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Abstract
Nowadays, intelligent systems and services are getting increasingly popular as they provide 
data-driven solutions to diverse real-world problems, thanks to recent breakthroughs in 
artificial intelligence (AI) and machine learning (ML). However, machine learning meets 
software engineering not only with promising potentials but also with some inherent chal-
lenges. Despite some recent research efforts, we still do not have a clear understanding 
of the challenges of developing ML-based applications and the current industry practices. 
Moreover, it is unclear where software engineering researchers should focus their efforts 
to better support ML application developers. In this paper, we report about a survey that 
aimed to understand the challenges and best practices of ML application development. 
We synthesize the results obtained from 80 practitioners (with diverse skills, experience, 
and application domains) into 17 findings outlining challenges and best practices for ML 
application development. Practitioners involved in the development of ML-based software 
systems can leverage the summarized best practices to improve the quality of their system. 
We hope that the reported challenges will inform the research community about topics that 
need to be investigated to improve the engineering process and the quality of ML-based 
applications.

Keywords Machine learning application development · Testing machine learning 
application · Machine learning best practices

1 Introduction

Artificial intelligence (AI) and machine learning (ML) have emerged as powerful tools  
to develop data-driven solutions for diverse real-world problems. Recent breakthroughs 
in machine learning have greatly inspired the surging adoption of AI capabilities for  
automation by embedding intelligence into modern software and services (Amershi et al.,  
2019). AI-based automated supports now span almost every sphere of human life: busi-
ness, education, healthcare, research, communication, security, assistive technologies, 
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and so on. With the diversity in application domains, the types of problems and the 
characteristics of the data may vary greatly and so the ML algorithms. From an engi-
neering perspective, once an algorithm is implemented, it requires a solid architecture, 
model/data validation, proper monitoring for changes, dedicated release engineering 
strategies, judicious adoption of design patterns and security checks, and thorough user 
experience evaluation and adjustment. A failure to properly address these challenges 
can lead to catastrophic consequences. Classically, we have constructed software sys-
tems in a deductive way, or by writing down the rules that govern the system behaviors 
as program code. With machine learning techniques, we generate such rules in an induc-
tive way from training data. This shift of paradigm induces some challenges that are 
unique to ML application development (Khomh & Antoniol, 2018; Khomh et al., 2018).

Recently, practitioners from leading software companies like Google (Sculley et al.,   
2015)  and Microsoft (Amershi et  al.,  2019)  have been reporting about their experi-
ence building ML-based applications and raising awareness on some of the challenges 
posed by ML application development. Sculley et al. (2015) outlined some challenges 
of ML application development by identifying harmful design patterns that may  
incur excessive maintenance costs. In addition to characterizing the challenges, they 
also made some suggestions on how to deal with those challenges. Amershi et al. (2019) 
presented a survey conducted with developers from Microsoft, showing how AI applica-
tion development aligns with a nine-stage development workflow. They outlined three 
fundamental differences between ML application development and traditional soft-
ware development. They observed that data management for ML applications is quite 
complex compared to other types of software, and that model customization and reuse 
requires some specific skills. They also reported that AI modules are difficult to handle 
compared to traditional software components due to complex inter-component relation-
ships and non-monotonic error behavior. Amershi et  al. (2019) also suggested some 
best practices for software engineering of ML applications, focusing on data and model 
management, and the interfaces between ML components and the overall system.

Although these studies (i.e., Amershi et al. (2019), Sculley et al. (2015)) have provided  
valuable insights on the challenges of developing AI/ML applications at scale in the 
context of large companies, we still do not know how small and medium-sized enter-
prises (SMEs) handle ML application development. It is important to know the chal-
lenges and best practices followed by practitioners building ML applications across dif-
ferent domains and in diverse development settings. This paper aims to fill this gap by 
examining experiences and collect insights from ML practitioners from across the globe 
with varying skills and experiences and from diverse development domains. We present 
a survey of ML development practices and insights obtained from the feedback of 80 
ML practitioners working in the software industry or in academia.

For the survey, we reached out to over 700 AI/ML practitioners by email. We com-
municated our request for participation in the survey using contacts from the profes-
sional network LinkedIn. We selected the participants based on their profile information 
indicating their roles associated with AI/ML in academia or industry. We also collected 
the emails of the participants from GitHub based on their contributions to ML projects. 
We received responses from 80 participants with diverse technical and professional 
background. We analyze the survey data to derive insights and summarize them along 
the phases of the ML development workflow described in Amershi et al. (2019).

In this paper, we make the following contributions:
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– We conduct a comprehensivesurvey involving 80 ML practitioners from diverse back-
grounds to identify the state of practices and challenges in ML application development.

– Our survey covers four key phases of ML application development life cycle, namely 
(1) data collection and preprocessing, (2) feature engineering, (3) model building and 
testing, and (4) integration, deployment, and monitoring, to identify challenges and 
practices from practitioners’ perspective.

– We synthesize our 17 key findings to show how those findings can benefit researchers 
and practitioners in developing ML applications of high quality.

Practitioners embarking on new or ongoing efforts to develop ML-based applications 
can take advantage of the summarized best practices to improve the quality of these 
applications.

The remainder of the paper is organized as follows. Section 2 discusses some basic 
concepts of ML application development, common trends in ML application, their benefits 
and challenges. Section 3 presents the detail of the survey including design, objective, par-
ticipants, data collection and analysis methodologies. Section 4 presents the results of our 
survey. Section 5 discusses these results. In Section 6, we discuss potential threats to our 
methodology and findings. Section 7 presents some prior research related to our study fol-
lowed by the conclusions in Section 8.

2  Background

This section briefly presents some important concepts of ML application development. We 
also briefly compare and contrast traditional software systems and ML-based systems.

2.1  Machine learning applications

Traditional software systems are constructed based on a well-defined set of rules that 
govern the system’s behavior. However, in ML applications, the behavior is controlled by 
rules inferred from the data (Khomh et al., 2018). ML applications as data-driven systems 
have induced a paradigm shift in the software development process, making the develop-
ment, testing, and verification of the ML applications intrinsically harder. A defect in a ML 
application may come from training data, program code, execution environment, or third-
party frameworks. Given the increasing adoption of ML/AI, it is important to understand 
the challenges of ML application development and devise some best practices. Since ML/
AI is an emerging field, we believe that developers who are currently building ML appli-
cations are best positioned to reflect and report about the challenges and pitfalls of ML 
application development. Hence, in this paper, we conduct a survey of ML developers to 
document their experiences and formulate best practices and the challenges of ML applica-
tion development.

2.2  ML application development life cycle

In our study, we consider the ML application development life cycle presented by Amershi 
et al. (2019) as shown in Fig. 1. We study practitioners’ perceptions of the challenges and 
common practices in ML application development. We briefly discuss the phases of the 
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ML application development life cycle below. A more detailed discussion of the ML appli-
cation development life cycle is available in Braiek and Khomh (2020).

2.2.1  Model requirements

In this phase, developers define the requirements for data and algorithms regarding a ML 
problem at hand. They need to identify relevant and representative data. The requirement 
is very important since it has a significant impact on the success of the other phases of 
the ML workflow. Selecting insufficient or biased data will likely lead to inadequate ML 
models. In this phase, developers also often have to mediate between different conflict-
ing goals. For example, ensuring high performance of models while satisfying restric-
tions enforced by regulations governing privacy and security of information (which often 
restrict access to some data). Regulations can also induce requirements on the models. For 
example the General Data Protection Regulation (GDPR) enforces the right to explanation, 
which requires that ML models be explainable and interpretable.

2.2.2  Data collection and preprocessing

ML applications are data-driven and thus the collection and preprocessing of the data is 
important. In this phase, data is collected from internal or external sources (e.g., main-
frame databases, sensors, IoT devices, and software systems) and is presented in differ-
ent formats (e.g., various media types). It can be structured (such as database records) or 
unstructured (such as raw text) and is delivered to ML models either in batch (e.g., discrete 
chunks from mainframe databases and file systems) and/or real-time (e.g., continuous flow 
from IoT devices or Stream REST APIs). Developers often have to leverage complemen-
tary automated tools that support batch and/or real-time data ingestion strategies, to col-
lect data needed for training their ML models. Once data is collected, it often must be 
cleaned to ensure consistency and the absence of redundancies. Common data cleaning 
tasks include: removing invalid or undefined values (i.e., Not-a-Number, Not-Available), 
duplicate rows, and outliers that seems to be too different from the mean value); and uni-
fying the variables’ representations to avoid multiple data formats and mixed numerical 
scales. This preprocessing step is often done using data transformations such as normaliza-
tion, min-max scaling, and data format conversion.

2.2.3  Feature engineering

Feature engineering is the process of extracting informative features from the data that 
ML algorithms can learn from to build ML models. Features need to be able to represent 
the characteristics or patterns in the dataset. Once suitable features are extracted, it is also 

Fig. 1  Phases of ML workflow (adopted from Amershi et al. (2019))
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important to select the best subset of features for the models. This process is called feature 
selection. Extraction and selection of features comprise the feature engineering process. It 
is an essential step in the construction of conventional ML models. However, in the case of 
deep learning models, the features are inferred automatically. In fact, deep learning mod-
els build complex features automatically as a part of their statistical learning process from 
data. For example, conventional computer-vision models require image features, including 
edges, corners, and blobs that can be detected using low-level image processing operations, 
while convolutional neural networks process raw images directly.

2.2.4  Model training and evaluation

During the training phase, a suitable machine learning algorithm is applied to the cleaned 
and prepared dataset. Different model parameters are tuned iteratively to learn the mapping 
between the features and the corresponding labels (in case of supervised learning). Models 
are trained up to a desired level of accuracy. The trained model is evaluated on the valida-
tion dataset, to evaluate the performance. The performance of the model is measured using 
a predefined set of performance metrics such as prediction or classification accuracy.

2.2.5  Integration, deployment, and monitoring

Once a trained and validated model is available, it is integrated into the target applica-
tion for the desired functions. The application is deployed on suitable devices or platforms. 
Deployed ML models need monitoring for performance and potential errors during real-
world executions.

In case of errors or major shifts in the patterns in the data, the models may need to be 
retrained. Thus, the phases of the ML workflow are not linear as it looks like in Fig. 1, 
rather the phases in the ML application development life cycle are iterative.

In our study, we focus on the following four phases of ML workflow except the require-
ments phase namely data collection and preprocessing, feature engineering, model train-
ing and evaluation, model management (covering integration), and model deployment and 
post-deployment monitoring. We do not cover the requirement engineering phase in this 
survey and we plan a future study of its own. This is because requirements engineering 
for ML is quite complex (Belani et  al.,  2019; Vogelsang & Borg,  2019). ML engineer-
ing introduces a paradigm shift compared to conventional software engineering (Wan 
et al., 2019) and so the requirements engineering (Vogelsang & Borg, 2019). ML applica-
tions are likely to have ML and non-ML requirements. ML application are often developed 
as a component interacting with other non-ML components to build large and complex 
systems. Functional and nonfunctional requirements, ML-specific quality trade-offs, and 
ML and non-ML components’ interactions require different considerations. These make 
the requirements engineering of ML application a challenging task. Ishikawa and Yoshioka 
(Ishikawa & Yoshioka, 2019) in their recent study listed requirements engineering as the 
most difficult activity for the development of ML systems. Our survey thus focus on the 
above mentioned four phases of ML workflow and identifies the common practices and 
key challenges in the ML workflow.
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3  Study design

We conducted an online survey to understand the practitioners’ experiences in ML applica-
tion development. We present the overall approach of the study in Fig. 2. We briefly dis-
cuss our study objectives and methodology as follows:

3.1  Objectives of the study

Our key objective in this research is to know the perceptions of the ML practitioners about 
the challenges and state of practices in developing machine learning applications. Using 
an online survey, we ask the developers questions on development activities encompass-
ing different phases of the ML application development life cycle. Our key focus in this 
study is understanding the challenges and best practices in data collection and preprocess-
ing, feature engineering, ML model building, testing, and deployment. As ML applications 
are data-driven, we first focus on data processing and feature engineering. We aim to know 
about the current practices in data processing and feature engineering including source and 
types of data, data preprocessing activities, tools, and frameworks. Then we focus on iden-
tifying the challenges and best practices in model building, testing, deployment, and post-
deployment model maintenance.

3.2  Survey design

To conduct the survey we defined an online questionnaire for the ML practitioners to par-
ticipate anonymously. The first and the third author prepared the initial design of the ques-
tionnaire based on the study of common practices and challenges reported in the existing 
literature (Amershi et al., 2019). The other authors then reviewed the survey questionnaire. 
The questionnaire was then updated based on the comments from all the collaborating 
authors. The questions in the questionnaire cover the development activities of different 
phases of the ML application development life cycle. In addition, we asked the participants 
to report their technical skills, experience in ML and software development, job roles, and 
domains of their ML application development. The survey forms were made available to 
the interested participants through a web page. As part of the survey design, we first con-
ducted a pilot study to collect feedback on the survey questionnaire from ML practitioners. 
We shared our initial survey questionnaire with 10 randomly selected practitioners with 
at least five years of experience in ML application development. We selected participants 
based on their experiences shared on their Linkedin profiles. We received anonymous feed-
back from three (3/10) participants on the questionnaire. All three participants have PhD 

Fig. 2  Schematic diagram of the study
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and hold relatively senior positions (Lead data scientist, Senior ML engineer, ML Research 
Associate) in the industry or in the academic ML research lab. We refined our question-
naire based on their feedback by adding/modifying questions and the types of questions 
(open/closed). The data from the pilot study is used only to improve and finalize the design 
of the questionnaire and is not included in the final survey data. We then communicated 
the updated survey questionnaire to the participants in the final study.

The survey has three parts as shown in Table  2. Part 1 collects some demographic 
information about the participants including the type of organization (e.g., industry or aca-
demia), job roles, skills, experience, and ML domains of expertise. Part 2 of the question-
naire focuses on challenges and practices in the data collection, preprocessing, and fea-
ture engineering. Part 3 of the questionnaire asks the participants about their development 
practices, tools, technologies, and frameworks in ML model building, testin,g and deploy-
ment. All sections contain both open-ended and close-ended questions and also options to 
add comments by the participants where applicable. All the questions collectively meet 
the data requirements necessary to answer the research questions we defined in Table 1 
for this study. In addition, an informed consent form was also available to the participants 
on the online survey page outlining the detailed objectives, privacy and data use policy of 
the study. All queries and concerns of the potential participants were clarified by email 
responses from the authors.

3.3  Data collection

To collect responses from the machine learning practitioners regarding our survey, we 
communicated the online link of the survey to the prospective participants by email along 
with our research objectives and requested their participation. Interested participants sub-
mitted their responses anonymously using the randomly generated participants’ identifica-
tion numbers. At the end of the survey deadline, we downloaded the responses of the par-
ticipants. We used the participants’ IDs in tracking and analyzing the anonymous survey 
data.

3.3.1  Selection of participants

We selected participants based on their self-declared profiles in the professional net-
work LinkedIn. We also selected ML developers from the GitHub user community con-
tributing to the development of ML applications. In both cases, we ensured that they 
are professionally attached to ML/AI application domains. For example, from LinkedIn, 
we selected users either based on their employment in different roles related to ML/
AI application such as AI/ML engineer/developer, data scientist, AI/ML researcher/
scientist, Software engineer, software architect, and PhD or Masters student in ML or 
relevant areas. For GitHub users, on the other hand, we select users from the list of con-
tributors in ML/AI projects. In either case, our focus was to reach out to potential par-
ticipants with expertise and experience in developing ML applications. Once selected, 
we requested the potential participants by email to participate in the online survey. We 
gave the necessary details on the objectives, procedures, and policies of the study and 
asked for their consent to participate voluntarily.

We received responses from practitioners of diverse backgrounds. From about 700 
requested potential participants, 81 respondents completed the survey which is about 
11.57%. To mention, out of the 81 respondents, all responded to Part 1 of the survey, 49 
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participants responded to Part 2 and 44 participants responded to Part 3 of the survey. 
We excluded responses of one participants with partial response to only Part 1 of the 
survey. So at the end, we retained the responses of 80 participants for our analysis.

3.4  Data collection and analysis

Our survey was designed using Google forms and was made available to the respondents 
through a provided web link. We collected the data once the survey period was ended. 
We did some preprocessing of the responses to remove formatting or minor linguistic dif-
ferences for correct analysis and descriptive statistics. To answer the research questions, 
we analyzed the data to compute descriptive statistics. We then used visualization tech-
niques to present the responses to have better insights into the trends, similarity, and con-
trast among different classes of responses. For qualitative analysis of the responses from 
open-ended questions, we applied grounded theory (Stol et  al.,  2016; Charmaz,  2006) 

Table 1  Research questions

Contexts Research questions

ML Trends RQ1: What are the current industry trends in developing ML applications?
Data Processing RQ2: In practitioner’s perception, what are the important quality attributes of ML 

data?
RQ3: What is the state-of-the-practice regarding the data processing tasks, 

techniques and tools for quality assurance of ML data?
RQ4: What are the challenges of ML data cleaning?
RQ5: What are the challenges of data labelling faced by the ML application 

developers?
RQ6: What are the common approaches to validating data labelling by the ML 

practitioners?
Feature Engineering RQ7: How do ML practitioners identify class-imbalance in ML data and how do 

they ensure class-balance?
RQ8: What are the feature engineering techniques and tools commonly used by ML 

developers?
RQ9: What are the common limitations of the existing feature engineering tools and 

techniques?
RQ10: What is the state-of-the-practice in feature quality assessment in ML 

application development?
RQ11: What are the common practices for feature selection in ML application 

development?
Model Building RQ12: What are the practices for ML model implementation commonly adopted by 

the practitioners?
RQ13: What is the state-of-the-practice for ML model implementation testing by 

ML practitioners?
RQ14: What are the common symptoms that practitioners use to detect defects in an 

ML implementation?
RQ15: What are the practitioners perceived challenges of testing ML application?

Model Management RQ16: What are the developers-perceived challenges of testing ML model 
deployment?

RQ17: What are the factors that ML developers commonly focus on during ML 
model management?
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based coding of the responses for categorization of the challenges and practices in differ-
ent phases of the ML development. Here, we assigned qualitative coding for the segments 
of data from the participants’ responses. This aims to make analytic interpretations of the 
concrete statements from the survey participants to compare, categorize, and summarize 
the responses. We named (coded) each distinct segment of data to develop abstract con-
cepts for interpreting that data segment. The coding is to link data to an emerging theory 
that aims to explain the data. We started with initial coding that is open to possible con-
cepts followed by more focused coding to organize or synthesize frequent initial codes. 
We did theoretical integration during focused coding and continue for subsequent steps to 
pinpoint the most salient categories from the data. Two of the authors performed classifica-
tions independently regarding the goals defined by the corresponding research questions. 
The authors resolved the disagreements observed in some cases by meeting in person to 
finalize the data classification. The classified data was further summarized based on ana-
lyzing the distributions and visualization. Based on the analysis, we summarized the prac-
tices and challenges in ML application development as reported by the survey participants.

Table 2  Structure of the survey
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3.5  Privacy and anonymity

To ensure the privacy and anonymity of the participants, we did not collect any personal 
information. The participants were assigned a randomly generated code to use as the user 
ID. We use cookies to keep track of the returning user to assign the same user ID for differ-
ent parts of the online survey. Participants were able to access the privacy and data usage 
policy along with the consent from for voluntary participation. Participants’ data will be 
securely preserved for seven years. Participants were allowed to withdraw themselves and 
request data removal at any stage of their participation.

4  Results

In this section, we present our results from the survey to answer the research questions. We 
also present our insights into the survey responses from the expert practitioners regarding 
the challenges and best practices in ML application development. We present our findings 
in the following subsections:

4.1  Demographic distributions

We summarize the demographic information of the participants as follows:

4.1.1  Background

Among the 80 respondents who completed the survey, 56 (70%) participants are from the 
software industry, 18 (22.5%) from academia or research, 1 (1.25%) was with both aca-
demic and industry affiliation, and 5 (6.25%) participants identified themselves with other 
affiliations (Fig. 3). The participants are from diverse academic background (Fig. 4) com-
prising 16 PhDs or above (20%), 32 Masters (40%), 31 Bachelors (38.75%), and 1 (1.25%) 
mentioned as with “Other” level of educational qualifications.

The participants are from diverse roles (Fig.  5) in their corresponding organiza-
tion with 26 (32.5%) AI/ML engineer, 18 (22.5%) data scientist, 24 (30%) researcher 
with 10  (12.5%) of them identified themselves as AI/ML research scientist. Besides, 
9 (11.25%) of the participants are with the roles of AI/ML developer/analyst, one 
(1.25%) software development intern, and 4 (5%) with upper-level roles including one 
chief AI officer, ML software architect, software team lead, and deep learning man-
ager. In addition, the participants include three (3.75%) PhD students, two (2.5%) Mas-
ters students, and one other student. The above diversity in the participants compris-
ing both researchers and practitioners allows us to obtain a good representation of the 
skills and experience of varying levels.

4.1.2  Professional experience

As shown in Fig. 6, the participants are highly experienced in software development with 
53.8% of them have a minimum 4 years of experience in software development. Among 
the participants, we have 35 (43.8%) participants who have worked for five years or more 
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in software development and 8 (10%) with four years, 9 (11.3%) with three years, and 19 
(23.8%) with two years of experience respectively. Only 9 (11.3%) of the participants are 
relatively novice with less than 1 year of experience. The participants have diverse levels of 
experience in machine learning (Fig. 7) with more than 80% of the participants having at 
least two years of experience in machine learning application development. To be specific, 

Fig. 3  Organization types of the 
participants

Fig. 4  Educational qualifications 
of the participants
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13 (16.3%) participants have five years or more experience in ML while 11(13.8%) have 
four years, 12 (15%) have three years, 30 (37.5%) have two years, and 14 (17.5%) are rela-
tively novice with less than one year of experience in ML.

It is important to note that there is a drop in the percentage of participants in higher 
experience categories. For example, participants with experience of five years or more 
dropped from 35 (43.8%) to 13 (16.3%) from software development to ML application 
development context. This could be explained as the migration of experienced devel-
opers from traditional software development to ML application development to adapt 
to the increasing AI/ML trends in the software industry. This is valuable to our study 
as such participants have wealth of knowledge and experience to compare and con-
trast the traditional software development and ML application development especially 
regarding the challenges and best practices.

Fig. 5  Job titles/roles of the participants

Fig. 6  Software development 
experience of the participants
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4.1.3  Domains of expertise

The survey participants work on developing applications in diverse machine learning 
domains. Our survey data (Fig. 8) shows that image processing and natural language pro-
cessing (NLP) are the two domains with the top two number of participants, 45 (56.25%) 
and 44 (55%) from each respectively. Among the participants, 38 (47.5%) work in the area 
of predictive analytics and recommendation while 31 (38.75%) participants claimed to 
have working experience on clustering. Besides, 20 (25%) and 13 (16.25%) participants 
work on video processing, and speech and audio processing respectively. Also, 3 (3.75%) 
of the participants use reinforcement learning (RL) in their ML applications while some 
other application domains of the participants include areas such as control and optimiza-
tion, games, rendering and animation, security (anomaly detection), music generation, and 
biomedical engineering. Representation of participants from different application domains 
provides us with the opportunity to have developers’ insights on the challenges and prac-
tices regarding the diverse area of machine learning and AI.

Participants have expertise in a diverse set of programming languages and technolo-
gies  (Fig.  9). Among the participants, 77 (96.25%) are Python users, which shows that 
Python is a remarkably popular language among ML practitioners. Besides Python, we 
have 16 (20%) C++ users, 11 (13.75%) R users, 10 (12.5%) Java users, 8 (10%) Matlab 
users, and 6(7.5%) SCALA users. In addition, a few participants claimed to use one or 
more of C#, CUDA, STAN, JavaScript, Node JS, and Clojure as their languages in ML 
application development.

Fig. 7  ML development experi-
ence of the participants
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4.2  Trends in ML application development

Here, we report the current trends in developing ML applications in the industry based on 
the response of the practitioners. We focus on the types of ML applications software indus-
tries are developing, software development methodologies, and the ML frameworks and tools 
developers are using to develop ML applications to answer the following research question:

RQ1: What are the current industry trends in developing ML applications?

4.2.1  ML Application Types

Responses of the participants give an overview of the ongoing trend in the AI/ML indus-
try regarding the types of applications developed (Fig. 10). We asked the participants to 
list the types of AI applications commonly developed in their companies. We observe that 

Fig. 8  ML domains of expertise of the practitioners

Fig. 9  Programming languages for ML development
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companies are developing diverse classes of AI-based solutions encompassing different 
aspects of daily life, business, education, health, commutation, security, entertainment, 
research and innovation, social networking, and so on. Based on the survey, we observe 
that software industries are highly focused on developing AI-based solutions for business 
intelligence (29 (36.25%)). This is reasonable given the ongoing trends in the companies 
to leverage AI for improved products and services, customer clustering, product recom-
mendations, and prediction and forecasting for business decision support. The practitioners 
are also involved in document processing (20 (25%)) commonly based on the application 
of natural language processing. Companies are also developing solutions for entertainment 
(12(15%)), healthcare (9(11.25%)), education (7(8.75%), security (7(8.75%)) and commu-
nication (6(7.5%)).

Besides, there has been a considerable focus on developing ML-based solutions for 
business including E-commerce, finance, insurance, retails, and revenue management as 
10 (12.5%) of the participants reported these application types developed by their com-
panies. Another important application area the practitioners are working on is environ-
mental data analysis and forecasting as reported by 9 (11.25%) participants. Participants 
also reported working on building applications for social network analytics, control, and 
automation such as self-driving cars and other areas of research and development in 
ML/AI including computer vision, speech processing, and simulation. So, our survey 
shows the diverse area ML/AI is being applied as the recent trends.

4.2.2  Software development methodologies

As reported by the practitioners (Fig. 11), agile software development methodologies have 
been widely adopted in software industries for ML application development. Among the 
participants 52(65%) participants report that they use agile process for ML application 
development. Some widely used agile process frameworks used by the practitioners are 
namely SCRUM Schwaber (1997), Kanban Anderson (2010), and LEAN Poppendieck and 
Poppendieck (2003). Practitioners also reported the use of tools such as Jira1 and Zenhub2 
for the management of agile development process. Among the participating developers, 
10 (12.5%) reported to use other data- or test-driven development process. A portion 
(18(22.5%)) of participants reported that they do not use any specific development process 
for developing ML applications.

As mentioned by the practitioners, although agile process are the most commonly 
used, the development process is sometimes tailored to fit specific application develop-
ment context, i.e., “agile/scrum but tailored towards ML model development processes”. 
Some practitioners refer to their agile development process as “loosely organized agile” 
or “light agile” and “more explorative”. Depending on the context, some developers use 
either some adhoc or agile process for ML application development. They mentioned 
that “many smaller-scale models are prototyped on an ad-hoc basis with no formal pro-
ject methodology. Medium and larger projects borrow agile techniques”. While many 
practitioners do not use “specific development process”, some prefer to use a data-
driven or “feature-driven” or “test-driven development” development processes involv-
ing “unit testing, integration testing, devops (continuous integration and delivery)” 

1 www. atlas sian. com/ softw are/ jira
2 www. zenhub. com

http://www.atlassian.com/software/jira
http://www.zenhub.com
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for ML application development. Thus, we observe that practitioners mostly use agile 
methodologies for ML application development. However, the choice of development 
process may vary and the development process may require to be tailored to fit into spe-
cific ML application development needs.

Fig. 10  ML application types

Fig. 11  Software development 
methodologies used for ML 
application development
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4.2.3  ML frameworks and tools

From the responses of the participants, we have a list of popular ML frameworks and 
tools widely used by the ML practitioners (Fig. 12). Among the respondents, 58(72.5%) 
use TensorFlow as their ML framework for application development showing it as the 
most popular framework in AI/ML application development. Then, 53 (66.25%) of 
the participants reported that they use PyTorch making it the second-highest popular 
ML framework followed by Keras, a high-level ML framework based on TensorFlow 
which is reported to be used by 44 (55%) participants. Among other ML frameworks 
MXNet, Scikit-learn, Caffe, and Deeplearning4j are reported to be used by 9 (11.25%), 
5 (6.25%), 4 (5%), and 3 (3.75%) participants respectively. Some participants have 
also reported that they use frameworks like Chainer, Tensorflow.js, Caret, OpenCV, 
ML.Net, XGBoost, MLlib for their ML application development. It is to be noted that 
each participant may use multiple frameworks for ML application development and 
thus the counts of participants for different frameworks are not mutually exclusive.

Fig. 12  Commonly used ML frameworks for application development
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4.3  ML data collection and pre‑processing

Machine learning applications are data-driven, and so it is intuitive that the quality of the 
input data is very important for the performance of the ML models. Based on the responses 
from our survey participants we compile different processing tasks, common practices in 
ML data preparation. From the responses, we know the state of practices adopted by the 
ML practitioners. We summarize the common practices and challenges related to ML data 
processing as in the following:

4.3.1  ML data sources

Depending on the ML application domains, the types of the data may vary widely as well 
as the sources of the data. Data can be of different forms such as text, images, videos, 
speech, business transactions, time-series data, and so on. Similarly, these data may come 
from different private or publicly available sources (Fig. 13). As mentioned by the survey 
participants, companies rely on one or more sources for ML datasets for their ML applica-
tion development. One of the common sources of ML data is the open-source data sets 
made publicly available by different academic institutions, companies, and various tech 
and research communities (e.g.,  Arxiv, Kaggle). As mentioned by the participants, compa-
nies rely on internal company data for developing ML solutions either for themselves or for 
others. Many software companies develop custom ML solutions for their third-party clients 
based on their supplied data regarding business transactions, users, and the data collected 
from internal operations or even external environments using sensors over a certain period 
of time. ML data is also collected from online sources by web crawling and scraping.

To summarize, open-source datasets are the leading source of data for ML applica-
tion development. Besides, private data and data from third-party clients are also common 
sources of ML data as reported by the practitioners.

Fig. 13  ML data sources
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4.3.2  RQ2: In practitioner’s perception, what are the important quality attributes 
of ML data?

ML models are data-driven and so the quality of the data is important for the performance 
of the ML models and consequently the applications containing the ML models. We asked 
the practitioners about this important topic to learn about the quality attributes that ML 
developers focus on in practice while assessing data quality. We then compile and classify 
the data quality attributes based on the responses of the survey participants. We list the 
key observed quality requirements of the ML data as pointed out by the practitioners as 
follows:

Feature representativeness In machine learning, the primary purpose of the data is to 
train the ML models. For this, the data must be representative of the necessary discrimi-
native features to learn from. Thus, how well data represent the characteristics capable of 
differentiating different hidden patterns in the data is very important. Practitioners thus 
emphasize on “feature quality” which requires “high discrimination between features.” 
This can be assessed by statistical measurements on the data set such as “balanced distri-
bution,” “high variance,” and “low correlation” among the features and with the “target” 
variable(s).
Adequacy ML models need an adequate amount of data samples for training. In practi-
tioners’ word ML models need “lots of samples with wide variation, equal(ly) distributed 
across fields/classes.” The adequacy of the data is hard to define and depends on different 
factors such as the data, problem, number of features, number of distinct classes, and ML 
algorithms.

Diversity ML models need to have “diversity” regarding the coverage and distribution of 
data among different classes present in the data set. The practitioners have emphasized 
on the diversity mentioning that the data should contain “...samples with wide variation, 
equal(ly) distributed across fields/classes.”. The practitioners also emphasized on the “dis-
tribution of response variables, (and) distribution of each features.” They also mentioned 
“subject area coverage, sampling uniformity, sparsity, vocabulary coverage” as important 
characteristics that enhance the diversity in the dataset. Like other data quality characteris-
tics, different diversity factors and their importance may vary with data, problem, and the 
algorithms.

Labelling accuracy Labelling accuracy is very important for the ML dataset. So, it is 
important to ensure that there are “no mislabelled data. The dataset should be treated with 
the utmost care, because a bad dataset means a bad model even if it’s trained well.” Prac-
titioners thus emphasize on data “quantity and correct labels.” “The quality of the labels 
i.e.,“reliability of (data) annotations” is very important and “the structure, accuracy and 
quality of information would play a large role in determining the importance of the ML 
data sets.” So, in practitioners’ word “(labelling) consistency is very important; for a par-
ticular field I was working on a year ago, there were only two available data sets, but both 
of them had inconsistent labeling, which made them unusable.”

Completeness Machine learning data need to be complete meaning that there should 
not be missing values in the data or at least there should be “enough data with minimum 
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missing values.” Data samples with missing values are either dropped or some transforma-
tions are applied to fill in the missing values with the best approximate values.

Consistency Like the adequacy of the ML data, it is very important for the data to be con-
sistent. The consistency of the data can be in terms of the correctness of values, data types, 
or the format or structure of the data or even the labelling. The practitioners thus focus on 
the “structure, accuracy and quality of information.” ML data need to be “consistent with 
inference data; be relevant for the model; be consistent with itself.” Consistency defines 
the suitability of the data to use in the ML models.

Reliability ML data need to be reliable, meaning not only correctness and consistency but 
also the reliability of data source, data collection, and annotation procedure. The reliability 
of ML data can be validated by different cross-validation processes. The practitioners sug-
gest checking if “it (the data) has been verified by multiple sources.” It is crucial especially 
in health and safety critical domain such as for “medical data.” ML data to be reliable, 
practitioners expect that the “data is clean, well explained, come from good annotations. 
You (developers) also need to know how the data was generated.”

Noise level ML data can have noise in it due to missing or erroneous values and outliers in 
the data. The data can be incorrect in terms of values or data types. Thus, ML data require 
different transformation and cleaning to remove noises and to improve data quality.

Relevance ML data need to be relevant for the problem, i.e.,the data should represent the 
necessary characteristics meaning the “existence of viable features” that ML models can 
learn from. Like other data quality requirements, the relevance of the data “depends on the 
problem.”

Class balance For ML data, class balance is crucial for the accuracy of the ML model. For 
an unbalanced dat set, the model is likely to be biased to the majority class, leading to poor 
accuracy, especially for the minority class. Practitioners recommend the data “samples (to 
be) well balanced across classes” i.e., data is “equal(ly) distributed across fields/classes.”

Distribution ML data should have balanced distribution across the classes and have 
“sampling uniformity.” Different statistical measures (i.e.,descriptive statistics), vari-
ance, and correlation are commonly used by the practitioners to measure data relation and 
distribution.

Performance impact One of the key concerns is how well the model performs based on 
the given training data. The quality of the data is thus also reflected in the performance of 
the model. For such quality assessment, practitioners often build a prototype model based 
on the subset of data and measure model performance such as “AUC ROC on test set.”

Low bias There can be different sources of biases in the ML dataset. The biases can origi-
nate from the human error or perception differences of it can be from the data historically 
containing discrimination or biases in it. The biases should be eliminated from the data set 
as much as possible. Thus, the practitioners recommend that ML data need to be “diverse, 
not biased.” 
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4.3.3  RQ3: What is the state‑of‑the‑practice regarding the data processing tasks, 
techniques and tools for quality assurance of ML data?

Quality of the dataset is one of the key factors that contribute to the performance of the ML 
models. Here, we discuss common data processing tasks, techniques, and tools for ML data 
processing for quality assurance of ML data.

Data processing tasks Practitioners may need to employ a series of preprocessing and 
transformation to ensure the desired quality of the data or ML models in turn. Based on 
the practices reported by our survey respondents, we can broadly group the data processing 
task into the following:

– Data transformation: ML practitioners often need to apply different transformations 
on the dataset to prepare for machine learning algorithms. These transformations may 
include simple corrective transformation such as adjusting the data types or structure of 
the data. Data may also need some advanced transformations like reducing the dimen-
sions of the data while preserving its key characteristics or hidden patterns. ML data 
often require normalization and scaling to transform the values to a range suitable for 
ML algorithms. Another important quality attribute of ML data is the class balance, 
which can affect model performance. In such a case, some practitioners reported that 
different boosting and re-sampling techniques are used to remove class imbalance prob-
lems in the ML dataset.

– Data analysis: To analyze and assure the quality of ML data, practitioners employ dif-
ferent analysis techniques. The first step in quality assurance is to understand the dataset 
regarding the distribution and basic trends. Practitioners commonly do a manual analy-
sis to have the basic perception of the data characteristics. Another common approach 
as mentioned by the practitioners is the visualization of the data. The common visu-
alization techniques include the presentation of data using different charts and graphs. 
Some practitioners also use advanced visualization techniques such as t-SNE (van der 
Maaten & Hinton, 2008) that facilitates the visualization of multidimensional data in a 
more flexible and elegant way. In our survey, practitioners also reported that they use 
exploratory data analysis to evaluate data quality. This analysis helps to understand the 
common characteristics, category, and trends in the dataset. Another common approach 
to data quality assurance is to perform statistical analysis or to cluster data to under-
stand the distributions and trends in the ML data set. The analysis can be performed on 
randomly selected samples from the data set or on the whole dataset. Another approach 
to assess ML data quality is to build a prototype model based on a subset of the data 
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and verify the model performance. The type and extent of analysis may depend on the 
problem, data, and specific objectives of the data analysis.

Tools and techniques for ML data processing The practitioners depend on different tools 
and techniques for ML data analysis. One common technique reported by our survey par-
ticipants is the manual inspection of the data. Manual inspection is a reliable technique 
as the developers can take advantage of their domain knowledge to assess the quality of 
the ML data to perceive the common patterns in the dataset. ML data may also need to be 
annotated manually for categorization and labelling. However, manual analysis is likely to 
be costly and may suffer from scalability issues in case of a large dataset. Another approach 
commonly used by the practitioners is to visualize the dataset. As reported by the survey 
participants, open-source tool Jupyter Notebook3 is a widely used tool for data exploration 
and visualization. Practitioners also reported using other commercial data analysis tools 
(e.g., Kibana4) for exploratory data analysis and visualization. Practitioners also reported 
that they use Apache Spark5 for ML data processing especially in the big data context.

Another technique used by the developers is to write custom scripts for data analysis 
and visualization using descriptive statistics, charts, and graphs. Custom scripts can also be 
used to fix for missing and duplicate values, to identify data types and value range incon-
sistencies, detection of labelling errors, and for checking data structures or formats. One 
important point to note is the fact that many practitioners reported that they do not use 
specific tools for data quality analysis and some times do not even check data quality, and 
instead rely on assumed quality based on the source of the data. However, this reliance 
may fail to identify potential issues in ML data quality and may consequently lead to poor 
quality ML models. However, despite of different commonly used tools and techniques, 
domain knowledge plays an important role in the application of tools and techniques and 
the effectiveness of ML data quality assurance.

Common practices in ML data processing One of the key challenges of the ML data 
collection and preprocessing is that the data and the necessary processing can be domain 
and problem-specific. Thus, no specific tool may fit all the problems or data processing 
requirements. The responses from our survey participants also reflect the challenges of 
dealing with these variabilities. Overall 76.6% of the participants mentioned that they do 
not use a very specific tool for ML data analysis. One of the key reasons is likely to be the 
abovementioned fact that one specific tool is not capable of handling diverse data analysis 
requirements and practitioners may use very domain or problem specific tools and tech-
niques. It can also be explained by the limited availability of data analysis tools with com-
prehensive features to cover the processing of data from diverse domains as only 14.9% of 
the practitioners have reported to using specific data analysis tools. Besides, some of the 
participants reported that they rely on existing Python libraries and frameworks to develop 
their custom data analysis scripts. Thus, it is important to develop necessary tools for data 
analysis with comprehensive coverage of data analysis requirements in diverse problem 
settings. 

3 https:// jupyt er. org/
4 https:// www. elast ic. co/ kibana
5 https:// spark. apache. org/

https://jupyter.org/
https://www.elastic.co/kibana
https://spark.apache.org/
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4.3.4  RQ4: What are the challenges of ML data cleaning?

Cleaning ML data is an important data preprocessing step to remove noise from the ML 
dataset. Based on the practitioners’ responses we list the following challenges in ML data 
cleaning:

Generalization Data cleaning like most other tasks in the ML application development 
workflow is hard to generalize as it is usually “geared towards specific applications.” This 
is due to the inherent domain- and problem-specific variations in data, ML frameworks, 
and algorithms, and even the target application platforms. This has also been reflected in 
the practitioners’ responses as one respondent mentioned “There is no one-size-fits-all tool 
and probably will never be one.” Another respondent mentioned “...it is practically impos-
sible to make a general tool, as it depends on the data and the problem at hand.” So, “they 
are not generalizable to different use cases, like text and images.” One common practice 
adopted by the ML developers is to develop or customize their data cleaning solutions as 
mentioned by one respondent: “Sometimes they are not adaptive enough for my problems 
so I have to write my own.”

Scalability Another key challenge in data cleaning as reported by the survey practitioners 
is the “scalability to big data sets.” Most tools and techniques may suffer from the scalabil-
ity issues. This challenge is intuitively understandable particularly because of the rapidly 
growing volume of ML data. The data volume may often exceed the processing memory 
(“scaling to multi terabytes”). Thus, practitioners need to devise custom techniques to pro-
cess larger datasets in small-capacity machines under resource constraints. Otherwise, it 
may impact the data processing cost due to large data processing resource requirements.

Automation Some practitioners feel the need for “automated analysis” for data cleaning 
and reported that current data cleaning techniques are “poorly automated”. However, prac-
titioners are aware that “some tasks cannot be automated...” and recommend that “...rule-
based and AI/ML techniques need to be applied to data cleaning itself.” This suggests the 
idea that ML techniques can potentially be applied to automate the data cleaning tasks. 
Data regarding the cleaning techniques applied to existing ML applications are likely to be 
leveraged. Due to various diversities in data and problems, it is challenging to integrate the 
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data cleaning and processing tasks into the ML workflow which further limits the automa-
tion of the data cleaning and other preprocessing tasks.

Data quality “Most data is noise (noisy)” and thus cleaning of these types of data can be 
costly. Moreover, data can be from different sources and in different forms and so their lev-
els of quality. For example, text data can be with different encoding schemes while image 
data can be in different formats and quality. When the data is too noisy, the cleaning task 
becomes costlier and often impossible given the tools and techniques available. Data from 
companies are proprietary data and the structure of the data is likely to be driven by other 
business or technical factors than the application of ML.

Lack of standard Another issue the practitioners commonly face is that there is no defined 
standard of “clean-data.” The cleanliness can be relative and may vary with data, problems, 
and algorithms. This makes it harder to devise robust techniques for data cleaning.

Efforts and costs Data cleaning can be costly (“It’s very time and labour intensive”) and 
thus “requires a lot of efforts,” time, and computational resource requirements. Also, data 
processing tasks can be highly iterative and the continuous expansion of the data may trig-
ger repetitive data processing incurring high cost.

Lack of tools and features As the data types and the required processing may differ 
widely from one problem to another, tools are likely to be with a domain or problem spe-
cific features. This limits the adaptability of tools for diverse ML data. The lack of fea-
tures and data dependencies limit the usability of the data cleaning tools and techniques. 
The practitioners also mentioned “the high complexity of use” as a challenge to using data 
cleaning tools effectively. Also, “sometimes they (tools) are not adaptive enough for my 
(specific) problems...” and this lack of flexibility also limits the use of tools for processing 
ML data of diverse characteristics.

Context and perception differences From the responses of our survey participants, we 
observe a difference of perception on the challenges of data cleaning between the ML prac-
titioners. This difference of perception is likely due to the different contexts in which they 
performed their data cleaning tasks. The response “Till now, from my usage experience, 
I didn’t find any limitations on the tools I have used during my projects.” is thus likely to 
represent a domain and context-specific view of the respondent and may or may not apply 
to the development contexts of other participating practitioners.

Requirement for domain expertise ML data processing requires a clear understanding of 
the data, target problem, and algorithms. However, understanding the structure and seman-
tics of the data from a particular domain may often require basic and sometimes advanced 
knowledge in the domain. For example, to process natural language texts in the mental 
health domain the ML practitioners are in “... need for expertise in linguistics and mental 
healthcare.” The requirement for domain expertise may vary across the domains and the 
type of the problem being addressed by the ML application.
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4.3.5  RQ5: What are the challenges of data labelling faced by the ML application 
developers?

Feature labelling is very important as incorrect labelling affects model accuracy. How-
ever, labelling of features is a challenging task especially when data volume is large and 
due to different domain- and problem-specific requirements and constraints. Based on the 
responses from our survey participants, we identify several key challenges perceived by the 
ML practitioners as follows:

Data volume One of the key challenges in feature labelling reported by the practition-
ers is the large volume of data. Labelling commonly involves manual effort and given the 
increasing volume of ML data, labelling can be very challenging due to the constraint 
“large dataset vs limited human resources.” Because of the data volume, “the amount of 
work to be done can be overwhelming.”

Cost “Labeling the data is quite hectic and time taking process” and thus may incur “high 
cash and labor costs.” “Also in some cases, labeling the data also requires a lot of knowl-
edge of the field to which the data belongs.” However, “using experts for labeling is expen-
sive” while “using non-expert for labeling results in low quality training set.” Again, “it is 
better to have opinions of several experts rather than a singleton labeling to avoid biased 
opinions and ensure (the) validity of the labeling.” This further increases the cost of the 
labelling of the ML dataset.

Required domain expertise Data labelling often requires expert-level domain knowledge. 
For example, labelling data in medical imaging such as diabetic retinopathy requires “a 
super-skilled workforce, such as doctors to estimate the level of diabetic retinopathy from 
images.” However, “domain experts are hard to reach.” So, the requirements for domain 
expertise in ML data labelling not only make the labelling task challenging but also make 
labelling excessively expensive. However, the required level of domain expertise may vary 
across domains.

Automation Labelling of ML data is mostly manual or “poorly automated.” “Manual 
labeling can be very frustrating and time taking” and thus “labeling is slow and expen-
sive.” For automation, standard procedure is necessary. However, due to diverse variabili-
ties involved, “coming up with a standard annotation procedure” is quite challenging. “It 
is very hard to make a criteria that can be validated by scripts or other automated tools.” 
Thus, although “human annotation is expensive” there is a “lack of tools for annotation.” 
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Also, for automation, it is necessary to have ground truth for validation. However, there is 
also “lack of clear ground truth.”

Domain dependency ML data and the labelling objective may vary widely across differ-
ent application domains. As the practitioners claimed, data labelling “becomes more diffi-
cult is(as) the dataset is domain specific.”. Thus, the data labelling criteria and the required 
expert-level knowledge are also very domain specific. For example, “for legal documents, 
lawyers are best suited to annotate.” This domain dependency puts a limit on the human 
labelling experience to be transferable to other domains.

Biases One of the key challenges in ML data labelling is the potential biases or inconsisten-
cies. There are different sources of possible biases or errors in data labelling. As data labelling 
is manual in most cases, “discrepancies among humans” i.e., the differences in knowledge and 
perception among labellers can introduce labelling biases or inconsistencies due to “subjectiv-
ity” as “everyone has their own point of view.” Again, the annotators may “have no understand-
ing of the importance of the quality or lack proper training, so the labeling is inconsistent.”

Data quality The quality of the data also has impact on the data labelling. Too much 
noises in the data and incompleteness of data due to missing values can affect the label-
ling. There can be multiple labels for single data and to avoid label confusion requires clear 
labelling guidelines.

Reliability Assuring the reliability of the ML data labelling is another challenging task. 
Due to the large volume of data, labelling is likely to require team efforts. Perception dif-
ference among the team members may result in inconsistent labelling. Again, due to the 
overwhelming volume of the task “ML researchers often rely on third-party annotations.” 
However, as mentioned “third party annotators have no understanding of the importance 
of the quality or lack proper training, so the labeling is inconsistent.” Again, the practition-
ers claimed that often “workers are not trust-worthy”, so it is challenging to make feature 
labelling reliable. Practitioners recommend cross-validation by multiple labellers as a rem-
edy for the reliability risk of feature labelling.

Lack of guidelines One of the important challenges the practitioners mentioned is that 
there are no comprehensive guidelines on the feature labelling. Practitioners expressed the 
“..need to have a strict guideline for labelling.” However, “it is very hard to make a criteria 
that can be validated by scripts” given the variabilities involved in specific ML domain.
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4.3.6  RQ6. What are the common approaches to validating data labelling by the ML 
practitioners?

Accuracy of ML data labelling is very important as incorrect labelling can have adverse 
effects on ML model performance. It is thus important to know the current practice of 
the ML developers for testing the data labelling accuracy. Based on the responses of 
our survey participants, we see some common practices used by the ML practitioners. 
As there is a lack of automated tools for labelling validation and it may require man-
ual checking by domain experts, manual investigation is mentioned by most practition-
ers (35(71.42%)) as the approach for label validation. Besides, 22 (44.9%) practition-
ers reported that they use automated tools or scripts for testing data labelling accuracy. 
However, in many ML domains, the data labelling is not required rather the neural net-
works is capable to learn from the data. Some practitioners build a prototype model on 
the subset of data and evaluate the data labelling accuracy based on the performance of 
the prototype model. In both automated and manual label validation, domain knowledge 
plays an important role. 

4.4  Feature engineering

Feature engineering is one of the key steps in ML workflow unless the feature is learned 
automatically from the data such as in deep learning. In our survey, we asked the practi-
tioners about how they do feature engineering to learn about the current state of practice. 
We report on the tools, techniques, and challenges of feature engineering in the following 
subsections:

4.4.1  RQ7: How do ML practitioners identify class‑imbalance in ML data 
and how do they ensure class‑balance?

In machine learning especially in supervised learning context class imbalance is a crucial 
issue as it can severely affect the performance of the ML models. Thus, it is important to 
identify the class imbalance and to take the necessary approach for balancing the ML data-
set regarding different representative classes. The first step to resolve the class imbalance 
of the ML dataset is to identify the balancing issue in the first place. ML practitioners have 
shared different practices they use to assess and identify class imbalance in the dataset.

Identification of class‑imbalance We list the common approaches for identifying class 
imbalance as follows:

– Statistical analysis: One of the commonly used practices to identify class balance in 
the ML dataset is to statistically analyze the dataset. Descriptive statistics and the class 
distribution can indicate how well data is balanced across different classes.
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– Data visualization: Visualizing data is another approach widely used by the ML prac-
titioners for testing class balance in the dataset. In practitioners’ word, “testing (class 
balance) can be done by statistical approach or by visualizing the data on a graph which 
will show how balanced the data is.”

– Sampling and analyzing data subset: Another approach to testing the class balance is to 
analyze randomly sampled subset of data as mentioned by the practitioners “(we) ran-
domly sample a portion and calculate the class distribution in it.”

– Manual verification: Practitioners reported to use manual analysis to check the balance or 
distribution of the ML data. However, manually checking data can be time-consumingand 
costly and may not be scalable when data volume is large.

– Model performance: Some practitioners mentioned a kind of reactive approach to test-
ing class balance. Here, instead of balancing data proactively before training, their 
approach is to observe the impact of the imbalance on the model first then balance data 
if necessary. As mentioned by one of the practitioners where s/he first builds “baseline 
models like linear regression and logistic regression to see how good/bad the imbal-
ance affects the predictions.” Similarly, another practitioner mentioned the way as to 
“evaluate sensitivity of the model at the end on generated data.” Some practitioners also 
reported measuring model performance based on k-fold cross-validation to assess the 
impact of class imbalance.

In some ML domains, no explicit data labelling is necessary or the data is naturally imbal-
anced depending on the domain and thus the class imbalance issue may not apply to those 
contexts, and it has also been mentioned by different practitioners.
Techniques for class‑balancing Based on the responses from the practitioners, we list 
some commonly used techniques for balancing a dataset as follows:

– Data resampling: The resampling of data is a commonly used technique to balance the 
ML dataset. To balance data, either minority class can be up-sampled or the majority 
class can be down-sampled. The balanced data then can be used for ML models. Prac-
titioners reported the use of tools like SMOTE (Chawla et al., 2002) or ADASYN (He 
et al., 2008).

– Stratification: Practitioners also reported using stratification techniques to understand 
and balance the data. A practitioner stated that: “we write our own stratification solu-
tions, based on the descriptive analysis.” Practitioners also mentioned applying strati-
fied split of training and test data to reduce the impacts of class imbalance. Also, one 
of the practitioners mentioned data augmentation, stating that “...will utilize data aug-
mentation methods if class balancing does not satisfy requirements” without specifying 
specific augmentation technique.

The requirements and the techniques for balancing data are likely to depend on the particu-
lar ML context regarding the problem domain, the data, and the ML algorithms. 
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4.4.2  RQ8: What are the feature engineering techniques and tools commonly used 
by ML developers?

Based on the responses from the participants, we identify the following techniques and 
tools for feature engineering commonly used by the ML practitioners:

Manual analysis Based on the data and the ML problem domain, features may need to be 
“hand crafted.” As one practitioner mentioned “I need to learn about how the data is gener-
ated and formulate the features that will be useful.”

Custom programming Features for ML models are likely to be problem dependent; thus, 
ML practitioners decide on features based on their domain knowledge and devise custom 
techniques for feature extraction as reflected in the response “Domain knowledge remains 
my favorite tool, I understand the problem and read the current research to devise the best 
features.” Also, user-written custom scripts in addition to existing libraries and tools can be 
used for feature extraction as mentioned by practitioners; “we use custom scripts and func-
tions in addition to NLP libraries like nltk, spacy and tensorflow.”

Using libraries and frameworks One widely used practice among the ML developers is to 
develop feature extraction functionalities based on the available libraries and frameworks. 
Based on the responses of the survey participants, scikit-learn is a very widely used ML 
library for feature extraction. Besides, some other frequently used Python libraries are pan-
das, numpy, scipy, and networkx, while for natural language processing (NLP) tasks nltk 
and spacy are among the widely used python libraries. R and Matlab-based libraries are 
also used by the practitioners for ML feature extraction. For computer vision domain, prac-
titioners reported to using CNN or OpenCV for image feature extraction. The practitioners 
also reported that they use frameworks like TensorFlow and PyTorch.

Using feature engineering tools Some practitioners have reported the use of available 
tools for feature extraction. For example, one respondent mentioned the use of Data-Miner6 
and then Featuretools7 for feature extraction. Some other tools as reported by the partici-
pating practitioners are DataVec, Weka, and XGBoost for feature importance,and PCA and 
Fourier transformation for dimension reduction. However, the use and suitability of tools 
vary with the problem domain and the data.

6 https:// data- miner. io/
7 https:// www. featu retoo ls. com/

https://data-miner.io/
https://www.featuretools.com/
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No feature engineering Practitioners using deep learning–based techniques do not require 
specific feature extraction technique as the network is expected to learn from the data. 

4.4.3  RQ9: What are the common limitations of the existing feature engineering tools 
and techniques?

Although tools and methods for feature extraction are very useful for ML practitioners, 
there are a limited number of tools available. Existing tools also do not cover all diverse 
requirements in feature engineering. The participating ML practitioners have mentioned 
different limitations of the existing feature engineering tools and techniques as follows:

Generalization Generalization is one of the key limitations of the existing feature extrac-
tion methods and tools since “every problem is different.” And “for most applications, the 
shape of the data that has to be input to the model is highly specific to the internal com-
pany data that we cannot use out of box tools to help us easily automate feature engineer-
ing.” So, due to the inherent variabilities in ML problems, data, and algorithms, it is very 
challenging for any feature engineering tool to generalize for diverse problem contexts.

Scalability Another limitation of the feature extraction tools pointed out by the survey par-
ticipants is that “they (tools) are not scalable” and thus “hard to visualize quickly and effi-
ciently on large data sets.” They also mentioned that “the current feature engineering tools 
is that they are not well parallelized, and when other parallelization libraries are introduced 
like multi-processing many problems arise causing me to edit the library and fundamen-
tally having to change the code.” This affects the performance and limits the application of 
tools especially for processing larger-scale data.

Automation Practitioners also mentioned that feature engineering tools “are not auto-
mated enough” and thus there is a “need for supervision.” And, again “automated feature 
engineering often comes short to domain knowledge, automating the latter is a difficult 
problem.” Also, as the feature engineering tasks are likely to be problem dependent and 
“are mainly limited to tasks and types of data sets,” thus for tools it is “very difficult to 
fine-tune manually” for diverse problems, data, and algorithms.

Domain knowledge requirements Like other phases of ML workflow, feature engineer-
ing requires “too much expert knowledge” in the associated problem domain. Also, “some 
problems require domain knowledge, that is difficult to translate in a general way to an 
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open-source tool.” The requirements for domain knowledge limit the usability of the tools 
or methods to be used by experts only in a very specific domain.

Adaptability As mentioned, feature engineering for ML applications is likely to be prob-
lem and data specific. “Sometimes (the tools are) not exactly what you (practitioners) look 
for.” The tools for feature engineering is thus “limited to tasks and types of data sets.” Tools 
designed for a specific problem and dataset or types of data may not be easily adapted to 
other problems or data. Feature engineering tools are not flexible enough “to fine-tune” for 
a specific problem and datasets or there are “difficulties with setting specific properties” to 
accommodate new datasets. Again, feature engineering tools are usually equipped with a 
static set of features and “they do not learn, it’s a fixed set of algorithms” to exhibit robust-
ness to diverse data and problems. As the tools are too tied to the problem domain and data 
types, they may not “scale, (and) guarantee performance on different platforms.”

Usability Another important issue with the feature engineering tools or methods is the 
lack of “simplicity.” This may result in poor usability, leading to slow “learning curve” and 
may require expert knowledge in the domain. There is also a lack of “versatility and good 
documentation” to use the tools effectively.

Feature evaluation It is also important but difficult to evaluate the quality or performance 
of the resulting features from a feature engineering tool. “There is no integrated solution to 
test how the features perform with a given set of model architectures. Most of the time, we 
still need to do this manually (with grid search or Bayesian optimization).”

The practitioners also mentioned diversity in data types, adjusting too many tools or 
method parameters, and limitation of implementation language as some of the challenges 
in feature engineering. One practitioner mentioned the translation of user behaviours as 
an important challenge arguing that “User behavior is inherently difficult to encode in any 
feature space, but it’s the domain of interest for much of anomaly detection in cyber secu-
rity.” The practitioner also expressed his expectation as a ML practitioner as “I’d like to see 
more industry-ready research in this field.”

It is also interesting that the perception of the limitations of the feature processing tools 
varies widely among the practitioners. This variation is likely due to the differences in ML 
application development contexts of the practitioners or might also be due to the lack of 
awareness of the practitioners regarding the needs and challenges in different ML develop-
ment scenarios. In one hand, while we have above-listed limitations pointed out by many 
practitioners, some other practitioners, on the other hand, do not see any limitations of 
the existing tools mentioning “None (no limitation), they are great” or “I didn’t see real 
problems” or even “no idea.” Thus, it is important to identify domain-specific challenges 
in feature processing to make the practitioners aware of the challenges within and beyond 
their domain of ML expertise. 
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4.4.4  RQ10: What is the state‑of‑the‑practice in feature quality assessment in ML 
application development?

Once features for ML is extracted, it is important to validate the quality of the features 
since a poor feature quality is likely to affect the performance of the model negatively. The 
survey participants have shared their practices for assessing the feature quality. Based on 
the responses, we observe the following common practices for feature quality assessment:

Statistical analysis and visualization One common practice mentioned by the ML practi-
tioners for feature validation is that they apply different statistical analyses on the features. 
Statistical techniques include computing correlation matrix of the feature columns, meas-
uring mutual information, variance, and performing statistical tests to understand the distri-
bution and relationships among different features. ML practitioners also assess the feature 
quality “through visualization” of the feature. Practitioners also validate feature quality by 
“estimating similarities between feature vectors to make sure they stay consistent.”

Feature validation by model performance Instead of proactive assessment of feature 
quality before ML model training, many practitioners rely on resulting model performance. 
Practitioners “train model(s) and test them” as “mostly a good enough model justifies the 
data.” It is based on the strategy that “we (practitioners) don’t care if they (features) are 
representative as long as the downstream performance is good.” Commonly used model 
performance metrics are accuracy, precision, recall, F-score measured “by running accu-
racy tests on the model with respect to the validation set.” The validation can also be done 
through the k-fold cross-validation of the model. Before training the models on the whole 
data.set, one approach that practitioners use is to build a prototype model “by running 
machine learning algorithms on subsets and comparing performance” to estimate model 
performance and the feature quality. Another approach for feature evaluation is by “run-
ning baseline algorithms such as Logistic Regression and see how they bare on each set 
of features” Practitioners may also “compare performance of multiple models” to evaluate 
corresponding feature sets.

Feature validation by feature selection Another approach the practitioners reported for 
feature validation is that individual feature is selected incrementally (forward selection) for 
the model and the model performance is observed to decide on the inclusion or exclusion of 
the feature. Alternatively, modeling can begin with selecting all the features and then gradu-
ally eliminating (backward elimination) features based on the resulting model performance, 
to find the best feature subset. Given that the number of features can be high and the training 
process can be costly, one practitioner pointed out the limitation that “since my own capaci-
ties are limited, I would use forward/backward selection if I can rapidly train a model.”
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Domain knowledge–based feature validation Practitioners select and validate features 
based on their domain knowledge. One practitioner mentioned that “I would rely on my 
good judgment. Would that feature help me, as a human, make a prediction.” Similarly, 
another practitioner presented the importance of domain knowledge in feature selection as 
“Imagine that you are the model, and ask yourself ‘Am I able to predict the outcome given 
only these information only?” If the answer is yes, the features represent the characteristics 
of the dataset.” The domain knowledge can also be useful in the manual inspection of the 
features and the model performance.

No feature validation Depending on the domain and the types of the problem and the 
data, practitioners may not always need to validate features. For example, one practitioner 
from NLP domain mentioned “I have used the traditional feature extraction methods and 
have never looked to validate them.” Also, in deep learning, explicit feature processing and 
validation may not always be required.

Besides, practitioners also adopt domain-specific techniques for validating feature qual-
ity. For example, in cases of generated (synthetic) features, one way to evaluate generated 
feature is to measure “the distance of the artificially generated samples and the real distribu-
tion.” Some practitioners also reported to use “model interpretability/explainability (such as 
LIME8, SHAP9)” to assess the model and so the quality of the features used in those models. 

4.4.5  RQ11: What are the common practices for feature selection in ML application 
development?

Once the feature is extracted from the data, one key task is to select the suitable subset 
of the features that best represent the data characteristics. The practitioners were asked 
to share their adopted practice in feature selection. As in other phases of ML application 
development workflow, domain knowledge plays an important role in feature selection. 
Around 75.5% (37/49) of the practitioners reported that their feature selection is based 
on the domain knowledge. Besides, 63.26% (31/49) of the participating ML practition-
ers mentioned that they do feature selection based on the statistical analysis and visu-
alization of data and feature correlation. Also, 51.02% (25/49) practitioners reported the 
use of automated feature selection tools and techniques. Among the practitioners, 40.8% 
(20/49) mentioned that they take an incremental approach to add one feature at a time 
and evaluate the model performance for selecting that particular feature. Alternatively, 

8 https:// github. com/ marco tcr/ lime
9 https:// github. com/ slund berg/ shap

https://github.com/marcotcr/lime
https://github.com/slundberg/shap
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all features can be added and then some of them removed gradually to find the best sub-
set of features. It is to be noted that the above counts of practitioners are not mutually 
exclusive, rather practitioners use the feature selection approaches based on the specific 
context of the problem and the associated data. 

4.5  Model building

Building ML models comprises implementation and training of the ML models. Models 
are trained on the training data after implementation until certain quality is achieved by 
the models measured against selected quality metrics. We discuss the common practices 
in ML model implementation and testing as follows:

4.5.1  RQ12: What are the practices for ML model implementation commonly adopted 
by the practitioners?

There are a number of popular libraries and frameworks for model implementation in 
different programming languages, supporting different application domains and plat-
forms. Based on our survey responses, we observe that the implementation of ML mod-
els is primarily based on existing ML libraries and frameworks. About 93.18%(41/44) 
of ML developers reported that they depend on ML libraries and frameworks for imple-
menting ML models. About one-third (31.81% (14/44)) of ML practitioners reportedly 
implement their ML model training code from scratch than relying solely on the ML 
libraries. Practitioners also mentioned using their own custom auto-ML system for ML 
model training. It is to be noted that the above distributions are not mutually exclusive 
and developers are likely to adopt implementation strategies that best fit their ML devel-
opment contexts. 
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4.5.2  RQ13: What is the state‑of‑the‑practice for ML model implementation testing 
by ML practitioners?

As mentioned earlier, one of the important and challenging task for ML model implemen-
tation is to test the implementation. Given the expected challenges, we were particularly 
interested in knowing the state-of-practices from the ML developers; i.e., how they vali-
date their ML model implementation in real-world development scenarios. Based on the 
responses of the practitioners we identify the following practices that the ML developers 
adopt for testing ML model implementations:

Performance‑based testing One common practice that the practitioners follow to test ML 
model implementation is to evaluate the model performance. The performance is tested 
based on the known validation set. Practitioners test models “mainly through measuring 
the performance on the test dataset, or through cross-validation.” Based on the responses 
of the practitioners, we observe the following practices commonly used for performance-
based testing of ML models:

– Sanity checks: Developers do some sanity checks by inference on random data sam-
ples, checking for corner-cases or overfitting the models on small sample data subset. A 
quick visualization of output i.e.,“metrics, train/test loss curves, etc.” can also be use-
ful. The models can be tested on “on simple crafted data” or using “small dataset of 
“known cases.”

– Performance on benchmark datasets: One approach to test ML implementation is to 
measure performance on some well-know benchmark dataset. For example, one partici-
pant suggested the testing of ML models to be done “by running on classical data sets 
such Iris or Boston and infer correctness based on the results.” Thus, domain-specific 
data sets can be used for the evaluation of ML model implementation.

– Performance compared to baseline models: A comparison of model performance with 
the known baseline model can also be used for model testing. One practitioner suggested 
to “compare its accuracy to the simple baseline model that you are sure you cannot mess 
up. If it’s better or the same then you are probably implementing it correctly...”

– Cross-model testing: ML developers also compare model performance with other mod-
els of different configurations to identify possible issues. Practitioners do this “by mon-
itoring the model parameters and also the model prediction errors.”

– Cross-algorithm testing: Developers can also test the model by comparing model per-
formance with models based on different other algorithms. Practitioners “check results 
compared to other methods, observe the prediction” to verify model implementation.

– Cross-language testing: Practitioners also reported to compare models implemented in 
different languages for testing. The strategy is to “established examples, area-specific 
toy examples, sometimes compare with implementation in another language” or “com-
pare with other libraries.”

– Cross-platform testing: One of the strategies the ML developers take to test model 
implementation is to compare the model performance in different platforms or by com-
paring “against one or more other frameworks.”

Visualization Another technique the practitioners use to test model is by using the visuali-
zation of model output (e.g., accuracy) and other model states (e.g., loss) or parameters. In 
one practitioner’s word “I have found that visualizing either the output or the internal state 
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of a neural network, greatly improves my bug-finding capacity.” Also, another practitioner 
mentioned “I can test if the neural network architecture definition is correct generating a 
visualization of architecture using Tensorflow, and check if it’s logically correct.”

Use available tools and frameworks Practitioners also use features available in the existing 
tools and frameworks i.e.,“through test methods provided with the framework” for debugging 
and testing ML model implementation. Commonly it is done by “debugging and checking 
results,” for example, using “unit tests in C#.” An example approach as mentioned by one 
ML practitioner is “in case of python, I will use PDB (python debugger). Then test it over 
the known outcomes and if they are not correct or efficient and I will check the algorithm I 
am using and the outputs at every step of that model”. Some practitioners write suitable unit-
tests for ML models or test “against existing frameworks.” Some practitioners use interac-
tive interface of Jupyter notebook and examine “incremental results from the different code 
blocks.”

Domain knowledge–based validation Similar to other activities of ML application 
development, domain knowledge plays an important role in testing ML code. Based on the 
domain expertise, practitioners can perform visual or manual inspection of model behavior 
based on known cases or crafted test data. 

4.5.3  RQ14: What are the common symptoms that practitioners use to detect defects 
in an ML implementation?

It is known that the identification of defects in ML code is harder because the outcomes of 
ML applications are generally stochastic in nature. Thus, we are interested to know how 
ML practitioners detect defects in their ML code. The shared knowledge of the practition-
ers will not only be useful to the ML community but also help in identifying the challenges 
practitioners face and the types of support they need for defect identification in ML code. 
The symptoms can be intuitive like “fail to compile” to some nontrivial defects symptoms. 
Based on the practitioners’ experience shared in this survey, we observe the following 
practices commonly used by the ML developers to identify defect’s symptoms:

Performance based symptoms ML practitioners emphasize a lot on the model behavior 
or performance as the defect symptoms for ML models. ML developers frequently consider 
the following performance-based symptoms for defects in ML code.

– Accuracy: In the practitioners’ view, model accuracy is a strong indicator of the cor-
rectness of the implementation. In a practitioner’s word, “Highly unlikely accuracy for 
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the given task, and extremely low accuracy for the given task, often when encounter-
ing these results there would be defects in the implementation whether it is minor or 
major.” So, the “weird results” i.e., “extremes, too high accuracy, too low accuracy is 
considered to be an indicator of defects. Also, an abrupt change in model accuracy such 
as “huge decrease in performance” is also a sign of model defects.

– Consistency: Inconsistency in model performance is likely to be a symptom of defects 
in the ML model. The “inconsistency of results, over-sensitivity” i.e., “non-determinis-
tic results” indicate the likely presence of defects in the ML code.

– Generalization: Another symptom of defects in ML implementation is the poor gener-
alization i.e., model exhibits “decay in performance on unseen data.” Models may have 
“wrong output,(and) limited possibilities to generalize” and may also show “discrepan-
cies between offline and online benchmarks” in presence of defects.

– Bias: ML models may also exhibit “high bias with respect to the labels” in presence 
of defects. Such “high bias or high precision with low bias” might be an indication of 
defects in the model. This bias can originate from both data and the code.

Training behaviors Some symptoms of defects can surface during model training. We list 
some of the defects symptoms observed during training of ML models as follows:

– Convergence: In presence of defects, ML models may fail to converge. The model may 
lead to “overfitting, underfitting, and volatile performance.”

– Speed: The models may be too slow in training and inference or can be too fast with 
high accuracies. These unexpected model behaviors can indicate potential defects.

– Value: Models may have unexpected values (types or range of values) for input, weights 
or parameters during training. For example, one indication can be “appearance of NaNs 
during training.” This can indicate potential defects in the model implementation.

Model output Erroneous model output may also indicate presence of defects. Practition-
ers reported the following defect symptoms related to model output:

– Value: Model can produce wrong output in terms of values and range of values indicat-
ing defects in the model.

– Distribution: The distribution of model output can also be an indicator of the model 
defects. If the model output is skewed to some specific class or values, there might be 
defects or bias in the implemented model.

However, the symptoms of defects in ML code may also “depend on the problem” and can 
be hard to fit in specific symptoms. The intrinsic challenges in identifying defects in ML 
code have also been reflected in some of the practitioners’ lack of awareness of the identi-
fied symptoms; mentioning that they have “no idea,” or they are “not sure” or that defects 
symptoms are “unknown.” This shows the importance of providing ML practitioners with 
more (tool) support to help them detect defects in their code.

Practitioners use different tools and techniques for detecting bugs in ML code. Some 
practitioners reported that they use Pytest for testing ML code in Python. Based on the 
ML frameworks, the test techniques vary widely. Some practitioners simply use logging or 
debugging to identify bugs. Interestingly, many practitioners either do not use any particu-
lar tool for ML testing while some practitioners are not even aware of such events. Some 
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other tools and frameworks such as Python debugger available with the IDE like PyCharm 
can be handy for looking for bugs. 

4.5.4  RQ15: What are the practitioners perceived challenges of testing ML 
application?

Testing the correctness of models is a challenging task. The characteristics of the ML mod-
els (algorithms) and different quality requirements of ML data make the testing of ML 
models more difficult. Based on the developers’ perception of the challenges in ML model 
testing, we list the following challenges in ML model testing:

Black‑box nature of ML models ML models are “black-box in nature” (Pei et al., 2017)   
meaning that it is quite obscure how the model perform a particular task. For the same 
reason, it is also hard to detect or explain why a model is not performing as expected. 
As models are black-box “I (developer) can’t tweak the internals” to identify the issues in 
the model. Again, “since they are mostly black boxes, it’s hard to make guarantees on yet 
unseen data.” The opaque nature of the models usually does not allow the developer to 
observe the internal states of the models such as “gradient inspection” during training. The 
practitioners feel the need for techniques or tools to make the model more transparent. In 
practitioner’s word “... it would be awesome some kind of software or library that checks 
your gradients and tell if there is something strange.”

Model’s robustness to errors Another key challenge to test ML model is that ML models 
can exhibit robustness to errors by producing correct results in some cases i.e., “the model 
is wrong, but the result is not.” Similarly, “a wrong implementation sometimes achieves 
similar performance (to the correct ones), and the bug cannot be found until we introduce 
new features.” Such wrong implementation “without actual effect in results while convinc-
ing myself(developer) that it works” can be quite tricky for the ML developers to identify 
and fix.

Data quality Data plays an important role in model quality. Despite the correct imple-
mentation, model may perform poorly due to issues in the dataset and that can be hard to 
detect. Based on the practitioners’ responses, we observe the following challenges in test-
ing ML models related to the quality of data:

– Adequacy: ML models need to be trained on an adequate number of input data to 
achieve high accuracy. “Absence of sufficient correctly labeled data” can hinder the 
correctness of the model and consequently the performance.
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– Correctness: One key concern in ensuring the correctness of ML models is “having a 
bad model due to bad data: makes it very difficult to detect and expensive to solve.”

– Data bias: Biases in the data can lead to poor-quality ML models. There might be inten-
tional or unintentional or even domain-specific biases in the dataset. For example, “in 
the medical industry, data bias is hard to get over, and typically requires vast amounts 
of augmentation.” Unbalanced distribution of data samples in the training, testing, and 
validation dataset can embed bias in the model leading to biased models.

– Labeling accuracy: Incorrectly labelled data is likely to result in poor quality models. 
Thus it is important to ensure “the fidelity of the labels” because the “lack of (a) good 
labelled data sets” may adversely affect the model accuracies.

– Distribution: “Testing data sometimes does not belong to the distribution of the train-
ing data on which the model is trained so we might not get good score.” ML data also 
need “to represent the real distributions faithfully.” Otherwise, this can lead to incorrect 
models which can be hard to identify and fix.

– Divergence: One important challenge for the ML model is that the characteristics of 
the data can evolve over time. Thus, the issues in the models may be simply “a data 
problem.” For the models to be correct, it is important “how well does the data avail-
able during training reflect true operational data, and how long until the nature of the 
operational data diverges from your original data and assumptions.” It is challenging to 
deal with this divergence in ML data.

Volatile performance The performance of the ML models can be affected by diverse fac-
tors involving both data and the code. “Sometimes there are discrepancies between test 
and validation sets and unseen data.” Again “sometimes the models do not meet the pre-
determined correctness criteria or they perform very well in the train test split but when 
introduced to the validation set it under-performs.” The cause of low performance can be 
challenging to identify.

Domain expertise Testing ML models may require adequate domain knowledge. Thus, 
“lack of domain knowledge” can make ML testing a difficult task. Also, another challenge 
is the availability of domain experts and also to ensure the availability and “access to tools 
a domain expert can use.”

Cost Testing ML models for correctness and performance can be costly regarding the 
time and efforts. Phases of the ML application development are usually iterative and thus 
“reaching a working model is very time consuming” because “iteration takes too much 
time.”

Lack of concrete methodology Practitioners are also in lack of appropriate techniques 
and methodologies to test ML models. In a developer’s view “... there is, to my knowledge, 
no decisive way to ensure correctness but to leverage more data for testing predictions.” 
“You (practitioners) only have accuracy and prediction plot to check the correctness. Usu-
ally, the data transformation pipeline is difficult to implement so the bug can be from data, 
even before the model. So you(practitioners) need to identify exactly where is the cause of 
low accuracy.”

Interpretability or explainability Another key challenge in testing ML models is that we 
can merely explain why and how a model is working or why it is not working. To test ML 
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models, it is hard to “knowing what you (developers) are evaluating” i.e.,“understanding 
the exact mathematical process behind the algorithms.” 

4.6  Model deployment and management

Once trained and tested ML models are available, models need to be integrated into the tar-
get application for deployment. Also, deployed models need to be monitored and managed 
to maintain the expected performance of the application, and adapted to changes over time.

4.6.1  RQ16: What are the developers‑perceived challenges of testing ML model 
deployment?

It is important to test models after deployment to ensure that the model is integrated as 
expected with other components of the ML applications and the target software ecosystem. 
However, like the pre-deployment testing of models, there are some challenges to post-
deployment testing. Based on the perceptions shared by the survey participants, we list the 
following challenges for testing ML model deployment:

Test data The quality of test data is an important challenge to test ML model deployment. 
Practitioners identify the following challenges in testing model deployment:

– Data availability: For post-deployment testing, adequate real data needs to be available 
covering possible usage scenarios including corner cases. However, there might be a 
“lack of ground truth for real life new data.” While in some cases it might be challeng-
ing to have adequate test data, “huge amount of (test) data” can also be a challenge to 
deal with.

– Data labelling: As in the training phase, test data requires correct labelling for post-
deployment testing. However, “obtaining correctly labelled data” can be challenging.

– Data format: Besides the availability of correctly labelled data, another challenge is 
“making sure the data coming into the model is of the right format.”

Performance One key requirement is that the deployed ML models must perform as 
expected in production. The practitioners pointed out the following challenges to ensure 
the performance of the deployed model:
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– Functional accuracy: One of the primary requirements that a deployed model must 
satisfy is the desired level of functional accuracy. The accuracy requirement may 
“depend(s) on applications, some applications require very high accuracy, while for 
others 60% is enough.”

– Generalizability: Another challenge in post-deployment model testing is to “making 
sure the model is generalizable and its behavior is in control.” The deployed model is 
expected to be not only generalizable to unseen data, but also exhibit “robustness to 
adversarial examples.”

– Performance monitoring: The deployed models need to be evaluated over a reasonable 
period for post-deployment testing. However, “keeping track of predictions (model per-
formance)” can have additional overhead. Also, “constantly having to have human over-
sight” can be challenging and costly.

– Performance measures: Sometimes the interpretation of the performance metrics may 
differ and “the most appropriate result metrics may or may not be understood by all the 
teams.” For example, “accuracy they understand and F1-Score is what matters.”

Resource requirements The deployed ML application should have optimum require-
ments for resources such as processing powers and memories. The models should be tested 
against these requirements. “Assessing the accuracy is not hard but It’s hard to measure 
resource usage in mobile phones. It’s difficult because in the phone we don’t have the same 
libraries and tools we can use to develop like on PC.”

System complexity Complexities of the model, target application architecture, and the 
deployment environment can pose challenges to testing deployed models. For example, 
“due to the model complexity, it is hard to understand where the problem is from” and to 
devise test cases for all possible scenarios.

Platform diversity Another important challenge in post-deployment testing of ML appli-
cations is that model development or training platforms can be different. For example 
“deployment hardware is different from (the) hardware used for training.” Models trained 
and tested on different hardware and software environments may not work on a mobile 
platform. And “it’s difficult because in the phone we don’t have the same libraries and 
tools we can use to develop like on PC.” “The big challenge is a method to deploy ML 
models through a single framework regardless of the used library (PyTorch, Tensorflow, 
etc.)” to overcome the complexities due to platform differences.

Adaptability The target environment and data characteristics are likely to evolve over 
time. However, it is challenging to “integrating new cases of failure into the pipeline” to 
ensure the adaptability of the deployed ML application.

User satisfaction The success of the deployment does not include satisfying the functional or 
performance requirements but also how it is satisfying the target users. However, challenges 
remain in “determining the value of one set of (the) user over another. If 60% of users dislike 
the current implementation, should we change it to satisfy their needs but put the other 40% in 
a place of discomfort?.” The deployment testing thus should consider the user acceptance of 
the application or model deployed.
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Besides, the practitioners claim that domain knowledge requirements, associated time 
and costs, complexities in writing suitable tests, and lack of interpretability or explainabil-
ity can also pose challenges in post-deployment testing as in other phases of ML applica-
tion development. 

4.6.2  RQ17: What are the factors that ML developers commonly focus on during ML 
model management?

Post-deployment model maintenance is important in the ML application development 
life cycle. In this phase, models need to be monitored for different quality parameters, 
and model maintenance activities need to be initiated if the model deviates from the per-
formance requirements. About 77.5% practitioners have mentioned that they frequently 
monitor ML models after deployment. ML developers employ different testing techniques 
depending on the context of the specific application. Common model maintenance activi-
ties include observing the performance, resource requirements, and robustness of the mod-
els in real-world usage scenarios. The models are deployed on different software and hard-
ware platforms. For example, the models can be hosted on some local server or can be 
deployed on the cloud. These diversities in the deployment environment are likely to have 
an impact not only on the performance but also on the maintenance of the models.

Monitoring and maintenance of deployed models are essential in ML application main-
tenance. Since ML models are data-driven, deployed models need to be monitored because 
the model performance can be affected due to significant changes in the data over time. 
To have insights into the practices that ML developers commonly adopt in managing ML 
applications, we categorize the common parameters considered by the practitioners for 
post-deployment model management as follows:

Performance Monitoring performance is a key task in ML model management. As model 
performance can drop significantly due to changes in data characteristics, models need to 
be monitored to detect performance deviation. As per the practitioners’ responses, the fol-
lowing performance factors are considered for post-deployment monitoring.

– Model accuracy: One key performance measure is accuracy. In the maintenance phase, 
models need to be monitored for model accuracy. This helps in the detection of per-
formance deterioration due to changes in data over time. Model accuracies are meas-
ured against predefined metrics similar to the training and testing phases. “Changing 
in accuracy” should be addressed accordingly such as retraining the models. The met-
rics for accuracy may vary depending on the model type and the domains. Models are 
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also evaluated with respect to the ranking quality in recommendations such as “NDCG 
(Normalized Discounted Cumulative Gain)” commonly used in information retrieval.

– Resource consumption: Another performance factor that the practitioners reported to 
give importance to is the resource consumption by the deployed application such as 
CPU, GPU, memory, and power. The models may require optimization for resource 
consumption to ensure a cost-performance trade-off.

– Inference latency: Response time for inference by the models i.e., the inference latency 
is an important parameter to watch for. Models require to be evaluated for the “latency 
for predictions” to ensure that “speed is reasonable.”

– Robustness: The models need to be monitored for unseen data or corner cases to evalu-
ate how robust the model is in dealing with new data in a real environment.

Business gains In the post-deployment phase, ML models or applications also need to 
be evaluated regarding different business metrics. Thus, ML applications are evaluated 
regarding different “business metrics such as click-through rates, conversion rates, (and) 
revenues.” There are also other business factors such as “customer retention.” Necessary 
steps are essentials if the ML model fails to meet the business goals.

User feedback It is also important to evaluate ML applications based on the feedback 
of real users. “Response from users and their feedback in how it could be improved or 
changed” using the “end-user perspective” is important to improve the quality of ML 
applications.

However, the prioritization of factors to monitor during model maintenance can depend 
on the associated ML applications. 

5  Analysis and discussion

In this paper, we have presented insights into state-of-the-practice and key challenges in 
different phases of ML application development based on the shared experiences of ML 
practitioners. Our survey participants are from diverse backgrounds with a wide array of 
skills and experience in different domains of ML application development. This is likely 
to ensure comprehensive reflections of the practices and challenges in machine learning 
in practice. In the following subsections, we discuss our findings with respect to overall 
trends in ML application development and the practices and challenges in the four phases 
of the ML application development life cycle we covered in our survey:
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5.1  Trends in ML application development

We presented recent trends in ML application development in finding 1. As mentioned 
by the practitioners, the recent trend in developing ML applications is heavily focused on 
developing business intelligence (BI) applications. In addition to business and e-commerce, 
the application of AI/ML includes healthcare, security, document analysis, and entertain-
ment, and embracing rapidly other areas of human life. For ML application development, 
data plays a key role. Based on the practices reported by the practitioners, open-source is 
the leading source of ML data while private company data and data from third-party cli-
ents are also major sources of ML data. Like open-source datasets, different open-source 
ML libraries and frameworks (e.g., TensorFlow, PyTorch, Keras, scikit-learn) are the lead-
ing frameworks as reflected in the recent trends in ML application development. However, 
the choice of the data, ML algorithms, and ML frameworks are mostly dependent upon the 
problems and application domains and require necessary domain knowledge for the suc-
cessful development of ML applications.

5.2  Data collection and preprocessing

ML models are data-driven and thus the quality and adequacy of data are important for 
developing ML applications. However, ensuring the availability of reliable data for ML can 
be challenging. We observe that open-source data is the most prevalent source for machine 
learning data covering about 75% of the data. The quality of ML data is very important for 
the performance of the resulting ML model. Practitioners have pointed out different key 
quality characteristics of the ML data (finding 2). The key attributes of ML data that the 
practitioners have emphasized include how well the data represent features for machine 
learning and also the adequacy and diversity, meaning enough data volume and having 
representations from all classes or categories. ML data also needs to be complete and accu-
rately labeled for ML algorithms. Data needs to be consistent regarding the structure, accu-
racy, and quality of information. Besides, ML data needs to be reliable and to be verified 
in multiple phases because the consequence of data error can be extremely adverse in cases 
such as health- and safety-critical systems. Besides, ML data should have if possible low 
noise and bias, with balanced distribution across data classes, to achieve high-performance 
models.

Practitioners apply different data transformation operations such as noise removal, 
replacement of missing values, dimensionality reduction, class-balancing, and normalization 
(finding 3). As we observed from the practitioners’ responses, there is no one-size-fits-all 
type of solution for data processing. More than two-thirds (76.6%) of the surveyed developers 
do not use specific data analysis tools; rather, they use diverse data or problem-specific tools 
and techniques or develop their own customized solutions.

ML data can be noisy and may require preprocessing such as cleaning or transforma-
tions to be suitable for ML models. However, cleaning ML data is a challenging task (find-
ing 4) and the data-cleaning approaches are likely to be data and problem-specific. Thus, 
the approaches are hard to generalize, scale up to accommodate a large volume of data, 
and apply to data automatically. Quality issues of the data and lack of necessary features in 
existing tools for ML data processing make the data cleaning task not only harder but also 
costly in terms of time and effort. The process requires adequate domain knowledge about 
the associated data and the ML use cases. Practitioners also pointed out the importance of 
having a common standard for data and data cleaning procedures. It is also important for 
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practitioners to be aware of not only the tools and techniques for data cleaning but also the 
adverse impact of noisy data on resulting ML models.

Another key task is to correctly label the data or features for ML models. Practitioners 
have outlined several challenges in feature labelling (finding 5). One key challenge in fea-
ture labelling is the large volume of data which is time and resource consuming and thus 
can be costly as it may also involve manual processing. The feature extraction and labelling 
procedures are likely to be problem and domain-specific and thus domain knowledge is 
important. Poor quality of data and lack of appropriate labelling guidelines also add chal-
lenges in ML feature labelling. As reported by the practitioners, manual investigation is 
still the most commonly used approach for validating features or ML data labelling where 
domain knowledge plays an important role (finding 6). However, some practitioners use 
tools and automated scripts for feature validation.

5.3  Feature engineering

Feature engineering is another important phase of ML application development where ML 
data is processed to generate meaningful features. The key objective of the features is to 
best represent the data characteristics that can help ML models to learn and infer for a 
defined ML task. Feature engineering usually comprises two key functionalities: feature 
extraction and feature selection. The feature extraction process should take into account the 
quality characteristics while extracting features from the data.

One important requirement for ML data is that data need to be balanced across different 
classes (finding 7). Practitioners commonly use different statistical analyses, visualization, 
and manual verification to check the class balancing of the ML dataset. To improve model 
performance, practitioners fix class balancing issues in ML data using techniques such as 
re-sampling of data or stratification of the ML dataset. As the feature extraction procedure 
may be data and problem dependent, more than two-thirds (76.6%) of practitioners men-
tioned that they do not use specific tools for ML data processing such as feature extraction. 
Practitioners usually depend on manual analysis and custom scripting for feature extrac-
tion, while there are some tools available for feature engineering (finding 8). Based on 
practitioners’ perceptions, we observe several limitations of existing feature engineering 
tools and techniques (finding 9). Generalization is one of the key limitations of existing 
feature engineering tools and associated domain knowledge is necessary to use these tools. 
They also are not easily adaptable to new data and problems. Practitioners also identify 
the lack of usability and simplicity of the tools, which imposes a slow learning curve on 
developers.

It is also important to validate the feature quality. Practitioners have reported some com-
mon practices in feature assessment and validation (finding 10). One common practice is 
to use statistical analysis and visualization of the feature to evaluate the quality charac-
teristics. Practitioners also observe the resulting model performance to assess the feature 
quality. Like other ML development phases, feature validation requires necessary domain 
knowledge. However, the techniques are likely to be domain-specific.

Once features are extracted from ML data, selecting the optimal subset of features for 
ML models is an important but challenging task. As per the practitioners’ responses (find-
ing 11), the feature selection process is mostly manual and based on domain knowledge 
while there are some automated tools. However, different statistical analyses and visualiza-
tion are useful to gain insights into the features for incremental selection and to find the 
optimal subset of features that satisfy desired performance requirements.
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5.4  Model building and testing

ML models are usually (reported by 93.18% practitioners) implemented based on avail-
able libraries and frameworks while about one-third of the developers write models from 
the scratch (finding 12). The models are then trained with the training dataset and tested 
for accuracy and performance. One important and challenging task of the model-building 
phase is to ensure the accuracy of the models by testing (finding 13). A widely used prac-
tice for ML model testing is based on model performance evaluating selected performance 
metrics on benchmark or validation dataset. The testing may involve a comparison of mod-
els considering diverse settings (language, algorithms, target platforms, etc.). ML model 
implementations are also tested using visualization of internal model states or external 
behaviors. There are some tools and frameworks to support ML implementation. Domain 
knowledge also plays an important role in ML testing.

Practitioners also pointed out some defect symptoms commonly used to assess the qual-
ity of ML models. One key parameter is to evaluate model performance regarding the 
accuracy, consistency, bias, and generalizability of models. Training-time behaviors like 
convergence, training time and trend, and also output values and distribution from the 
model can be useful indicators of defects in the model (Finding 14).

Testing ML models is known as a challenging problem. Practitioners have identified 
(inding 15) that the “black-box” nature of the ML models makes it harder to test. ML mod-
els can also exhibit robustness to errors ,meaning that ML models can produce correct 
results in some cases despite incorrect implementation. In addition, it is also challenging 
to ensure the adequacy and consistency of data. Possible bias, labeling errors, and diver-
gence in the dataset also pose challenges to ML testing. Practitioners are in need of con-
crete methodologies for ML testing. Lack of interpretability or explainability also hinders 
ML model testing.

5.5  Model deployment and maintenance

Once trained and tested, the model needs to be integrated into the target application for 
deployment. Deployment of ML models includes different activities to integrate and test 
models in the target application environment. Practitioners adopt different tools and tech-
niques for model deployment and post-deployment maintenance of ML models. However, 
model deployment involves different challenges (finding 16). The very first challenge is 
to ensure the availability of test data with desired quality and diversity to cover all use 
case scenarios. Monitoring post-deployment model performance is another challenge to 
ensure the functional accuracy and generalizability of models. Meeting resource require-
ments, the complexity of models, platform diversity, adaptability, and overall user satisfac-
tion are important model attributes for the post-deployment evaluation of ML models or 
applications.

Practitioners focus on some important maintenance factors for model maintenance 
(Finding 17). Over 77% of the practitioners have reported that they frequently monitor 
deployed ML applications. In the post-deployment phase, practitioners primarily focus on 
the model accuracies, resource consumption, inference latency (speed), and robustness to 
unseen data. Besides, different business factors (e.g.,  user conversion rate, revenues) are 
important to monitor during model maintenance. Moreover, the feedback of the target 
users is very important to measure the application performance from the end-user perspec-
tive. Users’ feedback is important for the identification of defects and the improvement of 
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the features of the ML applications. During the maintenance, the practitioners may need to 
set priorities among these factors based on the specific context of the ML application.

To have further insights, we also took a closer look at how the practitioners perceived 
challenges and best practices in ML application development observed in our study reflect 
the challenges and best practices reported in the existing literature. For example, Amershi 
et al. (2019) reported that practitioners from Microsoft emphasized on the availability, qual-
ity, and management of data for ML application development. In particular, the practition-
ers identified “accessibility, accuracy, authoritativeness, freshness, latency, structuredness, 
ontological typing, connectedness, and semantic joinability” as the important attributes of 
ML data. We observe a considerable overlap of the data characteristics reported by the par-
ticipants in our study (finding 2) with that of the study by Amershi et al. The differences in 
the listed data attributes are likely due to the differences in ML development scenarios the 
practitioners of the studies are associated with. Practitioners who participated in our study 
identify data cleaning as a challenging task where scalability is a key challenge (finding 4). 
This is consistent with the findings of the study by Amershi et al. (2019). Practitioners in 
both studies emphasized on the need for tool support to automate the data processing and 
feature engineering tasks.

Existing studies reported testing of ML application as a very challenging task as ML 
model testing differs from traditional software testing (Amershi et  al.,  2019; Marijan 
et al., 2019; Felderer & Ramler, 2021). The practitioners who participated in our study also 
report testing as a very challenging task in ML workflow (finding 13, finding 14, finding 
15). Marijan and Gotlieb (2020) presented different state-of-the-art approaches to test ML 
applications. However, these approaches might not be widely available to ML practition-
ers as automated tools. As reported in our study, the practitioners used to test ML models 
based on the observation of model performance, training-time behaviors, visual inspection, 
and distribution of output values. Thus, practitioners are in need of tools and methodolo-
gies for ML testing (finding 15).

The findings from our study highlight valuable insights into the practice and challenges 
of different phases of the ML application life cycle. The findings are expected to be useful 
to make practitioners aware of the challenges in ML application development. We hope 
that they will serve as a guide to help developers adopt best practices for developing high-
quality ML applications.

6  Threats to validity

In this section, we discuss some potential threats to the validity of the methodology and 
findings of our study.

Threats to construct validity: Survey is a well-known method to collect information 
from relevant people on a specific topic that allows us to summarize, compare, and explain 
the knowledge and perception of the respondents on the topic of interest (Fink,  2003). 
Thus, we adopted survey as our methodology to ask ML practitioners about their experi-
ences in ML domains. We followed formal guidelines to design and conduct the survey and 
analyze the responses to have insights into the practices and challenges in developing ML 
applications.

Threats to internal validity: One important threat to the internal validity is the potential 
biases in responses from the participants of the survey. We did a pilot study to get feedback 
from several survey participants on the questionnaire. We refined our questionnaire and 
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adapted the recommendation we received from the pilot study to design the final survey 
questionnaire.

Threats to external validity: We aligned our questionnaire with the phases of ML work-
flow presented in the existing literature. The questions are iteratively refined based on the 
existing literature, domain knowledge, and practitioners’ feedback to make the question-
naire cover diverse aspect of ML development. Moreover, we selected a large group of 
participants from diverse backgrounds and skills for this study. However, this group of par-
ticipants may not be representative of the general population of ML practitioners. This is 
a potential threat to the generalizability of our findings. To mitigate this threat, we care-
fully selected the participants based on their professional profiles on LinkedIn and their 
contribution in machine learning projects in GitHub. Also, we took care to provide many 
open-ended questions in our questionnaire to allow participants to express their responses 
with freedom. We also ensured that every question includes the option ”Not Applicable” or 
”Other,” to allow participants to respond appropriately if a question did not apply to them 
or if the respondents were not comfortable answering a particular question(s). The open-
ended questions also allowed respondents to explicitly add any other practices and chal-
lenges that they are aware of. Nevertheless, it is desirable that future studies replicate this 
work with more ML professionals from diverse backgrounds.

Threats to conclusion validity: Our results from the survey are not affected by the choice 
of methodology used in our study. We have used descriptive statistics, simple calculation, 
and comparisons that are likely to be independent of the analysis tools and techniques. 
However, a different set of respondents may result in some variations in the results. We 
carefully selected the respondents based on their profile and contribution and we cross-
validated our data analysis and reporting methodology with at least two members of the 
team conducting this study.

Threats to reliability validity: To ensure reproducibility of our findings, our data and 
results are available at an online Appendix (2020). We elaborated our details’ methodology 
for selection of the respondents, data collection, and analysis. As the professional network 
is continuously evolving and the query results for specific keywords are likely to vary, and 
thus the list of participants is likely to differ in future replication of the study.

7  Related works

Recent advancements in machine learning are making ML increasingly popular to devise 
innovative solutions for diverse problems. However, the increasing adoption of machine 
learning into software applications is posing additional challenges to the software devel-
opment process (Zhang et al., 2019b). Challenges in the traditional software engineering 
process have been widely addressed by researchers (Sandberg and Crnkovic 2017). How-
ever, there is a growing need for guidelines and best practices for developing ML applica-
tions (Zhang et al., 2019c).

Schelter et  al. (2018) focused on ML model management regarding use cases from 
conceptual, data management, and engineering perspectives. Amershi et  al. (2019) 
highlighted challenges in AI application development at Microsoft and shared how the 
teams address those challenges. Zinkevich (2018) presented guidelines for best prac-
tices in ML engineering. There are also guidelines for Responsible AI practices (2020), 
Kriens and Verbelen (2019). However, these guidelines are not focused on finding a fit 
for ML into traditional software engineering process. Many existing literature focus on 
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different aspects of machine learning such as data acquisition, data preprocessing, fea-
ture extraction (Storcheus et al., 2015), model management (Schelter et al., 2018), test-
ing (Pei et al., 2017; Grosse & Duvenaud, 2014; Ma et al., 2019, 2018a, b; Zhang et al., 
2019a; Sun et al., 2018), and deployment (Schelter et al., 2018; Renggli et al., 2019; Guo 
et al., 2019) of ML applications.

Since testing is one of the most important phases of the development of machine learn-
ing applications, some studies focused on the challenges of testing machine learning sys-
tems. Braiek and Khomh (2020) present challenges that should be addressed when test-
ing ML programs. In this paper, we report about techniques and tools currently used by 
practitioners to cope with these challenges. Huang et al. (2018) investigate the character-
istics of Naive Bayesian classifier and DNN classifier and analyze the testing challenges 
of machine learning applications like generating reliable test oracles, generating effective 
corner cases, improving test coverage, and testing the ML applications with millions of 
parameters. Then some initial techniques were suggested for machine learning applications 
which use Naive Bayesian classifier and DNN classifier to mitigate these challenges. The 
other study by Marijan et al. (2019) focuses on the most prominent challenges of testing 
ML-based systems (Absence of Test Oracles, Large Input Space, and White Box Testing 
Requires High Test Effort) from the quality assurance perspective, rather than model per-
formance perspective. Then, some existing approaches which alleviate these challenges are 
reviewed and discussed regarding their limitations.

Few researches can be found about the difficulties faced by software developers while 
developing ML applications or using ML libraries. Considering the 3243 highly rated Q 
&A posts related to ten ML libraries from Stack Overflow and classifying these questions 
into seven typical stages of an ML pipeline, Islam et al. (2019) performed an analysis from 
four perspectives to understand the problems with ML libraries usages: finding the most 
difficult ML stage, understanding the nature of problems, nature of libraries and studying 
whether the difficulties stayed consistent over time. Bangash et al. (2019) studied 28,010 
machine learning posts from Stack Overflow and employed topic modeling to identify key 
areas of interest to developers. They report that topics related to Algorithms, Classifica-
tion, and Training datasets categories are frequently discussed by developers. Nguyen-Duc 
et al. (2020) in their survey explored different contextual factors in ML application devel-
opment to leverage opportunities in business. Washizaki et al. (2019) report about a sys-
tematic literature review of both academic and gray literatures that aimed to collect soft-
ware engineering good and bad design patterns for ML application systems and software. 
They provide a list of software design patterns and anti-patterns that practitioners can use 
to improve the quality of their ML applications.

Our study differs from other existing studies with respect to our focus on different ML 
development tasks in the end-to-end ML workflow, while existing studies (Marijan &  
Gotlieb, 2020; Marijan et al., 2019) focus on specific aspects of ML development such as 
testing. Our study focuses on insights from practitioners rather than review of the state-of-
the-art (Marijan & Gotlieb, 2020). The existing literature have provided useful insights on 
challenges for machine learning and software engineering development mostly separately. 
In this paper, we reconcile these two themes and report about challenges and best practices 
of machine learning application development, using insights from experienced ML devel-
opers with diverse expertise and application domain.
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8  Conclusion

In this paper, we presented the findings of a survey of 80 ML practitioners from diverse 
backgrounds. Our survey covers four key phases of the ML application development life 
cycle, i.e., (i) data collection and preprocessing, (ii) feature engineering, (iii) model build-
ing and testing, and (iv) integration, deployment, and monitoring, to identify challenges 
and practices from the  practitioners’ perspective. We summarized the knowledge shared 
by these practitioners in 17 key findings. maintenance. For each of the selected phases of 
ML application development, we analyze the response of the practitioners and synthesize 
the developers’ practices into actionable findings. We believe that our findings can be use-
ful in making ML practitioners of all experience levels in academia and industry aware of 
diverse challenges in ML application development. In addition, our findings can provide 
the practitioners with necessary guidelines and examples of best practices to adopt in their 
ML workflow in a context-specific way.
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