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Abstract
Research in software testing often involves the development of software prototypes. Like 
any piece of software, there are challenges in the development, use and verification of such 
tools. However, some challenges are rather specific to this problem domain. For example, 
often these tools are developed by PhD students straight out of bachelor/master degrees, 
possibly lacking any industrial experience in software development. Prototype tools 
are used to carry out empirical studies, possibly studying different parameters of novel 
designed algorithms. Software scaffolding is needed to run large sets of experiments effi-
ciently. Furthermore, when using AI-based techniques like evolutionary algorithms, care 
needs to be taken to deal with their randomness, which further complicates their verifi-
cation. The aforementioned represent some of the challenges we have identified for this 
domain. In this paper, we report on our experience in building the open-source EvoMaster 
tool, which aims at system-level test case generation for enterprise applications. Many of 
the challenges we faced would be common to any researcher needing to build software test-
ing tool prototypes. Therefore, one goal is that our shared experience here will boost the 
research community, by providing concrete solutions to many development challenges in 
the building of such kind of research prototypes. Ultimately, this will lead to increase the 
impact of scientific research on industrial practice.

Keywords  Software testing · SBST · Tool · Fuzzing · Experimentation

1  Introduction

Automated test case generation is a topic that has been widely studied in the research com-
munity (Bertolino, 2007). Throughout the decades, thousands of scientific articles have been 
written on the subject. Different techniques have been investigated to solve this scientific 
problem, where the use of Evolutionary Algorithms has been one of the most effective solu-
tions (Harman et al., 2012), as well as Dynamic Symbolic Execution (Baldoni et al., 2018).
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To investigate different research questions on this scientific topic, tool prototypes have 
been developed to carry out empirical studies. Some of these tools were just “throw-away” 
prototypes, meant to be used to answer the research questions for just a single research 
study. Others were developed and maintained throughout several studies, with a level of 
engineering effort that would enable even practitioners to use those tools. There are sev-
eral of these kinds of tools, and a few of them are open-source. A short, non-exhaustive 
list comprises for example AFL1 for security testing of data parsers, KLEE2 for dynamic 
symbolic execution (Cadar et al., 2008), EvoSuite3 for evolutionary unit testing (Fraser & 
Arcuri, 2011), and Randoop4 for random testing (Pacheco & Ernst, 2007).

When building a test generation tool to be used in several scientific studies, the com-
plexity of the tool itself increases significantly. In terms of size and complexity, it can 
become not so different from many pieces of software built in industry. Employing best 
practices from industrial software development becomes hence essential. For example, the 
use of version control systems (e.g., Git) and continuous integration is strongly recom-
mended. However, when dealing with the development of test case generator tools (and, 
more in general, software engineering research prototypes), there are several specific chal-
lenges and common problems that researchers need to address. Failing to do so might lead 
to excessive waste of human resources (time and effort), with prototypes that become hard 
to maintain and extend for new studies. Furthermore, if such prototypes are faulty, conclu-
sions drawn from empirical studies could be totally wrong, significantly harming the pro-
gress of scientific research.

It is quite common that prototypes in software engineering research are built by young 
PhD students and postdoc researchers. They might or might not have previous industrial 
experience, or general exposure to the development of large/complex systems. Outstanding 
senior researchers can provide essential scientific supervision, but might lack professional 
software development experience, or they might simply not deal with actual software 
development any more (similarly to managers in industry). Furthermore, in many scientific 
institutions around the world, excellence is evaluated based on the number of published 
scientific articles, and not “impact” of such work (e.g., benefits to software engineering 
industrial practice). On the one hand, new prototypes are built from scratch by lone PhD 
students as research tends to be directed toward unexplored topics, instead of focusing in 
depth on a specific scientific problem, and solve it to an extent that will impact industrial 
practice (Arcuri, 2018b). This latter might require a long-term investment in terms of soft-
ware prototype development, longer than the duration of typical job contracts in academia. 
On the other hand, PhD students and postdoc researchers in software engineering are not 
software developer consultants. Their career progress in academia will be usually based on 
pedagogic skills and scientific output, not on their software engineering skills. Spending 
too much time on software engineering tasks instead of concentrating on scientific output 
might be detrimental for their academic career.

Achieving the right balance, or even being able to define what a “right balance” should 
be in this context, is likely way beyond what can be provided in this article. Regardless, 
improving software development practices in software engineering research would be 
beneficial. Even when addressing different topics in software engineering research, many 

1  https://​github.​com/​google/​AFL
2  https://​github.​com/​klee/​klee
3  https://​github.​com/​EvoSu​ite/​evosu​ite
4  https://​github.​com/​rando​op/​rando​op

https://github.com/google/AFL
https://github.com/klee/klee
https://github.com/EvoSuite/evosuite
https://github.com/randoop/randoop
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software tasks will be the same. Learning from existing success stories, with their low-
level technical details, might bootstrap new research efforts, and avoid “re-inventing the 
wheel” on already solved technical problems.

For example, when carrying out empirical studies, it is common to deal with different 
parameters. Those could be settings of the algorithms (e.g., population size and crossover 
rate in a Genetic Algorithm) which might need to be tuned (Arcuri & Fraser, 2013), as well 
as activation of new algorithm improvements. This is needed when evaluating if a new 
algorithmic variant is indeed better than the current state of the art. Given a tool prototype 
and a possible algorithm variant X, it would be important to run the tool with and without 
X. If this is controlled with a boolean parameter, then it can be treated as any of the other 
parameters. With the growth of a tool from study to study, we could end up with a large 
number of parameters. Efficiently dealing with such a large number of parameters can sig-
nificantly save time, especially when the running of the experiments is tailored to use these 
parameters (e.g., software scaffolding/scripts to run experiments on clusters of computers).

Another common issue is that many techniques to address software engineering prob-
lems rely on randomized algorithms. Not only does this pose challenges on the analysis 
of empirical experiments (Arcuri & Briand, 2014), but also on the verification of the tool 
prototypes themselves. For example, considering a test case generation tool, how can we 
be sure that an achieved low coverage on a test subject is not due to faults in the tool itself? 
And, when there is a crash, how to reliably reproduce it to help debug its cause?

These examples are rather general, but there are also very specific issues in more nar-
row domains. For example, when dealing with the testing of enterprise/web applications, 
how to deal with the resetting of database state to make test cases independent? Simply 
restarting the database at each test case execution would be a huge performance hit for any 
test case generation tool.

Since 2016, we have been developing the EvoMaster open-source tool5. EvoMaster is 
a search-based tool that aims at system test generation for web services, such as RESTful 
and GraphQL APIs. At the time of this writing, seven people have actively contributed to 
its development6 (i.e., all the authors of this paper), which now spans over more than 200 
thousand lines of code (just for the tool; if also including all files used in the test cases, it 
is several hundreds of thousands of lines). The tool has been used in 18 peer-reviewed pub-
lished studies so far (plus several more either in press, under review or in writing)  (Arcuri, 
2017a, b, 2018a, c, 2019, 2020; Arcuri & Galeotti, 2019, 2020a, b, 2021a; Arcuri et al., 
2021; Belhadi et al., 2022; Marculescu et al., 2022; Zhang & Arcuri, 2021a, b; Zhang et al., 
2019, 2021; 2022). As it is open-source, other research groups have been using and extend-
ing EvoMaster for their research work (e.g., Sahin & Akay, 2021; Stallenberg et al., 2021), 
independently from us.

In this paper, we report on our experience in developing such a tool for scientific 
research in software testing. We will mainly focus on technical details that would be of 
interest for other researchers building research prototypes. Some of the discussions will be 
specific for software testing, whereas others will be more general for software engineer-
ing at large. The main contribution of this paper is to provide useful technical know-how 
for researchers, to help bootstrapping new or existing engineering effort in tool prototype 
development. Ultimately, the goal is to help practitioners to benefit from software engi-
neering research.

5  https://​github.​com/​EMRes​earch/​EvoMa​ster
6  https://​github.​com/​EMRes​earch/​EvoMa​ster/​graphs/​contr​ibuto​rs

https://github.com/EMResearch/EvoMaster
https://github.com/EMResearch/EvoMaster/graphs/contributors
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This paper is organized as follows. Section 2 discusses related work. Section 3 provides 
a high-level overview of the EvoMaster tool, to better understand the discussions in the 
remaining of the paper. Section 4 presents how we deal with parameters, i.e., the different 
settings under which EvoMaster can be run. Section  5 shows how we run experiments 
when evaluating new techniques, and how their results are automatically analyzed with the 
appropriate statistical tests. In Sect. 6 we discuss how we write End-to-End tests to ver-
ify EvoMaster itself. Section 7 goes into some technical details that are specific for web/
enterprise applications. Section 8 lists some general software engineering practices that we 
found particularly useful during its development, whereas Sect. 9 reports on our experience 
in dealing with open-sourcing EvoMaster. How our lessons learned can be generalized is 
discussed in Sect. 10. Finally, Sect. 11 concludes the paper.

2 � Related work

In the literature, there has been work reporting on the experience of introducing test data 
generation tools in industry (Brunetto et al., 2021), as well as reporting the experience of 
commercializing a bug-finding research tool (Bessey et al., 2010). However, to the best of 
our knowledge, no work in the literature has aimed at providing the experience of build-
ing such tools, with the main aim of sharing concrete technical solutions to help new tool 
prototype development efforts by other researchers. This is a novel contribution provided 
in this paper.

In the software engineering research literature, several prototypes are developed and 
extended each year. It is not uncommon to have special demo tracks at the major software 
engineering conferences. For example, looking at their most recent (at the time of this writ-
ing) 2021 editions, this was the case for the International Conference on Software Engineer-
ing (ICSE) (e.g., Haryono et al., 2021; Vadlamani et al., 2021; Wang et al., 2021), the ACM 
Joint European Software Engineering Conference and Symposium on the Foundations of 
Software Engineering (ESEC/FSE) (e.g.,  Ahmed et  al.,  2021; Heumüller et  al.,  2021;  
Horlings & Jongmans, 2021), the IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE) (e.g., Brida et al., 2021; Pham et al., 2021, Xie et al., 2021), and 
the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA) 
(e.g., Hou et al., 2021; Natella & Pham, 2021; Ren et al., 2021). However, those are usually 
short 4-page papers, mainly meant to demonstrate the usefulness of these tools, with not 
much space available to share concrete technical solutions which can be re-used.

Nowadays, few conferences also have Artifact Evaluation tracks, where the authors of 
accepted research papers are encouraged to submit the artifacts used in the experiments. 
However, typically there is a lack of info about how these tools are built.

Building software prototypes is a common occurrence in scientific research, and not just 
in software engineering. A common practice is to release scientific software as open-source, 
as it helps scientific replicability (among the many benefits). However, the development of 
scientific software is often not properly incentivized in academia. To help tackle this issue, 
the open-access, peer-reviewed Journal of Open Source Software (JOSS) publishes work 
based on scientific open-source projects, like for example EvoMaster itself (Arcuri et al., 
2021). However, the actual published papers are short, up to 1000 words, which does not 
leave much space to discuss technical details and share lessons learned.
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Novel techniques are typically compared with the current state of the art. Often, this is 
represented by existing tools developed and released by other research groups. “The under-
lying assumption is that existing systems correctly represent the techniques they imple-
ment”  (Rizzi et  al., 2016). But such assumption is not always valid. For example, Rizzi 
et  al.  (2016) introduced six engineering, non-“new” improvements to the popular tool 
KLEE. This led to drastic performance increases, questioning some existing work in the lit-
erature that compared with KLEE. Unfortunately, the academic system puts more emphasis 
on and incentivizes publishing “novel” techniques rather than providing known software 
engineering improvements, even if those can have much stronger effects on performance: 
“robust advances must be built on robust foundations” (Rizzi et al., 2016).

The closest type of work to this article is what gets presented at the IEEE International 
Conference on Software Testing, Verification and Validation (ICST). Like the other main 
software engineering conferences (e.g., the aforementioned ICSE, FSE, ASE and ISSTA), 
it has a demo track. However, it also has a tool track. Where the demo track is equivalent 
to the demo tracks in the other conferences, the tool track provides more space (typically 
between 6 and 10 pages, depending on the year). This enables the space to discuss technical 
details like architectural choices, which might help to share useful technical information. 
Note, this might be possible in regular research papers as well (especially in journals, due 
to more pages available). But such information might be difficult to find out and gather, as 
spread out among the scientific content which is the main contribution of those articles.

Let us analyze in more detail the ICST tool track in the last 5 years. Table 1 provides 
some general descriptive statistics on these 5 editions of ICST. A total of 30 articles were 
published. The large majority of these articles (24 out of 30) report on tools that are open-
source. In two cases (i.e., for AUnit (Sullivan et al., 2018) and TIARA (Borges & Zeller, 
2019)), although they are not open-source, executables are provided online. Table 2 shows 
more details on 22 of them. Two were excluded: TbUIS (Bures et al., 2020), because it is 
a testbed/benchmark, and it is not hosted on GitHub (which makes the collections of some 
statistics in Table 2 not possible); and PatrIoT (Bures et al., 2021), as it was rather unclear 
to determine which GitHub repositories store the software discussed in that article.

From these 22 tools reported in Table 2, few interesting observations can be made. Only 
8 out of 22 tools have still any development in the first months of 2022 (up to late March, 
the time this data was collected). About one-third of these 22 tools (7 to be precise) have 
been under development for more than 2 years (based on the actual months of first and 
last commit, which is not reported in Table 1). And only 4 of these tools have been under 
development for more than 5 years. There are 7 tools that have been implemented by a 
single developer, although the number of authors can be up to 5. Only 2 of these tools (i.e., 
with a single developer) have any code contribution in 2022. The number of GitHub stars 
can be considered an indirect metric of interest expressed by practitioners7: only 3 tools 
(i.e., AFLNet (Pham et al., 2020), EvoMaster (Arcuri, 2018a) and Fuzzinator (Hodován  
& Kiss, 2018)) have more than 100 stars (although, of course, this also strongly depends on 
the age of the projects).

This data confirms our initial conjectures: many tools developed in academia have short lifes-
pan, often developed by a single person, and not by groups for long periods of time. However, 
there are some exceptions, which can be used as useful inspiration and learning sources.

7  GitHub stars might be useful as a metric only as long as they do not become a target, as it is not so dif-
ficult to maliciously inflate their number
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3 � Background: EvoMaster tool

The EvoMaster tool has been under development and open-source since 2016  (Arcuri, 
2017b, 2018a). It aims at generating system-level test cases for Web APIs, like REST and 
GraphQL. Internally, it uses evolutionary algorithms like MIO (Arcuri, 2018c) to evolve 
test cases, using white-box heuristics to maximize code coverage and fault finding.

When generating tests for a Web API there are many decisions to make, like setting up 
query parameters and body payloads as JSON objects. All this information is present in the 
schema of the API (e.g., in OpenAPI format for REST APIs), which needs to be fetched 
and analyzed by the fuzzer. This creates a huge search space of possible test cases, where 
EvoMaster uses evolutionary algorithms to efficiently explore it.

Internally, EvoMaster is divided into two main components: a core process, and a 
driver library (one for each supported programming environment, like JVM and NodeJS). 
The core process is written in Kotlin, and it contains all the code related to the evolutionary 
algorithms, computation of fitness function (e.g., how to make HTTP calls for REST and 
GraphQL APIs), generation of source code (e.g., in JUnit format) for the evolved tests, etc. 
On the other hand, the driver provides all functionality to start/stop/reset the SUTs, and all 

Table 2   Details of the open-source tools published at ICST 2018-2022, in chronological order They are all 
hosted on GitHub. We report the year of the ICST Edition in which the tool was published; the years of the 
First and Last commits in tools’ source code Git repositories; the number of Authors of the tool papers, as 
well as the number of code Contributors and number of Stars the Git repositories have on GitHub. Statistics 
were collected in March 2022

Name Edition First Last #Authors #Contr. #Stars

Jaguar (Ribeiro et al., 2018) 2018 2014 2019 5 5 18
EvoMaster (Arcuri, 2018a) 2018 2016 2022 1 11 227
Fuzzinator (Hodován & Kiss, 2018) 2018 2016 2022 2 6 184
SmokeOut (Musco et al., 2019) 2019 2018 2018 3 2 0
AFLNet (Pham et al., 2020) 2020 2019 2022 3 28 514
Callisto (Udeshi et al., 2020) 2020 2019 2020 3 1 1
CDST (Sartaj et al., 2020) 2020 2019 2021 3 1 2
ct-fuzz (He et al., 2020) 2020 2019 2020 3 2 6
Groucho (Bertolino et al., 2020) 2020 2019 2021 4 5 2
Prut4J (Slob & Jongmans, 2021) 2021 2019 2021 2 2 0
diffcov (Cox, 2021) 2021 2020 2020 1 1 5
COSMO (Romdhana et al., 2021) 2021 2020 2021 5 2 8
ROBY (Arcaini et al., 2021) 2021 2020 2021 4 4 1
Uncertainty-Wizard (Weiss & Tonella, 2021) 2021 2021 2022 2 1 29
STILE (Olianas et al., 2021) 2021 2020 2020 5 1 0
RiverFuzzRL (Paduraru et al., 2021) 2021 2015 2021 3 12 39
Assessor (Leotta et al., 2022) 2022 2021 2021 3 1 0
SIFT (Yavuz, 2022) 2022 2022 2022 1 1 0
RiverGame (Paduraru et al., 2022) 2022 2020 2022 3 3 0
CITRUS (Herlim et al., 2022) 2022 2021 2021 3 2 0
Tackle-Test (Tzoref-Brill et al., 2022) 2022 2021 2022 5 4/7 23/30
Whisker (Gotz et al., 2022) 2022 2018 2022 3 12 11
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the code related to instrument these SUTs with search-based, white-box heuristics (e.g., the 
branch distance (Korel, 1990)).

For white-box testing a SUT, the user needs to provide some manual configuration (e.g., 
how to start the SUT), using the driver library. This can then be started as an application, 
which will open a RESTful API that can be controlled by the core (e.g., to collect cover-
age information after each test case execution, to be able to compute the fitness function). 
Figure 1 shows a high-level architecture of how core and driver are related. Note that, with 
such architecture, supporting another programming environment (e.g.,  .NET) would just 
require writing a new driver library, with no needed changes on the core (besides perhaps a 
new test output format in C#).

The output of the core are test cases that are “self-contained”, as shown in the example 
in Fig. 2. These tests will use the driver classes (written by the user, containing the manual 
configurations), e.g., the configured driver8 is instantiated at Line 17 in the example. So 
the test suite can automatically start the SUT before any test is run (see Line 34), reset the 
state (e.g., clean SQL database) before each test execution (see Line 49), and then shut-
down the SUT once all tests are completed (see Line 46). This is essential to be able to use 
these tests for regression testing, e.g., to add them to the repository of the SUT, and run 
on a Continuous Integration system at each new code change. In this example, the test is 
for fuzzing a JVM REST API (rest-scs from EMB (Evomaster benchmark (emb), 2023)), 
and RestAssured9 is employed for performing HTTP requests (see Line 55) and validating 
responses (see Line 57 for status code and Line 60 for response body).

From an implementation point of view, internally, the core makes a heavy use of object-
oriented inheritance. Most of the code related to the search algorithms and test source code 
generation are written in a generic way, with specific instances for each problem domain 
(e.g., REST, GraphQL and RPC). This is done to minimize code duplication, and to ease 
the adding of new problem domains (e.g., web frontends) in the future.

Another important implementation detail is the use of dependency injection frameworks, 
like for example Guice. In EvoMaster, there is a large amount of data (e.g., hundreds of 
thousands of evolved test cases) that need to be handled, with data that need to be accessed 
and used in all different parts of the application, which can span over hundreds of thousands 
of lines of code. Using a dependency injection framework introduces a non-trivial learning 
curve for new PhD students and postdocs (as often they might not be familiar with such con-
cept), but it is arguable essential for scaling to large code bases.

On the other hand, for the driver library, being a library, architecturally we tried to have 
it as simple as possible. Considering that it needs to run in the same JVM of the SUT (to 
do bytecode instrumentation on-the-fly), to avoid classpath library issues, we minimize its 
number of third-party dependencies. This is the reason why it is written in Java instead of 
Kotlin (as the use of Kotlin requires importing the libraries of Kotlin as dependency). For 
the few cases in which we had to use third-party libraries in the driver, we made sure to 
shade them. This means automatically (e.g., with a Maven plugin) modifying their pack-
age structure to avoid any class-name clashes. One downside of this technique is that it 
increases the driver’s JAR size.

For the core process, we provide installers for the main operating systems, like for 
example Windows and Mac. Therefore, we do not have any special restriction on which 

8  The driver for this example can be found in https://​github.​com/​EMRes​earch/​EMB/​blob/​master/​jdk_8_​
maven/​em/​embed​ded/​rest/​scs/​src/​main/​java/​em/​embed​ded/​org/​rests​cs/​Embed​dedEv​oMast​erCon​troll​er.​java
9  https://​github.​com/​rest-​assur​ed/​rest-​assur​ed

https://github.com/EMResearch/EMB/blob/master/jdk_8_maven/em/embedded/rest/scs/src/main/java/em/embedded/org/restscs/EmbeddedEvoMasterController.java
https://github.com/EMResearch/EMB/blob/master/jdk_8_maven/em/embedded/rest/scs/src/main/java/em/embedded/org/restscs/EmbeddedEvoMasterController.java
https://github.com/rest-assured/rest-assured
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JDK to use (8, 11 or 17), as we ship it with the installer. This is not the case for the driver 
library, though. The used JDK depends on the SUT, as the same JVM will need to run both 
the SUT and the code of the driver library. To make the use of EvoMaster as widespread 
as possible, we currently support the older JDK 8, and make sure the library can still run 
without problem on all the following, most recent JDK versions.

4 � Experiment parameters

4.1 � Problem definition

When implementing a research prototype, it is common to end up having many parameters 
to configure it. Research prototypes are built to push forward the boundaries of science, 
answering existing open research questions. When designing a novel algorithm to answer 
one of such open research questions, there can be several configurations and details that 
might need fine tuning and experimentation. Before running any experiment, it would not 
be feasible to know what are the best configurations for a novel algorithm. Therefore, such 
tools need a way to experiment with different configurations.

The more a research prototype grows, e.g., when used in different studies, the more 
parameters might need to be added. For research tools developed throughout several years, 
it is not unheard that they might end up with hundreds of tunable parameters. Without a 
proper engineering handling, dealing with so many parameters can become very time con-
suming and error prone. As this issue likely applies to most research prototypes (at least in 
software testing research), it is of paramount importance.

4.2 � Parameter handling in EvoMaster

When building a research prototype like EvoMaster, one of the main challenges is how to 
deal with the parameters used to configure it. This is critical, as how experiments are run in 
the different empirical studies strongly depends on these parameters.

Fig. 1   High-level architecture of EvoMaster components (Arcuri, 2018a)
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Fig. 2   Snippet of JUnit tests generated by EvoMaster when fuzzing a REST API
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As discussed in Sect. 1, we need to deal with several parameters in order to customize 
how EvoMaster is run. For a test case generator tool, perhaps the most important param-
eter is for how long to run the tool. For randomized algorithms, the longer they are left run-
ning, the better results one can expect. However, practitioners are not going to wait forever 
to obtain results. Some might be willing to wait 24 h, others might want to see results in a 
few minutes. As such, controlling the duration of the search is an important parameter that 
we need to enable the user to configure.

At the time of this writing, EvoMaster is a command-line tool, where parameters can 
be given as input on the command-line. For example, after it has been installed (e.g., on 
Windows, using its .msi installer), EvoMaster can be run with:

This will run EvoMaster for 20 s, controlled by the parameter maxTime. Depending 
on the programming language, there are different existing libraries to deal with the han-
dling of console input parameters, like JOpt-Simple10 for Java.

In EvoMaster, all parameters are grouped in a single class, called EMConfig. Note: 
when referring to existing classes/code, we are considering the current version of Evo-
Master 1.5.0. But, as EvoMaster is under development, some names might change in the 
future. Therefore, if there is going to be any mismatch with future versions of EvoMaster, 
we refer the reader to the long storage of EvoMaster provided by Zenodo, i.e.,  (Arcuri 
et al., 2022). EMConfig, which is written in Kotlin, currently contains 161 parameters. 
Figure 3 shows the code related to the parameter maxTime.

One important aspect here is the use of annotations, like @Important, @Cfg and @
Regex. We built custom annotations to enhance and fine-tune how these parameters are 
handled. All EvoMaster parameters are marked with the annotation @Cfg, which requires 
us to provide documentation for them. @Important is used for when documentation is 
generated (discussed later), whereas @Regex is a constraint applied on such parameter.

When EvoMaster is started, and parameters are set, all constraints on those parameters 
are checked (besides @Regex, there are others like @Min, @Max, @Url, @Folder and @
FilePath). For example, calling EvoMaster with something like –maxTime foo will 
give the following error message:

The validation of parameters is essential, especially for parameters that are used at the 
end of the search. For example, outputFolder (which controls where the generated 
files are going to be saved) is marked with the constraint @Folder, which checks if the 
provided string is a valid path for a folder on the current operating system. If you are run-
ning EvoMaster for, let us say, 24 h, you want to make sure that a wrong path string is 
identified immediately, and not crashing/failing the application at the end of the search.

To see all the available options, and their documentation, we can use the option –help. 
The documentation is based on the strings in the @Cfg annotations, the constraints (if 

10  https://​github.​com/​jopt-​simple/​jopt-​simple

https://github.com/jopt-simple/jopt-simple
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any) and the default values of these parameters. The documentation is then built automati-
cally, via reflection on all the annotations. Furthermore, we also generate documentation 
in Markdown (implemented in the class ConfigToMarkdown), outputted in a file called 
options.md. This documentation file is added to the repository of EvoMaster itself, as it 
then makes it quite simple to access the documentation online11. Configurations marked with 
@Important will show up at the top of the documentation file, whereas the ones marked 
as @Experimental issue a warning when used. These latter configurations are for settings 
that are still under development, and/or not fully tested. If for any reason after a change in 
EMConfig the documentation options.md is not recreated, the build fails, as the consist-
ency of the documentation is checked in the ConfigToMarkdownTest JUnit file.

With the passing of the years, new parameters are added, whereas others might not be any 
longer relevant. Usually, new added parameters are tuned when carrying out empirical stud-
ies to evaluate their effectiveness, and then left as they are afterwards (i.e., no further tuning). 
So far, we have not faced the issue of deprecating existing parameters, although of course we 
might face it in the future. However, it might well be that modifying the value of old tuned 
parameters might have side effects when used with new features. Side effects might include 
not only performance losses, but also possible faults in EvoMaster that lead to crashes.

We try to make sure that the parameters marked as @Important can be used and modi-
fied without any issue. The others are internal parameters, which we do not expect practition-
ers to modify when they use EvoMaster to fuzz their APIs. Therefore, we do not perform 
validation techniques like combinatorial testing (Nie & Leung, 2011) on these parameters.

It might well be that the best setting for a parameter X = k done in a study might not be 
optimal years later when a new parameter Y is introduced, as Y might influence the impact 
of X. When introducing a new parameter Y it is not really viable to study its effective-
ness compared to all different combinations of all the other existing parameters (e.g., X), as 
those could be hundreds. But choosing new settings for old parameters to take into account 
the possible impact of new parameters is something that might pay off in terms of perfor-
mance improvements. We have not carried out such kind of new tuning experiments yet, so 
we are not currently able to recommend how often and when to do them.

Fig. 3   Snippet of the field maxTime in the class EMConfig 

11  https://​github.​com/​EMRes​earch/​EvoMa​ster/​blob/​master/​docs/​optio​ns.​md

https://github.com/EMResearch/EvoMaster/blob/master/docs/options.md
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4.3 � Lessons learned

Building this kind of infrastructure for handling parameters in this way is not trivial (the 
reader is encouraged to look at the code of the classes EMConfig and ConfigToMark-
down under the core module, especially if they want to use them as inspiration for their 
own prototypes). But it is a one-time cost, which then makes the adding and handling of 
new parameters very simple. As each new scientific study leads to adding one or more 
parameters, in the long run it pays off significantly (especially when dealing with more 
than a hundred parameters). Furthermore, it significantly simplifies the analysis of empiri-
cal studies, as discussed in the next section.

Among the different implementation efforts that we have done to improve the architec-
ture of EvoMaster, our infrastructure to automatically handle the adding of new param-
eters is by far among the ones that paid off most throughout the years. Spending time in 
this kind of coding effort is something we can strongly recommend for new (and existing) 
research tools.

5 � Experiment scaffolding

5.1 � Problem definition

One of the main goals of building a research prototype is to carry out empirical studies to 
answer research questions. Considering different parameters to experiment with, and con-
sidering the different subjects used as case study (e.g., different software projects for soft-
ware testing experiments), manually running and analyzing tens, hundreds or even thou-
sands of experiments can be tedious and error prone. Building a scaffolding infrastructure to 
automatically run and analyze experiments is hence very important. This is particularly the 
case when using the same tool in different studies throughout the years, as most of the anal-
yses will be similar. If engineered for re-use, most of the experiment scaffolding can be effi-
ciently adapted from study to study with minimal effort, saving consistent amount of time.

5.2 � Running experiments with EvoMaster

When running experiments with EvoMaster, we usually need to experiment with dif-
ferent parameters on a series of different systems under test (SUTs). As EvoMaster uses 
randomized algorithms, experiments need to be repeated with different random seeds (this 
is controlled with the parameter –seed), typically 30 times per parameter/SUT combina-
tion (Arcuri & Briand, 2014). As experiments on system testing can be quite computation-
ally expensive, this often results in very time-consuming empirical analyses, which require 
clusters of computers to run. For example, if considering 30 repetitions for 10 SUTs, on 2 dif-
ferent parameter settings, this results in K = 30 × 10 × 2 = 600 experiments to run. If each 
experiment takes 1 h (not uncommon for system test generation), that would result in 25 days 
of computation, if run in sequence. As soon as we involve more SUTs and configurations to 
experiment with, such computational resource requirements will increase significantly.

To simplify the running of all these K experiments, we rely on Python scripts to set 
them up. The idea here is to automatically generate N bash scripts, each one containing one 
or more experiments out of the K to run. The reason here is that many research institutes 
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and universities around the world do have access to clusters of computers to run experi-
ments, and those usually are submitted as bash scripts. If a user can run Z jobs in parallel, 
the K experiments can be distributed over N ≥ Z bash scripts. Figure 4 shows an overview 
of this pipeline that is used for conducting EvoMaster experiments. As shown in the fig-
ure, any user could remotely access the pipeline with Secure Shell (SSH) login. For exam-
ple, currently all researchers in the Kingdom of Norway have access to high-performance 
computing resources12, where each user can run up to Z = 400 jobs in parallel. In addition, 
files could be transferred between a local machine and the pipeline with SSH file transfer 
Protocol (SFTP) or Secure Copy (SCP). For instance, to conduct EvoMaster experiments, 
we upload the Python script (e.g., exp.py), an executable jar of EvoMaster (evomas-
ter.jar), and a set of executable jars for SUTs.

Generate  The Python script (e.g., exp.py) used to generate the N bash scripts needs to 
take into account several properties. For example, not all SUTs have the same computa-
tional cost, and the algorithm used to distribute the K experiments over the N files takes 
that into account. It needs to be parametric, as the number of repetitions might vary. Also 
there are several parameters that need to be set that are different from the default values in 
EvoMaster. For example, when running experiments, we need to make sure that the CSV 
statistics files are generated (e.g., which include info like code coverage), and use a dif-
ferent stopping criterion (e.g., number of fitness evaluations instead of execution time, to 
make the experiments easier to replicate).

Submit  To process a job with the bash script, the script needs to be specified with info 
such as time which is an estimated time cost for the job. In addition, we could configure 
options to employ the computational resources of the pipeline, e.g., mem-per-cpu for 
memory usage regarding the job. Moreover, the pipeline is equipped with a list of com-
monly used software that could be used in the experiment, e.g., Java in our experiment 
(see Load Installed Software in Fig. 4). With the script, we also need to specify commands 
to process the experiment (see Experiment Script in Fig. 4) that is automatically handled 
by the Python script (e.g., start the driver for a SUT, then run EvoMaster to generate tests 
for such SUT). With the pipeline, a job is submitted with sbatch command. To ease the 
submission process, a bash script named runall.sh is generated by the Python script to 
submit all generated bash scripts with one command, i.e., ./runall.sh.

Execute  After the jobs are submitted, the pipeline would schedule and distribute the jobs 
into various compute nodes to process on. However, based on its current resource state or 
the maximum number of jobs (i.e., Z = 400 ) which could be executed in parallel per user, a 
submitted job might be in a state of pending as shown in Fig. 4.

Outputs  To collect results of the experiments, we can download the outputs from the pipe-
line. In the context of SBST, with EvoMaster experiments, we mainly collect three results, 
i.e., Test files for all generated tests, Log files for all logs from SUTs and EvoMaster that 
could be used to debug faults, and Report files for all statistics info with CSV format (e.g., 
configured parameters in this experiment, the number of identified potential faults per run, 
the number of covered testing targets at 50% of budget used by search).

12  https://​www.​sigma2.​no/

https://www.sigma2.no/
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There are cases in which a researcher might want to run experiments on a local machine 
(e.g., a laptop) instead of a cluster. This might be the case for when a SUT requires specific 
software that cannot be installed on the available cluster (for example, we faced this issue 
when some SUTs required databases like Postgres via Docker13). Our scripts can handle 
these cases as well (e.g., whether the experiments should be run on a cluster or not is a 
boolean parameter that must be given as input argument).

All this scaffolding for running experiments does not vary much from study to study. 
The main difference is on what parameters to experiment. So, given the same Python 
script, it can be simply copied &pasted, with the parameter configuration changed for the 
current experiments. This approach of using a Python script to generate N bash scripts goes 
back from the time of running experiments with EvoSuite (Fraser & Arcuri, 2011), and it 
has been refined throughout the years.

The folder scripts in the EvoMaster repository contains the current template exp.
py we use when setting up new studies with EvoMaster. For example, let us say we want 
to replicate one of the analyses related to the handling of SQL data  (Arcuri & Galeotti, 
2020a). The insertion of data directly into the database is controlled by the parameter 
–generateSqlDataWithSearch. The snippet in Fig.  5 shows how to modify the 
script exp.py to run experiments with EvoMaster with 2 different configurations: with 
and without SQL handling.

Before we can run any experiment, we need to select SUTs as subjects for experimenta-
tion. Throughout the years, we collected several SUTs in a single GitHub repository, called 
EMB (Evomaster benchmark (emb), 2023), and provided scripts to build and install them. 
The script exp.py refers to the SUTs in EMB (e.g., an environment variable must be set 
to specify where EMB is installed on the local machine). If one does not want to use all the 
SUTs in EMB, those can be commented out from the exp.py script. For example, in this 
paper we are going to use only 4 SUTs (to make these experiments easy to run on a laptop 
in a not too long amount of time, roughly 10 h in our case).

On a command shell, we can then run:

This will generate a folder called “x”, containing 4 bash scripts (one per SUT), each 
one having 2 experiment settings (with and without SQL handling), repeated 30 times with 
different seeds, for a total of 4 × 2 × 30 = 240 experiment runs. Each experiment is run 

13  https://​www.​docker.​com

Fig. 4   An overview of conducting EvoMaster experiment on the pipeline with exp.py 

https://www.docker.com
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up to 100,000 HTTP calls as search budget. Inside such folder, a script called runall.
sh is generated, which helps in running all these scripts (not essential when there are only 
4, but useful when dealing with hundreds of them that need to be scheduled on a cluster). 
On a cluster, all the bash scripts will be scheduled with the command sbatch. On the 
other hand, on a local machine they will be just all started as background processes. As 
there is no guarantee that N jobs would finish at the same time, to better exploit the avail-
able resources, we implemented a schedule.py script to schedule them. Given N bash 
scripts, the schedule.py will run Z of them in parallel (with Z ≤ N ), starting a new 
bash script as soon as a previous one is completed. Z can be chosen based on available 
resources (CPU cores and memory). More details on these exp.py and schedule.py 
scripts, and how to use them, can be found in our documentation14.

When running experiments in which it is important to keep precise track of used 
resources (e.g., memory and CPU), there are frameworks that help in carrying out and ana-
lyzing experiments, like for example BenchExec (Beyer et al., 2019). It would not be directly 
applicable for the type of experiments we run with EvoMaster (e.g., due to requirements 
like “ [tool] does not require external network communication during the execution” (Beyer 
et al., 2019)), but it is something to consider when dealing with other kinds of testing prob-
lems (e.g., testing of CPU-bound applications written in C that run on Linux).

5.3 � Analyzing the results

Once the experiments are started with runall.sh (or schedule.py), all gener-
ated tests will be inside the folder x. Furthermore, CSV statistics files are also gener-
ated (by using the parameter –statisticsFile). Note that such files could also be 
accessed with the experiment on the pipeline as shown in Fig.  4. Those statistics files 
will contain two types of information: static information about the configuration used in 
the experiments (i.e., all the parameter settings), and dynamic information on the results 
of the search (e.g., different code coverage metrics). This data can then be used to ana-
lyze how successful a new technique is. For example, let us say we want to study the 
impact of –generateSqlDataWithSearch on achieved target coverage (EvoMas-
ter optimizes for several different metrics, like line and branch coverage). We can study 
the achieved coverage on the Base version (i.e., when that parameter is set to False) 

Fig. 5   Modification to exp.py to run experiments on the –generateSqlDataWithSearch parameter

14  https://​github.​com/​EMRes​earch/​EvoMa​ster/​blob/​master/​docs/​repli​cating_​studi​es.​md

https://github.com/EMResearch/EvoMaster/blob/master/docs/replicating_studies.md
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compared to the new improved SQL version (i.e., True). To properly analyze such com-
parison (Arcuri & Briand, 2014), we need to use the appropriate statistical tests, like for 
example the Wilcoxon-Mann-Whitney U-test, and standarized Vargha-Delaney Â12 effect-
size. Table 3 shows the results of these experiments.

In these experiments, we can see that the SQL handling provides statistically significant 
improvement for 2 APIs (i.e., catwatch and features-service), but not the others. The lack of 
statistical significant results on rest-scs is expected, as that SUT does NOT use a database. 
So, in theory (unless there is some software fault in EvoMaster) the ability of adding data 
directly into a database should have no effect here. However, results seem better for the SQL 
configuration, with higher average number of covered targets and effect-size Â

12
 . However, 

the p-value of the U-Test tells us that there is not enough evidence to claim the two con-
figurations give different results at � = 0.05 confidence level. This is an important reminder  
of the stochastic nature of this kind of algorithms, and the fact that even with 30 runs there 
can be quite a bit of variability (Arcuri & Briand, 2014). Using statistical analyses is essen-
tial to avoid drawing misleading conclusions. The case of rest-news is quite interesting as 
well. Here, there is no improvement in the results, with very high p-value. However, in our 
original analysis in Arcuri and Galeotti (2020a) there was improvement for this SUT. Being 
able to add data directly into the database might not be so important if the testing tool is able 
to effectively use the endpoints of the API itself to create the needed data. As EvoMaster 
has been improved since we carried out the analyses in Arcuri and Galeotti (2020a), the 
introduced novel techniques like resource handling (Zhang et al., 2021) and adaptive hyper-
mutation (Zhang & Arcuri, 2021a) might have been enough for this specific SUT.

Choosing the right search budget for carrying out experiments is not trivial. We usually 
employ a budget of 100,000 HTTP calls, as, for our SUTs used in our case studies, those 
take roughly between 20 and 60 min (depending of course on the hardware used). Ideally, 
search budgets should reflect the actual usage of practitioners in industry. This could be 
minutes, hours or days, depending on the testing scenarios and hardware availability. Given 
enough time, even a naive random search (as well as a brute force enumeration of all pos-
sible test cases) can in theory achieve full coverage (Arcuri et al., 2012), albeit in a non-
viable amount of time. Therefore, it is interesting as well to study the performance of algo-
rithms at different points in time. To achieve this, in EvoMaster we have the option (using 
–snapshotStatisticsFile) to output a snapshot of the current results at different 
points in time (controlled by the parameter –snapshotInterval). These generated 
snapshot CSV files can then be used to create performance plots like the ones in Fig. 6.

5.4 � Dealing with failures

When running this type of experiment which strongly relies on resources from the operating 
system (e.g., TCP ports), and that can run for hours or days, it is important to understand 
that some experiments might fail, sporadically (especially if too many experiments are run 

Table 3   Experiment results on 
5 SUTs from EMB, where the 
impact of –generateSql-
DataWithSearch on target 
coverage is analyzed

SUT Base SQL Â
12

p-value

catwatch 1198.4 1279.4 0.97 <0.001
features-service 715.8 721.6 0.71 0.005
rest-news 334.8 334.5 0.50 0.970
rest-scs 838.9 856.0 0.62 0.107
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in parallel on the same machine). Also, there might be cases of faults in the tool which only 
manifest on specific SUTs. As each experiment run generates one CSV file, it is important 
to check (e.g., with a script) at the end of the experiments that the total number of generated 
CSV files matches the number of experiment runs. In case of issues, to help fixing those, 
making sure that all the outputs (i.e., logs) of the tool and SUTs are saved to disk is para-
mount. This can be automatically handled (e.g., by redirecting the standard outputs of these 
processes to distinct files on disk). When repeating experiments for 30 times (or more) to 
handle their randomness, missing 1 or 2 runs (e.g., due to the operating system not recycling 
TCP ephemeral ports fast enough) is usually not a big issue, as long as the results of the 
statistical tests are still significant (e.g., at � = 0.05 threshold for the p-values). However, if 
many runs are missing, those require investigation, and re-run all the experiments once the 
issues are fixed.

Fixing bugs and re-running experiments is viable when one is the author of the used 
tool. However, when comparing tools from different authors (e.g.,  Zhang and Arcuri 
(2022)), that is usually not the case. Furthermore, the SUT itself could crash due to faults. 

Fig. 6   Average (out of 30 runs) number of covered targets throughout the search, for the 2 configurations 
Base and SQL 
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This is usually good for practitioners (as fuzzers are used to find if there is any fault), but it 
can complicate the analysis of the experiments (e.g., when trying to collect code coverage 
results). For the specific case of Web APIs though, this is usually not a problem. Web APIs 
are usually run inside HTTP servers (e.g., Tomcat). If there is a fault in the API which  
leads to an uncaught exception, then the HTTP server simply catches it and returns an HTTP  
response with status code 500. The whole SUT would “crash” only if there is a fault in the 
code of the HTTP server, which is an occurrence that we have not experienced yet.

5.5 � Automation of the analyses

Using this kind of script like exp.py to set up the experiments also helps with replicated 
analyses from third-party research groups. In addition, this setup helps when preparing 
replication packages for academic Software Engineering conferences. We will go back on 
this point later in Sect. 9. As part of the Git repository of EvoMaster itself, we store not 
only the PDFs of all the published articles based on it, but also all the exp.py files used 
to run the experiments15.

One important aspect to further discuss is how a table such as Table  3 is created. Of 
course, this can be done manually, but it is error prone (i.e., calculate all the statistics with a 
tool, and then fill the table manually). Furthermore, it is tedious and time consuming, espe-
cially when experiments need to be repeated (due to some mistakes), or many tables need to 
be filled/updated at the last moment just before an academic conference deadline. It would 
be better to generate such tables automatically, including all their statistical analyses. This 
is possible, at least when using text editing tools like Latex. The idea is to write the analyses 
in a scripting language (we use R, but Python would do as well), and output as a text a table 
in Latex format, which can then be imported in the article with the Latex command input. 
Such R script will read the CSV files of the experiment results to do such analysis.

Figure 7 shows a snippet code of the R function used to generate Table  3. It outputs a 
text file called tableComparison.tex (Line  4). In this script, the data is first loaded 
(variable dt, Line 3), and then grouped by SUT (called proj in the script, Line 11). Then, 
for each SUT (Line 13), the data is divided based on the parameter generateSqlData-
WithSearch (which is a column in the CSV file, Line 19), and the two sets of data base 
(Line 22) and other (Line 23) are compared (Lines 30 and 34). The Latex commands used 
to create the table are outputted as text with the R command cat (e.g., Line 26), where the 
standard output is redirected to the tableComparison.tex file (R command sink, 
Line 6). This table can then be easily included in a paper with the following Latex instructions:

15  https://​github.​com/​EMRes​earch/​EvoMa​ster/​blob/​master/​docs/​publi​catio​ns.​md

https://github.com/EMResearch/EvoMaster/blob/master/docs/publications.md
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The plots in Fig. 6 have been generated automatically with the same approach, using R 
commands like pdf() and plot() to generate 4 different PDF files, and then imported in 
Latex with \includegraphics.

5.6 � Lessons learned

What is discussed in this section might sound convoluted, but, again, it saves a huge amount 
of time in the long run. Especially considering that most scientific articles will have similar 
types of analyses, and very little effort is needed to adapt these scripts from article to article. 
This is because each parameter setting (e.g., –generateSqlDataWithSearch) is just 

Fig. 7   Snippet of R code used to generate Table 3
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yet another column in the generated CSV files, where data can be filtered on (e.g., as done at 
Line 19 in Fig. 7).

Setting up a whole automated pipeline to run the experiments and analyze them is not triv-
ial, and requires effort and expertise. However, we can highly recommend it for tool proto-
types that are going to be used in more than just a couple of studies. For example, today when 
we run new experiments with EvoMaster on some novel techniques we have designed, with 
the experiment scaffolding discussed in this section it is just a matter of few minutes to set up 
all the experiments and their analyses.

6 � E2E tests for EvoMaster

6.1 � Problem definition

Software research prototypes are still software, and, as such, they can have software faults. 
Software faults can lead to errors and publishing completely invalid results. As for any soft-
ware, to avoid this issue research prototypes need to be tested.

Most of the software testing practices would apply to research prototypes as well. However, 
research prototypes do also have specific challenges when dealing with their testing, which are 
worth to discuss in more detail.

6.2 � Test cases in EvoMaster

As any piece of software, EvoMaster itself needs to be tested. Because it is not an enter-
prise application, but rather a tool, EvoMaster cannot be used to test itself. So, we rely on 
manually written tests.

The writing of test cases for EvoMaster is similar to any other type of software, i.e., 
there is typical distribution of unit tests, integration tests and system tests. General guide-
lines on software testing practices would apply here as well. However, one peculiarity that 
is worth to discuss in more detail is how we write End-to-End (E2E) tests.

An E2E test in EvoMaster would require to run the tool on a SUT, generate test cases, 
compile them, run them, and then verify if any specific level of code coverage and fault 
detection has been achieved. Figure 8 depicts such steps. In EvoMaster, we do all of this, 
automatically. The reader is encouraged to look at the (currently) 88 test suite files (with 
name extension EMTest, written in JUnit) in the e2e-tests folder. From a JUnit test 
case T, we programmatically start the SUT, we programmatically run EvoMaster on it, 
outputting the generated test cases Z to a specific folder. Once EvoMaster ’s search is 
completed, we verify (with JUnit assertions) different properties (e.g., typically if specific 
SUT endpoints have been called and they returned some expected HTTP status code). 
Then, from T itself, we first call the compiler to compile the source code of Z, and dynami-
cally load such compiled tests Z and run them programmatically as well inside T (using 
JUnit’s APIs directly). Note, if any of these steps fails (e.g., EvoMaster has a fault and its 
generated tests are not syntactically correct, so the compiler would fail), then the E2E test 
T fails. However, when doing all this, there are a few challenges.

First, we need SUTs. We simply implemented them, and added them to the reposi-
tory of EvoMaster (under such e2e-tests folder). The goal here with these tests is to 
make sure that EvoMaster can work on different kinds of technologies used in the SUTs 
(e.g., frameworks like Spring, different versions of OpenAPI schemas and databases like 
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Postgres and MySQL). However, the SUTs cannot be too complex, i.e., we cannot let 
EvoMaster run too long on those SUTs, as otherwise the build will take an unreasonable 
amount of time. All these E2E tests are run automatically as part of the build, by using 
Maven. The current build takes around 1–2 h due to these E2E tests16. So, on each of these 
SUTs, we run EvoMaster for less than a minute. On each E2E test we verify a specific 
feature X of EvoMaster. The idea is that, without X, it should not be possible to fully test 
the SUT. However, when X is used (and its implementation is not faulty), then the SUT 
becomes trivial to test (and so EvoMaster would not need to be run long on such an SUT).

Figure 9 shows parts of a REST controller of one of the SUTs we use for the E2E tests. 
That specific GET endpoint expects a string parameter as input. However, internally, a 
call to LocalDate.parse is done (Line  8), i.e., the input string is checked to see if 
it is a valid date. As the schema has no information on such constraint on this value, it is 
extremely unlikely that a random string would pass such constraint. When given a non-
valid date as input, then LocalDate.parse will throw an exception, and the frame-
work (Spring in this case) will just return an HTTP response with status code 500 (Internal 
Server Error). However, thanks to white-box heuristics like Testability Transformations 
and Taint Analysis, this code is trivial to cover for EvoMaster  (Arcuri & Galeotti, 2021a). 
The E2E test TaintEMTest is then checking that it is possible for EvoMaster to craft a 
valid HTTP request that returns a 200 HTTP status code on this endpoint.

6.3 � Dealing with flakiness

EvoMaster uses the evolutionary algorithm MIO (Arcuri, 2018c) enhanced with adaptive 
hyper-mutation (Zhang & Arcuri, 2021a) to evolve test cases. As it is a randomized algo-
rithm, when running a search there is no guarantee that an optimal solution is found. Run-
ning the algorithm twice on the same inputs can lead to very different results. This not only 

16  https://​github.​com/​EMRes​earch/​EvoMa​ster/​actio​ns

E2E Test

3.Compile1.Start 2.Run/Check

Source code of self-
contained JUnit tests EvoMasterSystem Under Test Compiled JUnit .class 

files

4.Run/Check

System Under Test

Fig. 8   Overview of EvoMaster E2E tests

https://github.com/EMResearch/EvoMaster/actions
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brings challenges on how to evaluate the effectiveness of these algorithms (which requires 
repeated experiments and use of statistical analysis (Arcuri & Briand, 2014)), but also on 
their testing. For example, even if the SUTs that we develop for the E2E are simple, there is 
still a non-zero chance that a test can fail, due to the randomness of EvoMaster. Flaky tests 
bring a lot of problems, especially for debugging.

One solution to address this issue is to have a full control on the sources of non-determinism 
in the algorithm. Given a pseudo-random generator (e.g., the Java API java.util.Ran-
dom) needed by the search algorithm, we use only one single instance inside EvoMaster, ini-
tialized with a specific seed. When EvoMaster is used by practitioners, the seed is taken from 
the CPU clock. On the other hand, when we run E2E tests, the seed is fixed (e.g., to 0), using 
the parameter –seed. Even if a test fails, if we run a second time (e.g., for debugging), we 
should get the same results and execution trace.

Unfortunately, though, pseudo-random generators are not the only source of non-
determinism. For example, iterating over un-ordered data structures like Set might 
result in a source of non-determinism (i.e., the order in which elements are traversed 
can be each time different), depending on the actual implementation of such data struc-
tures (this is a concrete problem for some specific implementations in the Java APIs). 
Care is needed to make sure to only use deterministic data structure implementations 
(e.g., HashSet vs. LinkedHashSet). Another major source of non-determinism is 
the idempotency of some HTTP calls (e.g., depending on the Operating System, at 
times some calls can be automatically repeated, possibly leading to slightly different 
results, especially related to logs).

To make sure the different sources of non-determinism are properly taken care of (or 
at least their effects are negligible), we have specific test cases to check this. The idea is 
rather straightforward: when running an E2E test, we store all of its logs (and we make sure 
to activate verbose logging); then, we run the same test twice, and we verify that the logs 
are exactly the same. When we do this, in the logging configurations we need to make sure 
to avoid any time information (e.g., timestamps of logs), otherwise the tests will always 
fail. This is done with the option –avoidNonDeterministicLogs true. Further-
more, for these tests we need to disable all the time-related features of the search algorithm 
(e.g., current extension of MIO is using the execution time of each endpoint to prioritize 
them), which is done with the option –useTimeInFeedbackSampling false. The 
test StringsEMTest.testDeterminism is an example of this kind of tests (see 
code in Fig. 10, Line 4).

Although the SUTs we write for the E2E tests are simple, there is still a possibility 
(even if very low) that, for some seeds, a test case would fail. Dealing with this kind of 

Fig. 9   Snippet code of the class TaintRest, showing implementation of a GET HTTP endpoint, using the 
Spring framework
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flaky tests by simply re-run the test cases up to N times (e.g., N = 3 ) would not work, 
as we are controlling the source of non-determinism (as previously discussed). The 
solution here is that, we still re-run the test, but, this time, with a different seed (speci-
fied with the –seed option).

All these logic discussed so far in this section (e.g., compilation and flakiness han-
dling) are shared among practically most of the E2E tests. To avoid repetition, we 
abstract most of this logic in a library, which then lead these test cases to be rather 
short and easy to write and maintain. Figure 10 shows the implementation of the test 
suite class StringsEMTest. The first test testDeterminism() (Line  4) is 
running EvoMaster on the SUT defined in the controller StringsController 
(Line 46). EvoMaster is run twice for 1000 fitness evaluations, and the logs are then 
compared. All this logic is done in the function runAndCheckDeterminism() 

Fig. 10   Snippet code of the test suite class StringsEMTest 
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(Line 5), which can be re-used by all these kinds of tests. On the other hand, the test 
testRunEM() (Line  11) is running EvoMaster for 10,000 fitness evaluations, in 
which we then verify at the end of the search that different endpoints are covered with 
different status codes (as well as checking if some specific values do appear in the 
payloads of the HTTP responses, Lines 23 to 36). Most of the logic is handled inside 
the runTestHandlingFlakyAndCompilation() function (Line 13), which is 
common for all these kinds of E2E tests.

6.4 � Lessons learned

As software engineers, and not just academics, we strongly believe in the usefulness of 
software testing. If it was not the case, we would not dedicate our careers on this research 
topic. Therefore, as we believe software testing is useful and pays off in the long run, our 
research prototypes are thoroughly tested. In different words, we follow the saying Do you 
practice what you preach?

Throughout the years, hundreds of faults were automatically found in EvoMaster by 
running our regression test suites. Given the version control system Git, a typical scenario 
is to develop new features in a branch. Only if all test cases pass such features can be 
merged into the master branch by making a Pull Request (PR). If some test cases fail, then 
the faults should be fixed before the PR can be merged.

Among the different kinds of tests, our E2E tests were the most effective at finding 
regression faults. Given a large and complex software project, it is not unexpected that 
apparently harmless changes might have serious side effects on other parts of the code 
unrelated to the new feature under development. But, as discussed, writing E2E tests for 
software testing tools is complex, as for example it requires compiling and running the 
generated tests on-the-fly. With the right engineering effort, such cost can be drastically 
reduced when writing new E2E tests, although there is still a high one-time cost to build all 
the needed scaffolding. Still, we strongly recommend to do this, due to the huge savings it 
gave us throughout the years.

7 � Technical details

7.1 � Problem definition

When dealing with the system testing of web/enterprise applications, there are some spe-
cific technical challenges that need to be addressed. In this section, we discuss the three 
main ones we faced in the development of EvoMaster, namely: databases, authentication 
and multi-threading.

These selected challenges represent critical features that must be implemented when 
building a white-box fuzzer for this kind of application. They are not trivial, as there are 
several edge cases that must be handled. We describe them here in more detail, with some 
solutions, to enable the readers a useful head-start when working on this kind of systems. 
The alternative would be to be bound to spend significant time in rediscovering them.

7.2 � Dealing with databases

Most of the time, web/enterprise applications interact with databases. The most common 
databases are SQL ones such as Postgres and MySQL (which we support in EvoMaster), 
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as well as NoSQL ones such as MongoDB (currently not supported). A database will store 
the status of the application, and it has a major impact on the testing of the SUT. One crucial 
aspect here is that test cases must be independent, i.e., the execution of a test case should not 
depend on the state modified by previous tests. Otherwise, test outcomes would depend on 
their execution order, which significantly complicates tasks like debugging. A solution here 
is that the “state” of the application has to be reset before/after each test case execution.

Simply restarting a database would address this issue at each test execution, but it would 
be way too naive. Restarting a database takes a non-trivial amount of time, which would 
end up to be a major performance bottleneck. So, we “simply” clean (i.e., delete) the data 
in the database at each test execution by executing custom SQL commands. Interestingly, 
there is no standard approach for “cleaning” a database (as this is a functionality mainly 
needed for testing), and each database requires slightly different commands. For example, 
where Postgres allows a single command with a series of table names to TRUNCATE, H2 
and MySQL need one TRUNCATE command per table. But, removing data from a table 
can break the constraints for foreign keys, resulting in the command to fail (and so the data 
does not get deleted). So, we first need to disable all the constraint checks on the referen-
tial integrity (and each database requires a different command for this), then truncate each 
table one at a time, and finally re-enable the constraint checks. Besides this, all sequence 
generators (e.g., used for auto-increment columns) need to be reset. And, again, each data-
base requires a different SQL command to achieve this.

To help with this needed functionality, we developed a library (released on Maven Cen-
tral) in which the class DbCleaner can be used to reset the state of the database (if any 
is used by the SUT). The snippet in Fig. 11 shows an example of the implementation the 
resetStateOfSUT() method in a driver class (needed to be implemented by the user 
when they want to do white-box testing of their SUTs with EvoMaster). Here, the func-
tion DbCleaner.clearDatabase_H2 is used to tell the driver how to reset the state 
of SUT, which is stored in a H2 database (we provide equivalent functions for Postgres and 
MySQL as well). This function takes two inputs: a required java.sql connection to the 
database, and an optional list of table names to skip (i.e., their data should not be cleared). 
This is needed when dealing with database migration tools such as Flyway and Liquibase 
(as those use some tables to keep track how the schema of the database itself should be 
updated when the SUT starts). As resetting the state of a database is an essential feature for 
most system test generation tools, this DbCleaner utility could be useful as well outside 
of EvoMaster.

For debugging and regression testing, it would be advisable to have test cases that are 
“self-contained”, i.e., being able to start the SUT and all of its required dependencies (e.g., 
databases) automatically from the tests themselves. Where starting an application program-
matically is rather straightforward with professional frameworks (e.g., Spring), for data-
bases a tester can use embedded ones (e.g., run in the same JVM of the test), such as H2. 
Where this is not possible (e.g., the SUT uses special custom database features which are 
not available in an embedded database), nowadays it is rather straightforward to start the 
actual databases such as Postgres directly from the test cases. This can be easily done using 

Fig. 11   Snippet code of a driver class, in which at each test execution a H2 database is cleared
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Docker and libraries such as TestContainers17. Then, in the EvoMaster drivers these data-
bases can be started before the SUT is started. Figure 12 shows another snippet from a SUT 
driver, where a Postgres database is started via Docker (Line  12, configured at Lines  1 
to 7), and then the SUT (a Spring application) is started programmatically (Line 18), using 
as input an updated URL for the database connection (Line 16). Note that the generated 
tests by EvoMaster will then use such startSut() method (Line 10) to start the SUT 
and all of its dependencies.

For test case generation, it can be useful to analyze all the interactions of the SUT with 
its databases (if any). In previous work (Arcuri & Galeotti, 2020a), we have extended Evo-
Master to be able to intercept and analyze all SQL commands, and use such information 
to generate better (i.e., higher coverage) test data. At that time, to achieve this, we used 
the library called P6Spy. However, that requires the user to add such library to their SUTs, 

17  https://​www.​testc​ontai​ners.​org

Fig. 12   Snippet code of a driver class, where a Postgres database is started together with the SUT

https://www.testcontainers.org
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and manually modify the database URL connections to use P6Spy (which can be seen as 
wrapper for JDBC connections). Then, each time a SQL command is executed it would be 
logged into the standard output, and EvoMaster then reads it.

This approach works (Arcuri & Galeotti, 2020a), but it is a bit cumbersome (especially 
for the users that need to manually set up P6Spy). Once we have had in place the code 
scaffolding for Testability Transformations  (Arcuri & Galeotti, 2021b), we removed the 
dependency to P6Spy. We rather intercept at bytecode loading all the usages of SQL data-
base interactions, i.e., the use of classes such as java.sql.Statement and java.
sql.PreparedStatement, by providing method replacements  (Arcuri & Galeotti, 
2020a) (e.g., see the classes StatementClassReplacement and Prepared-
StatementClassReplacement). In this way, we can achieve the same results as 
in Arcuri and Galeotti (2020a) without the need of any manual configuration (it is all auto-
mated), plus we get further benefits like being able to track the execution time of each SQL 
command (e.g., this was requested by one of our industrial partners that use EvoMaster).

One challenge here is in the dealing of PreparedStatement, which is used for 
interpolated SQL commands (needed to avoid SQL Injection attacks). The interfaces of 
JDBC do not provide any functionality to retrieve/compute the actual SQL command (e.g., 
as a string) of a prepared statement (which we need for the analyses in EvoMaster). Data-
bases like Postgres and MySQL provide some unofficial way to retrieve the actual, interpo-
lated SQL commands (e.g., via the toString() method), whereas H2 does not. In this 
latter case, we had to write the code to do the interpolation ourselves (see the code of the 
class PreparedStatementClassReplacement).

One issue here is that adding support for a new database is not necessarily simple: there 
is the need to provide a cleaning utility (e.g., as an extension of DbCleaner), as well as 
to provide a way to interpolate prepared statements (e.g., needed for PreparedState-
mentClassReplacement). In EvoMaster, the choice of supporting H2, Postgres and 
MySQL has been based simply on convenience, i.e., we support the databases of the open-
source SUTs we could find for experiments (e.g., H2 and Postgres), as well as the ones 
from our industrial partners (e.g., MySQL).

7.3 � Dealing with authentication

Apart from APIs that are read-only with publicly available data, it is common that web/
enterprise applications require some form of authentication. This is especially the case for 
CRUD applications, and also for read-only APIs that deal with sensitive information (e.g., 
banks and medical records). Typically, authentication is based on logins with ids and pass-
words, where the obtained authentication tokens are (usually) sent via HTTP headers.

There are several different ways to do authentication, and we do support a few in Evo-
Master. Two interesting technical challenges are worth discussing in bit more detail: 
hashed passwords and dynamic tokens.

When a user account is created, information on user ID and password are typically stored 
in a database. However, for security reasons, passwords are not stored in plain text, and are 
typically hashed (e.g., using functions like BCrypt). For example, in the European Union, 
it is actually illegal to store passwords in plain text, due to General Data Protection Regula-
tion (GDPR)18. Hash functions are designed on purpose to be extremely hard to reverse, i.e., 
retrieve the original password from its hashed value.

18  https://​eur-​lex.​europa.​eu/​eli/​reg/​2016/​679/​oj

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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This has an impact on automated test generation. If an API does not have a way to cre-
ate new users (or create users with specific roles such as administrators), it is not viable 
to inject valid hashed values into the database (recall that, besides generating sequence 
of HTTP calls, EvoMaster can also inject data directly into the SQL databases as part of 
the search (Arcuri & Galeotti, 2020a)). Doing so would require to analyze exactly which 
hashing algorithm is used in the SUT, and enhance the search in EvoMaster to use exactly 
the same hashing function (technically possible, but extremely challenging to implement, 
as the SUT could use any type of hashing function). This is the reason why, for the time 
being, the setting up of valid user profiles is not automated, but rather left to the user to 
manually set up in the EvoMaster drivers for the SUTs. To help deal with different kinds 
of authentication mechanisms, we have implemented a library to support users. Figures 13 
and 14 show two different implementations of the driver method getInfoForAuthen-
tication() that we needed for some of our SUTs used in our experiments. During the 
search, EvoMaster queries this method, and then decides if using any authentication infor-
mation for the test cases.

The example in Fig. 13 is the simplest of the two, where three users are defined with static 
authentication tokens. Those tokens are simply added directly to the Authorization header 
on each HTTP request. On the other hand, Fig. 14 shows a more complex case in which, for 
authentication, there is the need to make a POST HTTP request on a specific endpoint, with 
a specific body payload (including id and password). Then, it needs to extract a JWT token 
from the JSON body response, and use such token for authentication in the Authorization 
header in all following HTTP messages. In this case, the JWT is dynamic, as each new login 
would generate a different token. This means that each time we evaluate a test case, we need 
to make such POST login, and add the received token in all following HTTP calls in such 
test. This is done not only during the search, but also in the outputted JUnit test files.

Fig. 14   Snippet code of a driver class, where the authentication for a single user is set up via JWT

Fig. 13   Snippet code of a driver class, where the authentication for three users is set up
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Regarding the storing of user info, including hashed passwords, this needs to be manu-
ally set up, e.g., in a SQL script, and called each time the state of the SUT is reset. Fig-
ure 15 shows another example of a resetStateOfSUT() implementation where, after 
each database is reset, the SQL script initDB.sql is executed to add user info (includ-
ing hashed passwords) for the profiles defined in the getInfoForAuthentica-
tion() method.

7.4 � Dealing with code instrumentation and multi‑threading

When testing an application, we need to instrument its business logic, to be able to compute 
its code coverage and different kinds of SBST heuristics (Arcuri, 2019). However, there is 
no need to collect coverage information of third-party libraries, as those are not what users 
are interested to verify. For example, for a web service, there is no need to try to maximize 
code coverage of its HTTP server (e.g., Tomcat), nor of the libraries used to access the data-
base (e.g., Hibernate), nor the code of frameworks like Spring. It is not uncommon that the 
actual business logic of the SUT is just a very small part compared to all the needed third-
party libraries used in the application. Furthermore, for typical I/O-bound web applications, 
the computational overhead of the business logic of the SUT can be small compared to the 
overhead of sending messages over HTTP, and to all the needed I/O interactions with data-
bases and external services. Figure 16 gives a graphical overview of the computation cost of 
a test case evaluation. This means that, in most cases, the computational overhead of code 
instrumentation is practically negligible when we evaluate a test case.

Unfortunately, a case for which this is not really true is for CPU-bound applications. 
An example of this is the SUT LanguageTool, which does different kinds of complex 
text analyses. Here, the first time we tried EvoMaster on it, our code instrumentation 
was a major bottleneck, both in terms of computational time (going from milliseconds to 

Fig. 15   Snippet code of a driver class, where the authentication information is added into the database after 
each reset

Fig. 16   A graphical overview of the computation cost of a test case evaluation
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minutes) and memory consumption. Fixing this required the use of profilers (e.g., YourKit) 
to point out the major bottlenecks in the instrumentation. Care needed to be taken to opti-
mize the code, using different techniques such as for example memoized functions. Drastic 
performance improvements were achieved, although more still needs to be done (especially 
in the analysis of regular expressions). Note that these low-level code optimizations were 
necessary for our code instrumentation, and not the core of EvoMaster itself (e.g., the 
code of search algorithms). This is because the evaluation of the fitness function (i.e., run-
ning a test case by making HTTP calls and then retrieving all the metrics collected via the 
code instrumentation) takes the vast majority of the search time (at times even more than 
99% ). Any code optimization there will have practically little to no effect on performance.

Given S the computational cost of the search algorithm (e.g., sampling an individual 
or mutating an existing one), H the cost of making an HTTP toward the SUT and the get 
its response, and I be the cost overhead of the code instrumentation in the SUT, then the 
cost of evaluating a new individual (i.e., an evolved test case) would be C = S + H + I . For 
most cases, S and I are tiny compared to H. When I is high, one thing that could happen is 
that the HTTP call could timeout (note this could also happen regardless of I if H is high, 
e.g., due to a bug or simply very inefficient code for some specific inputs). For example, 
when making an HTTP call, one needs to specify for how long the TCP connection is 
going to wait (e.g., T seconds) before getting a response. If the response does not arrive 
in time (i.e., H + I > T  ), then the TCP connection does timeout, and the HTTP call fails. 
Choosing the right value for T is not straightforward. Although a high value would prevent 
most timeouts, it would also mean that some fitness evaluations could become very time 
consuming. And this could hamper the search because, in the same amount of time, less 
fitness evaluations would be executed (i.e., less exploration of the search landscape).

Even if the right balance for T is chosen, still TCP timeouts are a major problem for 
white/grey-box test case generation tools. Many HTTP servers are multi-threaded, in which 
each incoming HTTP request is handled by a different thread. A timeout on the client mak-
ing the HTTP call (e.g., EvoMaster) would not imply a timeout on the server. The server 
would still be processing the request on a thread. If the test generation tool then evalu-
ates a new test case, it can well happen that the server is having two threads executing the 
requests (the previous one that is still running, and the new one). Figure 17 depicts this 
problem. Let us assume a first generated test case calls sleep. Since the test execution 
of the endpoint waits beyond the test case timeout, EvoMaster kills the invocation, but the 
server-side thread is still alive. In turn, EvoMaster makes a fresh HTTP call to doSome-
thing, but when the condition is evaluated, as the first thread modified the variable foo 
to true, the condition fails, signaling the exception.

Similarly to foo, this can mess up all the data structures in the instrumentation, if those 
are not thread-safe. But, even when they are thread-safe, there is still the problem to prop-
erly trace each code execution to the right evaluated test. For example, if a new line code is 
reached, which evaluated test case was responsible for it? The previous timed-out test that 
is still running, or the new one? It can get tricky, especially when more than one timed-out 
HTTP call is still processing at the same time.

One possible solution to this problem that we have introduced in EvoMaster is the use 
of the so-called kill-switch. The idea is that we try to make sure that, once a test case evalu-
ation is completed, no thread is left executing business logic code. To do this, we instruct 
the instrumentation runtime (“switch on”) to throw an exception as soon as any instru-
mentation method is called (e.g., when recording that a code line has been covered). Then, 
when we need to evaluate a new test case (or, more precisely, a new HTTP call, as a test 
case can be composed of several HTTP calls), we set the switch to off. By the time the new 
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incoming HTTP is processed, there is a “high chance” that the previous timed-out one has 
been terminated already.

This approach does not guarantee to solve the problem in all possible cases, but it has 
worked well so far in all the SUTs we have applied EvoMaster on.

7.5 � Lessons learned

When dealing with the white-box fuzzing of real-world software, there are many complex 
engineering challenges to face. Providing usable solutions takes major engineering efforts, 
which not always can result in direct academic outputs. But those engineering challenges 
must be addressed if researchers want to provide solutions that can be used in practice and 
that can scale up to real-world systems. Having PhD students “re-inventing the wheel” each 
time for these engineering challenges is not a viable approach to push forward the bounda-
ries of scientific research. This can also be a possible explanation why, among the several 
black-box fuzzers for Web APIs in the literature, EvoMaster is currently the only one that 
does white-box testing.

Sharing working solutions for these kinds of engineering challenges is something we do 
strongly support and recommend. However, the best way to achieve this goal in the soft-
ware engineering research community is not straightforward, especially when considering 
academic output metrics.

8 � Common practices

In this section, we are going to discuss some basic software practices used in the development 
of EvoMaster. Those will likely be considered trivial by any experienced software engineer. 
However, as we found them critical in the development of a tool like EvoMaster, and consid-
ering the target audience of junior PhD students and postdocs, let us summarize them:

Fig. 17   Snippet code of the class MultithreadRest, showing two HTTP endpoints (sleep and 
doSomething) leading to a race condition
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•	 You must use a version control tool, such as Git (others not so popular any more are 
SVN and Mercurial).

•	 Your tool prototypes are still software. Write tests for them.
•	 Use a Continuous Integration (CI) server, to make sure each new code commit does not 

break compilation, nor any existing regression test (see previous point). There are a few 
free CI providers. But their state can change. For example, when we started with the 
development of EvoMaster, we used TravisCI, but then moved to CircleCI, and now 
GitHub Actions. A CI server can also be run locally (e.g., using tools like Jenkins). 
When using CI servers, it is also easy to build and check the tool in different environ-
ments (e.g., different LTS versions of the JDK such as 8 and 17, and operating systems 
such as Linux and Windows).

•	 CI servers can also be used for other important academic tasks, like automatically 
archiving code on Zenodo (an open-repository for long-term storage of scientific digi-
tal artifacts) at each new software release (this can be done at the moment for example 
by using GitHub WebHooks), e.g., Arcuri et al. (2022).

•	 Never directly commit to the master/main branch of the repository. All development should 
be done on branches, and Pull Requests (PRs) must be created before the code is merged 
into the master/main branch. PRs should not be merged if CI fails (e.g., due to failing tests).

•	 Each PR must be manually reviewed (typically by the senior members in the team) 
before merging, even when CI passes.

•	 Documentation is very important. If no one can use your tool prototype because there 
is no information on how to run it, how can impact on practice be achieved? Further-
more, in the long run, documentation is useful to quickly onboard new PhD students 
and postdocs that join your projects, as well as when collaborating with industrial part-
ners. Besides writing documentation, we found particularly useful to create quick train-
ing videos as well.

•	 Use some (lightweight) management tool to assign and keep track of tasks. We use Trello.
•	 If you do not want to spend most of your time debugging obscure bugs, stop using 

mutable static state in your programs, and rather use a dependency injection frame-
work. For example, in EvoMaster we use Guice.

•	 If several people (e.g., PhD students and postdocs) will work on the tool throughout the 
years, it might be advisable to use a strongly typed programming language (e.g., Kotlin, 
Java and C# are good options).

•	 Whatever coding rules you decide to apply in your projects, write them down in a text 
document, added to the repository of the tool itself. This can help bootstrapping new 
members joining the team, as we do for EvoMaster19.

9 � Open‑source community

9.1 � Problem definition

Besides publishing papers, it can be useful to release the implemented software prototypes 
to the public. This can be the case when the prototypes are mature enough to be used by 
practitioners, as well as to enable other researchers to replicate published studies. However, 
there are legal issues related to how to release a software prototype, and not all researchers 
might be aware of these legal technicalities.

19  https://​github.​com/​EMRes​earch/​EvoMa​ster/​blob/​master/​docs/​for_​devel​opers.​md

https://github.com/EMResearch/EvoMaster/blob/master/docs/for_developers.md
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9.2 � Why open‑source

Since its inception in 2016, EvoMaster has been open-source. There were several good 
arguments behind such a choice, including boosting the impact of publicly funded research 
to practice, as well as to simplify replicated studies and extensions from third parties 
(which can increase academic metrics such as “citation count”). On the other hand, there 
are also some possible “worries” about making the choice of releasing an academic proto-
type as open-source. One is about losing possible “low-hanging fruits”, i.e., other research 
groups could use such prototypes to publish results that would not require too much work, 
and so lose such possible “easy” publications. Another possible issue is that a prototype 
could have some serious fault which invalidates most of its published results. Or some of 
its parts were implemented “ad hoc” for the specific case studies used in its empirical anal-
yses. If the code is not open-source, hardly anyone would find out. And any failed repli-
cated experiment from a third party could be attributed to just lack of details (as hardly any 
published scientific paper provides enough details in its text to enable a full experiment 
replication). In some cases publishing as open-source is not an option at all, e.g., when 
authors do not work for a public university or research institute, or depending on the source 
of funding of the research.

Regardless of whether to publish a research prototype as open-source or not, replica-
bility is an important goal for the advancement of scientific research. Many venues (typi-
cal top-level conferences, but not journals, at least at the time of this writing) in Software 
Engineering ask for (but not require) “replication packages”. An example of this can be 
found in the Open Science Policies of ICSE20. Even if a tool is not released as open-source, 
at least it should be provided as an executable, to enable replicated experiments.

9.3 � Choice of license for EvoMaster

When publishing a research prototype as open-source, the first question is which license to 
use? There are several licenses to choose from, each one with its own benefits and nega-
tive sides. For the researchers that do not want to dig into all the nitty-gritty legal details 
of software licenses, choosing the right license can be a daunting task. It is not in the goals 
of this paper to provide a full detailed analysis of all open-source software licenses that are 
available. We are simply going to discuss why we chose a specific license for EvoMaster, 
explaining the reasoning behind our decisions. Although this is done with the aim of help-
ing our fellow researchers that are in a similar situation, we would like to point out that 
we are Software Engineering academics, and not lawyers. What presented next does not 
constitute legal advice.

For EvoMaster, we chose the GNU Lesser General Public License v3.0 (LGPL). We 
wanted practitioners to use EvoMaster, researchers to extend it for scientific reasons (e.g., 
for publishing their research, like Stallenberg et al. (2021)), but not for commercial actors to 
extend it as closed-source (which would be doable when less restrictive open-source licenses 
are used). As academics working in Software Engineering research, to improve impact of 
our research, we do collaborations with industry (Garousi et al., 2019). Using a more restric-
tive license like GPL would prevent/hinder this (e.g., due to what in the grey literature is 
often referred to as the “GPL Poisoning” effect), whereas most other open-source licenses 

20  https://​conf.​resea​rchr.​org/​track/​icse-​2022/​icse-​2022-​open-​scien​ce-​polic​ies

https://conf.researchr.org/track/icse-2022/icse-2022-open-science-policies
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(including LGPL) would be “fine”. This also impacted the development of EvoMaster, as 
we need to make sure to never add a GPL library to it (unless it has a “classpath exception” 
in its license), as it would “poison” the entire codebase, making it all GPL.

Regardless of the chosen license, the license can be changed afterwards (but not ret-
roactively). Also, the same software can be released with different licenses at the same 
time. For example, we could make the next EvoMaster ’s release with a permissive 
Apache License, as well as providing all previous versions of EvoMaster with a GPL 
license. In this latter case, those existing versions would have 2 licenses, LGPL and 
GPL, although we would have no legal obligation of keeping distributing the versions 
licensed with LGPL. How a software is licensed depends on its copyright holders, and 
all copyright holders must agree on the chosen license. This has some very practical 
consequences. For example, we would not be able to make a new release of EvoMaster 
tomorrow with a different license (e.g., Apache) unless every single contributor agrees, 
as we do not own the copyright of the software they wrote. The alternative would be to 
remove every single line they wrote, and re-implement from scratch that functionality. 
To complicate the matter even more, a code contributor might not own the copyright of 
the software he or she developed. It might belong to their employer, which is typically 
the case for engineers in industry developing software during working hours using the 
employer’s hardware. Technically, this can also be the case for academics working at 
universities and research institutes. It all depends on the details of the job contracts they 
signed, and local laws. And there can be huge differences from country to country. This 
can be particularly troublesome for PhD students, as it is not uncommon that in some 
countries and institutes students (not just PhD) are required to sign away the copyright 
of all software they develop as part of their studies. The reasoning behind this is not 
necessarily malice, but bureaucratic simplification, e.g., to avoid disgruntled students 
sue their university for copyright infringement each time their software is copied from 
one machine to another (e.g., when the lecturers download the students’ software exams 
on their computer for marking). Technically, there are many examples of possible legal 
issues with coping and storing students’ software, especially when all exams have to be 
stored for a certain amount of years for legal reasons.

Even if one does not own the copyright of the software prototypes they develop, this is 
not necessarily an issue (at least, from an academic point of view). As long as the actual 
copyright owners (which could be a university and not the academic researchers) agreed 
to release the software as open-source, one can continue afterwards to work and extend 
such software using the same open-source license. You do not need to own the copyright 
of a software project to fork it and extend it. In recent years, one of the most known cases 
is when Amazon forked the open-source ElasticSearch in 2021 (and renamed it into Open-
Search), due to a change of license in the newer versions of ElasticSearch. The same con-
cept applies when a research moves from one institute to another (e.g., in a different coun-
try). As long as the software was released as open-source, it does not matter much if he or 
she was owning the copyright when employed in the former institute, as long as there is no 
plan to change the license.

Regarding the choice of an open-source license, it needs to be done carefully. It can be 
changed afterwards, but such process can be complicated (for all the reasons we discussed). 
We use LGPL, but many of the other licenses would do as well. We just want to give a 
warning if someone chooses to use GPL, in case they want to do research collaborations 
with industry. Also, the use of open-source licenses helps with possible issues with copy-
right ownership. It can help to have research institutes/universities to agree in writing to 
open-source such research prototypes. A place we found useful, to have it in, is in research 
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grant applications, where it can be specified that the output of the projects will be released 
as open-source. Note that all these legal issues are not just theoretical, as we unfortunately 
had to deal with some of them during the development of EvoMaster.

9.4 � Challenges of releasing as open‑source

If one decides to release a prototype as open-source, as we did, it is important to clarify 
that putting the code on a repository such as GitHub is just the beginning. If the tool is 
addressing a real problem in Software Engineering practice, people in industry will start to 
use such a tool. And tools have faults. Engineers will use these tools on their systems, and 
those systems could have features/properties not present in any of the case studies used by 
the authors of those tools in their empirical experiments. In such cases, practitioners might 
start to report issues, i.e., write bug reports.

Whether to engage the practitioner community in fixing those reported issues is not 
something we can blindly recommend without reservations. It takes time. And often the 
required technical effort does not directly translate to something that can be publishable in 
an academic venue. Often, it is just technical work. And, as such issues are not present in 
the case studies used for experiments (otherwise they would have already been found and 
fixed), there is no immediate, concrete benefit from an academic standpoint.

But, there are benefits, in the long run. Fixing faults make a tool more robust, which 
helps when increasing the size of the selected case studies for new experiments (e.g., the 
corpus of web services we collected in EMB (Evomaster benchmark (emb), 2023) has been 
expanding throughout the years). It also benefits when the tool is used in tool comparisons, 
as it is less likely to crash on a new SUT. Let us make a concrete example to clarify this 
point. In our recent work  (Zhang et al., 2022), we compared EvoMaster with two other 
fuzzers, namely RESTler (Atlidakis et al., 2019) and RestTestGen (Viglianisi et al., 2020), 
on five APIs running on NodeJS. For those APIs, these tools had bugs that hindered their 
applicability (e.g., on some of those SUTs, these tools just crashed). This is not completely 
fair, as in EvoMaster we fix all its faults when we start to use a new SUT for experimenta-
tion. For a third party, it could be possible to find some new SUTs for which EvoMaster 
crashes due to faults whereas RESTler and RestTestGen do not. This is also one of the 
main reasons to create EMB (Evomaster benchmark (emb), 2023), to enable a common set 
of SUTs that different authors can make sure their tools work on. Ideally, tool comparisons 
should be handled by third parties on an unbiased selection of SUTs. This is for example 
done for unit test generation of Java software in the SBST Tool Competition (Panichella 
et al., 2021). But these kinds of competitions are not so common, at least in the Software 
Engineering research community.

At the time of this writing, 80 issues have been reported on the GitHub repository 
of EvoMaster21. 74 of them have been resolved, and closed. Some of them are feature 
requests, like supporting test output formats such as Postman22 and Spring WebTestCli-
ent23. But the majority of these reported issues are simply crash reports, like for example 
#41224. However, so far no Pull Request (PR) has been made by practitioners (all PRs so far 
have been originated from the developers of EvoMaster and from academic collaborators).

21  https://​github.​com/​EMRes​earch/​EvoMa​ster/​issues?​q=​is%​3Aiss​ue++
22  https://​github.​com/​EMRes​earch/​EvoMa​ster/​issues/​260
23  https://​github.​com/​EMRes​earch/​EvoMa​ster/​issues/​227
24  https://​github.​com/​EMRes​earch/​EvoMa​ster/​issues/​412

https://github.com/EMResearch/EvoMaster/issues?q=is%3Aissue++
https://github.com/EMResearch/EvoMaster/issues/260
https://github.com/EMResearch/EvoMaster/issues/227
https://github.com/EMResearch/EvoMaster/issues/412
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9.5 � Lessons learned

As a rule of thumb, in most cases we recommend to publish research prototypes as open-
source, using for example the GNU Lesser General Public License (LGPL) license. To 
avoid some categories of legal issues regarding copyright, we recommend to specify the 
use of open-source licenses in the writing of research grant proposals. Even if a researcher 
does not want to support and maintain an open-source prototype in the long run, other 
researchers can benefit from the released software.

There might be cases in which other licenses and release models could be more appro-
priate, but those require a deep understanding of all the possible legal issues involved.

10 � Generalization of lessons learned

This paper reports on our experience in developing EvoMaster over the last six years (at 
the time of this writing, in 2022). Such experience builds on top of our25 previous experi-
ence of developing EvoSuite, in the last 13 years. We believe that many of the lessons 
learned that we share in this paper can be of use for researchers in the Software Engi-
neering research community, and not just in software testing. However, without empirical 
experimentation and future experience reports from other researchers, how well these les-
sons learned can generalize to the development of other research tools is hard to quantify 
in an unbiased way. Interviews and questionnaires with the developers of other successful 
tools (e.g., AFL and KLEE) could provide interesting insights.

Many of the lessons learned shared in this experience report are of very practical nature. 
As research work in Software Engineering, many details are low level, including source 
code examples, when needed. There is a trade-off between high-level, academic philosoph-
ical discussions that are more general, and low-level engineering details that might become 
outdated within the next 3–5 years. General philosophical discussions might have a bet-
ter chance at surviving the test of time, but we still need to solve the software engineer-
ing challenges of today, right now. In this paper, we mention a few tools. This is done to 
put this work into concrete engineering ground, with actionable takeaways for the readers, 
but we would not be surprised if several of these tools will disappear in the future. But it 
does not matter if you use Trello instead of another tool, as long as you use a management 
tool to keep track of development tasks. At the time of this writing, some tools have been 
around for more than 25 years (e.g., SQL databases like Postgres and MySQL). However, 
this does necessarily imply that they will still be used 25 years from now26. On the one 
hand, many of the lessons learned we share in this paper would have been applicable and 
usable in the past. For example, a report like this would have saved us a lot of time and 
prevented many mistakes when in 2010 some of us were working on EvoSuite. Also, deal-
ing with resetting SQL databases for testing purposes is something that has been an issue 
for decades. It is just not much research work was done on system test case generation for 
enterprise/web applications. Furthermore, the lesson of putting effort into fully automating 
a data analysis pipeline (e.g., from experiments to automatically generated tables/graphs 
automatically imported into Latex papers) is something that, technically, could had been 

25  Two of the authors of EvoMaster were among the main contributors of EvoSuite
26  Although still having to deal with SQL Injection in the 24th century does not sound so improbable (Star 
Trek Discovery, “If Memory Serves”, 2019)
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already put into practice 20–30 years ago (Latex is from 1984, whereas R is from 1993). 
On the other hand, there is no guarantee that the lessons learned shared in this paper will 
be still relevant 20 years from now. But, for an engineering discipline, we do not consider 
this as a major threat to validity.

Some of the insight shared in this paper is specific for prototypes developed in aca-
demia (e.g., dealing with all the scaffolding for running experiments), whereas others are 
very general (e.g., the importance of Continuous Integration). General guidelines and best 
practices for software development have been already extensively reported in the grey lit-
erature, and likely as well in modern textbooks in software engineering. We do not claim 
those as a novel contribution in this paper. We simply report on what had a major impact 
in the development of EvoMaster, to make sure that readers have an easy access to at least 
a summary of key points that are likely going to be useful for the development of their 
research prototypes.

11 � Conclusion

In this paper, we have reported on our experience in building the EvoMaster test case 
generator tool, over the last six years. We discussed how to simplify the running of experi-
ments, and how to simplify the collection and automated analyses of the results. We also 
provided concrete solutions to several technical challenges in the implementation and use 
of this kind of research prototype.

Our goal with this experience report is to inspire and help bootstrapping new devel-
opment effort in the Software Engineering research community. Ultimately, such effort 
should help close the gap between academic research and industrial practice.

EvoMaster is stored on both GitHub and Zenodo. To learn more about EvoMaster, see 
our website: www.​evoma​ster.​org
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