
Vol.:(0123456789)

Software Quality Journal (2023) 31:1065–1119
https://doi.org/10.1007/s11219-023-09621-9

1 3

Machine learning application development:
practitioners’ insights

Md Saidur Rahman1 · Foutse Khomh1 · Alaleh Hamidi1 · Jinghui Cheng2 ·
Giuliano Antoniol2 · Hironori Washizaki3

Accepted: 20 February 2023 / Published online: 30 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Nowadays, intelligent systems and services are getting increasingly popular as they provide
data-driven solutions to diverse real-world problems, thanks to recent breakthroughs in
artificial intelligence (AI) and machine learning (ML). However, machine learning meets
software engineering not only with promising potentials but also with some inherent chal-
lenges. Despite some recent research efforts, we still do not have a clear understanding
of the challenges of developing ML-based applications and the current industry practices.
Moreover, it is unclear where software engineering researchers should focus their efforts
to better support ML application developers. In this paper, we report about a survey that
aimed to understand the challenges and best practices of ML application development.
We synthesize the results obtained from 80 practitioners (with diverse skills, experience,
and application domains) into 17 findings outlining challenges and best practices for ML
application development. Practitioners involved in the development of ML-based software
systems can leverage the summarized best practices to improve the quality of their system.
We hope that the reported challenges will inform the research community about topics that
need to be investigated to improve the engineering process and the quality of ML-based
applications.

Keywords Machine learning application development · Testing machine learning
application · Machine learning best practices

1 Introduction

Artificial intelligence (AI) and machine learning (ML) have emerged as powerful tools
to develop data-driven solutions for diverse real-world problems. Recent breakthroughs
in machine learning have greatly inspired the surging adoption of AI capabilities for
automation by embedding intelligence into modern software and services (Amershi et al.,
2019). AI-based automated supports now span almost every sphere of human life: busi-
ness, education, healthcare, research, communication, security, assistive technologies,

 * Md Saidur Rahman
 saidur.rahman@polymtl.ca

Extended author information available on the last page of the article

http://orcid.org/0000-0002-5677-5927
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-023-09621-9&domain=pdf

1066 Software Quality Journal (2023) 31:1065–1119

1 3

and so on. With the diversity in application domains, the types of problems and the
characteristics of the data may vary greatly and so the ML algorithms. From an engi-
neering perspective, once an algorithm is implemented, it requires a solid architecture,
model/data validation, proper monitoring for changes, dedicated release engineering
strategies, judicious adoption of design patterns and security checks, and thorough user
experience evaluation and adjustment. A failure to properly address these challenges
can lead to catastrophic consequences. Classically, we have constructed software sys-
tems in a deductive way, or by writing down the rules that govern the system behaviors
as program code. With machine learning techniques, we generate such rules in an induc-
tive way from training data. This shift of paradigm induces some challenges that are
unique to ML application development (Khomh & Antoniol, 2018; Khomh et al., 2018).

Recently, practitioners from leading software companies like Google (Sculley et al.,
2015) and Microsoft (Amershi et al., 2019) have been reporting about their experi-
ence building ML-based applications and raising awareness on some of the challenges
posed by ML application development. Sculley et al. (2015) outlined some challenges
of ML application development by identifying harmful design patterns that may
incur excessive maintenance costs. In addition to characterizing the challenges, they
also made some suggestions on how to deal with those challenges. Amershi et al. (2019)
presented a survey conducted with developers from Microsoft, showing how AI applica-
tion development aligns with a nine-stage development workflow. They outlined three
fundamental differences between ML application development and traditional soft-
ware development. They observed that data management for ML applications is quite
complex compared to other types of software, and that model customization and reuse
requires some specific skills. They also reported that AI modules are difficult to handle
compared to traditional software components due to complex inter-component relation-
ships and non-monotonic error behavior. Amershi et al. (2019) also suggested some
best practices for software engineering of ML applications, focusing on data and model
management, and the interfaces between ML components and the overall system.

Although these studies (i.e., Amershi et al. (2019), Sculley et al. (2015)) have provided
valuable insights on the challenges of developing AI/ML applications at scale in the
context of large companies, we still do not know how small and medium-sized enter-
prises (SMEs) handle ML application development. It is important to know the chal-
lenges and best practices followed by practitioners building ML applications across dif-
ferent domains and in diverse development settings. This paper aims to fill this gap by
examining experiences and collect insights from ML practitioners from across the globe
with varying skills and experiences and from diverse development domains. We present
a survey of ML development practices and insights obtained from the feedback of 80
ML practitioners working in the software industry or in academia.

For the survey, we reached out to over 700 AI/ML practitioners by email. We com-
municated our request for participation in the survey using contacts from the profes-
sional network LinkedIn. We selected the participants based on their profile information
indicating their roles associated with AI/ML in academia or industry. We also collected
the emails of the participants from GitHub based on their contributions to ML projects.
We received responses from 80 participants with diverse technical and professional
background. We analyze the survey data to derive insights and summarize them along
the phases of the ML development workflow described in Amershi et al. (2019).

In this paper, we make the following contributions:

1067Software Quality Journal (2023) 31:1065–1119

1 3

– We conduct a comprehensivesurvey involving 80 ML practitioners from diverse back-
grounds to identify the state of practices and challenges in ML application development.

– Our survey covers four key phases of ML application development life cycle, namely
(1) data collection and preprocessing, (2) feature engineering, (3) model building and
testing, and (4) integration, deployment, and monitoring, to identify challenges and
practices from practitioners’ perspective.

– We synthesize our 17 key findings to show how those findings can benefit researchers
and practitioners in developing ML applications of high quality.

Practitioners embarking on new or ongoing efforts to develop ML-based applications
can take advantage of the summarized best practices to improve the quality of these
applications.

The remainder of the paper is organized as follows. Section 2 discusses some basic
concepts of ML application development, common trends in ML application, their benefits
and challenges. Section 3 presents the detail of the survey including design, objective, par-
ticipants, data collection and analysis methodologies. Section 4 presents the results of our
survey. Section 5 discusses these results. In Section 6, we discuss potential threats to our
methodology and findings. Section 7 presents some prior research related to our study fol-
lowed by the conclusions in Section 8.

2 Background

This section briefly presents some important concepts of ML application development. We
also briefly compare and contrast traditional software systems and ML-based systems.

2.1 Machine learning applications

Traditional software systems are constructed based on a well-defined set of rules that
govern the system’s behavior. However, in ML applications, the behavior is controlled by
rules inferred from the data (Khomh et al., 2018). ML applications as data-driven systems
have induced a paradigm shift in the software development process, making the develop-
ment, testing, and verification of the ML applications intrinsically harder. A defect in a ML
application may come from training data, program code, execution environment, or third-
party frameworks. Given the increasing adoption of ML/AI, it is important to understand
the challenges of ML application development and devise some best practices. Since ML/
AI is an emerging field, we believe that developers who are currently building ML appli-
cations are best positioned to reflect and report about the challenges and pitfalls of ML
application development. Hence, in this paper, we conduct a survey of ML developers to
document their experiences and formulate best practices and the challenges of ML applica-
tion development.

2.2 ML application development life cycle

In our study, we consider the ML application development life cycle presented by Amershi
et al. (2019) as shown in Fig. 1. We study practitioners’ perceptions of the challenges and
common practices in ML application development. We briefly discuss the phases of the

1068 Software Quality Journal (2023) 31:1065–1119

1 3

ML application development life cycle below. A more detailed discussion of the ML appli-
cation development life cycle is available in Braiek and Khomh (2020).

2.2.1 Model requirements

In this phase, developers define the requirements for data and algorithms regarding a ML
problem at hand. They need to identify relevant and representative data. The requirement
is very important since it has a significant impact on the success of the other phases of
the ML workflow. Selecting insufficient or biased data will likely lead to inadequate ML
models. In this phase, developers also often have to mediate between different conflict-
ing goals. For example, ensuring high performance of models while satisfying restric-
tions enforced by regulations governing privacy and security of information (which often
restrict access to some data). Regulations can also induce requirements on the models. For
example the General Data Protection Regulation (GDPR) enforces the right to explanation,
which requires that ML models be explainable and interpretable.

2.2.2 Data collection and preprocessing

ML applications are data-driven and thus the collection and preprocessing of the data is
important. In this phase, data is collected from internal or external sources (e.g., main-
frame databases, sensors, IoT devices, and software systems) and is presented in differ-
ent formats (e.g., various media types). It can be structured (such as database records) or
unstructured (such as raw text) and is delivered to ML models either in batch (e.g., discrete
chunks from mainframe databases and file systems) and/or real-time (e.g., continuous flow
from IoT devices or Stream REST APIs). Developers often have to leverage complemen-
tary automated tools that support batch and/or real-time data ingestion strategies, to col-
lect data needed for training their ML models. Once data is collected, it often must be
cleaned to ensure consistency and the absence of redundancies. Common data cleaning
tasks include: removing invalid or undefined values (i.e., Not-a-Number, Not-Available),
duplicate rows, and outliers that seems to be too different from the mean value); and uni-
fying the variables’ representations to avoid multiple data formats and mixed numerical
scales. This preprocessing step is often done using data transformations such as normaliza-
tion, min-max scaling, and data format conversion.

2.2.3 Feature engineering

Feature engineering is the process of extracting informative features from the data that
ML algorithms can learn from to build ML models. Features need to be able to represent
the characteristics or patterns in the dataset. Once suitable features are extracted, it is also

Fig. 1 Phases of ML workflow (adopted from Amershi et al. (2019))

1069Software Quality Journal (2023) 31:1065–1119

1 3

important to select the best subset of features for the models. This process is called feature
selection. Extraction and selection of features comprise the feature engineering process. It
is an essential step in the construction of conventional ML models. However, in the case of
deep learning models, the features are inferred automatically. In fact, deep learning mod-
els build complex features automatically as a part of their statistical learning process from
data. For example, conventional computer-vision models require image features, including
edges, corners, and blobs that can be detected using low-level image processing operations,
while convolutional neural networks process raw images directly.

2.2.4 Model training and evaluation

During the training phase, a suitable machine learning algorithm is applied to the cleaned
and prepared dataset. Different model parameters are tuned iteratively to learn the mapping
between the features and the corresponding labels (in case of supervised learning). Models
are trained up to a desired level of accuracy. The trained model is evaluated on the valida-
tion dataset, to evaluate the performance. The performance of the model is measured using
a predefined set of performance metrics such as prediction or classification accuracy.

2.2.5 Integration, deployment, and monitoring

Once a trained and validated model is available, it is integrated into the target applica-
tion for the desired functions. The application is deployed on suitable devices or platforms.
Deployed ML models need monitoring for performance and potential errors during real-
world executions.

In case of errors or major shifts in the patterns in the data, the models may need to be
retrained. Thus, the phases of the ML workflow are not linear as it looks like in Fig. 1,
rather the phases in the ML application development life cycle are iterative.

In our study, we focus on the following four phases of ML workflow except the require-
ments phase namely data collection and preprocessing, feature engineering, model train-
ing and evaluation, model management (covering integration), and model deployment and
post-deployment monitoring. We do not cover the requirement engineering phase in this
survey and we plan a future study of its own. This is because requirements engineering
for ML is quite complex (Belani et al., 2019; Vogelsang & Borg, 2019). ML engineer-
ing introduces a paradigm shift compared to conventional software engineering (Wan
et al., 2019) and so the requirements engineering (Vogelsang & Borg, 2019). ML applica-
tions are likely to have ML and non-ML requirements. ML application are often developed
as a component interacting with other non-ML components to build large and complex
systems. Functional and nonfunctional requirements, ML-specific quality trade-offs, and
ML and non-ML components’ interactions require different considerations. These make
the requirements engineering of ML application a challenging task. Ishikawa and Yoshioka
(Ishikawa & Yoshioka, 2019) in their recent study listed requirements engineering as the
most difficult activity for the development of ML systems. Our survey thus focus on the
above mentioned four phases of ML workflow and identifies the common practices and
key challenges in the ML workflow.

1070 Software Quality Journal (2023) 31:1065–1119

1 3

3 Study design

We conducted an online survey to understand the practitioners’ experiences in ML applica-
tion development. We present the overall approach of the study in Fig. 2. We briefly dis-
cuss our study objectives and methodology as follows:

3.1 Objectives of the study

Our key objective in this research is to know the perceptions of the ML practitioners about
the challenges and state of practices in developing machine learning applications. Using
an online survey, we ask the developers questions on development activities encompass-
ing different phases of the ML application development life cycle. Our key focus in this
study is understanding the challenges and best practices in data collection and preprocess-
ing, feature engineering, ML model building, testing, and deployment. As ML applications
are data-driven, we first focus on data processing and feature engineering. We aim to know
about the current practices in data processing and feature engineering including source and
types of data, data preprocessing activities, tools, and frameworks. Then we focus on iden-
tifying the challenges and best practices in model building, testing, deployment, and post-
deployment model maintenance.

3.2 Survey design

To conduct the survey we defined an online questionnaire for the ML practitioners to par-
ticipate anonymously. The first and the third author prepared the initial design of the ques-
tionnaire based on the study of common practices and challenges reported in the existing
literature (Amershi et al., 2019). The other authors then reviewed the survey questionnaire.
The questionnaire was then updated based on the comments from all the collaborating
authors. The questions in the questionnaire cover the development activities of different
phases of the ML application development life cycle. In addition, we asked the participants
to report their technical skills, experience in ML and software development, job roles, and
domains of their ML application development. The survey forms were made available to
the interested participants through a web page. As part of the survey design, we first con-
ducted a pilot study to collect feedback on the survey questionnaire from ML practitioners.
We shared our initial survey questionnaire with 10 randomly selected practitioners with
at least five years of experience in ML application development. We selected participants
based on their experiences shared on their Linkedin profiles. We received anonymous feed-
back from three (3/10) participants on the questionnaire. All three participants have PhD

Fig. 2 Schematic diagram of the study

1071Software Quality Journal (2023) 31:1065–1119

1 3

and hold relatively senior positions (Lead data scientist, Senior ML engineer, ML Research
Associate) in the industry or in the academic ML research lab. We refined our question-
naire based on their feedback by adding/modifying questions and the types of questions
(open/closed). The data from the pilot study is used only to improve and finalize the design
of the questionnaire and is not included in the final survey data. We then communicated
the updated survey questionnaire to the participants in the final study.

The survey has three parts as shown in Table 2. Part 1 collects some demographic
information about the participants including the type of organization (e.g., industry or aca-
demia), job roles, skills, experience, and ML domains of expertise. Part 2 of the question-
naire focuses on challenges and practices in the data collection, preprocessing, and fea-
ture engineering. Part 3 of the questionnaire asks the participants about their development
practices, tools, technologies, and frameworks in ML model building, testin,g and deploy-
ment. All sections contain both open-ended and close-ended questions and also options to
add comments by the participants where applicable. All the questions collectively meet
the data requirements necessary to answer the research questions we defined in Table 1
for this study. In addition, an informed consent form was also available to the participants
on the online survey page outlining the detailed objectives, privacy and data use policy of
the study. All queries and concerns of the potential participants were clarified by email
responses from the authors.

3.3 Data collection

To collect responses from the machine learning practitioners regarding our survey, we
communicated the online link of the survey to the prospective participants by email along
with our research objectives and requested their participation. Interested participants sub-
mitted their responses anonymously using the randomly generated participants’ identifica-
tion numbers. At the end of the survey deadline, we downloaded the responses of the par-
ticipants. We used the participants’ IDs in tracking and analyzing the anonymous survey
data.

3.3.1 Selection of participants

We selected participants based on their self-declared profiles in the professional net-
work LinkedIn. We also selected ML developers from the GitHub user community con-
tributing to the development of ML applications. In both cases, we ensured that they
are professionally attached to ML/AI application domains. For example, from LinkedIn,
we selected users either based on their employment in different roles related to ML/
AI application such as AI/ML engineer/developer, data scientist, AI/ML researcher/
scientist, Software engineer, software architect, and PhD or Masters student in ML or
relevant areas. For GitHub users, on the other hand, we select users from the list of con-
tributors in ML/AI projects. In either case, our focus was to reach out to potential par-
ticipants with expertise and experience in developing ML applications. Once selected,
we requested the potential participants by email to participate in the online survey. We
gave the necessary details on the objectives, procedures, and policies of the study and
asked for their consent to participate voluntarily.

We received responses from practitioners of diverse backgrounds. From about 700
requested potential participants, 81 respondents completed the survey which is about
11.57%. To mention, out of the 81 respondents, all responded to Part 1 of the survey, 49

1072 Software Quality Journal (2023) 31:1065–1119

1 3

participants responded to Part 2 and 44 participants responded to Part 3 of the survey.
We excluded responses of one participants with partial response to only Part 1 of the
survey. So at the end, we retained the responses of 80 participants for our analysis.

3.4 Data collection and analysis

Our survey was designed using Google forms and was made available to the respondents
through a provided web link. We collected the data once the survey period was ended.
We did some preprocessing of the responses to remove formatting or minor linguistic dif-
ferences for correct analysis and descriptive statistics. To answer the research questions,
we analyzed the data to compute descriptive statistics. We then used visualization tech-
niques to present the responses to have better insights into the trends, similarity, and con-
trast among different classes of responses. For qualitative analysis of the responses from
open-ended questions, we applied grounded theory (Stol et al., 2016; Charmaz, 2006)

Table 1 Research questions

Contexts Research questions

ML Trends RQ1: What are the current industry trends in developing ML applications?
Data Processing RQ2: In practitioner’s perception, what are the important quality attributes of ML

data?
RQ3: What is the state-of-the-practice regarding the data processing tasks,

techniques and tools for quality assurance of ML data?
RQ4: What are the challenges of ML data cleaning?
RQ5: What are the challenges of data labelling faced by the ML application

developers?
RQ6: What are the common approaches to validating data labelling by the ML

practitioners?
Feature Engineering RQ7: How do ML practitioners identify class-imbalance in ML data and how do

they ensure class-balance?
RQ8: What are the feature engineering techniques and tools commonly used by ML

developers?
RQ9: What are the common limitations of the existing feature engineering tools and

techniques?
RQ10: What is the state-of-the-practice in feature quality assessment in ML

application development?
RQ11: What are the common practices for feature selection in ML application

development?
Model Building RQ12: What are the practices for ML model implementation commonly adopted by

the practitioners?
RQ13: What is the state-of-the-practice for ML model implementation testing by

ML practitioners?
RQ14: What are the common symptoms that practitioners use to detect defects in an

ML implementation?
RQ15: What are the practitioners perceived challenges of testing ML application?

Model Management RQ16: What are the developers-perceived challenges of testing ML model
deployment?

RQ17: What are the factors that ML developers commonly focus on during ML
model management?

1073Software Quality Journal (2023) 31:1065–1119

1 3

based coding of the responses for categorization of the challenges and practices in differ-
ent phases of the ML development. Here, we assigned qualitative coding for the segments
of data from the participants’ responses. This aims to make analytic interpretations of the
concrete statements from the survey participants to compare, categorize, and summarize
the responses. We named (coded) each distinct segment of data to develop abstract con-
cepts for interpreting that data segment. The coding is to link data to an emerging theory
that aims to explain the data. We started with initial coding that is open to possible con-
cepts followed by more focused coding to organize or synthesize frequent initial codes.
We did theoretical integration during focused coding and continue for subsequent steps to
pinpoint the most salient categories from the data. Two of the authors performed classifica-
tions independently regarding the goals defined by the corresponding research questions.
The authors resolved the disagreements observed in some cases by meeting in person to
finalize the data classification. The classified data was further summarized based on ana-
lyzing the distributions and visualization. Based on the analysis, we summarized the prac-
tices and challenges in ML application development as reported by the survey participants.

Table 2 Structure of the survey

1074 Software Quality Journal (2023) 31:1065–1119

1 3

3.5 Privacy and anonymity

To ensure the privacy and anonymity of the participants, we did not collect any personal
information. The participants were assigned a randomly generated code to use as the user
ID. We use cookies to keep track of the returning user to assign the same user ID for differ-
ent parts of the online survey. Participants were able to access the privacy and data usage
policy along with the consent from for voluntary participation. Participants’ data will be
securely preserved for seven years. Participants were allowed to withdraw themselves and
request data removal at any stage of their participation.

4 Results

In this section, we present our results from the survey to answer the research questions. We
also present our insights into the survey responses from the expert practitioners regarding
the challenges and best practices in ML application development. We present our findings
in the following subsections:

4.1 Demographic distributions

We summarize the demographic information of the participants as follows:

4.1.1 Background

Among the 80 respondents who completed the survey, 56 (70%) participants are from the
software industry, 18 (22.5%) from academia or research, 1 (1.25%) was with both aca-
demic and industry affiliation, and 5 (6.25%) participants identified themselves with other
affiliations (Fig. 3). The participants are from diverse academic background (Fig. 4) com-
prising 16 PhDs or above (20%), 32 Masters (40%), 31 Bachelors (38.75%), and 1 (1.25%)
mentioned as with “Other” level of educational qualifications.

The participants are from diverse roles (Fig. 5) in their corresponding organiza-
tion with 26 (32.5%) AI/ML engineer, 18 (22.5%) data scientist, 24 (30%) researcher
with 10 (12.5%) of them identified themselves as AI/ML research scientist. Besides,
9 (11.25%) of the participants are with the roles of AI/ML developer/analyst, one
(1.25%) software development intern, and 4 (5%) with upper-level roles including one
chief AI officer, ML software architect, software team lead, and deep learning man-
ager. In addition, the participants include three (3.75%) PhD students, two (2.5%) Mas-
ters students, and one other student. The above diversity in the participants compris-
ing both researchers and practitioners allows us to obtain a good representation of the
skills and experience of varying levels.

4.1.2 Professional experience

As shown in Fig. 6, the participants are highly experienced in software development with
53.8% of them have a minimum 4 years of experience in software development. Among
the participants, we have 35 (43.8%) participants who have worked for five years or more

1075Software Quality Journal (2023) 31:1065–1119

1 3

in software development and 8 (10%) with four years, 9 (11.3%) with three years, and 19
(23.8%) with two years of experience respectively. Only 9 (11.3%) of the participants are
relatively novice with less than 1 year of experience. The participants have diverse levels of
experience in machine learning (Fig. 7) with more than 80% of the participants having at
least two years of experience in machine learning application development. To be specific,

Fig. 3 Organization types of the
participants

Fig. 4 Educational qualifications
of the participants

1076 Software Quality Journal (2023) 31:1065–1119

1 3

13 (16.3%) participants have five years or more experience in ML while 11(13.8%) have
four years, 12 (15%) have three years, 30 (37.5%) have two years, and 14 (17.5%) are rela-
tively novice with less than one year of experience in ML.

It is important to note that there is a drop in the percentage of participants in higher
experience categories. For example, participants with experience of five years or more
dropped from 35 (43.8%) to 13 (16.3%) from software development to ML application
development context. This could be explained as the migration of experienced devel-
opers from traditional software development to ML application development to adapt
to the increasing AI/ML trends in the software industry. This is valuable to our study
as such participants have wealth of knowledge and experience to compare and con-
trast the traditional software development and ML application development especially
regarding the challenges and best practices.

Fig. 5 Job titles/roles of the participants

Fig. 6 Software development
experience of the participants

1077Software Quality Journal (2023) 31:1065–1119

1 3

4.1.3 Domains of expertise

The survey participants work on developing applications in diverse machine learning
domains. Our survey data (Fig. 8) shows that image processing and natural language pro-
cessing (NLP) are the two domains with the top two number of participants, 45 (56.25%)
and 44 (55%) from each respectively. Among the participants, 38 (47.5%) work in the area
of predictive analytics and recommendation while 31 (38.75%) participants claimed to
have working experience on clustering. Besides, 20 (25%) and 13 (16.25%) participants
work on video processing, and speech and audio processing respectively. Also, 3 (3.75%)
of the participants use reinforcement learning (RL) in their ML applications while some
other application domains of the participants include areas such as control and optimiza-
tion, games, rendering and animation, security (anomaly detection), music generation, and
biomedical engineering. Representation of participants from different application domains
provides us with the opportunity to have developers’ insights on the challenges and prac-
tices regarding the diverse area of machine learning and AI.

Participants have expertise in a diverse set of programming languages and technolo-
gies (Fig. 9). Among the participants, 77 (96.25%) are Python users, which shows that
Python is a remarkably popular language among ML practitioners. Besides Python, we
have 16 (20%) C++ users, 11 (13.75%) R users, 10 (12.5%) Java users, 8 (10%) Matlab
users, and 6(7.5%) SCALA users. In addition, a few participants claimed to use one or
more of C#, CUDA, STAN, JavaScript, Node JS, and Clojure as their languages in ML
application development.

Fig. 7 ML development experi-
ence of the participants

1078 Software Quality Journal (2023) 31:1065–1119

1 3

4.2 Trends in ML application development

Here, we report the current trends in developing ML applications in the industry based on
the response of the practitioners. We focus on the types of ML applications software indus-
tries are developing, software development methodologies, and the ML frameworks and tools
developers are using to develop ML applications to answer the following research question:

RQ1: What are the current industry trends in developing ML applications?

4.2.1 ML Application Types

Responses of the participants give an overview of the ongoing trend in the AI/ML indus-
try regarding the types of applications developed (Fig. 10). We asked the participants to
list the types of AI applications commonly developed in their companies. We observe that

Fig. 8 ML domains of expertise of the practitioners

Fig. 9 Programming languages for ML development

1079Software Quality Journal (2023) 31:1065–1119

1 3

companies are developing diverse classes of AI-based solutions encompassing different
aspects of daily life, business, education, health, commutation, security, entertainment,
research and innovation, social networking, and so on. Based on the survey, we observe
that software industries are highly focused on developing AI-based solutions for business
intelligence (29 (36.25%)). This is reasonable given the ongoing trends in the companies
to leverage AI for improved products and services, customer clustering, product recom-
mendations, and prediction and forecasting for business decision support. The practitioners
are also involved in document processing (20 (25%)) commonly based on the application
of natural language processing. Companies are also developing solutions for entertainment
(12(15%)), healthcare (9(11.25%)), education (7(8.75%), security (7(8.75%)) and commu-
nication (6(7.5%)).

Besides, there has been a considerable focus on developing ML-based solutions for
business including E-commerce, finance, insurance, retails, and revenue management as
10 (12.5%) of the participants reported these application types developed by their com-
panies. Another important application area the practitioners are working on is environ-
mental data analysis and forecasting as reported by 9 (11.25%) participants. Participants
also reported working on building applications for social network analytics, control, and
automation such as self-driving cars and other areas of research and development in
ML/AI including computer vision, speech processing, and simulation. So, our survey
shows the diverse area ML/AI is being applied as the recent trends.

4.2.2 Software development methodologies

As reported by the practitioners (Fig. 11), agile software development methodologies have
been widely adopted in software industries for ML application development. Among the
participants 52(65%) participants report that they use agile process for ML application
development. Some widely used agile process frameworks used by the practitioners are
namely SCRUM Schwaber (1997), Kanban Anderson (2010), and LEAN Poppendieck and
Poppendieck (2003). Practitioners also reported the use of tools such as Jira1 and Zenhub2
for the management of agile development process. Among the participating developers,
10 (12.5%) reported to use other data- or test-driven development process. A portion
(18(22.5%)) of participants reported that they do not use any specific development process
for developing ML applications.

As mentioned by the practitioners, although agile process are the most commonly
used, the development process is sometimes tailored to fit specific application develop-
ment context, i.e., “agile/scrum but tailored towards ML model development processes”.
Some practitioners refer to their agile development process as “loosely organized agile”
or “light agile” and “more explorative”. Depending on the context, some developers use
either some adhoc or agile process for ML application development. They mentioned
that “many smaller-scale models are prototyped on an ad-hoc basis with no formal pro-
ject methodology. Medium and larger projects borrow agile techniques”. While many
practitioners do not use “specific development process”, some prefer to use a data-
driven or “feature-driven” or “test-driven development” development processes involv-
ing “unit testing, integration testing, devops (continuous integration and delivery)”

1 www. atlas sian. com/ softw are/ jira
2 www. zenhub. com

http://www.atlassian.com/software/jira
http://www.zenhub.com

1080 Software Quality Journal (2023) 31:1065–1119

1 3

for ML application development. Thus, we observe that practitioners mostly use agile
methodologies for ML application development. However, the choice of development
process may vary and the development process may require to be tailored to fit into spe-
cific ML application development needs.

Fig. 10 ML application types

Fig. 11 Software development
methodologies used for ML
application development

1081Software Quality Journal (2023) 31:1065–1119

1 3

4.2.3 ML frameworks and tools

From the responses of the participants, we have a list of popular ML frameworks and
tools widely used by the ML practitioners (Fig. 12). Among the respondents, 58(72.5%)
use TensorFlow as their ML framework for application development showing it as the
most popular framework in AI/ML application development. Then, 53 (66.25%) of
the participants reported that they use PyTorch making it the second-highest popular
ML framework followed by Keras, a high-level ML framework based on TensorFlow
which is reported to be used by 44 (55%) participants. Among other ML frameworks
MXNet, Scikit-learn, Caffe, and Deeplearning4j are reported to be used by 9 (11.25%),
5 (6.25%), 4 (5%), and 3 (3.75%) participants respectively. Some participants have
also reported that they use frameworks like Chainer, Tensorflow.js, Caret, OpenCV,
ML.Net, XGBoost, MLlib for their ML application development. It is to be noted that
each participant may use multiple frameworks for ML application development and
thus the counts of participants for different frameworks are not mutually exclusive.

Fig. 12 Commonly used ML frameworks for application development

1082 Software Quality Journal (2023) 31:1065–1119

1 3

4.3 ML data collection and pre‑processing

Machine learning applications are data-driven, and so it is intuitive that the quality of the
input data is very important for the performance of the ML models. Based on the responses
from our survey participants we compile different processing tasks, common practices in
ML data preparation. From the responses, we know the state of practices adopted by the
ML practitioners. We summarize the common practices and challenges related to ML data
processing as in the following:

4.3.1 ML data sources

Depending on the ML application domains, the types of the data may vary widely as well
as the sources of the data. Data can be of different forms such as text, images, videos,
speech, business transactions, time-series data, and so on. Similarly, these data may come
from different private or publicly available sources (Fig. 13). As mentioned by the survey
participants, companies rely on one or more sources for ML datasets for their ML applica-
tion development. One of the common sources of ML data is the open-source data sets
made publicly available by different academic institutions, companies, and various tech
and research communities (e.g., Arxiv, Kaggle). As mentioned by the participants, compa-
nies rely on internal company data for developing ML solutions either for themselves or for
others. Many software companies develop custom ML solutions for their third-party clients
based on their supplied data regarding business transactions, users, and the data collected
from internal operations or even external environments using sensors over a certain period
of time. ML data is also collected from online sources by web crawling and scraping.

To summarize, open-source datasets are the leading source of data for ML applica-
tion development. Besides, private data and data from third-party clients are also common
sources of ML data as reported by the practitioners.

Fig. 13 ML data sources

1083Software Quality Journal (2023) 31:1065–1119

1 3

4.3.2 RQ2: In practitioner’s perception, what are the important quality attributes
of ML data?

ML models are data-driven and so the quality of the data is important for the performance
of the ML models and consequently the applications containing the ML models. We asked
the practitioners about this important topic to learn about the quality attributes that ML
developers focus on in practice while assessing data quality. We then compile and classify
the data quality attributes based on the responses of the survey participants. We list the
key observed quality requirements of the ML data as pointed out by the practitioners as
follows:

Feature representativeness In machine learning, the primary purpose of the data is to
train the ML models. For this, the data must be representative of the necessary discrimi-
native features to learn from. Thus, how well data represent the characteristics capable of
differentiating different hidden patterns in the data is very important. Practitioners thus
emphasize on “feature quality” which requires “high discrimination between features.”
This can be assessed by statistical measurements on the data set such as “balanced distri-
bution,” “high variance,” and “low correlation” among the features and with the “target”
variable(s).
Adequacy ML models need an adequate amount of data samples for training. In practi-
tioners’ word ML models need “lots of samples with wide variation, equal(ly) distributed
across fields/classes.” The adequacy of the data is hard to define and depends on different
factors such as the data, problem, number of features, number of distinct classes, and ML
algorithms.

Diversity ML models need to have “diversity” regarding the coverage and distribution of
data among different classes present in the data set. The practitioners have emphasized
on the diversity mentioning that the data should contain “...samples with wide variation,
equal(ly) distributed across fields/classes.”. The practitioners also emphasized on the “dis-
tribution of response variables, (and) distribution of each features.” They also mentioned
“subject area coverage, sampling uniformity, sparsity, vocabulary coverage” as important
characteristics that enhance the diversity in the dataset. Like other data quality characteris-
tics, different diversity factors and their importance may vary with data, problem, and the
algorithms.

Labelling accuracy Labelling accuracy is very important for the ML dataset. So, it is
important to ensure that there are “no mislabelled data. The dataset should be treated with
the utmost care, because a bad dataset means a bad model even if it’s trained well.” Prac-
titioners thus emphasize on data “quantity and correct labels.” “The quality of the labels
i.e.,“reliability of (data) annotations” is very important and “the structure, accuracy and
quality of information would play a large role in determining the importance of the ML
data sets.” So, in practitioners’ word “(labelling) consistency is very important; for a par-
ticular field I was working on a year ago, there were only two available data sets, but both
of them had inconsistent labeling, which made them unusable.”

Completeness Machine learning data need to be complete meaning that there should
not be missing values in the data or at least there should be “enough data with minimum

1084 Software Quality Journal (2023) 31:1065–1119

1 3

missing values.” Data samples with missing values are either dropped or some transforma-
tions are applied to fill in the missing values with the best approximate values.

Consistency Like the adequacy of the ML data, it is very important for the data to be con-
sistent. The consistency of the data can be in terms of the correctness of values, data types,
or the format or structure of the data or even the labelling. The practitioners thus focus on
the “structure, accuracy and quality of information.” ML data need to be “consistent with
inference data; be relevant for the model; be consistent with itself.” Consistency defines
the suitability of the data to use in the ML models.

Reliability ML data need to be reliable, meaning not only correctness and consistency but
also the reliability of data source, data collection, and annotation procedure. The reliability
of ML data can be validated by different cross-validation processes. The practitioners sug-
gest checking if “it (the data) has been verified by multiple sources.” It is crucial especially
in health and safety critical domain such as for “medical data.” ML data to be reliable,
practitioners expect that the “data is clean, well explained, come from good annotations.
You (developers) also need to know how the data was generated.”

Noise level ML data can have noise in it due to missing or erroneous values and outliers in
the data. The data can be incorrect in terms of values or data types. Thus, ML data require
different transformation and cleaning to remove noises and to improve data quality.

Relevance ML data need to be relevant for the problem, i.e.,the data should represent the
necessary characteristics meaning the “existence of viable features” that ML models can
learn from. Like other data quality requirements, the relevance of the data “depends on the
problem.”

Class balance For ML data, class balance is crucial for the accuracy of the ML model. For
an unbalanced dat set, the model is likely to be biased to the majority class, leading to poor
accuracy, especially for the minority class. Practitioners recommend the data “samples (to
be) well balanced across classes” i.e., data is “equal(ly) distributed across fields/classes.”

Distribution ML data should have balanced distribution across the classes and have
“sampling uniformity.” Different statistical measures (i.e.,descriptive statistics), vari-
ance, and correlation are commonly used by the practitioners to measure data relation and
distribution.

Performance impact One of the key concerns is how well the model performs based on
the given training data. The quality of the data is thus also reflected in the performance of
the model. For such quality assessment, practitioners often build a prototype model based
on the subset of data and measure model performance such as “AUC ROC on test set.”

Low bias There can be different sources of biases in the ML dataset. The biases can origi-
nate from the human error or perception differences of it can be from the data historically
containing discrimination or biases in it. The biases should be eliminated from the data set
as much as possible. Thus, the practitioners recommend that ML data need to be “diverse,
not biased.”

1085Software Quality Journal (2023) 31:1065–1119

1 3

4.3.3 RQ3: What is the state‑of‑the‑practice regarding the data processing tasks,
techniques and tools for quality assurance of ML data?

Quality of the dataset is one of the key factors that contribute to the performance of the ML
models. Here, we discuss common data processing tasks, techniques, and tools for ML data
processing for quality assurance of ML data.

Data processing tasks Practitioners may need to employ a series of preprocessing and
transformation to ensure the desired quality of the data or ML models in turn. Based on
the practices reported by our survey respondents, we can broadly group the data processing
task into the following:

– Data transformation: ML practitioners often need to apply different transformations
on the dataset to prepare for machine learning algorithms. These transformations may
include simple corrective transformation such as adjusting the data types or structure of
the data. Data may also need some advanced transformations like reducing the dimen-
sions of the data while preserving its key characteristics or hidden patterns. ML data
often require normalization and scaling to transform the values to a range suitable for
ML algorithms. Another important quality attribute of ML data is the class balance,
which can affect model performance. In such a case, some practitioners reported that
different boosting and re-sampling techniques are used to remove class imbalance prob-
lems in the ML dataset.

– Data analysis: To analyze and assure the quality of ML data, practitioners employ dif-
ferent analysis techniques. The first step in quality assurance is to understand the dataset
regarding the distribution and basic trends. Practitioners commonly do a manual analy-
sis to have the basic perception of the data characteristics. Another common approach
as mentioned by the practitioners is the visualization of the data. The common visu-
alization techniques include the presentation of data using different charts and graphs.
Some practitioners also use advanced visualization techniques such as t-SNE (van der
Maaten & Hinton, 2008) that facilitates the visualization of multidimensional data in a
more flexible and elegant way. In our survey, practitioners also reported that they use
exploratory data analysis to evaluate data quality. This analysis helps to understand the
common characteristics, category, and trends in the dataset. Another common approach
to data quality assurance is to perform statistical analysis or to cluster data to under-
stand the distributions and trends in the ML data set. The analysis can be performed on
randomly selected samples from the data set or on the whole dataset. Another approach
to assess ML data quality is to build a prototype model based on a subset of the data

1086 Software Quality Journal (2023) 31:1065–1119

1 3

and verify the model performance. The type and extent of analysis may depend on the
problem, data, and specific objectives of the data analysis.

Tools and techniques for ML data processing The practitioners depend on different tools
and techniques for ML data analysis. One common technique reported by our survey par-
ticipants is the manual inspection of the data. Manual inspection is a reliable technique
as the developers can take advantage of their domain knowledge to assess the quality of
the ML data to perceive the common patterns in the dataset. ML data may also need to be
annotated manually for categorization and labelling. However, manual analysis is likely to
be costly and may suffer from scalability issues in case of a large dataset. Another approach
commonly used by the practitioners is to visualize the dataset. As reported by the survey
participants, open-source tool Jupyter Notebook3 is a widely used tool for data exploration
and visualization. Practitioners also reported using other commercial data analysis tools
(e.g., Kibana4) for exploratory data analysis and visualization. Practitioners also reported
that they use Apache Spark5 for ML data processing especially in the big data context.

Another technique used by the developers is to write custom scripts for data analysis
and visualization using descriptive statistics, charts, and graphs. Custom scripts can also be
used to fix for missing and duplicate values, to identify data types and value range incon-
sistencies, detection of labelling errors, and for checking data structures or formats. One
important point to note is the fact that many practitioners reported that they do not use
specific tools for data quality analysis and some times do not even check data quality, and
instead rely on assumed quality based on the source of the data. However, this reliance
may fail to identify potential issues in ML data quality and may consequently lead to poor
quality ML models. However, despite of different commonly used tools and techniques,
domain knowledge plays an important role in the application of tools and techniques and
the effectiveness of ML data quality assurance.

Common practices in ML data processing One of the key challenges of the ML data
collection and preprocessing is that the data and the necessary processing can be domain
and problem-specific. Thus, no specific tool may fit all the problems or data processing
requirements. The responses from our survey participants also reflect the challenges of
dealing with these variabilities. Overall 76.6% of the participants mentioned that they do
not use a very specific tool for ML data analysis. One of the key reasons is likely to be the
abovementioned fact that one specific tool is not capable of handling diverse data analysis
requirements and practitioners may use very domain or problem specific tools and tech-
niques. It can also be explained by the limited availability of data analysis tools with com-
prehensive features to cover the processing of data from diverse domains as only 14.9% of
the practitioners have reported to using specific data analysis tools. Besides, some of the
participants reported that they rely on existing Python libraries and frameworks to develop
their custom data analysis scripts. Thus, it is important to develop necessary tools for data
analysis with comprehensive coverage of data analysis requirements in diverse problem
settings.

3 https:// jupyt er. org/
4 https:// www. elast ic. co/ kibana
5 https:// spark. apache. org/

https://jupyter.org/
https://www.elastic.co/kibana
https://spark.apache.org/

1087Software Quality Journal (2023) 31:1065–1119

1 3

4.3.4 RQ4: What are the challenges of ML data cleaning?

Cleaning ML data is an important data preprocessing step to remove noise from the ML
dataset. Based on the practitioners’ responses we list the following challenges in ML data
cleaning:

Generalization Data cleaning like most other tasks in the ML application development
workflow is hard to generalize as it is usually “geared towards specific applications.” This
is due to the inherent domain- and problem-specific variations in data, ML frameworks,
and algorithms, and even the target application platforms. This has also been reflected in
the practitioners’ responses as one respondent mentioned “There is no one-size-fits-all tool
and probably will never be one.” Another respondent mentioned “...it is practically impos-
sible to make a general tool, as it depends on the data and the problem at hand.” So, “they
are not generalizable to different use cases, like text and images.” One common practice
adopted by the ML developers is to develop or customize their data cleaning solutions as
mentioned by one respondent: “Sometimes they are not adaptive enough for my problems
so I have to write my own.”

Scalability Another key challenge in data cleaning as reported by the survey practitioners
is the “scalability to big data sets.” Most tools and techniques may suffer from the scalabil-
ity issues. This challenge is intuitively understandable particularly because of the rapidly
growing volume of ML data. The data volume may often exceed the processing memory
(“scaling to multi terabytes”). Thus, practitioners need to devise custom techniques to pro-
cess larger datasets in small-capacity machines under resource constraints. Otherwise, it
may impact the data processing cost due to large data processing resource requirements.

Automation Some practitioners feel the need for “automated analysis” for data cleaning
and reported that current data cleaning techniques are “poorly automated”. However, prac-
titioners are aware that “some tasks cannot be automated...” and recommend that “...rule-
based and AI/ML techniques need to be applied to data cleaning itself.” This suggests the
idea that ML techniques can potentially be applied to automate the data cleaning tasks.
Data regarding the cleaning techniques applied to existing ML applications are likely to be
leveraged. Due to various diversities in data and problems, it is challenging to integrate the

1088 Software Quality Journal (2023) 31:1065–1119

1 3

data cleaning and processing tasks into the ML workflow which further limits the automa-
tion of the data cleaning and other preprocessing tasks.

Data quality “Most data is noise (noisy)” and thus cleaning of these types of data can be
costly. Moreover, data can be from different sources and in different forms and so their lev-
els of quality. For example, text data can be with different encoding schemes while image
data can be in different formats and quality. When the data is too noisy, the cleaning task
becomes costlier and often impossible given the tools and techniques available. Data from
companies are proprietary data and the structure of the data is likely to be driven by other
business or technical factors than the application of ML.

Lack of standard Another issue the practitioners commonly face is that there is no defined
standard of “clean-data.” The cleanliness can be relative and may vary with data, problems,
and algorithms. This makes it harder to devise robust techniques for data cleaning.

Efforts and costs Data cleaning can be costly (“It’s very time and labour intensive”) and
thus “requires a lot of efforts,” time, and computational resource requirements. Also, data
processing tasks can be highly iterative and the continuous expansion of the data may trig-
ger repetitive data processing incurring high cost.

Lack of tools and features As the data types and the required processing may differ
widely from one problem to another, tools are likely to be with a domain or problem spe-
cific features. This limits the adaptability of tools for diverse ML data. The lack of fea-
tures and data dependencies limit the usability of the data cleaning tools and techniques.
The practitioners also mentioned “the high complexity of use” as a challenge to using data
cleaning tools effectively. Also, “sometimes they (tools) are not adaptive enough for my
(specific) problems...” and this lack of flexibility also limits the use of tools for processing
ML data of diverse characteristics.

Context and perception differences From the responses of our survey participants, we
observe a difference of perception on the challenges of data cleaning between the ML prac-
titioners. This difference of perception is likely due to the different contexts in which they
performed their data cleaning tasks. The response “Till now, from my usage experience,
I didn’t find any limitations on the tools I have used during my projects.” is thus likely to
represent a domain and context-specific view of the respondent and may or may not apply
to the development contexts of other participating practitioners.

Requirement for domain expertise ML data processing requires a clear understanding of
the data, target problem, and algorithms. However, understanding the structure and seman-
tics of the data from a particular domain may often require basic and sometimes advanced
knowledge in the domain. For example, to process natural language texts in the mental
health domain the ML practitioners are in “... need for expertise in linguistics and mental
healthcare.” The requirement for domain expertise may vary across the domains and the
type of the problem being addressed by the ML application.

1089Software Quality Journal (2023) 31:1065–1119

1 3

4.3.5 RQ5: What are the challenges of data labelling faced by the ML application
developers?

Feature labelling is very important as incorrect labelling affects model accuracy. How-
ever, labelling of features is a challenging task especially when data volume is large and
due to different domain- and problem-specific requirements and constraints. Based on the
responses from our survey participants, we identify several key challenges perceived by the
ML practitioners as follows:

Data volume One of the key challenges in feature labelling reported by the practition-
ers is the large volume of data. Labelling commonly involves manual effort and given the
increasing volume of ML data, labelling can be very challenging due to the constraint
“large dataset vs limited human resources.” Because of the data volume, “the amount of
work to be done can be overwhelming.”

Cost “Labeling the data is quite hectic and time taking process” and thus may incur “high
cash and labor costs.” “Also in some cases, labeling the data also requires a lot of knowl-
edge of the field to which the data belongs.” However, “using experts for labeling is expen-
sive” while “using non-expert for labeling results in low quality training set.” Again, “it is
better to have opinions of several experts rather than a singleton labeling to avoid biased
opinions and ensure (the) validity of the labeling.” This further increases the cost of the
labelling of the ML dataset.

Required domain expertise Data labelling often requires expert-level domain knowledge.
For example, labelling data in medical imaging such as diabetic retinopathy requires “a
super-skilled workforce, such as doctors to estimate the level of diabetic retinopathy from
images.” However, “domain experts are hard to reach.” So, the requirements for domain
expertise in ML data labelling not only make the labelling task challenging but also make
labelling excessively expensive. However, the required level of domain expertise may vary
across domains.

Automation Labelling of ML data is mostly manual or “poorly automated.” “Manual
labeling can be very frustrating and time taking” and thus “labeling is slow and expen-
sive.” For automation, standard procedure is necessary. However, due to diverse variabili-
ties involved, “coming up with a standard annotation procedure” is quite challenging. “It
is very hard to make a criteria that can be validated by scripts or other automated tools.”
Thus, although “human annotation is expensive” there is a “lack of tools for annotation.”

1090 Software Quality Journal (2023) 31:1065–1119

1 3

Also, for automation, it is necessary to have ground truth for validation. However, there is
also “lack of clear ground truth.”

Domain dependency ML data and the labelling objective may vary widely across differ-
ent application domains. As the practitioners claimed, data labelling “becomes more diffi-
cult is(as) the dataset is domain specific.”. Thus, the data labelling criteria and the required
expert-level knowledge are also very domain specific. For example, “for legal documents,
lawyers are best suited to annotate.” This domain dependency puts a limit on the human
labelling experience to be transferable to other domains.

Biases One of the key challenges in ML data labelling is the potential biases or inconsisten-
cies. There are different sources of possible biases or errors in data labelling. As data labelling
is manual in most cases, “discrepancies among humans” i.e., the differences in knowledge and
perception among labellers can introduce labelling biases or inconsistencies due to “subjectiv-
ity” as “everyone has their own point of view.” Again, the annotators may “have no understand-
ing of the importance of the quality or lack proper training, so the labeling is inconsistent.”

Data quality The quality of the data also has impact on the data labelling. Too much
noises in the data and incompleteness of data due to missing values can affect the label-
ling. There can be multiple labels for single data and to avoid label confusion requires clear
labelling guidelines.

Reliability Assuring the reliability of the ML data labelling is another challenging task.
Due to the large volume of data, labelling is likely to require team efforts. Perception dif-
ference among the team members may result in inconsistent labelling. Again, due to the
overwhelming volume of the task “ML researchers often rely on third-party annotations.”
However, as mentioned “third party annotators have no understanding of the importance
of the quality or lack proper training, so the labeling is inconsistent.” Again, the practition-
ers claimed that often “workers are not trust-worthy”, so it is challenging to make feature
labelling reliable. Practitioners recommend cross-validation by multiple labellers as a rem-
edy for the reliability risk of feature labelling.

Lack of guidelines One of the important challenges the practitioners mentioned is that
there are no comprehensive guidelines on the feature labelling. Practitioners expressed the
“..need to have a strict guideline for labelling.” However, “it is very hard to make a criteria
that can be validated by scripts” given the variabilities involved in specific ML domain.

1091Software Quality Journal (2023) 31:1065–1119

1 3

4.3.6 RQ6. What are the common approaches to validating data labelling by the ML
practitioners?

Accuracy of ML data labelling is very important as incorrect labelling can have adverse
effects on ML model performance. It is thus important to know the current practice of
the ML developers for testing the data labelling accuracy. Based on the responses of
our survey participants, we see some common practices used by the ML practitioners.
As there is a lack of automated tools for labelling validation and it may require man-
ual checking by domain experts, manual investigation is mentioned by most practition-
ers (35(71.42%)) as the approach for label validation. Besides, 22 (44.9%) practition-
ers reported that they use automated tools or scripts for testing data labelling accuracy.
However, in many ML domains, the data labelling is not required rather the neural net-
works is capable to learn from the data. Some practitioners build a prototype model on
the subset of data and evaluate the data labelling accuracy based on the performance of
the prototype model. In both automated and manual label validation, domain knowledge
plays an important role.

4.4 Feature engineering

Feature engineering is one of the key steps in ML workflow unless the feature is learned
automatically from the data such as in deep learning. In our survey, we asked the practi-
tioners about how they do feature engineering to learn about the current state of practice.
We report on the tools, techniques, and challenges of feature engineering in the following
subsections:

4.4.1 RQ7: How do ML practitioners identify class‑imbalance in ML data
and how do they ensure class‑balance?

In machine learning especially in supervised learning context class imbalance is a crucial
issue as it can severely affect the performance of the ML models. Thus, it is important to
identify the class imbalance and to take the necessary approach for balancing the ML data-
set regarding different representative classes. The first step to resolve the class imbalance
of the ML dataset is to identify the balancing issue in the first place. ML practitioners have
shared different practices they use to assess and identify class imbalance in the dataset.

Identification of class‑imbalance We list the common approaches for identifying class
imbalance as follows:

– Statistical analysis: One of the commonly used practices to identify class balance in
the ML dataset is to statistically analyze the dataset. Descriptive statistics and the class
distribution can indicate how well data is balanced across different classes.

1092 Software Quality Journal (2023) 31:1065–1119

1 3

– Data visualization: Visualizing data is another approach widely used by the ML prac-
titioners for testing class balance in the dataset. In practitioners’ word, “testing (class
balance) can be done by statistical approach or by visualizing the data on a graph which
will show how balanced the data is.”

– Sampling and analyzing data subset: Another approach to testing the class balance is to
analyze randomly sampled subset of data as mentioned by the practitioners “(we) ran-
domly sample a portion and calculate the class distribution in it.”

– Manual verification: Practitioners reported to use manual analysis to check the balance or
distribution of the ML data. However, manually checking data can be time-consumingand
costly and may not be scalable when data volume is large.

– Model performance: Some practitioners mentioned a kind of reactive approach to test-
ing class balance. Here, instead of balancing data proactively before training, their
approach is to observe the impact of the imbalance on the model first then balance data
if necessary. As mentioned by one of the practitioners where s/he first builds “baseline
models like linear regression and logistic regression to see how good/bad the imbal-
ance affects the predictions.” Similarly, another practitioner mentioned the way as to
“evaluate sensitivity of the model at the end on generated data.” Some practitioners also
reported measuring model performance based on k-fold cross-validation to assess the
impact of class imbalance.

In some ML domains, no explicit data labelling is necessary or the data is naturally imbal-
anced depending on the domain and thus the class imbalance issue may not apply to those
contexts, and it has also been mentioned by different practitioners.
Techniques for class‑balancing Based on the responses from the practitioners, we list
some commonly used techniques for balancing a dataset as follows:

– Data resampling: The resampling of data is a commonly used technique to balance the
ML dataset. To balance data, either minority class can be up-sampled or the majority
class can be down-sampled. The balanced data then can be used for ML models. Prac-
titioners reported the use of tools like SMOTE (Chawla et al., 2002) or ADASYN (He
et al., 2008).

– Stratification: Practitioners also reported using stratification techniques to understand
and balance the data. A practitioner stated that: “we write our own stratification solu-
tions, based on the descriptive analysis.” Practitioners also mentioned applying strati-
fied split of training and test data to reduce the impacts of class imbalance. Also, one
of the practitioners mentioned data augmentation, stating that “...will utilize data aug-
mentation methods if class balancing does not satisfy requirements” without specifying
specific augmentation technique.

The requirements and the techniques for balancing data are likely to depend on the particu-
lar ML context regarding the problem domain, the data, and the ML algorithms.

1093Software Quality Journal (2023) 31:1065–1119

1 3

4.4.2 RQ8: What are the feature engineering techniques and tools commonly used
by ML developers?

Based on the responses from the participants, we identify the following techniques and
tools for feature engineering commonly used by the ML practitioners:

Manual analysis Based on the data and the ML problem domain, features may need to be
“hand crafted.” As one practitioner mentioned “I need to learn about how the data is gener-
ated and formulate the features that will be useful.”

Custom programming Features for ML models are likely to be problem dependent; thus,
ML practitioners decide on features based on their domain knowledge and devise custom
techniques for feature extraction as reflected in the response “Domain knowledge remains
my favorite tool, I understand the problem and read the current research to devise the best
features.” Also, user-written custom scripts in addition to existing libraries and tools can be
used for feature extraction as mentioned by practitioners; “we use custom scripts and func-
tions in addition to NLP libraries like nltk, spacy and tensorflow.”

Using libraries and frameworks One widely used practice among the ML developers is to
develop feature extraction functionalities based on the available libraries and frameworks.
Based on the responses of the survey participants, scikit-learn is a very widely used ML
library for feature extraction. Besides, some other frequently used Python libraries are pan-
das, numpy, scipy, and networkx, while for natural language processing (NLP) tasks nltk
and spacy are among the widely used python libraries. R and Matlab-based libraries are
also used by the practitioners for ML feature extraction. For computer vision domain, prac-
titioners reported to using CNN or OpenCV for image feature extraction. The practitioners
also reported that they use frameworks like TensorFlow and PyTorch.

Using feature engineering tools Some practitioners have reported the use of available
tools for feature extraction. For example, one respondent mentioned the use of Data-Miner6
and then Featuretools7 for feature extraction. Some other tools as reported by the partici-
pating practitioners are DataVec, Weka, and XGBoost for feature importance,and PCA and
Fourier transformation for dimension reduction. However, the use and suitability of tools
vary with the problem domain and the data.

6 https:// data- miner. io/
7 https:// www. featu retoo ls. com/

https://data-miner.io/
https://www.featuretools.com/

1094 Software Quality Journal (2023) 31:1065–1119

1 3

No feature engineering Practitioners using deep learning–based techniques do not require
specific feature extraction technique as the network is expected to learn from the data.

4.4.3 RQ9: What are the common limitations of the existing feature engineering tools
and techniques?

Although tools and methods for feature extraction are very useful for ML practitioners,
there are a limited number of tools available. Existing tools also do not cover all diverse
requirements in feature engineering. The participating ML practitioners have mentioned
different limitations of the existing feature engineering tools and techniques as follows:

Generalization Generalization is one of the key limitations of the existing feature extrac-
tion methods and tools since “every problem is different.” And “for most applications, the
shape of the data that has to be input to the model is highly specific to the internal com-
pany data that we cannot use out of box tools to help us easily automate feature engineer-
ing.” So, due to the inherent variabilities in ML problems, data, and algorithms, it is very
challenging for any feature engineering tool to generalize for diverse problem contexts.

Scalability Another limitation of the feature extraction tools pointed out by the survey par-
ticipants is that “they (tools) are not scalable” and thus “hard to visualize quickly and effi-
ciently on large data sets.” They also mentioned that “the current feature engineering tools
is that they are not well parallelized, and when other parallelization libraries are introduced
like multi-processing many problems arise causing me to edit the library and fundamen-
tally having to change the code.” This affects the performance and limits the application of
tools especially for processing larger-scale data.

Automation Practitioners also mentioned that feature engineering tools “are not auto-
mated enough” and thus there is a “need for supervision.” And, again “automated feature
engineering often comes short to domain knowledge, automating the latter is a difficult
problem.” Also, as the feature engineering tasks are likely to be problem dependent and
“are mainly limited to tasks and types of data sets,” thus for tools it is “very difficult to
fine-tune manually” for diverse problems, data, and algorithms.

Domain knowledge requirements Like other phases of ML workflow, feature engineer-
ing requires “too much expert knowledge” in the associated problem domain. Also, “some
problems require domain knowledge, that is difficult to translate in a general way to an

1095Software Quality Journal (2023) 31:1065–1119

1 3

open-source tool.” The requirements for domain knowledge limit the usability of the tools
or methods to be used by experts only in a very specific domain.

Adaptability As mentioned, feature engineering for ML applications is likely to be prob-
lem and data specific. “Sometimes (the tools are) not exactly what you (practitioners) look
for.” The tools for feature engineering is thus “limited to tasks and types of data sets.” Tools
designed for a specific problem and dataset or types of data may not be easily adapted to
other problems or data. Feature engineering tools are not flexible enough “to fine-tune” for
a specific problem and datasets or there are “difficulties with setting specific properties” to
accommodate new datasets. Again, feature engineering tools are usually equipped with a
static set of features and “they do not learn, it’s a fixed set of algorithms” to exhibit robust-
ness to diverse data and problems. As the tools are too tied to the problem domain and data
types, they may not “scale, (and) guarantee performance on different platforms.”

Usability Another important issue with the feature engineering tools or methods is the
lack of “simplicity.” This may result in poor usability, leading to slow “learning curve” and
may require expert knowledge in the domain. There is also a lack of “versatility and good
documentation” to use the tools effectively.

Feature evaluation It is also important but difficult to evaluate the quality or performance
of the resulting features from a feature engineering tool. “There is no integrated solution to
test how the features perform with a given set of model architectures. Most of the time, we
still need to do this manually (with grid search or Bayesian optimization).”

The practitioners also mentioned diversity in data types, adjusting too many tools or
method parameters, and limitation of implementation language as some of the challenges
in feature engineering. One practitioner mentioned the translation of user behaviours as
an important challenge arguing that “User behavior is inherently difficult to encode in any
feature space, but it’s the domain of interest for much of anomaly detection in cyber secu-
rity.” The practitioner also expressed his expectation as a ML practitioner as “I’d like to see
more industry-ready research in this field.”

It is also interesting that the perception of the limitations of the feature processing tools
varies widely among the practitioners. This variation is likely due to the differences in ML
application development contexts of the practitioners or might also be due to the lack of
awareness of the practitioners regarding the needs and challenges in different ML develop-
ment scenarios. In one hand, while we have above-listed limitations pointed out by many
practitioners, some other practitioners, on the other hand, do not see any limitations of
the existing tools mentioning “None (no limitation), they are great” or “I didn’t see real
problems” or even “no idea.” Thus, it is important to identify domain-specific challenges
in feature processing to make the practitioners aware of the challenges within and beyond
their domain of ML expertise.

1096 Software Quality Journal (2023) 31:1065–1119

1 3

4.4.4 RQ10: What is the state‑of‑the‑practice in feature quality assessment in ML
application development?

Once features for ML is extracted, it is important to validate the quality of the features
since a poor feature quality is likely to affect the performance of the model negatively. The
survey participants have shared their practices for assessing the feature quality. Based on
the responses, we observe the following common practices for feature quality assessment:

Statistical analysis and visualization One common practice mentioned by the ML practi-
tioners for feature validation is that they apply different statistical analyses on the features.
Statistical techniques include computing correlation matrix of the feature columns, meas-
uring mutual information, variance, and performing statistical tests to understand the distri-
bution and relationships among different features. ML practitioners also assess the feature
quality “through visualization” of the feature. Practitioners also validate feature quality by
“estimating similarities between feature vectors to make sure they stay consistent.”

Feature validation by model performance Instead of proactive assessment of feature
quality before ML model training, many practitioners rely on resulting model performance.
Practitioners “train model(s) and test them” as “mostly a good enough model justifies the
data.” It is based on the strategy that “we (practitioners) don’t care if they (features) are
representative as long as the downstream performance is good.” Commonly used model
performance metrics are accuracy, precision, recall, F-score measured “by running accu-
racy tests on the model with respect to the validation set.” The validation can also be done
through the k-fold cross-validation of the model. Before training the models on the whole
data.set, one approach that practitioners use is to build a prototype model “by running
machine learning algorithms on subsets and comparing performance” to estimate model
performance and the feature quality. Another approach for feature evaluation is by “run-
ning baseline algorithms such as Logistic Regression and see how they bare on each set
of features” Practitioners may also “compare performance of multiple models” to evaluate
corresponding feature sets.

Feature validation by feature selection Another approach the practitioners reported for
feature validation is that individual feature is selected incrementally (forward selection) for
the model and the model performance is observed to decide on the inclusion or exclusion of
the feature. Alternatively, modeling can begin with selecting all the features and then gradu-
ally eliminating (backward elimination) features based on the resulting model performance,
to find the best feature subset. Given that the number of features can be high and the training
process can be costly, one practitioner pointed out the limitation that “since my own capaci-
ties are limited, I would use forward/backward selection if I can rapidly train a model.”

1097Software Quality Journal (2023) 31:1065–1119

1 3

Domain knowledge–based feature validation Practitioners select and validate features
based on their domain knowledge. One practitioner mentioned that “I would rely on my
good judgment. Would that feature help me, as a human, make a prediction.” Similarly,
another practitioner presented the importance of domain knowledge in feature selection as
“Imagine that you are the model, and ask yourself ‘Am I able to predict the outcome given
only these information only?” If the answer is yes, the features represent the characteristics
of the dataset.” The domain knowledge can also be useful in the manual inspection of the
features and the model performance.

No feature validation Depending on the domain and the types of the problem and the
data, practitioners may not always need to validate features. For example, one practitioner
from NLP domain mentioned “I have used the traditional feature extraction methods and
have never looked to validate them.” Also, in deep learning, explicit feature processing and
validation may not always be required.

Besides, practitioners also adopt domain-specific techniques for validating feature qual-
ity. For example, in cases of generated (synthetic) features, one way to evaluate generated
feature is to measure “the distance of the artificially generated samples and the real distribu-
tion.” Some practitioners also reported to use “model interpretability/explainability (such as
LIME8, SHAP9)” to assess the model and so the quality of the features used in those models.

4.4.5 RQ11: What are the common practices for feature selection in ML application
development?

Once the feature is extracted from the data, one key task is to select the suitable subset
of the features that best represent the data characteristics. The practitioners were asked
to share their adopted practice in feature selection. As in other phases of ML application
development workflow, domain knowledge plays an important role in feature selection.
Around 75.5% (37/49) of the practitioners reported that their feature selection is based
on the domain knowledge. Besides, 63.26% (31/49) of the participating ML practition-
ers mentioned that they do feature selection based on the statistical analysis and visu-
alization of data and feature correlation. Also, 51.02% (25/49) practitioners reported the
use of automated feature selection tools and techniques. Among the practitioners, 40.8%
(20/49) mentioned that they take an incremental approach to add one feature at a time
and evaluate the model performance for selecting that particular feature. Alternatively,

8 https:// github. com/ marco tcr/ lime
9 https:// github. com/ slund berg/ shap

https://github.com/marcotcr/lime
https://github.com/slundberg/shap

1098 Software Quality Journal (2023) 31:1065–1119

1 3

all features can be added and then some of them removed gradually to find the best sub-
set of features. It is to be noted that the above counts of practitioners are not mutually
exclusive, rather practitioners use the feature selection approaches based on the specific
context of the problem and the associated data.

4.5 Model building

Building ML models comprises implementation and training of the ML models. Models
are trained on the training data after implementation until certain quality is achieved by
the models measured against selected quality metrics. We discuss the common practices
in ML model implementation and testing as follows:

4.5.1 RQ12: What are the practices for ML model implementation commonly adopted
by the practitioners?

There are a number of popular libraries and frameworks for model implementation in
different programming languages, supporting different application domains and plat-
forms. Based on our survey responses, we observe that the implementation of ML mod-
els is primarily based on existing ML libraries and frameworks. About 93.18%(41/44)
of ML developers reported that they depend on ML libraries and frameworks for imple-
menting ML models. About one-third (31.81% (14/44)) of ML practitioners reportedly
implement their ML model training code from scratch than relying solely on the ML
libraries. Practitioners also mentioned using their own custom auto-ML system for ML
model training. It is to be noted that the above distributions are not mutually exclusive
and developers are likely to adopt implementation strategies that best fit their ML devel-
opment contexts.

1099Software Quality Journal (2023) 31:1065–1119

1 3

4.5.2 RQ13: What is the state‑of‑the‑practice for ML model implementation testing
by ML practitioners?

As mentioned earlier, one of the important and challenging task for ML model implemen-
tation is to test the implementation. Given the expected challenges, we were particularly
interested in knowing the state-of-practices from the ML developers; i.e., how they vali-
date their ML model implementation in real-world development scenarios. Based on the
responses of the practitioners we identify the following practices that the ML developers
adopt for testing ML model implementations:

Performance‑based testing One common practice that the practitioners follow to test ML
model implementation is to evaluate the model performance. The performance is tested
based on the known validation set. Practitioners test models “mainly through measuring
the performance on the test dataset, or through cross-validation.” Based on the responses
of the practitioners, we observe the following practices commonly used for performance-
based testing of ML models:

– Sanity checks: Developers do some sanity checks by inference on random data sam-
ples, checking for corner-cases or overfitting the models on small sample data subset. A
quick visualization of output i.e.,“metrics, train/test loss curves, etc.” can also be use-
ful. The models can be tested on “on simple crafted data” or using “small dataset of
“known cases.”

– Performance on benchmark datasets: One approach to test ML implementation is to
measure performance on some well-know benchmark dataset. For example, one partici-
pant suggested the testing of ML models to be done “by running on classical data sets
such Iris or Boston and infer correctness based on the results.” Thus, domain-specific
data sets can be used for the evaluation of ML model implementation.

– Performance compared to baseline models: A comparison of model performance with
the known baseline model can also be used for model testing. One practitioner suggested
to “compare its accuracy to the simple baseline model that you are sure you cannot mess
up. If it’s better or the same then you are probably implementing it correctly...”

– Cross-model testing: ML developers also compare model performance with other mod-
els of different configurations to identify possible issues. Practitioners do this “by mon-
itoring the model parameters and also the model prediction errors.”

– Cross-algorithm testing: Developers can also test the model by comparing model per-
formance with models based on different other algorithms. Practitioners “check results
compared to other methods, observe the prediction” to verify model implementation.

– Cross-language testing: Practitioners also reported to compare models implemented in
different languages for testing. The strategy is to “established examples, area-specific
toy examples, sometimes compare with implementation in another language” or “com-
pare with other libraries.”

– Cross-platform testing: One of the strategies the ML developers take to test model
implementation is to compare the model performance in different platforms or by com-
paring “against one or more other frameworks.”

Visualization Another technique the practitioners use to test model is by using the visuali-
zation of model output (e.g., accuracy) and other model states (e.g., loss) or parameters. In
one practitioner’s word “I have found that visualizing either the output or the internal state

1100 Software Quality Journal (2023) 31:1065–1119

1 3

of a neural network, greatly improves my bug-finding capacity.” Also, another practitioner
mentioned “I can test if the neural network architecture definition is correct generating a
visualization of architecture using Tensorflow, and check if it’s logically correct.”

Use available tools and frameworks Practitioners also use features available in the existing
tools and frameworks i.e.,“through test methods provided with the framework” for debugging
and testing ML model implementation. Commonly it is done by “debugging and checking
results,” for example, using “unit tests in C#.” An example approach as mentioned by one
ML practitioner is “in case of python, I will use PDB (python debugger). Then test it over
the known outcomes and if they are not correct or efficient and I will check the algorithm I
am using and the outputs at every step of that model”. Some practitioners write suitable unit-
tests for ML models or test “against existing frameworks.” Some practitioners use interac-
tive interface of Jupyter notebook and examine “incremental results from the different code
blocks.”

Domain knowledge–based validation Similar to other activities of ML application
development, domain knowledge plays an important role in testing ML code. Based on the
domain expertise, practitioners can perform visual or manual inspection of model behavior
based on known cases or crafted test data.

4.5.3 RQ14: What are the common symptoms that practitioners use to detect defects
in an ML implementation?

It is known that the identification of defects in ML code is harder because the outcomes of
ML applications are generally stochastic in nature. Thus, we are interested to know how
ML practitioners detect defects in their ML code. The shared knowledge of the practition-
ers will not only be useful to the ML community but also help in identifying the challenges
practitioners face and the types of support they need for defect identification in ML code.
The symptoms can be intuitive like “fail to compile” to some nontrivial defects symptoms.
Based on the practitioners’ experience shared in this survey, we observe the following
practices commonly used by the ML developers to identify defect’s symptoms:

Performance based symptoms ML practitioners emphasize a lot on the model behavior
or performance as the defect symptoms for ML models. ML developers frequently consider
the following performance-based symptoms for defects in ML code.

– Accuracy: In the practitioners’ view, model accuracy is a strong indicator of the cor-
rectness of the implementation. In a practitioner’s word, “Highly unlikely accuracy for

1101Software Quality Journal (2023) 31:1065–1119

1 3

the given task, and extremely low accuracy for the given task, often when encounter-
ing these results there would be defects in the implementation whether it is minor or
major.” So, the “weird results” i.e., “extremes, too high accuracy, too low accuracy is
considered to be an indicator of defects. Also, an abrupt change in model accuracy such
as “huge decrease in performance” is also a sign of model defects.

– Consistency: Inconsistency in model performance is likely to be a symptom of defects
in the ML model. The “inconsistency of results, over-sensitivity” i.e., “non-determinis-
tic results” indicate the likely presence of defects in the ML code.

– Generalization: Another symptom of defects in ML implementation is the poor gener-
alization i.e., model exhibits “decay in performance on unseen data.” Models may have
“wrong output,(and) limited possibilities to generalize” and may also show “discrepan-
cies between offline and online benchmarks” in presence of defects.

– Bias: ML models may also exhibit “high bias with respect to the labels” in presence
of defects. Such “high bias or high precision with low bias” might be an indication of
defects in the model. This bias can originate from both data and the code.

Training behaviors Some symptoms of defects can surface during model training. We list
some of the defects symptoms observed during training of ML models as follows:

– Convergence: In presence of defects, ML models may fail to converge. The model may
lead to “overfitting, underfitting, and volatile performance.”

– Speed: The models may be too slow in training and inference or can be too fast with
high accuracies. These unexpected model behaviors can indicate potential defects.

– Value: Models may have unexpected values (types or range of values) for input, weights
or parameters during training. For example, one indication can be “appearance of NaNs
during training.” This can indicate potential defects in the model implementation.

Model output Erroneous model output may also indicate presence of defects. Practition-
ers reported the following defect symptoms related to model output:

– Value: Model can produce wrong output in terms of values and range of values indicat-
ing defects in the model.

– Distribution: The distribution of model output can also be an indicator of the model
defects. If the model output is skewed to some specific class or values, there might be
defects or bias in the implemented model.

However, the symptoms of defects in ML code may also “depend on the problem” and can
be hard to fit in specific symptoms. The intrinsic challenges in identifying defects in ML
code have also been reflected in some of the practitioners’ lack of awareness of the identi-
fied symptoms; mentioning that they have “no idea,” or they are “not sure” or that defects
symptoms are “unknown.” This shows the importance of providing ML practitioners with
more (tool) support to help them detect defects in their code.

Practitioners use different tools and techniques for detecting bugs in ML code. Some
practitioners reported that they use Pytest for testing ML code in Python. Based on the
ML frameworks, the test techniques vary widely. Some practitioners simply use logging or
debugging to identify bugs. Interestingly, many practitioners either do not use any particu-
lar tool for ML testing while some practitioners are not even aware of such events. Some

1102 Software Quality Journal (2023) 31:1065–1119

1 3

other tools and frameworks such as Python debugger available with the IDE like PyCharm
can be handy for looking for bugs.

4.5.4 RQ15: What are the practitioners perceived challenges of testing ML
application?

Testing the correctness of models is a challenging task. The characteristics of the ML mod-
els (algorithms) and different quality requirements of ML data make the testing of ML
models more difficult. Based on the developers’ perception of the challenges in ML model
testing, we list the following challenges in ML model testing:

Black‑box nature of ML models ML models are “black-box in nature” (Pei et al., 2017)
meaning that it is quite obscure how the model perform a particular task. For the same
reason, it is also hard to detect or explain why a model is not performing as expected.
As models are black-box “I (developer) can’t tweak the internals” to identify the issues in
the model. Again, “since they are mostly black boxes, it’s hard to make guarantees on yet
unseen data.” The opaque nature of the models usually does not allow the developer to
observe the internal states of the models such as “gradient inspection” during training. The
practitioners feel the need for techniques or tools to make the model more transparent. In
practitioner’s word “... it would be awesome some kind of software or library that checks
your gradients and tell if there is something strange.”

Model’s robustness to errors Another key challenge to test ML model is that ML models
can exhibit robustness to errors by producing correct results in some cases i.e., “the model
is wrong, but the result is not.” Similarly, “a wrong implementation sometimes achieves
similar performance (to the correct ones), and the bug cannot be found until we introduce
new features.” Such wrong implementation “without actual effect in results while convinc-
ing myself(developer) that it works” can be quite tricky for the ML developers to identify
and fix.

Data quality Data plays an important role in model quality. Despite the correct imple-
mentation, model may perform poorly due to issues in the dataset and that can be hard to
detect. Based on the practitioners’ responses, we observe the following challenges in test-
ing ML models related to the quality of data:

– Adequacy: ML models need to be trained on an adequate number of input data to
achieve high accuracy. “Absence of sufficient correctly labeled data” can hinder the
correctness of the model and consequently the performance.

1103Software Quality Journal (2023) 31:1065–1119

1 3

– Correctness: One key concern in ensuring the correctness of ML models is “having a
bad model due to bad data: makes it very difficult to detect and expensive to solve.”

– Data bias: Biases in the data can lead to poor-quality ML models. There might be inten-
tional or unintentional or even domain-specific biases in the dataset. For example, “in
the medical industry, data bias is hard to get over, and typically requires vast amounts
of augmentation.” Unbalanced distribution of data samples in the training, testing, and
validation dataset can embed bias in the model leading to biased models.

– Labeling accuracy: Incorrectly labelled data is likely to result in poor quality models.
Thus it is important to ensure “the fidelity of the labels” because the “lack of (a) good
labelled data sets” may adversely affect the model accuracies.

– Distribution: “Testing data sometimes does not belong to the distribution of the train-
ing data on which the model is trained so we might not get good score.” ML data also
need “to represent the real distributions faithfully.” Otherwise, this can lead to incorrect
models which can be hard to identify and fix.

– Divergence: One important challenge for the ML model is that the characteristics of
the data can evolve over time. Thus, the issues in the models may be simply “a data
problem.” For the models to be correct, it is important “how well does the data avail-
able during training reflect true operational data, and how long until the nature of the
operational data diverges from your original data and assumptions.” It is challenging to
deal with this divergence in ML data.

Volatile performance The performance of the ML models can be affected by diverse fac-
tors involving both data and the code. “Sometimes there are discrepancies between test
and validation sets and unseen data.” Again “sometimes the models do not meet the pre-
determined correctness criteria or they perform very well in the train test split but when
introduced to the validation set it under-performs.” The cause of low performance can be
challenging to identify.

Domain expertise Testing ML models may require adequate domain knowledge. Thus,
“lack of domain knowledge” can make ML testing a difficult task. Also, another challenge
is the availability of domain experts and also to ensure the availability and “access to tools
a domain expert can use.”

Cost Testing ML models for correctness and performance can be costly regarding the
time and efforts. Phases of the ML application development are usually iterative and thus
“reaching a working model is very time consuming” because “iteration takes too much
time.”

Lack of concrete methodology Practitioners are also in lack of appropriate techniques
and methodologies to test ML models. In a developer’s view “... there is, to my knowledge,
no decisive way to ensure correctness but to leverage more data for testing predictions.”
“You (practitioners) only have accuracy and prediction plot to check the correctness. Usu-
ally, the data transformation pipeline is difficult to implement so the bug can be from data,
even before the model. So you(practitioners) need to identify exactly where is the cause of
low accuracy.”

Interpretability or explainability Another key challenge in testing ML models is that we
can merely explain why and how a model is working or why it is not working. To test ML

1104 Software Quality Journal (2023) 31:1065–1119

1 3

models, it is hard to “knowing what you (developers) are evaluating” i.e.,“understanding
the exact mathematical process behind the algorithms.”

4.6 Model deployment and management

Once trained and tested ML models are available, models need to be integrated into the tar-
get application for deployment. Also, deployed models need to be monitored and managed
to maintain the expected performance of the application, and adapted to changes over time.

4.6.1 RQ16: What are the developers‑perceived challenges of testing ML model
deployment?

It is important to test models after deployment to ensure that the model is integrated as
expected with other components of the ML applications and the target software ecosystem.
However, like the pre-deployment testing of models, there are some challenges to post-
deployment testing. Based on the perceptions shared by the survey participants, we list the
following challenges for testing ML model deployment:

Test data The quality of test data is an important challenge to test ML model deployment.
Practitioners identify the following challenges in testing model deployment:

– Data availability: For post-deployment testing, adequate real data needs to be available
covering possible usage scenarios including corner cases. However, there might be a
“lack of ground truth for real life new data.” While in some cases it might be challeng-
ing to have adequate test data, “huge amount of (test) data” can also be a challenge to
deal with.

– Data labelling: As in the training phase, test data requires correct labelling for post-
deployment testing. However, “obtaining correctly labelled data” can be challenging.

– Data format: Besides the availability of correctly labelled data, another challenge is
“making sure the data coming into the model is of the right format.”

Performance One key requirement is that the deployed ML models must perform as
expected in production. The practitioners pointed out the following challenges to ensure
the performance of the deployed model:

1105Software Quality Journal (2023) 31:1065–1119

1 3

– Functional accuracy: One of the primary requirements that a deployed model must
satisfy is the desired level of functional accuracy. The accuracy requirement may
“depend(s) on applications, some applications require very high accuracy, while for
others 60% is enough.”

– Generalizability: Another challenge in post-deployment model testing is to “making
sure the model is generalizable and its behavior is in control.” The deployed model is
expected to be not only generalizable to unseen data, but also exhibit “robustness to
adversarial examples.”

– Performance monitoring: The deployed models need to be evaluated over a reasonable
period for post-deployment testing. However, “keeping track of predictions (model per-
formance)” can have additional overhead. Also, “constantly having to have human over-
sight” can be challenging and costly.

– Performance measures: Sometimes the interpretation of the performance metrics may
differ and “the most appropriate result metrics may or may not be understood by all the
teams.” For example, “accuracy they understand and F1-Score is what matters.”

Resource requirements The deployed ML application should have optimum require-
ments for resources such as processing powers and memories. The models should be tested
against these requirements. “Assessing the accuracy is not hard but It’s hard to measure
resource usage in mobile phones. It’s difficult because in the phone we don’t have the same
libraries and tools we can use to develop like on PC.”

System complexity Complexities of the model, target application architecture, and the
deployment environment can pose challenges to testing deployed models. For example,
“due to the model complexity, it is hard to understand where the problem is from” and to
devise test cases for all possible scenarios.

Platform diversity Another important challenge in post-deployment testing of ML appli-
cations is that model development or training platforms can be different. For example
“deployment hardware is different from (the) hardware used for training.” Models trained
and tested on different hardware and software environments may not work on a mobile
platform. And “it’s difficult because in the phone we don’t have the same libraries and
tools we can use to develop like on PC.” “The big challenge is a method to deploy ML
models through a single framework regardless of the used library (PyTorch, Tensorflow,
etc.)” to overcome the complexities due to platform differences.

Adaptability The target environment and data characteristics are likely to evolve over
time. However, it is challenging to “integrating new cases of failure into the pipeline” to
ensure the adaptability of the deployed ML application.

User satisfaction The success of the deployment does not include satisfying the functional or
performance requirements but also how it is satisfying the target users. However, challenges
remain in “determining the value of one set of (the) user over another. If 60% of users dislike
the current implementation, should we change it to satisfy their needs but put the other 40% in
a place of discomfort?.” The deployment testing thus should consider the user acceptance of
the application or model deployed.

1106 Software Quality Journal (2023) 31:1065–1119

1 3

Besides, the practitioners claim that domain knowledge requirements, associated time
and costs, complexities in writing suitable tests, and lack of interpretability or explainabil-
ity can also pose challenges in post-deployment testing as in other phases of ML applica-
tion development.

4.6.2 RQ17: What are the factors that ML developers commonly focus on during ML
model management?

Post-deployment model maintenance is important in the ML application development
life cycle. In this phase, models need to be monitored for different quality parameters,
and model maintenance activities need to be initiated if the model deviates from the per-
formance requirements. About 77.5% practitioners have mentioned that they frequently
monitor ML models after deployment. ML developers employ different testing techniques
depending on the context of the specific application. Common model maintenance activi-
ties include observing the performance, resource requirements, and robustness of the mod-
els in real-world usage scenarios. The models are deployed on different software and hard-
ware platforms. For example, the models can be hosted on some local server or can be
deployed on the cloud. These diversities in the deployment environment are likely to have
an impact not only on the performance but also on the maintenance of the models.

Monitoring and maintenance of deployed models are essential in ML application main-
tenance. Since ML models are data-driven, deployed models need to be monitored because
the model performance can be affected due to significant changes in the data over time.
To have insights into the practices that ML developers commonly adopt in managing ML
applications, we categorize the common parameters considered by the practitioners for
post-deployment model management as follows:

Performance Monitoring performance is a key task in ML model management. As model
performance can drop significantly due to changes in data characteristics, models need to
be monitored to detect performance deviation. As per the practitioners’ responses, the fol-
lowing performance factors are considered for post-deployment monitoring.

– Model accuracy: One key performance measure is accuracy. In the maintenance phase,
models need to be monitored for model accuracy. This helps in the detection of per-
formance deterioration due to changes in data over time. Model accuracies are meas-
ured against predefined metrics similar to the training and testing phases. “Changing
in accuracy” should be addressed accordingly such as retraining the models. The met-
rics for accuracy may vary depending on the model type and the domains. Models are

1107Software Quality Journal (2023) 31:1065–1119

1 3

also evaluated with respect to the ranking quality in recommendations such as “NDCG
(Normalized Discounted Cumulative Gain)” commonly used in information retrieval.

– Resource consumption: Another performance factor that the practitioners reported to
give importance to is the resource consumption by the deployed application such as
CPU, GPU, memory, and power. The models may require optimization for resource
consumption to ensure a cost-performance trade-off.

– Inference latency: Response time for inference by the models i.e., the inference latency
is an important parameter to watch for. Models require to be evaluated for the “latency
for predictions” to ensure that “speed is reasonable.”

– Robustness: The models need to be monitored for unseen data or corner cases to evalu-
ate how robust the model is in dealing with new data in a real environment.

Business gains In the post-deployment phase, ML models or applications also need to
be evaluated regarding different business metrics. Thus, ML applications are evaluated
regarding different “business metrics such as click-through rates, conversion rates, (and)
revenues.” There are also other business factors such as “customer retention.” Necessary
steps are essentials if the ML model fails to meet the business goals.

User feedback It is also important to evaluate ML applications based on the feedback
of real users. “Response from users and their feedback in how it could be improved or
changed” using the “end-user perspective” is important to improve the quality of ML
applications.

However, the prioritization of factors to monitor during model maintenance can depend
on the associated ML applications.

5 Analysis and discussion

In this paper, we have presented insights into state-of-the-practice and key challenges in
different phases of ML application development based on the shared experiences of ML
practitioners. Our survey participants are from diverse backgrounds with a wide array of
skills and experience in different domains of ML application development. This is likely
to ensure comprehensive reflections of the practices and challenges in machine learning
in practice. In the following subsections, we discuss our findings with respect to overall
trends in ML application development and the practices and challenges in the four phases
of the ML application development life cycle we covered in our survey:

1108 Software Quality Journal (2023) 31:1065–1119

1 3

5.1 Trends in ML application development

We presented recent trends in ML application development in finding 1. As mentioned
by the practitioners, the recent trend in developing ML applications is heavily focused on
developing business intelligence (BI) applications. In addition to business and e-commerce,
the application of AI/ML includes healthcare, security, document analysis, and entertain-
ment, and embracing rapidly other areas of human life. For ML application development,
data plays a key role. Based on the practices reported by the practitioners, open-source is
the leading source of ML data while private company data and data from third-party cli-
ents are also major sources of ML data. Like open-source datasets, different open-source
ML libraries and frameworks (e.g., TensorFlow, PyTorch, Keras, scikit-learn) are the lead-
ing frameworks as reflected in the recent trends in ML application development. However,
the choice of the data, ML algorithms, and ML frameworks are mostly dependent upon the
problems and application domains and require necessary domain knowledge for the suc-
cessful development of ML applications.

5.2 Data collection and preprocessing

ML models are data-driven and thus the quality and adequacy of data are important for
developing ML applications. However, ensuring the availability of reliable data for ML can
be challenging. We observe that open-source data is the most prevalent source for machine
learning data covering about 75% of the data. The quality of ML data is very important for
the performance of the resulting ML model. Practitioners have pointed out different key
quality characteristics of the ML data (finding 2). The key attributes of ML data that the
practitioners have emphasized include how well the data represent features for machine
learning and also the adequacy and diversity, meaning enough data volume and having
representations from all classes or categories. ML data also needs to be complete and accu-
rately labeled for ML algorithms. Data needs to be consistent regarding the structure, accu-
racy, and quality of information. Besides, ML data needs to be reliable and to be verified
in multiple phases because the consequence of data error can be extremely adverse in cases
such as health- and safety-critical systems. Besides, ML data should have if possible low
noise and bias, with balanced distribution across data classes, to achieve high-performance
models.

Practitioners apply different data transformation operations such as noise removal,
replacement of missing values, dimensionality reduction, class-balancing, and normalization
(finding 3). As we observed from the practitioners’ responses, there is no one-size-fits-all
type of solution for data processing. More than two-thirds (76.6%) of the surveyed developers
do not use specific data analysis tools; rather, they use diverse data or problem-specific tools
and techniques or develop their own customized solutions.

ML data can be noisy and may require preprocessing such as cleaning or transforma-
tions to be suitable for ML models. However, cleaning ML data is a challenging task (find-
ing 4) and the data-cleaning approaches are likely to be data and problem-specific. Thus,
the approaches are hard to generalize, scale up to accommodate a large volume of data,
and apply to data automatically. Quality issues of the data and lack of necessary features in
existing tools for ML data processing make the data cleaning task not only harder but also
costly in terms of time and effort. The process requires adequate domain knowledge about
the associated data and the ML use cases. Practitioners also pointed out the importance of
having a common standard for data and data cleaning procedures. It is also important for

1109Software Quality Journal (2023) 31:1065–1119

1 3

practitioners to be aware of not only the tools and techniques for data cleaning but also the
adverse impact of noisy data on resulting ML models.

Another key task is to correctly label the data or features for ML models. Practitioners
have outlined several challenges in feature labelling (finding 5). One key challenge in fea-
ture labelling is the large volume of data which is time and resource consuming and thus
can be costly as it may also involve manual processing. The feature extraction and labelling
procedures are likely to be problem and domain-specific and thus domain knowledge is
important. Poor quality of data and lack of appropriate labelling guidelines also add chal-
lenges in ML feature labelling. As reported by the practitioners, manual investigation is
still the most commonly used approach for validating features or ML data labelling where
domain knowledge plays an important role (finding 6). However, some practitioners use
tools and automated scripts for feature validation.

5.3 Feature engineering

Feature engineering is another important phase of ML application development where ML
data is processed to generate meaningful features. The key objective of the features is to
best represent the data characteristics that can help ML models to learn and infer for a
defined ML task. Feature engineering usually comprises two key functionalities: feature
extraction and feature selection. The feature extraction process should take into account the
quality characteristics while extracting features from the data.

One important requirement for ML data is that data need to be balanced across different
classes (finding 7). Practitioners commonly use different statistical analyses, visualization,
and manual verification to check the class balancing of the ML dataset. To improve model
performance, practitioners fix class balancing issues in ML data using techniques such as
re-sampling of data or stratification of the ML dataset. As the feature extraction procedure
may be data and problem dependent, more than two-thirds (76.6%) of practitioners men-
tioned that they do not use specific tools for ML data processing such as feature extraction.
Practitioners usually depend on manual analysis and custom scripting for feature extrac-
tion, while there are some tools available for feature engineering (finding 8). Based on
practitioners’ perceptions, we observe several limitations of existing feature engineering
tools and techniques (finding 9). Generalization is one of the key limitations of existing
feature engineering tools and associated domain knowledge is necessary to use these tools.
They also are not easily adaptable to new data and problems. Practitioners also identify
the lack of usability and simplicity of the tools, which imposes a slow learning curve on
developers.

It is also important to validate the feature quality. Practitioners have reported some com-
mon practices in feature assessment and validation (finding 10). One common practice is
to use statistical analysis and visualization of the feature to evaluate the quality charac-
teristics. Practitioners also observe the resulting model performance to assess the feature
quality. Like other ML development phases, feature validation requires necessary domain
knowledge. However, the techniques are likely to be domain-specific.

Once features are extracted from ML data, selecting the optimal subset of features for
ML models is an important but challenging task. As per the practitioners’ responses (find-
ing 11), the feature selection process is mostly manual and based on domain knowledge
while there are some automated tools. However, different statistical analyses and visualiza-
tion are useful to gain insights into the features for incremental selection and to find the
optimal subset of features that satisfy desired performance requirements.

1110 Software Quality Journal (2023) 31:1065–1119

1 3

5.4 Model building and testing

ML models are usually (reported by 93.18% practitioners) implemented based on avail-
able libraries and frameworks while about one-third of the developers write models from
the scratch (finding 12). The models are then trained with the training dataset and tested
for accuracy and performance. One important and challenging task of the model-building
phase is to ensure the accuracy of the models by testing (finding 13). A widely used prac-
tice for ML model testing is based on model performance evaluating selected performance
metrics on benchmark or validation dataset. The testing may involve a comparison of mod-
els considering diverse settings (language, algorithms, target platforms, etc.). ML model
implementations are also tested using visualization of internal model states or external
behaviors. There are some tools and frameworks to support ML implementation. Domain
knowledge also plays an important role in ML testing.

Practitioners also pointed out some defect symptoms commonly used to assess the qual-
ity of ML models. One key parameter is to evaluate model performance regarding the
accuracy, consistency, bias, and generalizability of models. Training-time behaviors like
convergence, training time and trend, and also output values and distribution from the
model can be useful indicators of defects in the model (Finding 14).

Testing ML models is known as a challenging problem. Practitioners have identified
(inding 15) that the “black-box” nature of the ML models makes it harder to test. ML mod-
els can also exhibit robustness to errors ,meaning that ML models can produce correct
results in some cases despite incorrect implementation. In addition, it is also challenging
to ensure the adequacy and consistency of data. Possible bias, labeling errors, and diver-
gence in the dataset also pose challenges to ML testing. Practitioners are in need of con-
crete methodologies for ML testing. Lack of interpretability or explainability also hinders
ML model testing.

5.5 Model deployment and maintenance

Once trained and tested, the model needs to be integrated into the target application for
deployment. Deployment of ML models includes different activities to integrate and test
models in the target application environment. Practitioners adopt different tools and tech-
niques for model deployment and post-deployment maintenance of ML models. However,
model deployment involves different challenges (finding 16). The very first challenge is
to ensure the availability of test data with desired quality and diversity to cover all use
case scenarios. Monitoring post-deployment model performance is another challenge to
ensure the functional accuracy and generalizability of models. Meeting resource require-
ments, the complexity of models, platform diversity, adaptability, and overall user satisfac-
tion are important model attributes for the post-deployment evaluation of ML models or
applications.

Practitioners focus on some important maintenance factors for model maintenance
(Finding 17). Over 77% of the practitioners have reported that they frequently monitor
deployed ML applications. In the post-deployment phase, practitioners primarily focus on
the model accuracies, resource consumption, inference latency (speed), and robustness to
unseen data. Besides, different business factors (e.g., user conversion rate, revenues) are
important to monitor during model maintenance. Moreover, the feedback of the target
users is very important to measure the application performance from the end-user perspec-
tive. Users’ feedback is important for the identification of defects and the improvement of

1111Software Quality Journal (2023) 31:1065–1119

1 3

the features of the ML applications. During the maintenance, the practitioners may need to
set priorities among these factors based on the specific context of the ML application.

To have further insights, we also took a closer look at how the practitioners perceived
challenges and best practices in ML application development observed in our study reflect
the challenges and best practices reported in the existing literature. For example, Amershi
et al. (2019) reported that practitioners from Microsoft emphasized on the availability, qual-
ity, and management of data for ML application development. In particular, the practition-
ers identified “accessibility, accuracy, authoritativeness, freshness, latency, structuredness,
ontological typing, connectedness, and semantic joinability” as the important attributes of
ML data. We observe a considerable overlap of the data characteristics reported by the par-
ticipants in our study (finding 2) with that of the study by Amershi et al. The differences in
the listed data attributes are likely due to the differences in ML development scenarios the
practitioners of the studies are associated with. Practitioners who participated in our study
identify data cleaning as a challenging task where scalability is a key challenge (finding 4).
This is consistent with the findings of the study by Amershi et al. (2019). Practitioners in
both studies emphasized on the need for tool support to automate the data processing and
feature engineering tasks.

Existing studies reported testing of ML application as a very challenging task as ML
model testing differs from traditional software testing (Amershi et al., 2019; Marijan
et al., 2019; Felderer & Ramler, 2021). The practitioners who participated in our study also
report testing as a very challenging task in ML workflow (finding 13, finding 14, finding
15). Marijan and Gotlieb (2020) presented different state-of-the-art approaches to test ML
applications. However, these approaches might not be widely available to ML practition-
ers as automated tools. As reported in our study, the practitioners used to test ML models
based on the observation of model performance, training-time behaviors, visual inspection,
and distribution of output values. Thus, practitioners are in need of tools and methodolo-
gies for ML testing (finding 15).

The findings from our study highlight valuable insights into the practice and challenges
of different phases of the ML application life cycle. The findings are expected to be useful
to make practitioners aware of the challenges in ML application development. We hope
that they will serve as a guide to help developers adopt best practices for developing high-
quality ML applications.

6 Threats to validity

In this section, we discuss some potential threats to the validity of the methodology and
findings of our study.

Threats to construct validity: Survey is a well-known method to collect information
from relevant people on a specific topic that allows us to summarize, compare, and explain
the knowledge and perception of the respondents on the topic of interest (Fink, 2003).
Thus, we adopted survey as our methodology to ask ML practitioners about their experi-
ences in ML domains. We followed formal guidelines to design and conduct the survey and
analyze the responses to have insights into the practices and challenges in developing ML
applications.

Threats to internal validity: One important threat to the internal validity is the potential
biases in responses from the participants of the survey. We did a pilot study to get feedback
from several survey participants on the questionnaire. We refined our questionnaire and

1112 Software Quality Journal (2023) 31:1065–1119

1 3

adapted the recommendation we received from the pilot study to design the final survey
questionnaire.

Threats to external validity: We aligned our questionnaire with the phases of ML work-
flow presented in the existing literature. The questions are iteratively refined based on the
existing literature, domain knowledge, and practitioners’ feedback to make the question-
naire cover diverse aspect of ML development. Moreover, we selected a large group of
participants from diverse backgrounds and skills for this study. However, this group of par-
ticipants may not be representative of the general population of ML practitioners. This is
a potential threat to the generalizability of our findings. To mitigate this threat, we care-
fully selected the participants based on their professional profiles on LinkedIn and their
contribution in machine learning projects in GitHub. Also, we took care to provide many
open-ended questions in our questionnaire to allow participants to express their responses
with freedom. We also ensured that every question includes the option ”Not Applicable” or
”Other,” to allow participants to respond appropriately if a question did not apply to them
or if the respondents were not comfortable answering a particular question(s). The open-
ended questions also allowed respondents to explicitly add any other practices and chal-
lenges that they are aware of. Nevertheless, it is desirable that future studies replicate this
work with more ML professionals from diverse backgrounds.

Threats to conclusion validity: Our results from the survey are not affected by the choice
of methodology used in our study. We have used descriptive statistics, simple calculation,
and comparisons that are likely to be independent of the analysis tools and techniques.
However, a different set of respondents may result in some variations in the results. We
carefully selected the respondents based on their profile and contribution and we cross-
validated our data analysis and reporting methodology with at least two members of the
team conducting this study.

Threats to reliability validity: To ensure reproducibility of our findings, our data and
results are available at an online Appendix (2020). We elaborated our details’ methodology
for selection of the respondents, data collection, and analysis. As the professional network
is continuously evolving and the query results for specific keywords are likely to vary, and
thus the list of participants is likely to differ in future replication of the study.

7 Related works

Recent advancements in machine learning are making ML increasingly popular to devise
innovative solutions for diverse problems. However, the increasing adoption of machine
learning into software applications is posing additional challenges to the software devel-
opment process (Zhang et al., 2019b). Challenges in the traditional software engineering
process have been widely addressed by researchers (Sandberg and Crnkovic 2017). How-
ever, there is a growing need for guidelines and best practices for developing ML applica-
tions (Zhang et al., 2019c).

Schelter et al. (2018) focused on ML model management regarding use cases from
conceptual, data management, and engineering perspectives. Amershi et al. (2019)
highlighted challenges in AI application development at Microsoft and shared how the
teams address those challenges. Zinkevich (2018) presented guidelines for best prac-
tices in ML engineering. There are also guidelines for Responsible AI practices (2020),
Kriens and Verbelen (2019). However, these guidelines are not focused on finding a fit
for ML into traditional software engineering process. Many existing literature focus on

1113Software Quality Journal (2023) 31:1065–1119

1 3

different aspects of machine learning such as data acquisition, data preprocessing, fea-
ture extraction (Storcheus et al., 2015), model management (Schelter et al., 2018), test-
ing (Pei et al., 2017; Grosse & Duvenaud, 2014; Ma et al., 2019, 2018a, b; Zhang et al.,
2019a; Sun et al., 2018), and deployment (Schelter et al., 2018; Renggli et al., 2019; Guo
et al., 2019) of ML applications.

Since testing is one of the most important phases of the development of machine learn-
ing applications, some studies focused on the challenges of testing machine learning sys-
tems. Braiek and Khomh (2020) present challenges that should be addressed when test-
ing ML programs. In this paper, we report about techniques and tools currently used by
practitioners to cope with these challenges. Huang et al. (2018) investigate the character-
istics of Naive Bayesian classifier and DNN classifier and analyze the testing challenges
of machine learning applications like generating reliable test oracles, generating effective
corner cases, improving test coverage, and testing the ML applications with millions of
parameters. Then some initial techniques were suggested for machine learning applications
which use Naive Bayesian classifier and DNN classifier to mitigate these challenges. The
other study by Marijan et al. (2019) focuses on the most prominent challenges of testing
ML-based systems (Absence of Test Oracles, Large Input Space, and White Box Testing
Requires High Test Effort) from the quality assurance perspective, rather than model per-
formance perspective. Then, some existing approaches which alleviate these challenges are
reviewed and discussed regarding their limitations.

Few researches can be found about the difficulties faced by software developers while
developing ML applications or using ML libraries. Considering the 3243 highly rated Q
&A posts related to ten ML libraries from Stack Overflow and classifying these questions
into seven typical stages of an ML pipeline, Islam et al. (2019) performed an analysis from
four perspectives to understand the problems with ML libraries usages: finding the most
difficult ML stage, understanding the nature of problems, nature of libraries and studying
whether the difficulties stayed consistent over time. Bangash et al. (2019) studied 28,010
machine learning posts from Stack Overflow and employed topic modeling to identify key
areas of interest to developers. They report that topics related to Algorithms, Classifica-
tion, and Training datasets categories are frequently discussed by developers. Nguyen-Duc
et al. (2020) in their survey explored different contextual factors in ML application devel-
opment to leverage opportunities in business. Washizaki et al. (2019) report about a sys-
tematic literature review of both academic and gray literatures that aimed to collect soft-
ware engineering good and bad design patterns for ML application systems and software.
They provide a list of software design patterns and anti-patterns that practitioners can use
to improve the quality of their ML applications.

Our study differs from other existing studies with respect to our focus on different ML
development tasks in the end-to-end ML workflow, while existing studies (Marijan &
Gotlieb, 2020; Marijan et al., 2019) focus on specific aspects of ML development such as
testing. Our study focuses on insights from practitioners rather than review of the state-of-
the-art (Marijan & Gotlieb, 2020). The existing literature have provided useful insights on
challenges for machine learning and software engineering development mostly separately.
In this paper, we reconcile these two themes and report about challenges and best practices
of machine learning application development, using insights from experienced ML devel-
opers with diverse expertise and application domain.

1114 Software Quality Journal (2023) 31:1065–1119

1 3

8 Conclusion

In this paper, we presented the findings of a survey of 80 ML practitioners from diverse
backgrounds. Our survey covers four key phases of the ML application development life
cycle, i.e., (i) data collection and preprocessing, (ii) feature engineering, (iii) model build-
ing and testing, and (iv) integration, deployment, and monitoring, to identify challenges
and practices from the practitioners’ perspective. We summarized the knowledge shared
by these practitioners in 17 key findings. maintenance. For each of the selected phases of
ML application development, we analyze the response of the practitioners and synthesize
the developers’ practices into actionable findings. We believe that our findings can be use-
ful in making ML practitioners of all experience levels in academia and industry aware of
diverse challenges in ML application development. In addition, our findings can provide
the practitioners with necessary guidelines and examples of best practices to adopt in their
ML workflow in a context-specific way.

Acknowledgements We express our gratitude to NSERC and FRQ funding agencies. Our heartiest thanks
to the anonymous participants for their valuable time and thoughtful responses to our survey questionnaire.

Data availability The datasets generated during and/or analyzed during the current study are available in the
replication package, at https:// previ ew. tinyu rl. com/ ydaj9 jh9

Declarations

Conflict of interest The authors declare no competing interests.

References

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B., & Zimmermann,
T. (2019). Software Engineering for Machine Learning: A Case Study. ICSE: In Proc.

Anderson, D. J. (2010). Kanban: successful evolutionary change for your technology business. Blue Hole
Press.

Appendix. (2020). Replication package with survey data and results. Available online at: https:// previ ew.
tinyu rl. com/ ydaj9 jh9

Bangash, A. A., Sahar, H., Chowdhury, S., Wong, A. W., Hindle, A., & Ali, K. (2019). What do developers
know about machine learning: a study of ML discussions on StackOverflow.

Belani, H., Vukovic, M., & Car, Z. (2019). Requirements Engineering Challenges in Building AI-Based
Complex Systems. arXiv preprint arXiv: 1908. 11791

Braiek, H. B., & Khomh, F. (2020). On Testing Machine Learning Programs. Journal of Systems and Soft-
ware, 164, 110542, ISSN 0164–1212. https:// doi. org/ 10. 1016/j. jss. 2020. 110542

Charmaz, K. (2006). Constructing Grounded Theory: A Practical Guide Through Qualitative Analysis.
SAGE Publications.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357.

Felderer, M., & Ramler, R. (2021). Quality Assurance for AI-Based Systems: Overview and Challenges In:
Winkler, D., Biffl, S., Mendez, D., Wimmer, M., Bergsmann, J. (eds) Software Quality: Future Per-
spectives on Software Engineering Quality. SWQD, pp.33–42.

Fink, A. (2003) The survey handbook. Sage.
Grosse, R. B., & Duvenaud, D. K. (2014). Testing MCMC code. NIPS: In Proc.
Guo, Q., Chen, S., Xie, X., Ma, L., Hu, Q., Liu, H., Liu, Y., Zhao, J., & Li, X. (2019). An Empirical Study

towards Characterizing Deep Learning Development and Deployment across Different Frameworks
and Platforms. arXiv preprint arXiv: 1909. 06727

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced
learning, 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, 2008, pp. 1322-1328.

https://preview.tinyurl.com/ydaj9jh9
https://preview.tinyurl.com/ydaj9jh9
https://preview.tinyurl.com/ydaj9jh9
http://arxiv.org/abs/1908.11791
https://doi.org/10.1016/j.jss.2020.110542
http://arxiv.org/abs/1909.06727

1115Software Quality Journal (2023) 31:1065–1119

1 3

Huang, S., Liu, E. -H., Hui, Z. -W., Tang, S. -Q., & Zhang, S. -J. (2018). Challenges of Testing Machine
Learning Applications arXiv: 1806

Ishikawa, F., & Yoshioka, N. (2019). How do engineers perceive difficulties in engineering of machine-
learning systems? questionnaire survey. In Proceedings of the Joint 7th International Workshop on
Conducting Empirical Studies in Industry and 6th International Workshop on Software Engineering
Research and Industrial Practice (CESSER-IP ’19). IEEE Press, 2–9.

Islam, Md. J., Nguyen, H. A., Pan, R., & Rajan, H. (2019). What Do Developers Ask About ML Libraries?
A Large-scale Study Using Stack Overflow. arXiv: 1906. 11940 v1

Khomh, F., & Antoniol, G. (2018). Bringing AI and machine learning data science into operation., Red-
hat Blog. Available at: https:// www. redhat. com/ en/ blog/ bring ing- ai- and- machi ne- learn ing- data-
scien ce- opera tion

Khomh, F., Adams, B., Cheng, J., Fokaefs, M., & Antoniol, G. (2018). Software Engineering for
Machine-Learning Applications: The Road Ahead. IEEE Software, 35(5), 81–84.

Kriens, P., & Verbelen, T. (2019). Software Engineering Practices for Machine Learning. arXiv: 1906. 10366
Ma, L., Juefei-Xu, F., Xue, M., Li, B., Li, L., Liu, Y., & Zhao, J. (2019). DeepCT: Tomographic Combi-

natorial Testing for Deep Learning Systems. In 2019 IEEE 26th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER). IEEE, 614–618.

Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T., Li, L., Liu, Y., et al. (2018a).
Deepgauge: Multi-granularity testing criteria for deep learning systems. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering. ACM, 120–131.

Ma, L., Zhang, F., Sun, J., Xue, M., Li, B., Juefei-Xu, F., Xie, C., Li, L., Liu, Y., Zhao, J., et al. (2018b).
Deepmutation: Mutation testing of deep learning systems. In 2018 IEEE 29th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 100–111.

Marijan, D., & Gotlieb, A. (2020). Software testing for machine learning. Proceedings of the AAAI Conference
on Artificial Intelligence, 34.

Marijan, D., Gotlieb, A., & Ahuja M. K. (2019). Challenges of Testing Machine Learning Based Systems.
Nguyen-Duc, A., Sundbø, I., Nascimento, E., Conte, T., Ahmed, I., & Abrahamsson, P. (2020). A Multiple

Case Study of Artificial Intelligent System Development in Industry. In Proceedings of the Evaluation
and Assessment in Software Engineering (EASE ’20), pp. 1–10.

Pei, K., Cao, Y., Yang, J., & Jana S. (2017). DeepXplore: Automated Whitebox Testing of Deep Learning
Systems, In Proc. Symposium on Operating Systems Principles (SOSP ’17). pp.1-18.

Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit: An Agile
Toolkit. Addison-Wesley.

Renggli, C., et al. (2019). Continuous integration of machine learning models with ease. ML/CI:
Towards a rigorous yet practical treatment. arXiv: 1903. 00278

Responsible AI Practices. (2020). Google AI. Available at: https:// ai. google/ educa tion/ respo nsible- ai-
pract ices

Sandberg, A. B., & Crnkovic, I. (2017). Meeting Industry-Academia Research Collaboration Challenges
with Agile Methodologies. 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), Buenos Aires, pp. 73-82.

Schelter, S., Biessmann, F., Januschowski, T., Salinas, D., Seufert, S., & Szarvas, G. (2018). On Challenges in
Machine Learning Model Management. Committee on Data Engineering: Bulletin of the IEEE CS Tech.

Schwaber, Ken. (1997). Scrum development process (pp. 117–134). London: Business object design and
implementation. Springer.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo, J., &
Dennison, D. (2015). Hidden technical debt in machine learning systems. In Proc NIPS. pp. 2503–2511.

Stol, K., Ralph, P., & Fitzgerald, B. (2016). Grounded Theory in Software Engineering Research: A Critical
Review and Guidelines. 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE),
Austin, TX, pp. 120-131.

Storcheus, D., Rostamizadeh, A., & Kumar, S. (2015). A survey of modern questions and challenges in
feature extraction. In Proc IWFE: Modern Questions and Challenges, NIPS. 1-18.

Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., & Kroening, D. (2018). Concolic testing for
deep neural networks. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM, 109–119.

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning
Research, 9, 2579-2605.

Vogelsang, A., & Borg, M. (2019). Requirements Engineering for Machine Learning: Perspectives from
Data Scientists. In 2019 IEEE 27th International Requirements Engineering Conference Workshops
(REW), pp. 245-251. IEEE.

http://arxiv.org/abs/1806
http://arxiv.org/abs/1906.11940v1
https://www.redhat.com/en/blog/bringing-ai-and-machine-learning-data-science-operation
https://www.redhat.com/en/blog/bringing-ai-and-machine-learning-data-science-operation
http://arxiv.org/abs/1906.10366
http://arxiv.org/abs/1903.00278
https://ai.google/education/responsible-ai-practices
https://ai.google/education/responsible-ai-practices

1116 Software Quality Journal (2023) 31:1065–1119

1 3

Wan, Z., Xia, X., Lo, D., & Murphy, G. C. (2019). How does Machine Learning Change Software Development
Practices? IEEE Transactions on Software Engineering.

Washizaki, H., Uchida, H., Khomh, F., & Guéhéneuc, Y. (2019). Studying Software Engineering Patterns
for Designing Machine Learning Systems. 2019 10th International Workshop on Empirical Software
Engineering in Practice (IWESEP), Tokyo, Japan, pp. 49–495.

Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2019a). Machine Learning Testing: Survey, Landscapes
and Horizons. arXiv preprint arXiv: 1906. 10742

Zhang, T., Gao, C., Ma, L., Lyu, M., & Kim, M. (2019b). An Empirical Study of Common Challenges
in Developing Deep Learning Applications. 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), pp. 104-115

Zhang, X., et al. (2019c). Software Engineering Practice in the Development of Deep Learning Applica-
tions. arXiv preprint arXiv: 1910. 03156

Zinkevich, M. (2018). Rules of machine learning: Best practices for ML engineering, Google guide on
machine learning. Available at: https:// devel opers. google. com/ machi ne- learn ing/ guides/ rules- of- ml/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

Md Saidur Rahman is a Senior Data Scientist (R&D) at Desjardins,
Canada. He worked as a Postdoctoral Fellow in the SWATLab, Depart-
ment of Computer and Software Engineering, Polytechnique Montreal,
Canada. He received his PhD in Software Engineering from the
Department of Computer Science, University of Saskatchewan, Can-
ada in 2018. He received his BSc (Hons) and MSc in Computer Sci-
ence and Engineering from Islamic University, Bangladesh, and was
awarded University Grants Commission Award and Chancellor’s Gold
Medal respectively. His research is primarily focused on code clones,
mining software repositories, machine learning, and software engi-
neering for machine learning. Saidur has been a reviewer for leading
software engineering journals and conferences.

Foutse Khomh is a Full Professor of Software Engineering at Poly-
technique Montr´eal and FRQ-IVADO Research Chair on Software
Quality Assurance for Machine Learning Applications. He received a
Ph.D in Software Engineering from the University of Montreal in
2011, with the Award of Excellence. He also received a CS-Can/Info-
Can Outstanding Young Computer Science Researcher Prize for 2019.
His research interests include software maintenance and evolution,
machine learning systems engineering, cloud engineering, empirical
software engineering, and software analytic. His work has received
three ten-year Most Influential Paper (MIP) Awards, and six Best/Dis-
tinguished paper Awards. He has served on the program committees of
several international conferences including FSE, ICSM(E), SANER,
MSR, ICPC, SCAM, ESEM and has reviewed for top international
journals such as JSS, EMSE, TSC, TSE and TOSEM. He is program
chair for Satellite Events at SANER 2015, program co-chair of SCAM
2015, ICSME 2018, PROMISE 2019, and ICPC 2019, general chair of

ICPC 2018, SCAM 2020, and SANER 2020. He is on the steering committee of SANER (chair), MSR,
PROMISE, ICPC (chair), and ICSME(vice-chair). He initiated and co-organized the Software Engineering
for Machine Learning Applications (SEMLA) symposium (https:// semla. polym tl. ca/) and the RELENG
(Release Engineering) workshop series (http:// releng. polym tl. ca). He is on the editorial board of multiple
international journals, e.g., IEEE Software, Wiley’s Journal of Software: Evolution and Process. Web page:
http://khomh.net/

http://arxiv.org/abs/1906.10742
http://arxiv.org/abs/1910.03156
https://developers.google.com/machine-learning/guides/rules-of-ml/
https://semla.polymtl.ca/
http://releng.polymtl.ca

1117Software Quality Journal (2023) 31:1065–1119

1 3

Alaleh Hamidi is a Masters student in Computer and Software Engi-
neering, Polytechnique Montreal, Canada. She received her B.Sc in
Computer Software Engineering from Ferdowsi University of Mash-
had, Iran and a Masters degree in Information Technology from K. N.
Toosi University of Technology. Her research interests include:
Machine Learning, Software Quality and Mining Software Repositories.

Jinghui Cheng is an Assistant Professor in Computer and Software
Engineering at Polytechnique Montreal, Canada. He received his PhD
in 2017 from DePaul University, USA, and MSc in Computer Science
from Xi’an Jiaotong University, China. His research combines the field
of Human-Computer Interaction (HCI) with Software Engineering
(SE). His approach is fundamentally human-centered, with an empha-
sis on exploring technologies that support practitioners who have
domain-specific expertise but special information needs, including
software engineers, designers, and domain experts. While he is pas-
sionate about new technologies, understanding and realizing the ability
of these technologies in satisfying the user’s needs and adapting to the
user’s existing mental, behavioral, and social characteristics is most
attractive to me.

Giuliano Antoniol (Giulio) received his Laurea degree in electronic
engineering from the Universita’ di Padova, Italy, in 1982. In 2004 he
received his PhD in Electrical Engineering at the Ecole Polytechnique
de Montreal. He worked in companies, research institutions and uni-
versities. From 2005 to 2019 he directed the Canada Research Chair
Tier I in Software Change and Evolution. He participated in the pro-
gram and organization committees of numerous IEEE-sponsored inter-
national conferences. He served as program chair, industrial chair,
tutorial, and general chair of international conferences and workshops.
He is a member of the editorial boards of: the Journal of Software
Testing Verification & Reliability, the Software Quality Journal and
the Journal of Software: Evolution and Process. Dr Giuliano Antoniol
served as Deputy Chair of the Steering Committee for the IEEE Inter-
national Conference on Software Maintenance. He contributed to the
program committees of more than 30 IEEE and ACM conferences and

workshops, and he acts as referee for all major software engineering journals. He is currently Full Professor
at the Ecole Polytechnique de Montreal, where he works in the area of software evolution, software tracea-
bility, search based software engineering, software testing and software maintenance.

1118 Software Quality Journal (2023) 31:1065–1119

1 3

Hironori Washizaki is a professor and the Associate Dean of the
Research Promotion Division at Waseda University in Tokyo, and a
Visiting Professor at the National Institute of Informatics. He also
works in industry as Outside Directors of SYSTEM INFORMATION
and eXmotion. He received his Ph.D. in information and computer sci-
ence from Waseda University in 2003. Hironori serves as Chair of the
IEEE CS Professional and Educational Activities Board Engineering
Discipline Committee. He is spearheading the Guide to the Software
Engineering Body of Knowledge (SWEBOK) evolution. He serves as
Associate Editor of IEEE Transactions on Emerging Topics in Com-
puting, Steering Committee Member of the IEEE Conference on Soft-
ware Engineering Education and Training, and Advisory Committee
Member of the IEEE CS flagship conference COMPSAC. He is a Pro-
fessional Member of IEEE-Eta Kappa Nu. He has served as the pro-
gram chair of multiple IEEE conferences, including ICST, CSEE&T,
and SIoT/SISA of COMPSAC. He is the program chair of ICPC Pro-
gramming Education Track and SCAM Engineering Track, workshop

chair and publicity chair of ASE, local chair of COMPSAC, and Chair of IEEE CS Japan Chapter. Hironori’s
research interests include systems and software engineering. He has published more than 120 research
papers in refereed international journals and conferences, including IoT-J, TETC, EMSE, SCICO, ICSE and
ASE. He has received various awards and honors including IWESEP Best Paper Award and IJSEKE Most
Read Article. He has led many academia-industry joint research and large-funded projects in software analy-
sis and quality assurance. Since 2017, he has been the lead on a large-scale grant at MEXT called enPiT-Pro
SmartSE, which encompasses professional education in IoT, AI, software engineering and business. Since
2015, he has been the Convener of ISO/IEC/JTC1 SC7/WG20 to standardize bodies of knowledge and pro-
fessional certifications. Since 2019, he has been Steering Committee Member of APSEC.

1119Software Quality Journal (2023) 31:1065–1119

1 3

Authors and Affiliations

Md Saidur Rahman1 · Foutse Khomh1 · Alaleh Hamidi1 · Jinghui Cheng2 ·
Giuliano Antoniol2 · Hironori Washizaki3

 Foutse Khomh
 foutse.khomh@polymtl.ca

 Alaleh Hamidi
 alaleh.hamidi@polymtl.ca

 Jinghui Cheng
 jinghui.cheng@polymtl.ca

 Giuliano Antoniol
 giuliano.antoniol@polymtl.ca

 Hironori Washizaki
 washizaki@waseda.jp

1 SWAT Lab, DGIGL, Polytechnique Montréal, Montréal, QC, Canada
2 DGIGL, Polytechnique Montréal, Montréal, QC, Canada
3 Waseda University, Tokyo, Japan

http://orcid.org/0000-0002-5677-5927

	Machine learning application development: practitioners’ insights
	Abstract
	1 Introduction
	2 Background
	2.1 Machine learning applications
	2.2 ML application development life cycle
	2.2.1 Model requirements
	2.2.2 Data collection and preprocessing
	2.2.3 Feature engineering
	2.2.4 Model training and evaluation
	2.2.5 Integration, deployment, and monitoring

	3 Study design
	3.1 Objectives of the study
	3.2 Survey design
	3.3 Data collection
	3.3.1 Selection of participants

	3.4 Data collection and analysis
	3.5 Privacy and anonymity

	4 Results
	4.1 Demographic distributions
	4.1.1 Background
	4.1.2 Professional experience
	4.1.3 Domains of expertise

	4.2 Trends in ML application development
	4.2.1 ML Application Types
	4.2.2 Software development methodologies
	4.2.3 ML frameworks and tools

	4.3 ML data collection and pre-processing
	4.3.1 ML data sources
	4.3.2 RQ2: In practitioner’s perception, what are the important quality attributes of ML data?
	4.3.3 RQ3: What is the state-of-the-practice regarding the data processing tasks, techniques and tools for quality assurance of ML data?
	4.3.4 RQ4: What are the challenges of ML data cleaning?
	4.3.5 RQ5: What are the challenges of data labelling faced by the ML application developers?
	4.3.6 RQ6. What are the common approaches to validating data labelling by the ML practitioners?

	4.4 Feature engineering
	4.4.1 RQ7: How do ML practitioners identify class-imbalance in ML data and how do they ensure class-balance?
	4.4.2 RQ8: What are the feature engineering techniques and tools commonly used by ML developers?
	4.4.3 RQ9: What are the common limitations of the existing feature engineering tools and techniques?
	4.4.4 RQ10: What is the state-of-the-practice in feature quality assessment in ML application development?
	4.4.5 RQ11: What are the common practices for feature selection in ML application development?

	4.5 Model building
	4.5.1 RQ12: What are the practices for ML model implementation commonly adopted by the practitioners?
	4.5.2 RQ13: What is the state-of-the-practice for ML model implementation testing by ML practitioners?
	4.5.3 RQ14: What are the common symptoms that practitioners use to detect defects in an ML implementation?
	4.5.4 RQ15: What are the practitioners perceived challenges of testing ML application?

	4.6 Model deployment and management
	4.6.1 RQ16: What are the developers-perceived challenges of testing ML model deployment?
	4.6.2 RQ17: What are the factors that ML developers commonly focus on during ML model management?

	5 Analysis and discussion
	5.1 Trends in ML application development
	5.2 Data collection and preprocessing
	5.3 Feature engineering
	5.4 Model building and testing
	5.5 Model deployment and maintenance

	6 Threats to validity
	7 Related works
	8 Conclusion
	Acknowledgements
	References

