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Abstract
Large-scale distributed systems are becoming key engines of the IT industry due to their scalabil-
ity and extensibility. A distributed system often involves numerous complex interactions among 
components, suffering anomalies such as data inconsistencies between components and unantici-
pated delays in response times. Existing anomaly detection techniques, which extract knowledge 
from system logs using either statistical or machine learning techniques, exhibit limitations. Statis-
tical techniques often miss implicit anomalies that are related to complex interactions manifested 
by logs, whereas machine learning techniques lack explainability and they are usually sensitive to 
log variations. In this paper, we propose KAD, a knowledge formalization-based anomaly detec-
tion approach for distributed systems. KAD includes a general knowledge description language 
(KDL), leveraging the general structure of system logs and extended Backus-Naur form (EBNF) 
for complex knowledge extraction. Particularly, the semantic set is constructed based on the bidi-
rectional encoder representation from the transformer (BERT) model to improve the expressive 
capabilities of KDL in knowledge description. In addition, KAD incorporates distributed schedul-
ing computation module to improve the efficiency of anomaly detection processes. Experimental 
results based on two widely used benchmarks show that KAD can accurately describe the knowl-
edge associated with anomalies, with a high F1-score in detecting various anomaly types.

Keywords  Distributed systems · Domain-specific language · Anomaly detection · 
Industrial evidence

1  Introduction

In commercial IT systems, distributed architectures, such as Hadoop  (Apache 
Hadoop,  2023), Spark  (Apache Spark,  2023), and Ray  (Moritz et  al.,  2018; Liang 
et  al.,  2023), have been widely adopted. However, the interactions among numerous 
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components in these systems often lead to anomalies, such as data inconsistencies and 
delayed response times. These anomalies may lead to application crashes or degradation 
of user satisfaction, potentially resulting in significant economic losses  (Haoming & 
Yuguo, 2020).

Anomaly detection traditionally involves two primary techniques: statistical-based 
and learning-based techniques. Statistical-based techniques  (Ali et  al.,  2023) analyze 
the  statistical properties such as averages or standard deviations  from  system logs, 
metrics, code, or traces and then identify some patterns based on these properties as 
features. Finally,  they try to detect anomalies based on the assumption that anomalies 
often deviate from the expected patterns. Learning-based techniques  (Gómez 
et  al.,  2023) leverage machine learning algorithms to identify anomalies. They train a 
model on a dataset that represents normal behaviors, and then use the model to identify 
the anomaly data that deviate significantly from the learned knowledge.

In distributed systems, logs are commonly used for troubleshooting  (Le & 
Zhang,  2022)  since they record system states and critical events at runtime. The hidden 
abundant information in logs offers a good view to analyze system problems. Hence, by 
mining knowledge in a large amount of logs, log-based anomaly detection techniques can 
help to enhance system health, stability, and availability. To obtain the knowledge that 
can be used to detect anomalies from logs, statistical-based anomaly detection techniques 
convert information in logs into a piece of interpretable knowledge based on specific 
language for identifying anomalies within distributed systems. For example,  Majeed 
et  al. (2019) utilize the Ariel Query Language (AQL) to describe knowledge for 
monitoring network activities and identifying potential threats. Similarly,  Hristov et  al. 
(2021) employ the Search Processing Language (SPL) to describe knowledge in Splunk 
Enterprise to detect anomalies. These techniques provide precise and interpretable 
anomaly detection results. However, they may overlook implicit anomalies, those that 
are not directly discernible or fall outside the existing domain knowledge. Conversely, 
learning-based techniques leverage machine learning models, such as support vector 
machines, transformer models, and convolutional neural networks (CNNs), to extract 
knowledge from logs. For example, Nedelkoski et al. (2020) use a transformer model to 
differentiate between normal and abnormal log representations. Lu et  al. (2018) apply 
word embedding and CNNs to encode logs into feature matrices for knowledge mining. 
These techniques can reveal complex knowledge hidden within logs. However, they 
suffer from limited interpretability; the knowledge extracted by these models often lacks 
clear interpretation, making it challenging to comprehend the rationale behind detected 
anomalies. Additionally, these techniques may fail to capture the fundamental nature of  
distributed systems due to the absence of domain-specific knowledge. Moreover, learning-
based models are inherently sensitive to the quality of input data: noisy data can lead to 
erroneous knowledge extraction.

In summary, both statistical-based and learning-based anomaly detection techniques 
offer unique strengths but are constrained by significant limitations. This paper seeks to 
introduce a more robust, interpretable, and high-quality knowledge extraction technique 
for distributed systems, addressing the limitations of existing techniques. Specifically, 
we identify three major challenges: 

1.	 The absence of a general knowledge description language: Existing techniques often 
rely on domain-specific knowledge description languages such as Ariel Query Language 
(AQL) (IBM, 2023) for IBM QRadar and Search Processing Language (SPL) (Splunk 
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Enterprise, 2023) for Splunk, which limits their applicability. Therefore, a general 
knowledge description language is desired to describe complex knowledge for various 
distributed systems.

2.	 The lack of a general approach for knowledge extraction: Existing techniques typi-
cally use system-specific knowledge description languages and extraction methods, 
requiring a specific knowledge extraction approach for each system.

3.	 The difficulty in capturing knowledge changes: Existing techniques struggle to cap-
ture knowledge changes due to system updates.

To address these challenges, we propose KAD, a knowledge formalization-based anom-
aly detection approach for distributed systems. KAD introduces a general knowledge 
description language, KDL, to standardize the knowledge and simplify its representa-
tion, thus improving the interpretability. KDL uses the extended Backus-Naur form 
(EBNF) (Tietz & Annighoefer, 2022) to formalize elements extracted from the general 
log structures, such as timestamps, log templates, and variants. The log template is 
comprised of fixed strings manifesting scheduling actions. The timestamps and vari-
ants describe the relationship between log templates. KDL enhances expressive abili-
ties of the knowledge, and can describe complex knowledge, such as temporal order, 
quantitative relationships, parameter associations, non-associations, logical disjunc-
tions, recursive structures, and so on. Additionally, to improve the robustness of KAD, 
KDL defines the semantic set, which employs the BERT model  (Devlin et  al.,  2019) 
to describe sets of log templates with similar semantic information. It is labeled with 
unique and human-readable strings that capture the semantic information. After obtain-
ing the KDL knowledge, KAD employs a distributed scheduling computation method to 
further improve the efficiency of anomaly detection.

We evaluate KAD by conducting a series of experiments on two benchmark distrib-
uted systems—Ray and Hadoop. The results show that KDL is versatile in extracting 
complex knowledge from various distributed systems. In addition, KAD achieves a high 
F1-score (1 in Hadoop and 0.95 in Ray), and it can capture knowledge changes related 
to system updates.

In summary, this paper presents the following contributions: 

1.	 We propose a general knowledge description language, KDL, for describing complex 
knowledge extracted from distributed logs using the general log structure and EBNF.

2.	 We introduce the semantic set, enhanced by the BERT model, to improve the expressive 
capabilities of KDL.

3.	 We propose KAD, a knowledge formalization-based anomaly detection approach for 
distributed systems, which employs distributed scheduling computation to enhance the 
efficiency of anomaly detection.

4.	 We report on a series of experiments to evaluate the effectiveness, efficiency, and robust-
ness of KAD on Ray and Hadoop distributed systems.

The rest of this paper is organized as follows. Section 2 introduces the background about 
knowledge-based anomaly detection and the motivation of this paper. Section 3 presents 
the KAD framework. Section 4 reports on the experimental evaluation. Related works are 
reviewed in Section  5. Finally, Section  6 concludes the paper and outlines some future 
work directions.
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2 � Background and motivation

In this section, we introduce the anomaly detection of the distributed system and the moti-
vation of this paper.

2.1 � Anomaly detection of distributed systems

A distributed system consists of software components spreading over different computers 
but running as a single entity  (Hidayati et  al.,  2023). It clusters a group of computers 
working together to appear as a single computer to the end user. These machines have a 
shared state, operate concurrently, and can fail independently without affecting the whole 
system’s running status.

In distributed systems, logs play an important role in data replication  (Le & 
Zhang, 2022). Multiple components work together to ensure the high availability of the 
provided services. To enable replication of system activities, a log is generated to record 
the occurrence of every event, which normally includes a timestamp, a template, asso-
ciated parameter values, and other information. The log template is comprised of fixed 
strings manifesting some scheduling actions, while the parameter values specify the 
context. For example, the log data “2021-07-14 09:30:48, 800 sservice_based_acces-
sor.cc:392: Subscribing update operations of actor, actor id=cad70dc, job id=0080” 
describes the update of the actor component. The log template of this log is “Subscrib-
ing update operations of actor, actor id=, job id=” and the associated parameter values 
include the values of “actor id” and “job id.”

An anomaly is an unexpected event or observation significantly deviating from the nor-
mal data. It may result in poor system performance such as high CPU consumption and 
high latency. Anomaly detection in a distributed system is typically enacted based on runt-
ime information, such as logs.

Classical statistical-based or learning-based anomaly detection  techniques attempt to 
extract behavioral knowledge of anomalies from system logs (Le & Zhang, 2022). They 
normally first collect logs during execution and obtain some knowledge from these logs 
based on different techniques, such as statistic analysis techniques or machine learning 
techniques. The knowledge is then used to detect anomalies when logs deviate from the 
normal knowledge or match the anomaly knowledge.

2.2 � Motivation

Consider a case in the Ray distributed system, where a simple change in the syntax of a 
log. For instance, the log for reporting node disconnections originally is as follows:

“Node [NodeID] disconnected,”

and it is updated to the following:

“Disconnected: Node [NodeID].”

Despite the change in syntax, the semantic meaning of reporting a node disconnection 
remains the same.
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However, this modification poses some challenges for existing anomaly detection tech-
niques: Statistical-based techniques typically rely on predefined knowledge from logs. In 
this case, a change in the log might not align with the established knowledge, leading to 
the technique missing this anomaly. Learning-based techniques depend on training models 
with historical data, which includes predefined logs. When the log changes, as in this case, 
the model might fail to recognize the new log as it deviates from the “learned” knowledge.

This case highlights a critical challenge in existing anomaly detection techniques: the 
lack of a general and robust technique to detect anomalies in distributed systems. It is valu-
able to construct more effective knowledge that can be used to detect more types of anoma-
lies. Therefore, we propose a knowledge formalization approach for anomaly detection. It 
aims to improve the expressiveness of knowledge and to detect anomalies in evolving dis-
tributed systems.

3 � Overview

KAD aims to effectively, efficiently, and robustly detect anomalies in various distributed 
systems by leveraging knowledge from logs. As illustrated in Fig. 1, KAD comprises four 
parts: 

	 (i)	 Knowledge construction: KAD employs the extended Backus-Naur form (EBNF) to 
establish the general knowledge description language—KDL, and then use KDL to 
extract some knowledge sets based on the experience library provided by distributed 
system experts.

	 (ii)	 Knowledge parsing: The extracted knowledge sets are then transformed into log tem-
plate vectors and knowledge entities based on a knowledge parsing algorithm. Particu-
larly, during the construction of template vectors, the BERT model is used to extract 
the semantic information of log templates to improve the expressive capabilities.

	 (iii)	 Log preprocessing: KAD uses log-monitoring tools (e.g., Elastic Stack) to collect 
and parse the logs obtained from the distributed system. Then, the BERT model is 

Fig. 1   Framework of KAD
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used again to preprocess logs, expanding the log template vectors to improve the 
efficiency of subsequent knowledge matching.

	 (iv)	 Knowledge matching: Finally, the constraint solver is applied to match the structured 
log vectors and the KDL knowledge to generate the anomaly detection report.

In the following parts, each phrase in the KAD approach is introduced, including knowl-
edge construction (Section 3.1), knowledge parsing (Section 3.2), log preprocessing (Sec-
tion 3.3), and knowledge matching (Section 3.4).

3.1 � Knowledge extraction

The knowledge extraction phase is illustrated in Fig. 2. Firstly, we identify the general ele-
ments among logs to obtain a general log structure. Then, elements related to the knowl-
edge are extracted from the general log structure, such as timestamps, log types, log tem-
plates, variables, and other information. Next, the knowledge description language (KDL) 
is formally defined through the extended Backus-Naur form (EBNF). Finally, the experi-
ence library is used to generate the knowledge sets based on KDL.

3.1.1 � Log structuring

The log structuring phase is fundamental to the knowledge extraction phase in the KAD 
framework, transforming unstructured or semi-structured logs into the format conducive to 
analysis.

Logs are typically unstructured or semi-structured text produced by logging statements 
in the source code, which poses a significant challenge in anomaly detection distributed 
systems due to their varied structures. The purpose of log structuring is to convert these 
logs into a structured format, thereby facilitating effective analysis. In our study, Drain (He 
et  al.,  2017) is used for the log transformation since it is a widely adopted log parsing 
technique that employs a fixed depth tree (FDT) and a clustering algorithm to automate the 
structuring of log data.

As illustrated in Fig. 3, a typical log comprises two main components: the log header 
and the log contents. The log header, determined by the logging framework (e.g., SLF4J), 
usually includes elements such as the timestamp (e.g., “2021-07-14 09:30:48800”), 
log type (e.g., “D”), process ID (e.g., “352591”), thread ID (e.g., “352767”), and output 
module (e.g., “service_based_accessor.cc:392”). The log content, written by developers, 
describes specific system runtime events. It generally consists of a log template, which is a 
fixed string indicating runtime events (e.g., “Subscribing update operations of actor, actor 
id=, job id=”), and variable values that provide context to these events (e.g., “Cda70dc-
75c0f18c9c2bff494f9280080” and “f9280080”).

Fig. 2   Knowledge extraction
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To facilitate the construction of KDL, it is imperative to establish a general log structure 
GLS , as defined in Definition 1.

Definition 1  (General Log Structure) Let GLS denote the framework that standardizes the 
structure of the log provided by ⟨T , LT ,V ,O⟩ , where T denotes the timestamp, LT denotes 
the log template, V denotes the sets of variable values within LT, and O denotes the other 
information in the log, such as log type and output module.

3.1.2 � Element extraction

Element extraction is a critical phase that describes the knowledge extracted from distrib-
uted system logs. This phase focuses on identifying specific elements within the general 
log structure GLS , each playing a pivotal role in the knowledge representation.

The extraction process isolates three primary elements from GLS : log template LT  , 
timestamp T  , and variable values V  . 

1.	 LT  involves the system runtime activities, serving as a guide to locate and interpret 
logs within distributed systems. This element is crucial for understanding the activity 
dynamics of the system and detecting anomalies.

2.	 T  represents the temporal information of the log, recording the timing of each event 
in the system. It is instrumental in establishing timing constraints ConsT  between 
LT  s, thus enabling the understanding of log sequences and timings.

Fig. 3   Example of log structuring
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3.	 V represents the variable values within LT s, denoting variable constraints ConsV such as 
equality and inclusion. V  is essential for capturing the dynamic changes in logs, which 
can indicate deviations from normal system activities.

Logs in distributed systems are subject to continuous changes due to system updates, thus 
it is essential to regularly update the corresponding log templates to improve the expres-
sive capabilities of the knowledge. Additionally, experts may not be familiar with all log 
templates in each system; thus, a method to manage these templates effectively and reduce 
reliance on domain-specific knowledge is necessary.

To address these challenges, we introduce the concept of a “Semantic Set” SS , as 
defined in Definition 2. The semantic set is designed to encapsulate a group of log tem-
plates that collectively express a specific system runtime activity.

Definition 2  (Semantic Set) Let SS denote the set of log templates that reveals a common 
system activity provided by ⟨LT ,Cons⟩ , where LT is the same as defined in Difination 1. 
Cons denotes the constraints within LT  s, Cons ∈ {ConsT ,ConsV ,ConsL}, in which ConsT 
denotes the timing constraint, ConsV denotes the variable constraint, and ConsL denotes the 
logic constraint (such as negation, conjunction, or recursion).

SS allows for a more nuanced and flexible representation of system activities, signifi-
cantly enhancing the expressive capabilities of the extracted knowledge.

3.1.3 � Formal modeling

The formal modeling phase is a critical step in the process of knowledge extraction, in 
which we define the general knowledge description language KDL based on the elements 
extracted from the general log structure GLS.

The knowledge description language KDL is a general language containing various 
components crucial for knowledge representation, as defined in Definition 3.

Definition 3  (Knowledge Description Language) Let KDL denote the general knowledge 
description language provided by ⟨SS,Cons,Ann,Know⟩ , where SS and Cons are the same 
as defined in Definition 2, Ann denotes annotations , and Know is the association of SS, 
Cons, and Ann.

The formal modeling of KDL is implemented using the extended Backus-Naur form 
(EBNF) (Tietz & Annighoefer, 2022), which is a family of notations, any of which can be 
used to express context-free grammar, and can be used to make a formal description of a 
formal language such as a computer programming language.

The formalization of KDL employs the extended Backus-Naur form (EBNF), a sophisti-
cated notation known for its capability to express context-free grammars. EBNF’s flexibil-
ity and precision make it an suitable tool for crafting a formal description of complex lan-
guages, including those used in computer programming. The formalization of KDL using 
EBNF can help to create a structured and general language for knowledge description. The 
EBNF grammar for KDL is illustrated in Fig. 4. 
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1.	 Knowledge: The knowledge of “anomaly” is comprised of optional annotations “anom-
alyAnnotation” and a sequence of log templates “sequences.” The “anomalyAnnota-
tion” includes a specific tag “anomalyAnnotaionTag” and a  “paramList” to record the 
information of variables (optional). The “sequences” is a combination of semantic sets 
“semantics” and their corresponding constraints “constraint.”

2.	 Annotation: KDL provides an annotation functionality to facilitate the presentation of 
knowledge. Particularly, the annotations added by system experts using KDL are more 
understandable. This includes knowledge annotations “anomalyAnnotation,” template 
annotations “templateAnnotation,” and concealable notes “COMMENT” and “LINE_
COMMENT.” Furthermore, KDL contains the custom operators for performing specific 
operations, thereby improving its ability to describe complex knowledge.

3.	 Constraint: KDL defines three types of constraints: 

	 (i)	 Timing constraint denotes the sequential order of objects (such as log templates 
and semantic sets). “ a =⟩b ” indicates a precedes b, and “ a⟨= b ” denotes the 
reverse, where a and b are the objects.

Fig. 4   EBNF grammar of KDL
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	 (ii)	 Variable constraint denotes variable relationships between objects. “ −⟩string−⟩ ” 
indicates that the left object precedes the right, with “string” represent-
ing the variable constraint. For example, “left.getAttribute(actorId)=right.
getAttribute(actorId)” indicates identical actor IDs in both objects. 
“ ⟨−string⟨− ” represents the opposite arrangement.

	 (iii)	 Logic constraint contains non-constraint “!”, or-constraint “||” and “|”, and 
recursive constraints “recursionPrefix.” The non-constraint indicates the 
absence of an object, the or-constraint indicates the occurrence of at least one 
of the objects, and the recursive constraint denotes multiple occurrences of an 
object under specific recursive conditions.

4.	 Semantic set: The semantic set “semantics” refers to a collection of templates “tem-
plate” that reflect similar activities. Each template within “semantics” may contain 
annotations ‘‘TemplateAnnotation”, a type specifier “type”, the content of the log tem-
plate “string”, and optionally, associated constraints. These elements collectively define 
the semantic set, providing a structured and detailed representation of log activities.

Figure  5 presents an example of knowledge representation. The anomaly is a kind of 
request frequent, recorded by tags = “Request frequent”; the root cause of the anomaly 
is that the number of access requests exceeds 100 times within 60  seconds, presented 
by the  sentences  @RootCause (Label = “Access request”),  getCount(@RootCause 
> 100), and timeDiff(@RootCause, @RootCause, s) < 60. Consequently, this anomaly 
lead to the failure of request connection, recorded by  @SemanticSet (Label = “Con-
nection failed”). The annotations “@Anomaly,” “@RootCause,” and “@SemanticSet” 
serve as contextual markers in the knowledge representation. The custom operators 
“getCount(@RootCause)” and “timeDiff(@RootCause, @RootCause, s)” describe com-
plex constraints within the knowledge. These operators can help to express the com-
plex relationships, enabling a more comprehensive and flexible representation of the 
knowledge from various domains. The semantic sets in Fig. 5 are detailed in Fig. 6. The 
set labeled “Access request” includes two log templates that describe web request fail-
ures, connected by the logical “||” constraint. Additionally, the set labeled “Connection 
failed” comprises a single log template that characterizes a failed connection request. 
These semantic sets can help to encapsulate complex system activities within a struc-
tured and interpretable format.

3.1.4 � Knowledge construction

The knowledge construction phase leverages the experience library, a repository con-
taining detailed records and analyses of anomalies observed during system operations. 

Fig. 5   Example of KDL knowledge
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This library serves as an important resource for the generation of knowledge for anomaly 
detection. Firstly, anomalies recorded in the experience library are systematically catego-
rized based on their types, which can help to understand the nature and characteristics of 
different anomalies. Secondly, log templates and their associated constraints are extracted 
from the experience library. For example, a log template denoted as LTA will always be 
followed by another log template denoted as LTB , within a predefined time frame. This 
sequence can help to understand and predict the occurrence of anomalies. Thirdly, KDL 
is employed to generate knowledge that encapsulates these log templates, constraints, and 
other relevant information, including contextual annotations. This step transforms raw 
data into structured, interpretable knowledge. Additionally, constraints and annotations in 
the knowledge can be fine-tuned to optimize the accuracy of knowledge. Finally, the KDL 
knowledge needs to be validated using historical logs, which can help to ensure the reli-
ability of the knowledge.

3.2 � Knowledge parsing

After obtaining the KDL knowledge, KAD compiles them for further knowledge matching. 
Specifically, each log template in the knowledge is converted into log template vectors contain-
ing semantic information, and the KDL knowledge is converted into a directed acrylic graph. 
Knowledge parsing consists of two phases: template vectorization and knowledge storage.

3.2.1 � Template vectorization

For log templates contained in the KDL knowledge, KAD converts them into log template vec-
tors using the BERT model to save their semantic information, as shown in Fig. 7: Specifi-
cally, the sentences of each log template are used as inputs for the BERT model, yielding the 
vector for each word; then, these vectors are passed through a pooling layer; finally, the log tem-
plate vector (denoted by LTV ) is created for each log template LT , as defined in Definition 4.

Definition 4  (Log template vector) Let LTV  denote the log template with its correspond-
ing semantic information provided by ⟨LT , SI⟩ , where LT is the same as defined in Defini-
tion 1, and SI denotes the corresponding semantic information (e.g.,  the output vector of 
BERT) of LT.

Fig. 6   Example of semantic sets
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3.2.2 � Knowledge storage

In order to improve the efficiency of subsequent processing, we used the knowledge 
graphs (Hogan et al., 2021) to store the knowledge, in which each KDL knowledge is trans-
formed into a directed acyclic graph (DAG). This transformation employs a depth-first 
traversal algorithm, ensuring that the knowledge is stored in an organized and accessible 
manner. The use of the DAG structure facilitates the efficient representation of the com-
plex relationships and dependencies inherent in the knowledge. This structure not only aids 
in the quick retrieval and processing of knowledge but also supports the complex analysis 
required for anomaly detection in distributed systems. The DAG representation of knowl-
edge is defined in Definition 5.

Definition 5  (DAG knowledge) Let GR denote the knowledge represented as DAGs pro-
vided by ⟨N,E⟩ , where N denotes the set of log template vectors LTV  s, as defined in Defi-
nition 4,and E denotes the set of constraints among N, E = ⟨LTVi,Cons, LTVj⟩ , LTVi ∈ N , 
LTVj ∈ N , and LTVi ≠ LTVi , and Cons is the same defined in Definition 3.

Algorithm 1   The algorithm of knowledge parsing

Algorithm  1 shows the process of knowledge parsing. Each KDL knowledge, repre-
sented as Know , is transformed into an abstract syntax tree AST on lines 2–3. Then, the 

Fig. 7   Vector representation
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AST is traversed using a depth-first traversal algorithm. If the child AST childAST con-
tains a log template LT  , the BERT model is employed to extract the corresponding seman-
tic information, producing log template vector LTV  , which is added to node N on lines 
5–10. If childAST contains a constraint Cons , the childAST is traversed to identify tem-
plates linked to this constraint. These templates, along with the constraint, are subsequently 
added to the edges E of the DAG on lines 11–19. By iterating through the above steps, the 
knowledge sets GR and the log template vectors LTV  s are obtained.

3.3 � Log processing

The log processing phase is illustrated in Fig.  8. Firstly, KAD employs log-monitoring 
tools, such as Elastic Stack, to collect logs from distributed systems. Then, the unstruc-
tured or semi-structured logs are transformed into structured logs based on Drain  (He 
et al., 2017), a log parsing tool that is widely used in log-based anomaly detection. Finally, 
the BERT model  (Devlin et al., 2019) is employed to extract semantic information from 
each structured log, to obtain the structured log vectors, as defined in Definition 6. 3.2

Definition 6  (Structured log vectors) Let SLV  denote the structured log provided by 
⟨T ,LTV ,V ,O⟩, where T  , V  , and O are the same defined in Definition 1, and LTV  is the 
same defined in Definition 4.

3.4 � Knowledge matching

After log processing, the KAD can conduct knowledge matching to select a set of logs that 
match the identified KDL knowledge through a proposed constraint solver, as these logs 
can reveal system anomalies.

To improve the efficiency of knowledge matching, a fine-grained distributed task sched-
uling method is proposed. This method incorporates comprehensive failover and restart 
mechanisms and can help to effectively manage task allocation and minimize redundant 
computations. Specifically, we defined the matching of structured template vectors with 
KDL knowledge as a distributed computation task, as defined in Definition 7.

Definition 7  (Distributed computation task) Let DCtask denote the distributed computa-
tion task provided by ⟨GR, SLV ,Pro⟩, where GR is the knowledge defined in Definition 5, 
SLV  denotes the structured log vectors defined in Definition 6, and Pro denotes the pro-
gress of the DCtask provided by ⟨Comp,Flag,Num, Threshold⟩ , Comp denotes the set of 
logs that have completed the DCtask , Flag denotes the computation completion label of 
the DCtask , Num denotes the number of DCtask fault occurrences, and Threshold denotes 
the the fault occurrence threshold.

During knowledge matching, KAD executes all these distributed computation tasks in 
parallel. The progress of each distributed computation task is tracked, including completed 
matched vectors, completion labels, the number of fault occurrences, and the fault occur-
rence threshold. If a computation task fails, it is reassigned to a new computation node: 
if the number of fault occurrences exceeds the fault occurrence threshold, the task is dis-
carded; otherwise, the computation task is restarted, and it reads the corresponding knowl-
edge, the set of vectors to be matched, and the progress. 
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Algorithm 2   The algorithm of knowledge matching

Algorithm  2 details the process of knowledge matching. Firstly, the algorithm ini-
tializes a queue for distributed computation tasks, DCque , which is set to empty on 
line 1. For each knowledge Know within the knowledge sets GR , a corresponding dis-
tributed computation task DCtask is generated and added to DCque on lines 2–4. Sec-
ondly, each DCtask in DCque is iterative processed on lines 5–12: if the task is new, 
initialize its progress indicators DCtask.Pro and prepare for constraint resolution; else, 
the task is retrieved and processed from the current task progress DCtask.Pro . Thirdly, 
the DCtask is processed on a distributed computation node node, generating constraints 
Cons , and solving these constraints against the structured log vectors SLV  to obtain log 
sequences Seq on lines 13–24: If Seq exists, indicating successful task completion, the 
algorithm flags DCtask.Pro.Flag as true and returns Seq ; if the task fails, increment the 
failure count DCtask.Pro.Num ; if DCtask.Pro.Num exceeds the predetermined thresh-
old DCtask.Pro.Threshold , the task is removed from the queue; otherwise, the task is 

Fig. 8   Log processing
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reinserted into DCque for reprocessing. Finally, the knowledge-matching log sequences 
Seq is obtained.

4 � Evaluation

To evaluate the viability of KDL, and the effectiveness, efficiency, and robustness of 
KAD, a comparative analysis was conducted, comparing four existing anomaly detec-
tion techniques on two distributed system benchmarks.

4.1 � Research questions

The following research questions are explored:

•	 RQ1: Is KDL viable for different distributed systems? The viability is evaluated on 
two distributed systems—Hadoop and Ray.

•	 RQ2: How effective is KAD in distributed system anomaly detection? The effectiveness 
is evaluated on the two distributed systems compared with four baseline techniques.

•	 RQ3: How efficient is KAD in distributed system anomaly detection? The efficiency is 
evaluated on the two distributed systems compared with four baseline techniques.

•	 RQ4: How robust is KAD to the variation of datasets? The robustness is evaluated on 
the two distributed systems compared with four baseline techniques, in which datasets 
of the two systems are modified to generate four variants.

4.2 � Experimental design

Datasets The evaluation was conducted on two typical distributed systems: Hadoop and 
Ray. Hadoop is a framework used for processing large data sets across computer clus-
ters, and Ray is a versatile distributed computing framework aiming to provide a general 
programming interface for distributed systems. The evaluation was performed using two 
datasets:

•	 HDFS is a public dataset provided by Du et  al. (2017). It was generated by running 
map-reduce tasks on over 200 Amazon EC2 nodes. The dataset consists of 11,175,629 
logs and 16,838 labeled anomaly samples, which were provided by domain experts.

•	 Ray is a production dataset obtained through the Ant Group. Due to confidentiality 
concerns, obtaining production logs from companies is often challenging. However, we 
were fortunate to obtain a dataset of Ray logs from an industrial environment with the 
assistance of domain experts at Ant Group. This dataset includes 4,308,687 logs and 
215,679 labeled anomaly samples, which were provided by domain experts.

We begin by sorting all datasets in chronological order and then use the method described 
in (Lou et al., 2010) to generate log sequences. A log sequence was considered as an anom-
aly if it contained any anomaly logs. These sequences are then shuffled. The data was par-
titioned into three segments: 60% for model training, 20% for verification, and 20% for 
testing. Notably, KAD does not necessitate model training; therefore, no training dataset 
was required. In contrast, techniques that require training had all anomalies removed from 
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their dataset to focus on learning normal patterns and detecting anomalies. The parameters 
for all techniques were meticulously fine-tuned to ensure optimal performance.

To mitigate the influence of random variations, each technique was executed 30 times. 
The average results of these repetitions were then reported.

Baseline techniques  We use four state-of-the-art anomaly detection techniques as the 
baselines: DeepLog, LogAnomaly, Logsy, and CNN. These techniques follow a similar pro-
cedure: first extracting a log event from each log, and then performing anomaly detection 
on the log event sequence.

•	 DeepLog  (Du et al., 2017): This is the first work to employ long short-term memory 
(LSTM)  (LeCun et  al.,  2015) for log anomaly detection. It is also the first work to 
detect anomalies in a forecasting-based fashion, which is widely used in many follow-
up studies.

•	 LogAnomaly (Meng et al., 2019): To further consider the semantic information of logs, 
LogAnomaly is proposed. Specifically, they proposed template2Vec to represent the 
vector of words in log events by considering the synonyms and antonyms therein. Simi-
larly, LogAnomaly adopts forecasting-based anomaly detection with an LSTM model.

•	 Logsy  (Nedelkoski et  al.,  2020): This is the first work utilizing the Transformer to 
detect anomalies in logs. Specifically, Logsy is a classification-based method to learn 
log representations in a way to better distinguish between normal data from the system 
and abnormal samples from auxiliary log datasets. The auxiliary datasets help learn a 
better representation of the normal data while regularizing against overfitting.

•	 CNN  (Lu et al., 2018): This is the first work to explore the effectiveness of convolu-
tional neural networks (CNNs) in this field. This technique involved constructing 
log event sequences via identifier-based partitioning and introducing logkey2vec for 
embedding, which facilitates the convolution calculations needed for a CNN. They 
applied various convolutional layers, concatenating their outputs for input into a fully 
connected layer to generate predictions.

Metrics  We use the commonly used precision, recall, and F1-score to evaluate the effec-
tiveness of anomaly detection. Let TP and FN denote the number of anomalous samples 
that are correctly and incorrectly predicted, respectively, and TN and FP denote the num-
ber of normal samples that are correctly and incorrectly predicted, respectively. The met-
rics can be calculated as Eqs. (1)–(3).

•	 Precision measures the percentage of anomalous data out of all data identified as 
anomalies. 

•	 Recall measures the percentage of the anomalous data that are correctly identified as 
anomalies. 

•	 F1-score is the harmonic mean of precision and recall. 

(1)precision =
TP

TP + FP

(2)recall =
TP

TP + FN
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4.3 � Results and Analysis

4.3.1 � RQ1: Viability

Table 1 shows the KDL knowledge in datasets. Table 1 presents an overview of the KDL 
knowledge extracted from two datasets—Hadoop and Ray, including the dataset, knowl-
edge ID, anomaly description, knowledge annotation, anomaly root cause, and symp-
tom. Note that each entry in the table represents a knowledge.

Table 1 details a total of 28 instances of KDL knowledge. Among them, ten are associ-
ated with the Hadoop dataset, while the remaining 18 are associated with the Ray data-
set. Fifty percent of the knowledge reveals functional anomalies in distributed systems. 
For example, entry 2 describes anomalies occurring during system interactions; entries 4 
and 14 describe anomalies related to logical design and coding within the system’s inter-
nal architecture; and entries 6–9, 21–22, and 24–28 describe anomalies related to system 
configuration. The other 50% of the knowledge describes non-functional anomalies. For 
example, entries 5, 11–12, 15–16, 20, and 23 describe performance-related anomalies, and 
entries 1, 3, 10, 13, and 17–19 describe communication anomalies within the systems.

Except for entries 5 and 28, all the other knowledge employs semantic sets for their 
descriptions. For example, entry 1 utilizes the semantic sets “HeartbeatLost” and “Task-
Fail” to detail the root cause and symptom of the anomaly “KilledTaskRun,” respectively.

In summary, KDL serves to define functional and non-functional anomalies in distrib-
uted systems. It effectively enhances the expressiveness of the knowledge, reducing the 
dependency on domain-specific expertise, primarily through the semantic sets.

4.3.2 � RQ2: Effectiveness

Table 2 shows the effectiveness evaluation results with the two datasets, in which values in 
bold indicate the best score for precision, recall, and F1-score. KAD demonstrates high pre-
cision (1 in HDFS, 1 in Ray), recall (1 in HDFS, 0.9 in Ray), and F1-score (1 in HDFS, 0.95 
in Ray) across all datasets. KAD has a number of knowledge available for anomaly detec-
tion, contributing to its high precision (1 on two datasets). However, the recall of KAD on 
Ray (0.9) is slightly lower compared to HDFS (1) due to an anomaly (“raylet timeout due to 
insufficient node CPU resources”) that is not covered by the existing knowledge in Table 1.

KAD outperforms four other log-based anomaly detection techniques (DeepLog, LogA-
nomaly, Logsy, and CNN). On average, KAD achieves an improvement of 4.44% in pre-
cision, 8.4% in recall, and 6.38% in F1-score in HDFS, and an average improvement of 
63.27% in precision, 80% in recall, and 78.4% in F1-score in Ray. This is because that 
KAD can detect not only functional anomalies but also non-functional anomalies that are 
rarely identified by other baseline techniques. For example, anomalies represented by entry 
3 in HDFS and entries 12 and 13 in Ray, which go undetected by baseline methods, are 
detected by KAD.

Furthermore, we observe that the industrial dataset Ray poses more challenges to the 
four baseline techniques. This is because the logs and anomalies in Ray are more com-
plex compared to the public dataset HDFS. However, KAD leverages domain knowledge 

(3)F1 = 2 ×
precision × recall

precision + recall
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to detect these anomalies, which enhances effectiveness and interpretability while dealing 
with various complex anomalies in Ray.

In summary, KAD is observed to be highly effective in detecting anomalies within dif-
ferent datasets compared with the four baselines.

4.3.3 � RQ3: Efficiency

Table  3 presents the training and testing times for different techniques in the two data-
sets, in which values in bold indicate the minimum time required to train and test.

A notable observation is that KAD, unlike the other baseline techniques, necessitates no 
time for the training phase. This is because KAD’s design philosophy eschews the model 
training process. The omission of the model training phase can help to reduce the need for 
substantial computational resources and time investment. Consequently, KAD effectively 
reduces the time and resource overhead associated with model training compared with 
the four baseline techniques. However, the construction of knowledge within KAD incurs 
some time overhead which depends on the expert’s familiarity with the system. Specifi-
cally, the overhead is mainly spent on knowledge extraction and representation. For experts 
who are familiar with the system, their prior knowledge helps them to identify anomalous 
behaviors, thus significantly reducing the time of the knowledge construction process; oth-
erwise, they have to take some time to comprehend the system’s behavior and logs.

Considering the testing process, KAD is faster than the four baseline techniques, as it 
used log processing (Section 3.3) and the distributed computation methods during knowl-
edge matching (Section 3.4). Specifically, KAD exhibits an on-average 70.73% decrease 
in testing time compared to the four baseline techniques for the HDFS dataset and an on-
average 74.42% decrease in testing time compared to the four baseline techniques on the 
Ray dataset. This is because KAD employs the matching task to multiple compute nodes 

Table 2   Effectiveness of different techniques in different datasets

Methods HDFS Ray

Precision Recall F1-score Precision Recall F1-score

DeepLog 0.96 0.93 0.94 0.64 0.33 0.44
LogAnomaly 0.97 0.9 0.95 0.45 0.67 0.54
Logsy 0.95 0.87 0.9 0.62 0.5 0.55
CNN 0.95 0.99 0.97 0.74 0.5 0.6
KAD 1 1 1 1 0.9 0.95

Table 3   Training and testing times for different techniques

Methods HDFS Ray

Training (min) Testing (s) Training (min) Testing (s)

DeepLog 37.8 32 45.6 47
LogAnomaly 42.3 44 51.2 55
Logsy 25.6 25 36.7 37
CNN 32.6 22 40.1 33
KAD 0  9 0 11
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in parallel, which can increase the speed of testing. Thus, once the knowledge is obtained, 
KAD can detect anomalies in a shorter time compared to the four baseline techniques.

4.3.4 � RQ4: Robustness

To assess the robustness of the selected methods, i.e., their effectiveness in the variation of 
datasets, additional logs are introduced into the original test set. These additions were made 
at proportions of 5% and 10%, resulting in the creation of four new test sets. We follow 
(Zhang et al., 2019) to synthesize new logs. Specifically, given a randomly sampled log event 
sequence in the testing data, we apply one of the following four noise injection strategies: ran-
domly injecting a few pseudo log events (generated by trivial word addition/removal or syno-
nym replacement) or deleting/shuffling/duplicating a few existing log events in the sequence.

Table 4 presents the effectiveness of the different techniques with the variation of data-
sets, in which values in bold indicate the best score for precision, recall, and F1-score. It 
can be observed that KAD achieves higher precision, recall, and F1-score than the other 
four techniques, across all four datasets. Notably, KAD has relatively stable performance 
across different datasets (with precision still remaining 1, recall ranging between 0.86 and 
0.96, and F1-score ranging between 0.92 and 0.98). This is because the semantic sets in 
KAD can help to capture and adapt to the changes in logs.

In summary, KAD demonstrates higher effectiveness compared with the other baseline 
techniques when applied to the variation of datasets in distributed systems.

4.4 � Threats to validity

One of the threats to the experiment is the accuracy of the knowledge.  Indeed, incorrect 
knowledge may lead to the mismatch between the logs and the knowledge pieces written 
by KDL, and hence lead to wrong anomaly detection. To reduce the threat, we involved 
domain experts for their insights and feedback. In addition, we employed a validation pro-
cess using verification datasets. These datasets served to validate the accuracy and reliabil-
ity of the knowledge, thereby enhancing the reliability of our experimental results.

Another potential threat is the time required for constructing knowledge. Unlike the 
baseline techniques, KAD necessitates a certain degree of domain knowledge. However, 

Table 4   Effectiveness of different techniques in the variation of datasets

Injection ratio Methods HDFS Ray

Precision Recall F1-score Precision Recall F1-score

5% DeepLog 0.67 0.59 0.63 0.28 0.19 0.23
LogAnomaly 0.71 0.62 0.66 0.31 0.21 0.25
Logsy 0.58 0.47 0.52 0.19 0.12 0.15
CNN 0.73 0.65 0.69 0.34 0.29 0.31
KAD 1 0.96 0.98  1 0.89  0.94

10% DeepLog 0.54 0.46 0.50 0.14 0.09 0.11
LogAnomaly 0.6 0.51 0.55 0.19 0.13 0.15
Logsy 0.39 0.24 0.30 0.08 0.05 0.06
CNN 0.61 0.49 0.54 0.21 0.19 0.20
KAD 1 0.91 0.95 1 0.86 0.92
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the accuracy and reliability of the knowledge enhance the effectiveness and robustness of 
KAD’s anomaly detection capabilities. This is crucial, especially in the context of indus-
trial applications where accuracy is important. Despite the time required for knowledge 
construction, KAD demonstrates notable efficiency in the testing phase, achieving a preci-
sion rate of 100% in anomaly detection. The results highlights the value of the time and 
effort spent on knowledge construction.

The validity of experimental results may be threatened by the benchmarks. We only use 
datasets collected from HDFS and Ray systems. Although HDFS is a typical open-source 
project and Ray is a large-scale, real-world distributed system, the number of experimental 
systems is still limited.

Finally, the log dataset might have data imbalance issues, such as the number of normal 
logs is greater than the number of anomaly logs. This imbalance in the log dataset may 
lead to a trade-off between precision and recall, in which the model may reduce precision 
to improve recall excessively, or vice versa.

5 � Related work

A significant amount of methods for log anomaly detection has been published in aca-
demia (Fu et al., 2023; Huang et al., 2023; Qi et al., 2023; Ma et al., 2023; Chen et al., 2023). 
The existing approaches are mainly divided into three categories: supervised learning meth-
ods, unsupervised learning methods, and deep learning methods.

Many supervised learning methods are applied to log-based anomaly detection. For 
example,  Zhang and Sivasubramaniam (2007) applied a support vector machine (SVM) 
to detect anomalies using event logs. Farshchi et  al. (2015) proposed a regression-based 
method to detect anomalies using logs in cloud systems.  Breier and Branišová (2015) 
summarized some classical supervised classification models that are applied to log-based 
anomaly detection. However, obtaining system-specific labeled logs is costly and often 
practically infeasible.

Apart from supervised learning approaches, many unsupervised learning approaches have 
been proposed. For example, Lou et al. (2010) proposed invariant mining (IM) to mine the 
linear relationships among log events from log event count vectors. Those log sequences that 
violate the invariant relationship are considered as anomalies. Xu et al. (2009) constructed 
normal space and abnormal space of log event count matrix using principal component anal-
ysis to detect anomalies. He et al. (2018) designed clustering-based methods to identify prob-
lems of online service systems. Unsupervised learning approaches have the advantage that 
they do not require manual labels in the training set. However, they are not robust to variation 
logs, which significantly restricts their applicability in real-world practice.

The recent rise of deep learning methods has given a new solution for log-based anom-
aly detection. Du et al. (2017) used LSTM to forecast the next log event and then compare 
it with the current ground truth to detect anomalies. Vinayakumar et al. (2017) trained a 
stacked LSTM to model the operation logs of normal and anomaly events. However, their 
input of neural networks is the one-hot vector of log events. Thus it cannot cope with 
evolving log data, especially in the scenario when new log events appear.

A few studies have leveraged NLP techniques to analyze log data based on the idea that 
log is actually a natural language sequence. Zhang et al. (2016) proposed to use the LSTM 
model and TF-IDF weight to predict the anomaly logs. Bertero et al. (2017) used word2vec 
and traditional classifiers, like SVM and random forest, to check whether a log event is 
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an anomaly or not. Similarly, Zhang et al. (2019) and Meng et al. (2019) incorporate pre-
trained word vectors for learning a sequence of logs where they train an attention-based 
Bi-LSTM model. However, these approaches only focused on the granularity of log events 
rather than log sequences. They ignored the contextual information in log sequences.

Different from all the above methods, we focus on the formalization of knowledge to 
detect anomalies in distributed systems. Through the anomaly detection framework KAD, 
the interoperability of knowledge between different distributed systems is achieved, which 
further improves the performance and robustness of anomaly detection.

6 � Conclusion

In this paper, we have proposed KAD, a knowledge formalization-based anomaly detec-
tion approach for distributed systems. KAD introduces a general knowledge description 
language—KDL, to describe complex anomaly knowledge in various distributed systems. 
KDL involves the semantic set to improve the expressive capabilities of knowledge. Based 
on KDL, KAD utilizes the BERT model to further improve the robustness of anomaly 
detection. In addition, KAD employs a constraint solver and a distributed scheduling com-
putation method, enhancing the efficiency of anomaly detection. The evaluation of KAD 
on two benchmark distributed systems has shown its high effectiveness in anomaly detec-
tion compared to four baseline techniques. Its capability to detect anomalies across variant 
datasets also demonstrates its robustness.

In the future, we will evaluate KAD on a broader range of distributed systems. Further-
more, we will improve the intellectualization of KAD to generate KDL knowledge more 
time-saving in different distributed systems.
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