing semantic information, and the KDL knowledge is converted into a directed acrylic graph.
Knowledge parsing consists of two phases: template vectorization and knowledge storage.

3.2.1 � Template vectorization

For log templates contained in the KDL knowledge, KAD converts them into log template vec-
tors using the BERT model to save their semantic information, as shown in Fig. 7: Specifi-
cally, the sentences of each log template are used as inputs for the BERT model, yielding the
vector for each word; then, these vectors are passed through a pooling layer; finally, the log tem-
plate vector (denoted by LTV ) is created for each log template LT , as defined in Definition 4.

Definition 4  (Log template vector) Let LTV denote the log template with its correspond-
ing semantic information provided by ⟨LT , SI⟩ , where LT is the same as defined in Defini-
tion 1, and SI denotes the corresponding semantic information (e.g., the output vector of
BERT) of LT.

Fig. 6   Example of semantic sets

832	 Software Quality Journal (2024) 32:821–845

1 3

3.2.2 � Knowledge storage

In order to improve the efficiency of subsequent processing, we used the knowledge
graphs (Hogan et al., 2021) to store the knowledge, in which each KDL knowledge is trans-
formed into a directed acyclic graph (DAG). This transformation employs a depth-first
traversal algorithm, ensuring that the knowledge is stored in an organized and accessible
manner. The use of the DAG structure facilitates the efficient representation of the com-
plex relationships and dependencies inherent in the knowledge. This structure not only aids
in the quick retrieval and processing of knowledge but also supports the complex analysis
required for anomaly detection in distributed systems. The DAG representation of knowl-
edge is defined in Definition 5.

Definition 5  (DAG knowledge) Let GR denote the knowledge represented as DAGs pro-
vided by ⟨N,E⟩ , where N denotes the set of log template vectors LTV  s, as defined in Defi-
nition 4,and E denotes the set of constraints among N, E = ⟨LTVi,Cons, LTVj⟩ , LTVi ∈ N ,
LTVj ∈ N , and LTVi ≠ LTVi , and Cons is the same defined in Definition 3.

Algorithm 1   The algorithm of knowledge parsing

Algorithm 1 shows the process of knowledge parsing. Each KDL knowledge, repre-
sented as Know , is transformed into an abstract syntax tree AST on lines 2–3. Then, the

Fig. 7   Vector representation

833Software Quality Journal (2024) 32:821–845	

1 3

AST is traversed using a depth-first traversal algorithm. If the child AST childAST con-
tains a log template LT  , the BERT model is employed to extract the corresponding seman-
tic information, producing log template vector LTV  , which is added to node N on lines
5–10. If childAST contains a constraint Cons , the childAST is traversed to identify tem-
plates linked to this constraint. These templates, along with the constraint, are subsequently
added to the edges E of the DAG on lines 11–19. By iterating through the above steps, the
knowledge sets GR and the log template vectors LTV  s are obtained.

3.3 � Log processing

The log processing phase is illustrated in Fig. 8. Firstly, KAD employs log-monitoring
tools, such as Elastic Stack, to collect logs from distributed systems. Then, the unstruc-
tured or semi-structured logs are transformed into structured logs based on Drain (He
et al., 2017), a log parsing tool that is widely used in log-based anomaly detection. Finally,
the BERT model (Devlin et al., 2019) is employed to extract semantic information from
each structured log, to obtain the structured log vectors, as defined in Definition 6. 3.2

Definition 6  (Structured log vectors) Let SLV denote the structured log provided by
⟨T ,LTV ,V ,O⟩, where T  , V  , and O are the same defined in Definition 1, and LTV is the
same defined in Definition 4.

3.4 � Knowledge matching

After log processing, the KAD can conduct knowledge matching to select a set of logs that
match the identified KDL knowledge through a proposed constraint solver, as these logs
can reveal system anomalies.

To improve the efficiency of knowledge matching, a fine-grained distributed task sched-
uling method is proposed. This method incorporates comprehensive failover and restart
mechanisms and can help to effectively manage task allocation and minimize redundant
computations. Specifically, we defined the matching of structured template vectors with
KDL knowledge as a distributed computation task, as defined in Definition 7.

Definition 7  (Distributed computation task) Let DCtask denote the distributed computa-
tion task provided by ⟨GR, SLV ,Pro⟩, where GR is the knowledge defined in Definition 5,
SLV denotes the structured log vectors defined in Definition 6, and Pro denotes the pro-
gress of the DCtask provided by ⟨Comp,Flag,Num, Threshold⟩ , Comp denotes the set of
logs that have completed the DCtask , Flag denotes the computation completion label of
the DCtask , Num denotes the number of DCtask fault occurrences, and Threshold denotes
the the fault occurrence threshold.

During knowledge matching, KAD executes all these distributed computation tasks in
parallel. The progress of each distributed computation task is tracked, including completed
matched vectors, completion labels, the number of fault occurrences, and the fault occur-
rence threshold. If a computation task fails, it is reassigned to a new computation node:
if the number of fault occurrences exceeds the fault occurrence threshold, the task is dis-
carded; otherwise, the computation task is restarted, and it reads the corresponding knowl-
edge, the set of vectors to be matched, and the progress.

834	 Software Quality Journal (2024) 32:821–845

1 3

Algorithm 2   The algorithm of knowledge matching

Algorithm 2 details the process of knowledge matching. Firstly, the algorithm ini-
tializes a queue for distributed computation tasks, DCque , which is set to empty on
line 1. For each knowledge Know within the knowledge sets GR , a corresponding dis-
tributed computation task DCtask is generated and added to DCque on lines 2–4. Sec-
ondly, each DCtask in DCque is iterative processed on lines 5–12: if the task is new,
initialize its progress indicators DCtask.Pro and prepare for constraint resolution; else,
the task is retrieved and processed from the current task progress DCtask.Pro . Thirdly,
the DCtask is processed on a distributed computation node node, generating constraints
Cons , and solving these constraints against the structured log vectors SLV to obtain log
sequences Seq on lines 13–24: If Seq exists, indicating successful task completion, the
algorithm flags DCtask.Pro.Flag as true and returns Seq ; if the task fails, increment the
failure count DCtask.Pro.Num ; if DCtask.Pro.Num exceeds the predetermined thresh-
old DCtask.Pro.Threshold , the task is removed from the queue; otherwise, the task is

Fig. 8   Log processing

835Software Quality Journal (2024) 32:821–845	

1 3

reinserted into DCque for reprocessing. Finally, the knowledge-matching log sequences
Seq is obtained.

4 � Evaluation

To evaluate the viability of KDL, and the effectiveness, efficiency, and robustness of
KAD, a comparative analysis was conducted, comparing four existing anomaly detec-
tion techniques on two distributed system benchmarks.

4.1 � Research questions

The following research questions are explored:

•	 RQ1: Is KDL viable for different distributed systems? The viability is evaluated on
two distributed systems—Hadoop and Ray.

•	 RQ2: How effective is KAD in distributed system anomaly detection? The effectiveness
is evaluated on the two distributed systems compared with four baseline techniques.

•	 RQ3: How efficient is KAD in distributed system anomaly detection? The efficiency is
evaluated on the two distributed systems compared with four baseline techniques.

•	 RQ4: How robust is KAD to the variation of datasets? The robustness is evaluated on
the two distributed systems compared with four baseline techniques, in which datasets
of the two systems are modified to generate four variants.

4.2 � Experimental design

Datasets The evaluation was conducted on two typical distributed systems: Hadoop and
Ray. Hadoop is a framework used for processing large data sets across computer clus-
ters, and Ray is a versatile distributed computing framework aiming to provide a general
programming interface for distributed systems. The evaluation was performed using two
datasets:

•	 HDFS is a public dataset provided by Du et al. (2017). It was generated by running
map-reduce tasks on over 200 Amazon EC2 nodes. The dataset consists of 11,175,629
logs and 16,838 labeled anomaly samples, which were provided by domain experts.

•	 Ray is a production dataset obtained through the Ant Group. Due to confidentiality
concerns, obtaining production logs from companies is often challenging. However, we
were fortunate to obtain a dataset of Ray logs from an industrial environment with the
assistance of domain experts at Ant Group. This dataset includes 4,308,687 logs and
215,679 labeled anomaly samples, which were provided by domain experts.

We begin by sorting all datasets in chronological order and then use the method described
in (Lou et al., 2010) to generate log sequences. A log sequence was considered as an anom-
aly if it contained any anomaly logs. These sequences are then shuffled. The data was par-
titioned into three segments: 60% for model training, 20% for verification, and 20% for
testing. Notably, KAD does not necessitate model training; therefore, no training dataset
was required. In contrast, techniques that require training had all anomalies removed from

836	 Software Quality Journal (2024) 32:821–845

1 3

their dataset to focus on learning normal patterns and detecting anomalies. The parameters
for all techniques were meticulously fine-tuned to ensure optimal performance.

To mitigate the influence of random variations, each technique was executed 30 times.
The average results of these repetitions were then reported.

Baseline techniques  We use four state-of-the-art anomaly detection techniques as the
baselines: DeepLog, LogAnomaly, Logsy, and CNN. These techniques follow a similar pro-
cedure: first extracting a log event from each log, and then performing anomaly detection
on the log event sequence.

•	 DeepLog (Du et al., 2017): This is the first work to employ long short-term memory
(LSTM) (LeCun et al., 2015) for log anomaly detection. It is also the first work to
detect anomalies in a forecasting-based fashion, which is widely used in many follow-
up studies.

•	 LogAnomaly (Meng et al., 2019): To further consider the semantic information of logs,
LogAnomaly is proposed. Specifically, they proposed template2Vec to represent the
vector of words in log events by considering the synonyms and antonyms therein. Simi-
larly, LogAnomaly adopts forecasting-based anomaly detection with an LSTM model.

•	 Logsy (Nedelkoski et al., 2020): This is the first work utilizing the Transformer to
detect anomalies in logs. Specifically, Logsy is a classification-based method to learn
log representations in a way to better distinguish between normal data from the system
and abnormal samples from auxiliary log datasets. The auxiliary datasets help learn a
better representation of the normal data while regularizing against overfitting.

•	 CNN (Lu et al., 2018): This is the first work to explore the effectiveness of convolu-
tional neural networks (CNNs) in this field. This technique involved constructing
log event sequences via identifier-based partitioning and introducing logkey2vec for
embedding, which facilitates the convolution calculations needed for a CNN. They
applied various convolutional layers, concatenating their outputs for input into a fully
connected layer to generate predictions.

Metrics  We use the commonly used precision, recall, and F1-score to evaluate the effec-
tiveness of anomaly detection. Let TP and FN denote the number of anomalous samples
that are correctly and incorrectly predicted, respectively, and TN and FP denote the num-
ber of normal samples that are correctly and incorrectly predicted, respectively. The met-
rics can be calculated as Eqs. (1)–(3).

•	 Precision measures the percentage of anomalous data out of all data identified as
anomalies.

•	 Recall measures the percentage of the anomalous data that are correctly identified as
anomalies.

•	 F1-score is the harmonic mean of precision and recall.

(1)precision =
TP

TP + FP

(2)recall =
TP

TP + FN

837Software Quality Journal (2024) 32:821–845	

1 3

4.3 � Results and Analysis

4.3.1 � RQ1: Viability

Table 1 shows the KDL knowledge in datasets. Table 1 presents an overview of the KDL
knowledge extracted from two datasets—Hadoop and Ray, including the dataset, knowl-
edge ID, anomaly description, knowledge annotation, anomaly root cause, and symp-
tom. Note that each entry in the table represents a knowledge.

Table 1 details a total of 28 instances of KDL knowledge. Among them, ten are associ-
ated with the Hadoop dataset, while the remaining 18 are associated with the Ray data-
set. Fifty percent of the knowledge reveals functional anomalies in distributed systems.
For example, entry 2 describes anomalies occurring during system interactions; entries 4
and 14 describe anomalies related to logical design and coding within the system’s inter-
nal architecture; and entries 6–9, 21–22, and 24–28 describe anomalies related to system
configuration. The other 50% of the knowledge describes non-functional anomalies. For
example, entries 5, 11–12, 15–16, 20, and 23 describe performance-related anomalies, and
entries 1, 3, 10, 13, and 17–19 describe communication anomalies within the systems.

Except for entries 5 and 28, all the other knowledge employs semantic sets for their
descriptions. For example, entry 1 utilizes the semantic sets “HeartbeatLost” and “Task-
Fail” to detail the root cause and symptom of the anomaly “KilledTaskRun,” respectively.

In summary, KDL serves to define functional and non-functional anomalies in distrib-
uted systems. It effectively enhances the expressiveness of the knowledge, reducing the
dependency on domain-specific expertise, primarily through the semantic sets.

4.3.2 � RQ2: Effectiveness

Table 2 shows the effectiveness evaluation results with the two datasets, in which values in
bold indicate the best score for precision, recall, and F1-score. KAD demonstrates high pre-
cision (1 in HDFS, 1 in Ray), recall (1 in HDFS, 0.9 in Ray), and F1-score (1 in HDFS, 0.95
in Ray) across all datasets. KAD has a number of knowledge available for anomaly detec-
tion, contributing to its high precision (1 on two datasets). However, the recall of KAD on
Ray (0.9) is slightly lower compared to HDFS (1) due to an anomaly (“raylet timeout due to
insufficient node CPU resources”) that is not covered by the existing knowledge in Table 1.

KAD outperforms four other log-based anomaly detection techniques (DeepLog, LogA-
nomaly, Logsy, and CNN). On average, KAD achieves an improvement of 4.44% in pre-
cision, 8.4% in recall, and 6.38% in F1-score in HDFS, and an average improvement of
63.27% in precision, 80% in recall, and 78.4% in F1-score in Ray. This is because that
KAD can detect not only functional anomalies but also non-functional anomalies that are
rarely identified by other baseline techniques. For example, anomalies represented by entry
3 in HDFS and entries 12 and 13 in Ray, which go undetected by baseline methods, are
detected by KAD.

Furthermore, we observe that the industrial dataset Ray poses more challenges to the
four baseline techniques. This is because the logs and anomalies in Ray are more com-
plex compared to the public dataset HDFS. However, KAD leverages domain knowledge

(3)F1 = 2 ×
precision × recall

precision + recall

838	 Software Quality Journal (2024) 32:821–845

1 3

Ta
bl

e 
1  

K
D

L
kn

ow
le

dg
e

in
 d

at
as

et
s

D
at

as
et

ID
A

no
m

al
y

de
sc

rip
tio

n
A

no
m

al
y

Ro
ot

 c
au

se
Sy

m
pt

om

H
D

FS
1

Ta
sk

 fa
il

du
e

to
 h

ea
rtb

ea
t l

os
t

ta
gs

=
Ta

sk
Fa

ilD
ue

H
B

Lo
st

la
be

l=
H

ea
rtb

ea
tL

os
t

la
be

l=
Ta

sk
Fa

il
2

A
 k

ill
ed

 ta
sk

 c
on

tin
ue

d
to

 b
e

ru
nn

in
g

in
 b

ot
h

Jo
bT

ra
ck

er
 a

nd
 T

as
kT

ra
ck

er
ta

gs
=

K
ill

ed
Ta

sk
Ru

n
la

be
l=

Ta
sk

Ru
n

la
be

l=
Ta

sk
K

ill
Fa

il

3
A

sk
 m

or
e

th
an

 o
ne

 n
od

e
to

 re
pl

ic
at

e
th

e
sa

m
e

bl
oc

k
to

 a
 si

ng
le

 n
od

e
si

m
ul

ta
ne

ou
sly

ta
gs

=
Re

pl
ic

at
eR

ep
ea

t,
g
et
C
o
u
n
t(
la
b
el

=
B
lo
ck
R
ep
li
ca
te
)
>
1

la
be

l=
B

lo
ck

Re
pl

ic
at

e
la

be
l=

Re
pl

ic
at

eF
ai

l

4
W

rit
e

a
bl

oc
k

al
re

ad
y

ex
ist

ed
ta

gs
=

W
rit

eB
lo

ck
Ex

it
la

be
l=

B
lo

ck
Ex

it
la

be
l=

W
rit

eF
ai

l
5

Ta
sk

 JV
M

 h
an

g
ta

gs
=

JV
M

H
an

g
Ta

sk
 JV

M
 fo

r t
as

kI
D

=
$t

as
kI

D
$

is

un
re

sp
on

si
ve

Ta
sk

 $
ta

sk
ID

$
fa

ile
d

w
ith

 e
xi

t c
od

e
13

7

6
Sw

ap
 a

 JV
M

, b
ut

 m
ar

k
it

as
 u

nk
no

w
n

ta
gs

=
Sw

ap
U

nk
no

w
nJ

V
M

la
be

l=
M

ar
kJ

V
M

U
nk

no
w

n
la

be
l=

JV
M

Sw
ap

Fa
il

7
Sw

ap
 a

 JV
M

, a
nd

 d
el

et
e

it
im

m
ed

i-
at

el
y

ta
gs

=
Sw

ap
D

el
et

eJ
V

M
la

be
l=

D
el

et
eJ

V
M

la
be

l=
JV

M
Sw

ap
Fa

il

8
Tr

y
to

 d
el

et
e

a
da

ta
 b

lo
ck

 w
he

n
it

is

op
en

ed
 b

y
a

cl
ie

nt
ta

gs
=

D
el

et
eO

pe
nB

lo
ck

la
be

l=
B

lo
ck

O
pe

n
la

be
l=

D
el

et
eB

lo
ck

Fa
il

9
JV

M
 in

co
ns

ist
en

t s
ta

te
ta

gs
=

JV
M

In
co

ns
ist

la
be

l=
JV

M
In

co
ns

ist
la

be
l=

JV
M

Fa
il

10
Th

e
po

llF
or

Ta
sk

W
ith

C
lo

se
d-

Jo
b

ca
ll

fro
m

 a
 Jo

bt
ra

ck
er

 to
 a

 ta
sk

 tr
ac

ke
r

tim
es

 o
ut

 w
he

n
a

jo
b

co
m

pl
et

es

ta
gs

=
Tr

ac
kC

al
lT

im
eO

ut
la

be
l=

Tr
ac

kC
al

lT
im

eO
ut

la
be

l=
Jo

bC
al

lF
ai

l

R
ay

11
A

ct
or

 O
O

M
ta

gs
=

A
ct

or
O

O
M

la
be

l=
A

ct
or

O
O

M
la

be
l=

jo
bF

ai
l

12
L1

FO
 c

au
se

s a
 jo

b
fa

il
ta

gs
=

L1
FO

W
or

ke
rF

ai
l,

tim
es

-
pa

n=
90

 s
la

be
l =

 L
1F

O
St

ar
t =

>
 la

be
l =

W

or
ke

rF
ai

l
la

be
l=

Jo
bF

ai
l

13
Ta

in
t m

an
ag

er
 e

vi
ct

io
n

de
le

te
s p

od
,

re
su

lti
ng

 in
 n

od
e

re
m

ov
e

ta
gs

=
N

od
eR

em
ov

eD
ue

Po
dD

el
et

e,

tim
es

pa
n=

10
0

s
M

ar
ki

ng
 fo

r d
el

et
io

n
Po

d
po

d-
N

am
e

|| M
ar

ki
ng

 fo
r d

el
et

io
n

Po
d

po
dN

am
e:

ho
st

N
am

e

la
be

l=
N

od
eR

em
ov

e

14
Ta

sk
 fa

il
ca

us
es

 R
ay

 c
he

ck
 fa

il
ta

gs
=

R
ay

C
he

ck
Fa

il,
 n

od
e=

no
de

ID
la

be
l=

Ta
sk

Fa
il

la
be

l=
R

ay
C

he
ck

Fa
il

15
O

O
M

 k
ill

er
 c

au
se

s w
or

ke
r f

ai
l

ta
gs

=
W

or
ke

rF
ai

lD
ue

O
O

M
la

be
l=

O
O

M
K

ill
er

la
be

l=
W

or
ke

rF
ai

l
16

JV
M

 c
ra

sh
 c

au
se

s w
or

ke
r f

ai
l

ta
gs

=
W

or
ke

rF
ai

lD
ue

JV
M

la
be

l=
H

sE
rr

Lo
g

la
be

l=
W

or
ke

rF
ai

l

839Software Quality Journal (2024) 32:821–845	

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

D
at

as
et

ID
A

no
m

al
y

de
sc

rip
tio

n
A

no
m

al
y

Ro
ot

 c
au

se
Sy

m
pt

om

17
A

ct
or

 d
ie

d
ca

us
in

g
dr

iv
er

 fa
il

ta
gs

=
D

riv
er

Fa
ilD

ue
A

ct
or

la
be

l=
A

ct
or

D
ie

d
D

riv
er

 o
f J

ob
 jo

bI
D

 fa
ile

d.
 T

he
 a

ct
or

ac

to
rI

D
 d

ie
d

un
ex

pe
ct

ed
ly

 b
ef

or
e

fin
is

hi
ng

18
A

ct
or

 d
ie

d
ca

us
in

g
ta

sk
 fa

il
ta

gs
=

Ta
sk

Fa
ilD

ue
A

ct
or

la
be

l=
A

ct
or

D
ie

d
la

be
l=

Ta
sk

Fa
il

19
A

ct
or

 d
ie

d
du

e
to

 n
od

e
re

m
ov

e
ta

gs
=

A
ct

or
fa

ild
D

ue
N

od
eR

m
ov

e
la

be
l=

N
od

eR
em

ov
e

A
ct

or
D

ie
d

20
C

lu
ste

r r
es

ou
rc

e
sh

or
ta

ge
ta

gs
=

Re
so

ur
ce

Pe
nd

in
g

la
be

l=
A

llo
ca

te
Re

so
ur

ce
Fa

il
la

be
l=

Jo
bF

ai
l

21
Re

so
ur

ce
 m

is
co

nfi
gu

ra
tio

n
ta

gs
=

Re
so

ur
eE

rr
or

O
O

M
us

er
sp

ac
e

oo
m

 k
ill

er
 se

nd
in

g
SI

G
TE

R
M

 to
 p

ro
ce

ss
la

be
l=

Jo
bF

ai
l

22
Te

ns
or

Fl
ow

 c
on

fig
ur

at
io

n
fa

ilu
re

ta
gs

=
TF

C
on

fig
ur

at
io

n
te

ns
or

flo
w.

 p
yt

ho
n.

 fr
am

ew
or

k.
 e

rr
or

s.
N

ot
Fo

un
dE

rr
or

Jo
bF

ai
l

23
In

su
ffi

ci
en

t c
lu

ste
r s

ch
ed

ul
in

g
re

so
ur

ce
s

ta
gs

=
Re

so
ur

ce
Er

ro
r

la
be

l=
A

llo
ca

te
Re

so
ur

ce
Fa

il
la

be
l=

Jo
bF

ai
l

24
A

LP
S

co
nfi

gu
ra

tio
n

fa
ilu

re
ta

gs
=

A
LP

SE
rr

or
la

be
l =

B
ul

id
Ex

pE
rr

or
la

be
l=

Jo
bF

ai
l

25
Sy

ste
m

 a
no

m
al

y
ca

us
ed

 b
y

py
 fi

le

co
nfi

gu
ra

tio
n

fa
ilu

re
ta

gs
=

py
Er

ro
r

la
be

l =
py

C
on

fE
rr

or
la

be
l=

Jo
bF

ai
l

26
C

on
fig

ur
at

io
n

da
ta

 in
co

ns
ist

en
cy

ta
gs

=
Sa

m
pl

eC
on

fE
rr

or
la

be
l=

Sa
m

pl
eC

on
fE

rr
or

la
be

l=
Jo

bF
ai

l
27

In
co

ns
ist

en
t d

at
a

fie
ld

s
ta

gs
=

Sa
m

pl
eE

rr
or

la
be

l=
Sa

m
pl

eE
rr

or
la

be
l=

Lo
gE

xc
ep

tio
n

28
D

irt
y

da
ta

 in
 th

e
sa

m
pl

e
str

ea
m

ta
gs

=
D

irt
yD

at
a

te
ns

or
flo

w.
 p

yt
ho

n.
 fr

am
ew

or
k.

 e
rr

or
s.

In
va

lid
A

rg
um

en
tE

rr
or

Ex
ce

pt
io

n:
 c

la
ss

 L
og

Ex
ce

pt
io

n:
 lo

g-
sto

re
 w

ith
ou

t i
nd

ex
 c

on
fig

840	 Software Quality Journal (2024) 32:821–845

1 3

to detect these anomalies, which enhances effectiveness and interpretability while dealing
with various complex anomalies in Ray.

In summary, KAD is observed to be highly effective in detecting anomalies within dif-
ferent datasets compared with the four baselines.

4.3.3 � RQ3: Efficiency

Table 3 presents the training and testing times for different techniques in the two data-
sets, in which values in bold indicate the minimum time required to train and test.

A notable observation is that KAD, unlike the other baseline techniques, necessitates no
time for the training phase. This is because KAD’s design philosophy eschews the model
training process. The omission of the model training phase can help to reduce the need for
substantial computational resources and time investment. Consequently, KAD effectively
reduces the time and resource overhead associated with model training compared with
the four baseline techniques. However, the construction of knowledge within KAD incurs
some time overhead which depends on the expert’s familiarity with the system. Specifi-
cally, the overhead is mainly spent on knowledge extraction and representation. For experts
who are familiar with the system, their prior knowledge helps them to identify anomalous
behaviors, thus significantly reducing the time of the knowledge construction process; oth-
erwise, they have to take some time to comprehend the system’s behavior and logs.

Considering the testing process, KAD is faster than the four baseline techniques, as it
used log processing (Section 3.3) and the distributed computation methods during knowl-
edge matching (Section 3.4). Specifically, KAD exhibits an on-average 70.73% decrease
in testing time compared to the four baseline techniques for the HDFS dataset and an on-
average 74.42% decrease in testing time compared to the four baseline techniques on the
Ray dataset. This is because KAD employs the matching task to multiple compute nodes

Table 2   Effectiveness of different techniques in different datasets

Methods HDFS Ray

Precision Recall F1-score Precision Recall F1-score

DeepLog 0.96 0.93 0.94 0.64 0.33 0.44
LogAnomaly 0.97 0.9 0.95 0.45 0.67 0.54
Logsy 0.95 0.87 0.9 0.62 0.5 0.55
CNN 0.95 0.99 0.97 0.74 0.5 0.6
KAD 1 1 1 1 0.9 0.95

Table 3   Training and testing times for different techniques

Methods HDFS Ray

Training (min) Testing (s) Training (min) Testing (s)

DeepLog 37.8 32 45.6 47
LogAnomaly 42.3 44 51.2 55
Logsy 25.6 25 36.7 37
CNN 32.6 22 40.1 33
KAD 0 9 0 11

841Software Quality Journal (2024) 32:821–845	

1 3

in parallel, which can increase the speed of testing. Thus, once the knowledge is obtained,
KAD can detect anomalies in a shorter time compared to the four baseline techniques.

4.3.4 � RQ4: Robustness

To assess the robustness of the selected methods, i.e., their effectiveness in the variation of
datasets, additional logs are introduced into the original test set. These additions were made
at proportions of 5% and 10%, resulting in the creation of four new test sets. We follow
(Zhang et al., 2019) to synthesize new logs. Specifically, given a randomly sampled log event
sequence in the testing data, we apply one of the following four noise injection strategies: ran-
domly injecting a few pseudo log events (generated by trivial word addition/removal or syno-
nym replacement) or deleting/shuffling/duplicating a few existing log events in the sequence.

Table 4 presents the effectiveness of the different techniques with the variation of data-
sets, in which values in bold indicate the best score for precision, recall, and F1-score. It
can be observed that KAD achieves higher precision, recall, and F1-score than the other
four techniques, across all four datasets. Notably, KAD has relatively stable performance
across different datasets (with precision still remaining 1, recall ranging between 0.86 and
0.96, and F1-score ranging between 0.92 and 0.98). This is because the semantic sets in
KAD can help to capture and adapt to the changes in logs.

In summary, KAD demonstrates higher effectiveness compared with the other baseline
techniques when applied to the variation of datasets in distributed systems.

4.4 � Threats to validity

One of the threats to the experiment is the accuracy of the knowledge. Indeed, incorrect
knowledge may lead to the mismatch between the logs and the knowledge pieces written
by KDL, and hence lead to wrong anomaly detection. To reduce the threat, we involved
domain experts for their insights and feedback. In addition, we employed a validation pro-
cess using verification datasets. These datasets served to validate the accuracy and reliabil-
ity of the knowledge, thereby enhancing the reliability of our experimental results.

Another potential threat is the time required for constructing knowledge. Unlike the
baseline techniques, KAD necessitates a certain degree of domain knowledge. However,

Table 4   Effectiveness of different techniques in the variation of datasets

Injection ratio Methods HDFS Ray

Precision Recall F1-score Precision Recall F1-score

5% DeepLog 0.67 0.59 0.63 0.28 0.19 0.23
LogAnomaly 0.71 0.62 0.66 0.31 0.21 0.25
Logsy 0.58 0.47 0.52 0.19 0.12 0.15
CNN 0.73 0.65 0.69 0.34 0.29 0.31
KAD 1 0.96 0.98 1 0.89 0.94

10% DeepLog 0.54 0.46 0.50 0.14 0.09 0.11
LogAnomaly 0.6 0.51 0.55 0.19 0.13 0.15
Logsy 0.39 0.24 0.30 0.08 0.05 0.06
CNN 0.61 0.49 0.54 0.21 0.19 0.20
KAD 1 0.91 0.95 1 0.86 0.92

842	 Software Quality Journal (2024) 32:821–845

1 3

the accuracy and reliability of the knowledge enhance the effectiveness and robustness of
KAD’s anomaly detection capabilities. This is crucial, especially in the context of indus-
trial applications where accuracy is important. Despite the time required for knowledge
construction, KAD demonstrates notable efficiency in the testing phase, achieving a preci-
sion rate of 100% in anomaly detection. The results highlights the value of the time and
effort spent on knowledge construction.

The validity of experimental results may be threatened by the benchmarks. We only use
datasets collected from HDFS and Ray systems. Although HDFS is a typical open-source
project and Ray is a large-scale, real-world distributed system, the number of experimental
systems is still limited.

Finally, the log dataset might have data imbalance issues, such as the number of normal
logs is greater than the number of anomaly logs. This imbalance in the log dataset may
lead to a trade-off between precision and recall, in which the model may reduce precision
to improve recall excessively, or vice versa.

5 � Related work

A significant amount of methods for log anomaly detection has been published in aca-
demia (Fu et al., 2023; Huang et al., 2023; Qi et al., 2023; Ma et al., 2023; Chen et al., 2023).
The existing approaches are mainly divided into three categories: supervised learning meth-
ods, unsupervised learning methods, and deep learning methods.

Many supervised learning methods are applied to log-based anomaly detection. For
example, Zhang and Sivasubramaniam (2007) applied a support vector machine (SVM)
to detect anomalies using event logs. Farshchi et al. (2015) proposed a regression-based
method to detect anomalies using logs in cloud systems. Breier and Branišová (2015)
summarized some classical supervised classification models that are applied to log-based
anomaly detection. However, obtaining system-specific labeled logs is costly and often
practically infeasible.

Apart from supervised learning approaches, many unsupervised learning approaches have
been proposed. For example, Lou et al. (2010) proposed invariant mining (IM) to mine the
linear relationships among log events from log event count vectors. Those log sequences that
violate the invariant relationship are considered as anomalies. Xu et al. (2009) constructed
normal space and abnormal space of log event count matrix using principal component anal-
ysis to detect anomalies. He et al. (2018) designed clustering-based methods to identify prob-
lems of online service systems. Unsupervised learning approaches have the advantage that
they do not require manual labels in the training set. However, they are not robust to variation
logs, which significantly restricts their applicability in real-world practice.

The recent rise of deep learning methods has given a new solution for log-based anom-
aly detection. Du et al. (2017) used LSTM to forecast the next log event and then compare
it with the current ground truth to detect anomalies. Vinayakumar et al. (2017) trained a
stacked LSTM to model the operation logs of normal and anomaly events. However, their
input of neural networks is the one-hot vector of log events. Thus it cannot cope with
evolving log data, especially in the scenario when new log events appear.

A few studies have leveraged NLP techniques to analyze log data based on the idea that
log is actually a natural language sequence. Zhang et al. (2016) proposed to use the LSTM
model and TF-IDF weight to predict the anomaly logs. Bertero et al. (2017) used word2vec
and traditional classifiers, like SVM and random forest, to check whether a log event is

843Software Quality Journal (2024) 32:821–845	

1 3

an anomaly or not. Similarly, Zhang et al. (2019) and Meng et al. (2019) incorporate pre-
trained word vectors for learning a sequence of logs where they train an attention-based
Bi-LSTM model. However, these approaches only focused on the granularity of log events
rather than log sequences. They ignored the contextual information in log sequences.

Different from all the above methods, we focus on the formalization of knowledge to
detect anomalies in distributed systems. Through the anomaly detection framework KAD,
the interoperability of knowledge between different distributed systems is achieved, which
further improves the performance and robustness of anomaly detection.

6 � Conclusion

In this paper, we have proposed KAD, a knowledge formalization-based anomaly detec-
tion approach for distributed systems. KAD introduces a general knowledge description
language—KDL, to describe complex anomaly knowledge in various distributed systems.
KDL involves the semantic set to improve the expressive capabilities of knowledge. Based
on KDL, KAD utilizes the BERT model to further improve the robustness of anomaly
detection. In addition, KAD employs a constraint solver and a distributed scheduling com-
putation method, enhancing the efficiency of anomaly detection. The evaluation of KAD
on two benchmark distributed systems has shown its high effectiveness in anomaly detec-
tion compared to four baseline techniques. Its capability to detect anomalies across variant
datasets also demonstrates its robustness.

In the future, we will evaluate KAD on a broader range of distributed systems. Further-
more, we will improve the intellectualization of KAD to generate KDL knowledge more
time-saving in different distributed systems.

Author contribution  Xinjie Wei initiated the project, wrote the manuscript, and conducted the experiment;
Chang-ai Sun proposed the main idea, discussed the settings of the experiment, and made a revision of the
paper; Xiao-Yi Zhang discussed the settings of the experiment and made a revision of the paper.

Funding  This article is supported by the National Natural Science Foundation of China under Grant Nos.
62272037, 61872039, and 62302035, and CCF-Ant Research Fund.

Availability of data and materials  HDFS is a public data set and can be obtained from (Du et al., 2017). Ray
is a privacy data set that involves the privacy of a partner company (the Ant Group) and cannot be made
public for the time being.

Code availability  The code involves the privacy of a partner company (the Ant Group) and cannot be made
public for the time being.

Declarations 

Ethics approval  This article does not contain any studies with human participants or animals performed by
any of the authors.

Consent to participate  Not applicable

Consent for publication  The results/data/figures in this manuscript have not been published elsewhere, nor
are they under consideration (from you or one of your contributing authors) by another publisher.

Competing interest  The authors declare no competing interests.

844	 Software Quality Journal (2024) 32:821–845

1 3

References

Ali, A., Ali, A., Abaluof, H., et al. (2023). Moisture detection in tree trunks in semiarid lands using low-
cost non-invasive capacitive sensors with statistical based anomaly detection approach. Sensors, 23(4),
21–31.

Apache Hadoop. (2023). Apache Hadoop Home. http://​hadoop.​apache.​org/
Apache Spark. (2023). What is Apache Spark? http://​spark.​apache.​org/
Bertero, C., Roy, M., Sauvanaud, C., et al. (2017). Experience report: Log mining using natural language

processing and application to anomaly detection. In: Proceedings of the 28th IEEE International Sym-
posium on Software Reliability Engineering, pp 351–360.

Breier, J., & Branišová, J. (2015). Anomaly detection from log files using data mining techniques. In: Pro-
ceedings of the 2015 Information Science and Applications, pp 449–457.

Chen, L., Dang, Q., Chen, M., et al. (2023). BertHTLG: Graph-based microservice anomaly detection
through sentence-Bert enhancement. In: Proceedings of the 2023 International Conference on Web
Information Systems and Applications, pp 427–439.

Devlin, J., Chang, M. W., Lee, K., et al. (2019). BERT: Pre-training of deep bidirectional transformers for
language understanding. In: Proceedings of the 2019 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics, pp 4171–4186.

Du, M., Li, F., Zheng, G., et al. (2017). DeepLog: Anomaly detection and diagnosis from system logs
through deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, pp 1285–1298.

Farshchi, M., Schneider, J. G., Weber, I., et al. (2015). Experience report: Anomaly detection of cloud appli-
cation operations using log and cloud metric correlation analysis. In: Proceedings of the 26th IEEE
International Symposium on Software Reliability Engineering, pp 24–34.

Fu, Y., Yan, M., Xu, Z., et al. (2023). An empirical study of the impact of log parsers on the performance of
log-based anomaly detection. Empirical Software Engineering, 28(1), 1–39.

Gómez, Á. L. P., Maimó, L. F., Celdrán, A. H., et al. (2023). SUSAN: A deep learning based anomaly
detection framework for sustainable industry. Sustainable Computing: Informatics and Systems, 37(3),
834–842.

Haoming, L., & Yuguo, L. (2020). LogSpy: System log anomaly detection for distributed systems. In: Pro-
ceedings of the 2020 International Conference on Artificial Intelligence and Computer Engineering,
pp 347–352.

He, P., Zhu, J., Zheng, Z., et al. (2017). Drain: An online log parsing approach with fixed depth tree. In:
Proceedings of the 2017 IEEE International Conference on Web Services, pp 33–40.

He, S., Lin, Q., Lou, J. G., et al. (2018). Identifying impactful service system problems via log analysis. In:
Proceedings of the 26th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, pp 60–70.

Hidayati, J., Vamelia, R., Hammami, J., et al. (2023). Transparent distribution system design of halal beef
supply chain. Uncertain Supply Chain Management, 11(1), 31–40.

Hogan, A., Blomqvist, E., Cochez, M., et al. (2021). Knowledge graphs. ACM Computing Surveys, 54(4),
1–37.

Hristov, M., Nenova, M., Iliev, G., et al. (2021). Integration of Splunk enterprise SIEM for DDoS attack
detection in IoT. In: Proceedings of the 20th IEEE International Symposium on Network Computing
and Applications, pp 1–5.

Huang, S., Liu, Y., Fung, C., et al. (2023). Improving log-based anomaly detection by pre-training hierarchi-
cal transformers. IEEE Transactions on Computers, 72(9), 2656–2667.

IBM. (2023). Ariel Query Language Guide. https://​www.​ibm.​com/​docs/​en/​SS42VS_​7.4/​pdf/b_​qradar_​aql.​
pdf

Le, V. H., & Zhang, H. (2022). Log-based anomaly detection with deep learning: How far are we? In: Pro-
ceedings of the 44th international conference on software engineering, pp 1356–1367.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Liang, E., Nishihara, R., Mika, S., et al. (2023). Ray. https://​github.​com/​ray-​proje​ct/​ray
Lou, J. G., Fu, Q., Yang, S., et al. (2010). Mining invariants from console logs for system problem detection.

In: Proceedings of the 2010 USENIX Annual Technical Conference, pp 24–37.
Lu, S., Wei, X., Li, Y., et al. (2018). Detecting anomaly in big data system logs using convolutional neural

network. In: Proceedings of the 16th IEEE Intlernational Conference on Dependable, Autonomic and
Secure Computing, pp 151–158.

Ma, X., Keung, J., He, P., et al. (2023). A semi-supervised approach for industrial anomaly detection via
self-adaptive clustering. IEEE Transactions on Industrial Informatics, 6(2), 1–12.

http://hadoop.apache.org/
http://spark.apache.org/
https://www.ibm.com/docs/en/SS42VS_7.4/pdf/b_qradar_aql.pdf
https://www.ibm.com/docs/en/SS42VS_7.4/pdf/b_qradar_aql.pdf
https://github.com/ray-project/ray

845Software Quality Journal (2024) 32:821–845	

1 3

Majeed, A., ur Rasool R, Ahmad F, et al. (2019). Near-miss situation based visual analysis of SIEM rules
for real time network security monitoring. Journal of Ambient Intelligence and Humanized Computing,
10(7), 1509–1526.

Meng, W., Liu, Y., Zhu, Y., et al. (2019). LogAnomaly: Unsupervised detection of sequential and quantita-
tive anomalies in unstructured logs. In: Proceedings of the 2019 International Joint Conference on
Artificial Intelligence, pp 4739–4745.

Moritz, P., Nishihara, R., Wang, S., et al. (2018). Ray: A distributed framework for emerging AI applica-
tions. In: Proceedings of the 13th Operating Systems Design and Implementation, pp 561–577.

Nedelkoski, S., Bogatinovski, J., Acker, A., et al. (2020). Self-attentive classification-based anomaly detec-
tion in unstructured logs. In: Proceedings of the 2020 IEEE International Conference on Data Mining,
pp 1196–1201.

Qi, J., Luan, Z., Huang, S., et al. (2023). LogEncoder: Log-based contrastive representation learning for
anomaly detection. IEEE Transactions on Network and Service Management, 20(2), 1378–1391.

Splunk Enterprise. (2023). Search Tutorial-Use the search language. https://​docs.​splunk.​com/​Docum​entat​ion/​
Splunk/​9.1.​1/​Searc​hTuto​rial/​Useth​esear​chlan​guage

Tietz, V., & Annighoefer, B. (2022). A formally defined and formally provable EBNF-based constraint lan-
guage for use in qualifiable software. In: Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings, pp 862–871.

Vinayakumar, R., Soman, K., & Poornachandran, P. (2017). Long short-term memory based operation log
anomaly detection. In: Proceedings of the 2017 International Conference on Advances in Computing,
Communications and Informatics, pp 236–242.

Xu, W., Huang, L., Fox, A., et al. (2009). Detecting large-scale system problems by mining console logs. In:
Proceedings of the 22nd ACM Symposium on Operating Systems Principles, pp 117–132.

Zhang, K., Xu, J., Min, M. R., et al. (2016). Automated it system failure prediction: A deep learning
approach. In: Proceedings of the 2016 IEEE International Conference on Big Data, pp 1291–1300.

Zhang, X., Xu, Y., Lin, Q., et al. (2019). Robust log-based anomaly detection on unstable log data. In: Pro-
ceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp 807–817.

Zhang, Y., & Sivasubramaniam, A. (2007). Failure prediction in IBM BlueGene/L event logs. In: Proceed-
ings of the 7th International Conference on Data Mining, pp 583–588.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

https://docs.splunk.com/Documentation/Splunk/9.1.1/SearchTutorial/Usethesearchlanguage
https://docs.splunk.com/Documentation/Splunk/9.1.1/SearchTutorial/Usethesearchlanguage

	KAD: a knowledge formalization-based anomaly detection approach for distributed systems
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Anomaly detection of distributed systems
	2.2 Motivation

	3 Overview
	3.1 Knowledge extraction
	3.1.1 Log structuring
	3.1.2 Element extraction
	3.1.3 Formal modeling
	3.1.4 Knowledge construction

	3.2 Knowledge parsing
	3.2.1 Template vectorization
	3.2.2 Knowledge storage

	3.3 Log processing
	3.4 Knowledge matching

	4 Evaluation
	4.1 Research questions
	4.2 Experimental design
	4.3 Results and Analysis
	4.3.1 RQ1: Viability
	4.3.2 RQ2: Effectiveness
	4.3.3 RQ3: Efficiency
	4.3.4 RQ4: Robustness

	4.4 Threats to validity

	5 Related work
	6 Conclusion
	References

