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Abstract

The software defect prediction approaches are evaluated, in within-project context only, with
only a few other approaches, according to distinct scenarios and performance indicators. So,
we conduct various experiments to evaluate well-known defect prediction approaches using
different performance indicators. The evaluations are performed in the scenario of ranking the
entities — with and without considering the effort to review the entities and classifying enti-
ties in within-project as well as cross-project contexts. The effect of imbalanced datasets on
the ranking of the approaches is also evaluated. Our results indicate that in within-project as
well as cross-project context, process metrics, the churn of source code, and entropy of source
code perform significantly better under the context of classification and ranking — with and
without effort consideration. The previous defect metrics and other single metric approaches
(like lines of code) perform worst. The ranking of the approaches is not changed by imbal-
anced datasets. We suggest using the process metrics, the churn of source code, and entropy
of source code metrics as predictors in future defect prediction studies and taking care while
using the single metric approaches as predictors. Moreover, different evaluation scenarios gen-
erate different ordering of approaches in within-project and cross-project contexts. Therefore,
we conclude that each problem context has distinct characteristics, and conclusions of within-
project studies should not be generalized to cross-project context and vice versa.

Keywords Cross-project defect prediction - Software quality assurance - Source code
metrics - Process metrics - Churn of source code - Feature selection - Imbalance learning

1 Introduction
Defect prediction, one of the holy grails of software development, has attracted much

attention among software engineering researchers. The driving factor is resource alloca-
tion. Quality assurance resources being limited, it is wise to prioritize and allocate the
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resources towards the areas with higher probable defect scores. Different approaches
relying on various information sources, like as code metrics Nagappan and Ball (2005),
Zimmermann et al. (2007), process metrics Rahman and Devanbu (2013), Mnkandla and
Mpofu (2016), previous defects Kim et al. (2007), Felix and Lee (2017), the churn of
source code, the entropy of source code D’Ambros et al. (2012), and entropy of changes
Hassan (2009) have been devised to perform the task of defect prediction. The relative
performance comparison of these approaches is still one of the areas where research
is needed. Most of these approaches were compared to only a few other approaches,
or were evaluated using distinct performance indicators, or were compared only in the
within-project context. Moreover, replicating the evaluations is also a difficult task since
the data of commercial systems not available for public use was used in the evaluations.

An evaluation of the relative performance of different approaches in the cross-project con-
text is imperative to identify the approaches with stable and good performance. Tradition-
ally, most defect prediction models were trained and evaluated in the within-project context,
i.e., the data of past releases of the software were used for model training to predict defects
in upcoming releases. But, there were software systems for which no or scarce defect data
was tracked in defect tracking systems. For example, no defect data is available for the first
release of a software. Moreover, people prefer the reuse of old defect data in defect prediction
Turhan et al. (2009). The local data scarcity and the possibility of old data reuse triggered the
idea of cross-project defect prediction (CPDP). In CPDP, defect data of multiple source pro-
jects combined together is used in training a prediction model that is used to predict defects
in a target project. In the past decade research focused on designing training data selection
Bhat and Farooq (2021a, b) and Li et al. (2017) and transfer learning Xu et al. (2019), Qiu
et al. (2019), Ma et al. (2012) techniques for alleviating the distribution mismatch between
different projects. The relative performance of different data sources (features) used in model
training has not been evaluated in the cross-project context. Moreover, the defect datasets are
implicitly imbalanced because only a small proportion of modules/classes contain most of
the defects. The use of these imbalanced datasets biases the trained models towards correctly
classifying the majority class non-defective instances and incorrectly classifying the minority
class defective instances. Various techniques have been proposed and evaluated to address the
effect of imbalanced datasets on the prediction results. However, the effect of class imbalance
on the ranking of different approaches has not been evaluated.

Performance evaluation of the approaches is also addressed differently. Some
researchers use classification (i.e., predicting if an artifact is defective or non-defective),
while others use a ranking of artifacts with or without taking effort factor (i.e., the effort
required to inspect an artifact) into consideration.

Therefore, we provide a performance evaluation of different approaches over three
different scenarios of classification, ranking and ranking with effort consideration in
within-project as well as cross-project defect prediction contexts. The evaluation is per-
formed over five projects from publicly available Bug Prediction Dataset. The evalu-
ation is limited at comparing different data sources for prediction performance. The
effect of balanced datasets on the ranking of different data sources is also evaluated. The
evaluations do not compare the learning algorithms, or data preprocessing methods.

The primary contributions of this paper are:

1. An evaluation of different defect prediction approaches in the within-project context.
2. An evaluation of different defect prediction approaches in the cross-project context.
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3. An evaluation of the effect of data balancing on the ranking of different defect prediction
approaches in both within-project and cross-project context in classification scenario.

The evaluations are performed according to three different scenarios of classification, rank-
ing, and ranking with effort consideration in two distinct ways, aimed at (1) comparing
performance and (2) testing the statistical significance of performance differences.

The remainder of this paper is structured as follows: First, we give a summary of the
related work in Section 2. Next, we summarize the datasets and data sources used in our
evaluations in Section 3. Afterward, in Section 4, we discuss the evaluation scenarios we
used for the evaluation of approaches. We discuss the experimental methodology used to
evaluate the approaches in the within-project and cross-project contexts in Sections 5 and
6, respectively. In Section 7, we report and discuss the within-project and cross-project
defect prediction experimental results. In Section 8 we report on the statistical significance
of experimental results. In Section 9, we discuss experimental methodology for evaluating
the effect of class imbalance on the ranking of different approaches and discuss the results.
In Section 10, we discuss the threats to the validity of our work. Finally, in Section 11 we
conclude.

2 Related work

In defect prediction, we train statistical or machine learning models to predict the defect
proneness in software components. The predicted defect proneness score is used to pri-
oritize the code review and testing effort optimally Suhag et al. (2020). Hosseini et al. in
a systematic literature review Hosseini et al. (2019) report there exists a lot of diversity
in the features, datasets, performance evaluation, and training methods used in software
defect prediction. They further report that CPDP is a challenge that needs more scrutiny
before it is used reliably in practice. In this section, we summarize various defect predic-
tion approaches, the type of data they need, and the datasets they were validated on.

Change log approaches use information collected from the versioning system, supposing
that recently or frequently changed artifacts are the greatest possible source of future defects.
Khoshgoftaar et al. (1996), used the number of past changes to the software modules, to pre-
dict the modules as defect prone. At the module level, they declared that the number of lines of
code added or removed in the past predicts future defects with good performance.

Nagappan and Ball in Windows Server 2003 study the impact of code churn (i.e., the
number of changes) on the defect density. They conclude that relative churn performed bet-
ter than absolute churn metrics Nagappan and Ball (2005).

Moser et al. (2008) used different metrics (code churn, past defects, and refactorings,
number of authors, age and size of files, etc.) to classify the files of Eclipse as defective or
non-defective.

Hassan (2009) proposed the entropy of change metrics (i.e., the complexity of code
changes). They compared the entropy to code churn, previous defects, and found the
entropy to perform better. Their evaluation used six open-source systems: FreeBSD, KDE,
KOffice, NetBSD, OpenBSD, and PostgreSQL.
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Hassan and Holt (2005) validate the heuristics regarding the defect proneness of the
most recent changes and most number of bug fixes in the files on six open-source systems:
FreeBSD, KDE, KOffice, NetBSD, OpenBSD, and PostgreSQL. They conclude that most
recently changed and fixed files are most defect prone.

Kim et al. (2007) similar to Hassan and Holt (2005) use the features of recent changes
and defects with an additional assumption that defects occur in bursts.

Rahman and Devanbu (2013) across 85 releases of 12 large open-source projects, built
prediction models to check the performance, portability, stability, and stasis of process and
product metrics. Their findings indicate that process metrics are generally more useful than
widely used product metrics for prediction.

Single version approaches with a diverse set of metrics analyze the present state of the
source code rigorously, presuming that the current design and behavior of software determines
the presence or absence of future defects more than the history of software. One standard set
of metrics is the set of source code metrics proposed by Chidamber and Kemerer (1994).
Ohlsson and Alberg (1996) used some graph metrics entailing, cyclomatic complexity, to pre-
dict defects in telecom switches. Nagappan et al. (2006) on five Microsoft sytems used a list
of source code metrics to predict release-level defects. Although the predictors were able to
predict well for individual projects but failed to do so on all projects.

D’Ambros et al. (2010, 2012) evaluate the performance of various source code metrics
(CK, OO) along with change log approaches (process metrics, previous defects, entropy of
changes, churn of source code, entropy of source code).

Cross-project defect prediction Traditionally, the historical data of prior releases of soft-
ware is used to train defect prediction models for predicting defects in the future releases
of the software — an idea called within-project defect prediction. However, there are soft-
ware systems for which insufficient defect data is recorded in defect tracking systems. For
example, no defect data record exists for the first release of a software system Catal (2016).
Moreover, the reuse of old data in defect prediction is preferred over the collection of new
data for each project Turhan et al. (2009). The insufficiency of local defect data and the
potential for reuse of defect data of other projects gave birth to the idea of cross-project
defect prediction (CPDP). In CPDP, for software systems with insufficient training data,
models trained on defect data of other software are adapted for the defect prediction task.

Zimmermann et al. (2009) analyzed the impact of the domain, process, and code struc-
ture on CPDP. Only 3.4% among 622 cross-project defect predictions over 12 real-world
applications, satisfy their performance benchmark, and the CPDP models trained on one
set of software did not generalize to other software. Turhan et al. (2009) report an increased
defect detection rate with an associated increase in false-positive rate in defect predictors
that are trained on all multi-source cross-project data. They introduced an analogy-based
training data selection method (Burak filter) to select the relevant training data and reduced
the false-positive rate. Bhat and Farooq (2021) propose a filter approach (BurakMHD fil-
ter) for selecting relevant training data in CPDP and conclude the BurakMHD filter com-
pared to Burak filter Turhan et al. (2009) and Peter filter Peters (2013) improves the CPDP
performance. Turhan (2012) asserted the dataset shift problem between software defect
datasets is the main reason for the substandard performance of CPDP.

Hosseini et al. (2018) infer that search-based methods integrated with feature selection are
a propitious way for training data selection in CPDP. Yu et al. (2019) through an empirical
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study on NASA and PROMISE datasets reveal that feature subset as well as feature ranking
approaches improve the CPDP performance. Therefore they recommend selecting the rep-
resentative subset of features to improve the CPDP performance. Xu et al. (2019) present a
Balanced Distribution Adaptation Based Transfer Learning technique for CPDP and report
their approach performs better than 12 baseline approaches. Sun et al. (2021) introduced the
Collaborative filtering-based source projects selection (CFPS) technique for source project
selection and validated the feasibility, importance, and effectiveness of source projects selec-
tion for CPDP. Agrawal and Malhotra (2019) report, the CPDP is not always feasible. They
suggest the selection of relevant training for the defect prediction task.

Class imbalance learning The defect datasets are implicitly imbalanced because only a small
proportion of all the modules/classes contain most of the defects and most of the classes/mod-
ules are without any defects Wang and Yao (2013). The imbalanced nature of the datasets
biases the classification models towards correctly classifying the non-defective class instances
and classifying the defective class instances incorrectly Haixiang et al. (2017). To improve the
performance of models trained on imbalanced datasets both data-level approaches Garcia et al.
(2012), Chawla et al. (2002), Barua et al. (2014), Al Majzoub et al. (2020), Han et al. (2005),
Menardi and Torelli (2012), Bashir et al. (2020), Bennin et al. (2022), Feng et al. (2021),
Malhotra and Jain (2022), Feng et al. (2021), Bennin et al. (2017) that alter the distribution
of the datasets and algorithm-level approaches Zhou and Liu (Jan 2006), Tomar and Agarwal
(2015, 2016), Ryu et al. (2017) that modify the learning procedure according to the costs func-
tion have been proposed Dar and Farooq (2022). Bennin et al. (2017) studied the effect of resa-
mpling approaches on the classification performance. They observed recall and G-mean are
improved at the expense of PF and no significant effect on AUC indicating that the resampling
approaches improve the defect classification but not defect ranking or prioritization. Limsettho
et al. (2018) introduced the CDE-SMOTE technique to cope with the class imbalance and dis-
tribution difference between source and target projects. Goel et al. (2021) evaluate data sam-
pling techniques used to cope with the class imbalance in CPDP. And conclude, the synthetic
minority oversampling technique (SMOTE) is suitable to handle the class imbalance. Han
et al. on the assumption that the borderline instances are most likely to be misclassified Han
et al. (2005) proposed the BLSMOTE technique that synthetically creates minority instances
from the borderline minority instances.

Effort-aware defect prediction Traditional methods largely ignore the effort required
to inspect an artifact, during defect prediction. They assume that the effort is uniformly
distributed across modules. Arisholm et al. (2010) propose the effort is approximately
proportional to the size of the software modules. Hence, to discover an equal amount of
defects, less effort is required in shorter files. The idea of effort-aware defect prediction
is to output a ranking of files in which a lesser amount of effort would discover a greater
number of defects.

Mende and Koschke (2009) showed that when evaluated with traditional evaluation
metrics like the ROC curve, the simplest defect prediction model — large files are the
most defect prone — performs well. However, under effort-aware evaluation, the sim-
plest model performs the worst. Similarly, when Kamei et al. (2010) introduced effort-
aware performance metrics to revisit the common findings in defect prediction, they
confirmed the fact that process metrics still outperform the product metrics.
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We observe that the evaluation of the relative performance of different data sources
for defect prediction is still one of the areas where research is needed. While most of the
earlier studies used different data sources, the data sources were compared to only a few
other data sources, or were evaluated using distinct performance indicators without any
effort-aware consideration, or were compared only in the within-project context. The
effect of data imbalance on the relative performance of different data sources was also
not considered. Moreover, it is also difficult to replicate those studies since data of com-
mercial software not accessible for public use was used. Therefore, it is imperative to
evaluate the data sources in both within-project and cross-project contexts using differ-
ent evaluation scenarios (classification, ranking, and ranking with effort consideration).
It is also important to evaluate the effect of data imbalance on the ranking of different
data sources.

3 Evaluated data sources

It is impractical to compare the plethora of existing approaches in defect prediction. To
have a range as inclusive as possible for evaluation, we select the approaches summarized
in Table 1. We select five project datasets summarized in Table 2 from the Bug Predic-
tion Dataset D’Ambros et al. (2010) publicly accessible at https://bug.inf.usi.ch/index.php.
Only Bug Prediction Dataset is used in the experiments because no other dataset provides
information about all the approaches summarized in Table 1. Source code metrics — CK
metrics Basili et al. (1996); Capretz and Xu (2008) and an additional set of OO metrics
D’Ambros et al. (2010), previous defect data Zimmermann et al. (2007); Kim et al. (2007),
change metrics Moser et al. (2008), and entropy of changes Hassan (2009), the churn of
source code, and entropy of source code D’Ambros et al. (2010) of the five projects from
Bug Prediction Dataset are used in evaluations. To help replication of our experiments we
select the publicly accessible dataset for defect prediction. Moreover, the five projects have
the same Java code structure and the datasets have been recorded by the same defect track-
ing methods.

4 Performance evaluation

The evaluation of defect prediction is still a matter of debate Zhang and Zhang (2007),
Menzies et al. (2007), Lessmann et al. (2008), Jiang et al. (2008). In line with a particular
usage scenario of defect prediction, various strategies are used to make performance evalu-
ations of defect prediction approaches. We use the performance metrics commended by
Jiang et al. (2008) to evaluate the approaches in the scenario of classification (defective or
non-defective), ranking (most defective to least defective), and effort-aware ranking (most
defect dense to least defect dense).

Classification One common setting in which defect prediction is applied is the classifica-
tion wherein we are focused on the grouping of the classes in defective and non-defective
groups. Moreover, the underlying classification models are often probabilistic classifiers that
assign probabilities instead of class labels to each observation Fawcett (2006). They are con-
verted to binary classifiers by a user-defined threshold. And the commonly used evaluation
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measures of precision and recall assess the performance according to a particular threshold.
As a surrogate metric, we use the Receiver Operating Characteristic (ROC) curve. ROC
curve is a way to measure the performance of the prediction model in general, as we sweep
over the range of different thresholds. The ROC curve plotted between sensitivity and speci-
ficity illustrates the benefits of using the model (true-positives) versus the costs of using the
model (false-positives) at different thresholds. The area under the ROC curve (AUC), a sca-
lar value, 0.5 <= AUC <= 1.0, is the estimated probability that a randomly picked positive
instance will be set with a higher predicted p by the prediction model than another randomly
picked negative instance Hanley and McNeil (1982). Hence, the statistic measures a model’s
capability to correctly rank instances. A perfect model has an AUC of 1, while the worst
model has an AUC of 0.5. To perform a comprehensive comparison across approaches over
different datasets we report the AUC. AUC is appropriate to compare classifiers over differ-
ent datasets Lessmann et al. (2008) and is often used for that purpose.

Ranking A more realistic and useful scenario of defect prediction is that where the modules are
ranked on their defect proneness score, and the ranking is used to prioritize the quality assur-
ance effort (testing and code inspection). The overall concept is known as Module-Order-Model
(MOM) Khoshgoftaar and Allen (2003). Consequently, the evaluation of how good a model
is at ranking instances correctly is required. One way to graphically evaluate Module-order-
Models is lift charts, also known as Arberg diagrams Ohlsson and Alberg (1996). They are
generated by ordering the modules according to the defect score set by a prediction model and
illustrating for each ratio of modules on the x-axis which ratio of defects has been predicted
on the y-axis. For instance, Ostrand et al. found 83% of the defects in 20% of the files Ostrand
et al. (2005). Mende and Koschke have defined a comprehensive performance evaluation meas-
ure p,,,, from lift charts, by comparing a prediction model with an optimal model Mende et al.
(2009). An optimal model is generated by ordering all the modules by decreasing defect score.
Ap,,, is interpreted as the difference between the area of the lift curve of the optimal model and
the area of the lift curve of the prediction model. A higher value of Ap,,,, indicates a greater
difference between the optimal model and the prediction model, and hence a bad prediction
model. They define p,,, = 1 — Ap,,,,, where a high value means a better model.

Effort-aware ranking Arisholm et al. argue that the costs of testing or reviewing of soft-
ware modules are not uniformly distributed but relate to the size of software modules
Arisholm et al. (2007) to some extent. They introduce a variant of lift charts where the
x-axis contains the ratio of lines of code instead of ratio of modules. To make an effort-
aware evaluation, we define a measure Relative defect risk factor of software modules
as RDR(x) = errors(x)/effort(x). Similar to Mende and Koschke (2010), Menzies et al.
(2010), and D’Ambros et al. (2012), we use the LOC metric as a notion of effort and order
the software modules according to the decreasing defect density or RDR. The idea is that
larger modules take much more time to review than smaller modules. Therefore, if the
number of predicted defects is the same then prioritize the smaller modules before larger
modules. Accordingly, we use LOC-based cumulative lift charts to evaluate the perfor-
mance of the prediction approaches. LOC-based cumulative lift charts are generated by
ordering the modules according to their defect density and illustrating for each ratio of
lines of code on the x-axis which ratio of defects has been predicted on the y-axis. Similar
to the ranking without effort consideration scenario, we again use the p,, to evaluate the
performance of the approaches. But in the present case, to distinguish it from the previous
metric p,,, we refer to it as p g,
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Table 2 Five Bug Prediction

. , Project LOC (# classes) post-release- % defects
Datasets used in evaluations,
. N defects

sorted in order of number of

Lines of Code Eclipse 224055 997 374 20.66
Mylyn 156102 1862 340 13.16
Pde 146952 1497 341 13.96
Lucene 73184 691 97 9.26
Equinox 39534 324 244 39.81

The two desirable properties of this performance measure are: It takes costs related with
reviewing or testing the code into consideration, and it considers the actual distribution of
defects by comparing against the theoretically possible optimal model.

5 Experiment 1: within-project defect prediction context

The 25 defect prediction approaches listed in Predictor column of Table 1 are used in
each software system to train and validate the models. For within-project comparison of
approaches, the methodology discussed below and given in Algorithm 1 is followed during
model training and validation for the 25 defect prediction approaches.

Algorithm 1: Outline of the within-project defect-prediction
DATA = [Eclipse, Mylyn, Equinox, PDE, Lucene]
foreach data in DATA do
// Let P be the set of predictor metrics and brow the
number of post release bugs in data
(P, b) = apply min-max normalization(P, brow)
// if classification scenario is pursued, b is a
boolean vector(buggy or clean)
if classification then
| b=b>0
end
// select the best features to fit b doing 10-fold
cross validation
Pbest = wrapper(P, b, 10-folds, ”glm”)
folds = stratified partition(b, 5-fold, 10-repeats)
performance = crossvalidation(Pbest, b, folds, ”glm”)
end

5.1 Min-Max normalization

Predictors measured at different scales contribute differently to the model fitting process
and might lead to a bias in the process. To handle the potential bias feature normalization
such as Min-Max scaling is applied before fitting a model Henderi et al. (2021), Patro and
Sahu (2015), Jain and Bhandare (2011).
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5.2 Feature selection

A multitude of features might result in model overfitting which drastically degrades the
model predictive performance when applied to new data. The multicollinearity among fea-
tures is problematic because it is difficult to interpret the effect of individual features. A
feature selection technique called sequential floating forward selection (SFFS) Pudil et al.
(1994) is used to select the best subset of features that give the best predictive performance.
The SFFS selects a subset of features by sequentially adding and deleting features to the
subset as long as the performance increases.

To start with an empty subset of features, for each unselected feature along with the
selected features, the wrapper performs a stratified tenfold cross-validation experiment
and adds the feature that improves the performance to the subset in a sequential manner.
After adding a feature to the subset, the wrapper checks for the worst feature, elimination
of which might improve the performance and eliminate that from the subset. The addition
and elimination are repeated until adding more features does improve the performance and
finally stopped when no improvement is seen in the performance.

5.3 Training regression models

We train generalized linear regression models from the features we compare in our exper-
iments. The explanatory variables — or the features used for prediction are the metrics
from each class we compare in our study, while the predicted feature — is the post-release
defects. The linear regression being the simplest model is reported to closely approximate
the defect prediction function D’Ambros et al. (2012). The generalized linear regression
models are trained throughout our experiments, whether comparing the approaches for
classification, ranking, and ranking with effort consideration. They are even trained within
the feature selection procedure to evaluate the performance of different feature subsets.
Generalized Linear Models (GLMs) are used for predicting categorical outcome in clas-
sification as well as count outcome in regression Zhao (2012).

5.4 Five-fold cross-validation

We perform stratified five-fold repeated cross-validation experiments, i.e., we split the
dataset into five folds, using four folds (80% of the dataset) as a training set to train the
prediction model and the remaining fold (20% of the dataset) as a testing set to evaluate the
model performance. Each of the five folds is used once as a testing set. The five-fold exper-
iment is repeated 10 times to get a robust evaluation of the prediction model. To maintain
consistency in the distribution of the predicted feature in each fold with the distribution of
the entire dataset stratified cross-validation is used.

6 Experiment 2: cross-project defect prediction context

In the CPDP experiment, for each dataset reserved as a target project dataset, the remain-
ing datasets combined constitute what we call multi-source training data set (TDS). For
comparing the 25 defect prediction approaches listed in Predictor column of Table 1 in
the cross-project prediction context a methodology similar to Experiment 1 (refer to Sec-
tion 5) is followed. However, for each target project dataset, the feature selection and final
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model training are done over the multi-source training data set. Moreover, the same data
folds from each target project dataset that are used for model validation in the final step of
Experiment 1 are used as testing sets in the performance evaluation of cross-project predic-
tion models.

7 Results and discussion of defect prediction approaches

In the first evaluation we rank the approaches — across several project data sets — adhering
a stringent statistical methodology. Towards this goal, we follow the approach of D’Ambros
et al. (2012), Jiang et al. (2008) and Lessmann et al. (2008).

For every prediction approach we determine the ranking on each project in terms of
performance metrics (AUC, p,,,rs Ppefrors)- Moreover, we find the average rank (AR) of each
prediction approach on all project data sets. Next, to ascertain if the performance differ-
ences with regard to AR are statistically significant (H,, : all prediction approaches perform
equally) we make use of the Friedman test with the Nemenyi’s post hoc test Calvo and
Santaf’e (2015), Demsar (2006) on the rankings.

In Tables 3, 4 and 5 (within-project performance) Tables 6, 7, and 8 (cross-project per-
formance), we report the mean of performance metrics (AUC, p,,, and p,gq,,,) from cross-
validation experiments on each project dataset and AR across all project datasets. These
tables are structured similarly. Each prediction approach is shown on a separate row, where
the mean performance across five folds from ten runs on the subject datasets is represented

Table 3 Within-project AUC values of all predictors over all systems

Predictor Eclipse Mylyn Equinox PDE Lucene AR

MOSER 0.822 0.800 0.776 0.733 0.818 2.4
NFIX-ONLY  0.672 0.487 0.648 0.466 0.617 24.4
NR 0.764 0.555 0.741 0.674 0.725 18

NFIX+NR 0.767 0.576 0.742 0.686 0.725 16.6
BUG-CAT 0.784 0.718 0.707 0.694 0.771 16.7
BUG-FIX 0.771 0.572 0.695 0.647 0.771 18.3
CK+00 0.803 0.775 0.744 0.738 0.743 7

CK 0.784 0.751 0.726 0.729 0.687 13

(0]0) 0.802 0.772 0.743 0.730 0.726 8.2
LOC 0.679 0.464 0.652 0.483 0.507 24.4
HCM 0.802 0.489 0.740 0.695 0.755 15.6
WHCM 0.799 0.567 0.727 0.722  0.750 14.8
EDHCM 0.745 0.564 0.731 0.696 0.777 16.8
LDHCM 0.750 0.557 0.739 0.714 0.772 14.4
LGDHCM 0.757 0.469 0.748 0.705 0.777 14.4
CHU 0.823 0.729 0.687 0.699 0.760 14.2
WCHU 0.834 0.736 0.732 0.709 0.767 10.4
LDCHU 0.821 0.725 0.733 0.727 0.796 7.8
EDCHU 0.797 0.738 0.732 0.716 0.790 10.8
LGDCHU 0.823 0.708 0.735 0.721 0.792 9

HH 0.833 0.740 0.735 0.712 0.764 9.8
HWH 0.835 0.721 0.713 0.712 0.766 12

LDHH 0.820 0.724 0.735 0.724 0.793 8.4
EDHH 0.799 0.744 0.723 0.722 0.804 9.4
LGDHH 0.828 0.720 0.740 0.714 0.793 8.2
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Table 4 Within-project p,,,, values of all predictors over all systems

Predictor Eclipse Mylyn Equinox PDE Lucene AR

MOSER 0.892 0.843 0.901 0.811 0.875 3
NFIX-ONLY  0.783 0.604 0.837 0.567 0.716 24.4
NR 0.853 0.656 0.884 0.767 0.797 19.4
NFIX+NR 0.855 0.667 0.886 0.774 0.794 18.4
BUG-CAT 0.874 0.763 0.875 0.794 0.850 15.9
BUG-FIX 0.870 0.670 0.879 0.771 0.850 16.5
CK+00 0.882 0.818 0.897 0.821 0.784 7.8
CK 0.875 0.791 0.888 0.762 0.754 16.6
(0]0) 0.879 0.815 0.897 0.818 0.769 9.2
LOC 0.839 0.708 0.867 0.639 0.533 22
HCM 0.876 0.582 0.885 0.781 0.813 18.2
WHCM 0.883 0.642 0.878 0.813 0.819 14.6
EDHCM 0.839 0.647 0.878 0.799 0.837 17.8
LDHCM 0.839 0.641 0.890 0.810 0.832 15.8
LGDHCM 0.834 0.529 0.890 0.797 0.832 18
CHU 0.879 0.802 0.878 0.788 0.834 13.2
WCHU 0.883 0.798 0.892 0.802 0.836 10
LDCHU 0.887 0.788 0.892 0.823 0.861 6
EDCHU 0.873 0.799 0.886 0.819 0.867 9
LGDCHU 0.880 0.773 0.897 0.805 0.856 9.8
HH 0.886 0.803 0.896 0.802 0.829 9
HWH 0.885 0.777 0.878 0.809 0.833 12.4
LDHH 0.893 0.796 0.901 0.821 0.863 4.2
EDHH 0.877 0.801 0.887 0.817 0.871 8
LGDHH 0.894 0.777 0.903 0.810 0.862 5.8

Table 5 Within-project p,,, values of all predictors over all systems

Predictor Eclipse Mylyn Equinox PDE Lucene AR

MOSER 0.797 0.751 0.928 0.700 0.854 10.8
NFIX-ONLY 0.721 0.728 0.876 0.642 0.808 18.4
NR 0.750 0.611 0.847 0.675 0.819 20.2
NFIX+NR 0.759 0.701 0.870 0.681 0.815 18

BUG-CAT 0.792 0.692 0.912 0.731 0.863 12.1
BUG-FIX 0.772 0.631 0.832 0.670 0.863 18.9
CK+00 0.805 0.704 0.961 0.737  0.820 8.8
CK 0.800 0.653 0.950 0.736 0.824 11.8
(0]0) 0.777 0.704 0.958 0.723 0.805 12.6
LOC 0.668 0.444 0.745 0.448 0.352 25

HCM 0.783 0.585 0.835 0.685 0.806 18.6
WHCM 0.766 0.562 0.806 0.677 0.803 22.4
EDHCM 0.804 0.643 0.848 0.718 0.770 15.6
LDHCM 0.802 0.641 0.837 0.714 0.780 16.4
LGDHCM 0.793 0.578 0.834 0.701 0.803 18.4
CHU 0.816 0.745 0.953 0.704 0.869 6.4
WCHU 0.819 0.731 0.953 0.681 0.866 9.8
LDCHU 0.823 0.731 0.947 0.709 0.868 7.2
EDCHU 0.819 0.749 0.936 0.682 0.867 9

LGDCHU 0.829 0.727 0.951 0.682 0.865 9.2
HH 0.820 0.744 0.971 0.684 0.861 7.4
HWH 0.840 0.722 0.954 0.682 0.868 7.4
LDHH 0.818 0.736 0.966 0.697 0.863 8.2
EDHH 0.824 0.738 0.950 0.737 0.866 5.4
LGDHH 0.825 0.747 0.969 0.684 0.859 7
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Table 6 Cross-project AUC values of all predictors over all systems

Predictor Eclipse Mylyn Equinox PDE Lucene AR
MOSER 0.805 0.664 0.743 0.644 0.778 8

NFIX-ONLY 0.672 0.493 0.648 0.478 0.617 24

NR 0.764 0.555 0.741 0.674 0.725 14.2
NFIX+NR 0.767 0.546 0.742 0.680 0.725 14

BUG-CAT 0.754 0.604 0.692 0.629 0.771 14.5
BUG-FIX 0.771 0.572 0.695 0.647 0.771 12.5
CK+00 0.758 0.698 0.591 0.732 0.706 12.8
CK 0.744 0.736 0.690 0.715 0.666 12.2
(0]0) 0.741 0.709 0.700 0.722 0.678 12

LOC 0.679 0.516 0.652 0.510 0.449 23.4
HCM 0.802 0.489 0.740 0.695 0.755 12.2
WHCM 0.799 0.567 0.727 0.722  0.750 9.4
EDHCM 0.745 0.564 0.731 0.696 0.777 12

LDHCM 0.750 0.557 0.739 0.714 0.772 10.4
LGDHCM 0.757 0.531 0.748 0.705 0.777 9.4
CHU 0.748 0.634 0.579 0.689 0.761 16.8
WCHU 0.751 0.698 0.675 0.691 0.765 13.4
LDCHU 0.767 0.706 0.677 0.706 0.793 7

EDCHU 0.711 0.715 0.672 0.702 0.786 11

LGDCHU 0.671 0.682 0.693 0.701 0.774 12.8
HH 0.745 0.699 0.673 0.687 0.755 15

HWH 0.790 0.631 0.668 0.696  0.747 13.6
LDHH 0.749 0.713 0.682 0.699 0.777 10

EDHH 0.714 0.720 0.658 0.705 0.769 12.6
LGDHH 0.758 0.671 0.710 0.683 0.767 11.8

Table 7 Cross-project p,, values of all predictors over all systems

Predictor Eclipse Mylyn Equinox PDE Lucene AR
MOSER 0.884 0.747 0.898 0.799 0.832 5.2
NFIX-ONLY  0.783 0.604 0.837 0.594 0.716 23.8
NR 0.853 0.656 0.884 0.767 0.797 15.4
NFIX+NR 0.854 0.653 0.886 0.774 0.793 14.4
BUG-CAT 0.854 0.689 0.869 0.720 0.850 13.1
BUG-FIX 0.870 0.670 0.879 0.771 0.850 10.1
CK+00 0.859 0.789 0.796 0.794 0.763 12.8
CK 0.842 0.775 0.881 0.725 0.709 14.4
(0]0) 0.852 0.736 0.879 0.769 0.743 15.2
LOC 0.839 0.708 0.867 0.657 0.592 18.6
HCM 0.876 0.582 0.885 0.781 0.813 12.8
WHCM 0.883 0.642 0.878 0.813 0.819 9.8
EDHCM 0.839 0.647 0.878 0.799 0.837 12.2
LDHCM 0.839 0.641 0.890 0.810 0.832 11

LGDHCM 0.834 0.618 0.890 0.797 0.832 13

CHU 0.832 0.658 0.771 0.783 0.799 19.2
WCHU 0.871 0.744 0.849 0.785 0.836 10.4
LDCHU 0.862 0.771 0.844 0.808 0.869 7.2
EDCHU 0.857 0.766 0.830 0.798 0.865 9.4
LGDCHU 0.795 0.720 0.857 0.752 0.835 16

HH 0.857 0.758 0.851 0.781 0.828 12.6
HWH 0.842 0.670 0.848 0.776 0.814 16.8
LDHH 0.874 0.770 0.862 0.793 0.829 9.4
EDHH 0.856 0.772 0.853 0.798 0.831 10

LGDHH 0.836 0.752 0.865 0.801 0.826 12.2
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Table 8 Cross-project p,g,,, values of all predictors over all systems

Predictor Eclipse Mylyn Equinox PDE Lucene AR

MOSER 0.797 0.469 0.851 0.685 0.854 10.4
NFIX-ONLY  0.721 0.728 0.876 0.664 0.808 13

NR 0.750 0.611 0.847 0.675 0.819 14.4
NFIX+NR 0.722 0.615 0.848 0.650 0.815 18.4
BUG-CAT 0.792 0.668 0.914 0.731  0.796 8.4
BUG-FIX 0.772 0.631 0.832 0.670 0.863 11.6
CK+00 0.745 0.619 0.857 0.650 0.726 17.2
CK 0.800 0.626 0.950 0.651 0.824 9.6
(0]0) 0.746 0.621 0.859 0.579 0.730 18

LOC 0.668 0.444 0.745 0.439 0.310 25

HCM 0.783 0.585 0.835 0.685 0.806 14.4
WHCM 0.766 0.562 0.806 0.677 0.803 16.4
EDHCM 0.804 0.643 0.848 0.718 0.770 11

LDHCM 0.802 0.641 0.837 0.714 0.780 11.8
LGDHCM 0.793 0.626 0.834 0.701  0.803 13.2
CHU 0.732 0.691 0.859 0.668 0.834 12.6
WCHU 0.731 0.689 0.868 0.607 0.832 14.2
LDCHU 0.733 0.679 0.859 0.604 0.842 13.2
EDCHU 0.732 0.655 0.886 0.611 0.842 12.4
LGDCHU 0.732 0.628 0.891 0.605 0.836 14.6
HH 0.735 0.697 0.920 0.675 0.836 8.6
HWH 0.737 0.656 0.908 0.609 0.841 11.8
LDHH 0.738 0.686 0.919 0.675 0.843 8

EDHH 0.737 0.704 0.924 0.594 0.843 8.8
LGDHH 0.735 0.700 0.920 0.675 0.841 8

in the first five cells. The best-performing approaches are highlighted by showing the mean
performance values above 95% of the best value in bold font. The AR of the approaches
over the subject datasets is shown in the last cell of each row. The approaches with overall
good performance (AR values < 10, or top 40% of the ranking) are shown with a shaded
background.

7.1 Results of within-project defect prediction

AUC in within-project classification The top-ranked approaches are MOSER (2.4),
CK-OO (7), LDCHU (7.8), OO and LGDHH (tied 8.2), and LDHH (8.4). Thenceforth,
AR drops slowly until approaches ranked around 18, where it hops down to the worst rank
24.4 in LOC and NFIX-ONLY. In general, the process metrics, regular source code met-
rics, churn of source code, and entropy of source code metrics perform remarkably well.
Defect metrics perform next. The entropy of change metrics (AR 14.4 to 16.8) performs
very poorly. A probable reason for the bad performance of the entropy of change metrics is
that each approach from the set corresponds to a single metric, which on its own may not
have sufficient explanatory power to distinguish the files as clean or defective. Likewise,
approximations of process, or source code metrics that involve single or a few metrics per-
form quite badly.

P, in within-project ranking The top performers are MOSER (3), LDHH (4.2), LGDHH

(5.8), LDCHU (6) and CK-OO (7.8) after that most of the entropy and churn of source
code metrics. The defect metrics have comparatively bad ranks (15.9 and 16.5). As pointed
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out before sets of approaches that use few metrics — entropy of change metrics, approxi-
mation of process, or source code metrics performed quite badly (14.6 or below). the worst
performers are NFIX-ONLY (24.4) and LOC (22).

P.gore In within-project ranking The top performers are EDHH (5.4), CHU (6.4),
LGDHH (7), LDCHU (7.2), HH and HWH (tied 7.4), LDHH (8.2), and CK-OO (8.8).
Almost all of the churn and entropy of source code metrics give a good predictive per-
formance. All the ranks below 10 are taken by one of these, except for the rank 8.8 that
is occupied by CK-OO (placing it 8th in the rank). The worst performers are LOC (25),
WHCM (22.4), NR (20.2), BUG-FIX (18.9), HCM (18.6) NFIX-ONLY (18.4), NFIX+NR
(18). The general trend of approaches utilizing fewer metrics performing worse is observed.
The process metrics perform worst than the effort-unaware scenario ranked 10.8 for p,g,,
and 3 for p,,,. These results contradict those of Mende and Koschke (2009), Kamei (2010),
and D’Ambros et al. (2012).

7.2 Discussion of within-project defect prediction rankings

The null hypothesis of all approaches performing equally is rejected by the Friedman test
when AUC, p,,, and p,z,,, are considered. However, Nemenyi’s post hoc test could only
separate the very best performer MOSER from the worst NFIX-ONLY, and LOC for the
AUC. In Fig. 1, we present the findings of Nemenyi’s test using Demsar’s significance
diagrams Demsar (2006). All classifiers that are not connected with a horizontal line can
be seen as performing significantly differently. Similarly, for p,, the Nemenyi’s test could
separate the best performers MOSER and LDHH from the worst LOC, and NFIX-ONLY.
Considering Defort the EDHH, CHU, LGDHH, LDCHU, HH, and HWH, are statistically
better than LOC. The statistical tests are performed at a significance level of 0.05.

LOC is the worst approach under all evaluation criteria. And the NFIX-ONLY is the
worst approach for classification and ranking without effort consideration.

A different ordering of the approaches is generated by each task, which depicts that each
problem has different characteristics.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1

L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 )
MOSER — CK
CK+00 —M8M8Mm™ ™8 8™ CHU
LDCHU LDHCM

00 LGDHCM
LGDHH WHCM
LDHH HCM
LGDCHU NFIX+NR
EDHH BUG-CAT
HH EDHCM
WCHU NR
EDCHU BUG-FIX
HWH — NFIX-ONLY

—Loc

Fig. 1 Demsar’s significance diagrams for AUC in within-project context
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In general, the best performers for classification are process metrics and product met-
rics after that the churn of source code and entropy of source code metrics. The process
metrics also perform best for ranking without effort consideration, followed by the entropy
of source code, the churn of source code metrics, and product metrics. In ranking with
effort consideration, the entropy and churn of source code perform best followed by prod-
uct and process metrics. The defect metrics and other single metric approaches (entropy of
changes, number of revisions, lines of code) performed worst in all three scenarios.

7.3 Results of cross-project defect prediction

AUC in cross-project classification The top-ranked approaches are LDCHU (7), MOSER
(8), WHCM and LGDHCM (tied at 9.4), and LDHH (10). Then, AR goes down slowly
until the approaches ranked around 16, where it abruptly drops to the worst rank 24 in
NFIX-ONLY and 23.4 in LOC. In general, the churn of source code metrics, process met-
rics, the entropy of changes, and the entropy of code metrics perform quite well. Regu-
lar source code metrics perform next. Defect metrics perform very poorly. Apart from
the entropy of changes, the general trend of approaches featuring few metrics perform-
ing poorly is observed. Compared to within-project predictions among the top-ranked
approaches only the LDCHU, MOSER, and LDHH feature in top performers. And the
worst-ranked approaches are the same for within-project and cross-project contexts. That
means the process metrics, the churn of code metrics and the entropy of code metrics are
good approaches to consider for defect prediction in the classification context. And NFIX-
ONLY and LOC are generally very poor approaches.

P, in cross-project ranking The top performers are MOSER (5.2), LDCHU (7.2),
EDCHU and LDCHU (tied at 9.4), WHCM (9.8), and EDHH (10). The worst performers
are NFIX-ONLY (23.8), CHU (19.2) and LOC (18.6). The general trend of approaches
with few metrics performing poorly is continued except for WHCM. Compared to within-
project predictions among the top performers only the MOSER, LDCHU, EDCHU, LDHH
and EDHH feature in top performers. And the worst performers (NFIX-ONLY and LOC)
from within-project predictions are among the worst three approaches in cross-project pre-
dictions. Therefore, we conclude process metrics, the churn of code metrics, and entropy of
code metrics are generally good approaches to consider for defect prediction in the ranking
context. And NFIX-ONLY and LOC are the worst approaches.

P.for; In cross-project ranking The top ranks are achieved by LDHH and LGDHH (tied
at rank 8), BUG-CAT (8.4) HH (8.6), EDHH (8.8), and CK (9.6). Except for HWH, all the
entropy of source code metrics achieve an average rank below 10. Then, the performance
goes down slowly until the approaches ranked around 18.4, where the AR suddenly drops
to the worst AR 25 in LOC. Except for BUG-CAT the general trend that approaches with
only a few metrics perform poorly is continued. The entropy of source code metrics LDHH
achieves an AR below 10 in both the within-project and cross-project context under all the
three performance indicators of AUC, p,,, and p,g,,. The LOC metric always features
among the worst two approaches. Therefore based on the experimental results we suggest,
always include the LDHH metrics and exclude the LOC metrics in model training for the
defect prediction task.
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7.4 Discussion of cross-project prediction rankings

In the case of cross-project defect prediction, at a significance level of 0.05, no distinction
of average ranks could be made. However, at a significance level of 0.1, the null hypothesis
of all approaches performing equally is rejected by the Friedman test when AUC, p,,,, and
Defrore € considered. The Nemenyi’s post hoc test only separates the very best performer
LDCHU from the worst LOC, and NFIX-ONLY for the AUC. In Fig. 2, we present the
findings of Nemenyi’s test using Demsar’s significance diagrams (2006). Similarly, for p,,,
the Nemenyi’s test separates the best performers MOSER and LDCHU against the worst
NFIX-ONLY metric. Considering Deffort the LDHH, LGDHH, BUG-CAT, and HH are sta-
tistically better than LOC.

LOC is the worst approach for classification and ranking with effort consideration. And
NFIX-ONLY is the worst for classification and ranking without effort consideration.

Different ordering of the approaches is generated by each task and compared to within-
project predictions ordering of the approaches is also different that means that each prob-
lem has different characteristics and conclusions from within-project studies should not be
generalized to cross-project predictions.

In general, the best performers for classification are the churn of source code followed
by process metrics, the entropy of changes, and the entropy of source code metrics. The
defect metrics and other single metric approaches (except for entropy of changes) per-
formed worst for classification. For ranking without effort consideration the process met-
rics perform best, followed by the churn of source code, entropy of source code, entropy
of changes, and product metrics. The defect metrics and other single metric approaches
(except for entropy of changes) performed worst for ranking without effort consideration
as well. In ranking with effort consideration the entropy of source code and defect met-
rics perform best followed by product and process metrics. The churn of source code, the
entropy of change metrics and other single metric approaches (number of revisions, lines
of code) perform worst.

7 8 9 10 1" 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1
LDCHU BUG-FIX
MOSER EDHH
WHCM ——— CK+00
LGDHCM —— 8 LGDCHU
LDHH ——— ™ WCHU
EBREeN—""" HWH
EDCH —M8M8Mm™M8M8 ™ NFIX+NR
LGDHH NR
[ele) BUG-CAT
EDHCM HH
CK CHU
HCM t—jLoc

NFIX-ONLY

Fig.2 Demsar’s significance diagrams for AUC in cross-project context
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8 Statistical significance for defect prediction approaches

Motivated by D’Ambros et al. (2012), Menzies et al. (2010), our second set of evaluations
aim to check the variability of the approaches across several runs and at determining statis-
tically significant ranking of the approaches. To get an estimate of the likely variability of
performance, for each defect prediction approach, we save the 50 results of cross-validation
(last line in algorithm 1) for each performance measure. For each performance measure,
we combine the 50 data points for each dataset generating a set of 250 data points that
represent all five datasets. Then, the median, first quartile, and third quartile of each set of
250 data points for the defect prediction approaches are computed. Next, the approaches
are sorted by their medians, and displayed visually through “mini boxplots”. The first-third
quartile range is represented by a bar and the median by a circle. Figure 3 shows the mini
boxplot for all the approaches over all the five datasets for classification.

In within-project context for 75% of total 250 predictions over five datasets, the AUC,
Pop @0d p,g,,, values of the resultant top ranking approaches from the evaluations in Sec-
tion 7.1 are greater than 0.7. That means the top ranking approaches are able to strongly
predict the defects in within-project context.

In cross-project context for 75% of total 250 prediction over five datasets, the AUC,
Dopr a0 P g, values of the resultant top ranking approaches from the evaluations in Sec-
tion 7.3 are greater than 0.65. The AUC and p,,,, values are greater than 0.7 for 50% of
total predictions and the p,, value is greater than 0.7 for 75% of predictions. That means
the top ranking approaches are at least able to feasibly predict the defects in cross-project
context.

As shown in Fig. 3, in our experiments, many approaches perform similarly. Therefore,
it is difficult to get a meaningful ranking. So, we apply the technique used by D’Ambros
et al. (2012), Menzies et al. (2010) to compare the categories of approaches instead of
individual approaches. To simplify the comparison we select the best representative from
each category (one with the highest median). Menzies et al. (2010) and D’Ambros et al.
(2012) generate a ranking by doing the Mann-Whitney U test on each successive duo of
approaches. If the U test fails to reject the null hypothesis — that performance distribu-
tions are equal at 95% confidence level, then the two approaches have the same rank. To
get a different rank with other approaches, the test when applied to all other approaches of
equivalent rank must reject the null hypothesis. Starting with the top two approaches this
procedure is repeated sequentially.

8.1 Finding statistical significance for within-project defect prediction

AUC in within-project classification For all systems, the classification results, includ-
ing the AUC medians of selected approaches, and for every combination of approaches,
if Mann-Whitney U test reject the null hypothesis that the two perform equally or not is
shown in Table 9. The medians range from 0.728 to 0.793. The U test results show that
the approach built on process metrics (MOSER-rank 1) outperforms source code metrics
(CK+0OO-rank 2), the entropy of code metrics (LGDHH-rank 2), the churn of code met-
rics (LDCHU-rank 2), and previous defects (BUG-CAT-rank 5), the entropy of changes
(WHCM-rank 5) in classification with 95% confidence. One interesting fact is that the pro-
cess metrics (MOSER) perform significantly better than all other approaches.
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Fig. 3 Mini boxplots for classification over all systems in within- and cross-project context

P, in within-project ranking For all systems, the results of ranking in terms of p,,
are shown in Table 10. The medians of all chosen approaches range from 0.836 to 0.866.
Apart from the entropy of source code metrics where LGDHH is substituted by LDHH,
the top performers in each category are identical with classification. The order generated

Table 9 Medians, results of Mann-Whitney U test and rank of approaches for all systems in within-project
defect prediction context when approaches are compared for classification. From each group only the top
performing approaches are compared in terms of AUC

Mann-Whitney U-test reject null hypothesis

Predictor median CK+0O0 LGDHH LDCHU BUG-CAT WHCM Rank

MOSER 0.793 yes yes yes yes yes 1
CK+0O0 0.765 no no yes yes 2
LGDHH 0.758 no yes yes 2
LDCHU 0.758 yes yes 2
BUG-CAT 0.734 no 5
WHCM 0.728 5
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Table 10 Medians, results of Mann-Whitney U test and rank of approaches for all systems within-project
defect prediction context when approaches are compared for ranking. From each group only the top per-
forming approaches are compared in terms of p, opt

Mann-Whitney U-test reject null hypothesis

Predictor median LDCHU LDHH CK+0O0 WHCM BUG-CAT Rank

MOSER 0.866 yes no yes yes yes 1
LDCHU 0.861 no no yes yes 1
LDHH 0.860 yes yes yes 1
CK+0O0 0.854 yes yes 4
WHCM 0.842 no 5
BUG-CAT 0.836 5

by sorting the approaches by decreasing medians is different. However, the process met-
rics (MOSER) still occupy the first position. The Mann-Whitney U test results are differ-
ent from classification. The process metrics (MOSER-rank 1), the churn of code metrics
(LDCHU-rank 1), and entropy of code metrics (LDHH-rank 1) are better than source code
metrics (CK+OO-rank 4), and the entropy of changes (WHCM-rank 5), previous defects
(BUG-CAT-rank 5). The worst performers (entropy of changes and previous defects) are
the same as classification.

P.or In Within-project ranking For all systems, the results of effort-aware ranking with
regard to p,g,,, are shown in Table 11. The medians of all chosen approaches range from
0.758 to 0.819. The best performers per category are different from classification and rank-
ing with p,,. Overall worst is the approach based on the entropy of changes (HCM-rank
6), clearly underperforming other approaches in effort-aware ranking. In general, saying
one approach is better than the other is difficult, as is clear by the same rank (rank 1) for
five categories of approaches out of six. Therefore, we conclude getting a confident rank-
ing with p, g, is more difficult than classification and ranking without effort consideration.

8.2 Discussion of statistical significance for within-project defect prediction

In general, for classification process metrics (rank 1) followed by the churn of source code
metrics (rank 2), the entropy of source code metrics (rank 2), and source code metrics (rank
2) are the best performers from a statistical point of view. In ranking with p,,, process met-
rics (rank 1) tied in rank with the churn of source code metrics and entropy of source code
metrics are the best performers. Effort-aware ranking with p g, is a harder problem where
five out of six categories of approaches tied in the first rank are un-distinguishable from
a statistical significance point of view. The worst performers for effort-aware ranking are
entropy of changes (rank 6) which is tied in worst rank (rank 5) with previous defects in
ranking and classification.

Table 11 Medians, results of Mann-Whitney U test and rank of approaches for all systems in within-project
defect prediction context when approaches are compared for effort-aware ranking. From each group only
the top performing approaches are compared in terms of Deffort

Mann-Whitney U-test reject null hypothesis

Predictor median LGDCHU BUG-CAT CK+00O MOSER HCM Rank

HWH 0.819 no no no no yes 1
LGDCHU 0.808 no no no yes 1
BUG-CAT 0.790 no no yes 1
CK+0O0 0.788 no yes 1
MOSER 0.785 yes 1
HCM 0.758 6
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Table 12 Medians, results of Mann-Whitney U test and rank of approaches for all systems cross-project
defect prediction context when approaches are compared for classification. From each group only the top
performing approaches are compared in terms of AUC

Mann-Whitney U-test reject null hypothesis

Predictor median LDCHU WHCM LDHH CK BUG-FIX Rank

MOSER 0.731 no no no yes yes 1
LDCHU 0.731 no no yes yes 1
WHCM 0.728 no no yes 1
LDHH 0.723 yes yes 1
CK 0.719 yes 1
BUG-FIX 0.700 6

The overall best performers are the process metrics, the churn of source code, and
entropy of source code metrics. And the overall worst performers are entropy of change
metrics.

8.3 Finding statistical significance for cross-project defect prediction

AUC in cross-project classification The results of the Mann-Whitney U test for classifi-
cation (AUC) in cross-project context are shown in Table 12. The medians of all chosen
approaches range from 0.700 to 0.731. The sorting of the approaches by decreasing medi-
ans generates an order in which the process metrics (MOSER) are placed at the first posi-
tion and the BUG-FIX is placed at the last position. MOSER, LDCHU, WHCM, LDHH,
and CK are un-distinguishable from a statistical significance point of view because all the
five approaches get a similar rank (rank 1). The defect metrics (BUG-FIX) get the worst
rank (rank 6). In general, it is difficult to get a confident ranking with AUC in the cross-
project context.

P, in cross-project ranking The results of the Mann-Whitney U test for ranking without
effort consideration (p,,,) in cross-project context are shown in Table 13. The medians of
all chosen approaches range from 0.806 to 0.846. Apart from source code metrics where
CK is substituted by CK+OO, the top performers in each category are similar as classifi-
cation. The sorting of the approaches by decreasing medians generates a dissimilar order.
However, the process metrics (MOSER) are again placed at the first position. MOSER,
WHCM, LDCHU, BUG-FIX and LDHH are un-distinguishable from a statistical signifi-
cance point of view because all the five approaches get a similar rank (rank 1). The product
metrics (CK+0O) get the worst rank (rank 6). In general, it is difficult to get a confident
ranking with p,, in cross-project context.

Table 13 Medians, results of Mann-Whitney U test and rank of approaches for all systems in cross-project
defect prediction context when approaches are compared for ranking. From each group only the top per-
forming approaches are compared in terms of p, opt

Mann-Whitney U-test reject null hypothesis

Predictor median WHCM LDCHU BUG-FIX LDHH CK+0O0O Rank

MOSER 0.846 no no yes no yes 1
WHCM 0.842 no no no yes 1
LDCHU 0.838 no no yes 1
BUG-FIX 0.834 no yes 1
LDHH 0.826 yes 1
CK+00 0.806 6
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P.gor I cross-project ranking The results of the Mann-Whitney U test for effort-aware
ranking (p,g,,) in cross-project context are shown in Table 14. The medians of all chosen
approaches range from 0.744 to 0.780. The best performers are different from classification
and ranking with p,,,.. All the six approaches get a rank of 1. That means from a statistical
significance point of view no distinction can be made between the approaches. Therefore,
we conclude it is difficult to get a confident ranking with p,g,,, in the cross-project context.

8.4 Discussion of statistical significance for cross-project defect prediction

For classification in the cross-project context, the difference between process metrics,
churn of source code metrics, entropy of change metrics, entropy of source code metrics,
and regular source code metrics is not significant. These approaches perform significantly
better than previous defect metrics. Similarly, for ranking without effort consideration only
regular source code metrics perform significantly different than other top five approaches
(process metrics, the entropy of change metrics, churn of source code, previous defects,
the entropy of source code metrics). For ranking with effort consideration, no significant
difference is found between the approaches and the experiments are unable to produce a
ranking of significance.

The overall best performers are the process metrics, the churn of source code, and
entropy of code metrics, and entropy of change metrics. For classification, previous defects
perform worse, and for ranking without effort considering source code metrics perform
worse. For ranking with effort consideration, no significant distinction could be made
between the performance.

9 Experiment 3: Effect of class imbalance on the ranking of different
approaches

9.1 Methodology

To check the effect of the data imbalance on the classification performance we use a
data balancing technique, Border Line Synthetic Minority Oversampling (BLSMOTE)
for creating synthetic minority defective class instances in the training dataset. Presum-
ing borderline instances are most likely to be misclassified, Han et al. (2005) had pro-
posed BLSMOTE to create synthetic minority class instances from the borderline minority
class instances. BLSMOTE is reported to have stable, and good performance Bennin et al.

Table 14 Medians, results of Mann-Whitney U test and rank of approaches for all systems in cross-project
defect prediction context when approaches are compared for effort-aware ranking. From each group only
the top performing approaches are compared in terms of p,g,,,

Mann-Whitney U-test reject null hypothesis

Predictor median LDHCM MOSER CK EDHH CHU Rank

BUG-CAT 0.780 yes yes no yes yes 1
LDHCM 0.771 no no no no 1
MOSER 0.765 no no no 1
CK 0.764 no no 1
EDHH 0.757 no 1
CHU 0.744 1
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(2019) compared to other data balancing techniques in software defect prediction. It is due
to the reasons cited above we use BLSMOTE for data balancing.

For evaluating the effect of class imbalance on the ranking of 25 defect prediction
approaches listed in Predictor column of Table 1 a methodology similar to Experiment 1
(refer to Section 5) for WPDP and similar to Experiment 2 (refer to Section 6) for CPDP is
followed. However, for each target project dataset, final model training is done over the bal-
anced training data set generated through BLSMOTE. Moreover, the same data folds from
each target project dataset that are used for model validation in the final step of Experiment
1 and Experiment 2 are used as testing sets in the performance evaluation of the models
trained on BLSMOTE balanced datasets. The average ranking (AR) based on AUC per-
formance over the five datasets is used to evaluate the ranking of the selected approaches.

9.2 Results and discussion

From the experimental results reported in Table 15, for both within-project and cross-
project contexts we do not see much of the difference in the Average Ranking of the
approaches when the models are trained on the original imbalanced datasets and when
the models are trained on the datasets balanced through BLSMOTE technique. In gen-
eral, the best performers for classification in within-project context (i.e., process met-
rics, product metrics, the churn of source code and the entropy of source code met-
rics) and in cross-project context (i.e., process metrics, the entropy of changes, and

Table 15 Average Ranking of defect prediction approaches on imbalanced and balanced datasets

WPDP Average ranking (AR)  CPDP Average ranking (AR)

Predictor Before After Before After
BLSMOTE BLSMOTE BLSMOTE BLSMOTE

MOSER 2.4 3.8 8 6.8
NFIX-ONLY 24.4 24.2 24 23.8
NR 18 19 14.2 14.4
NFIX+NR 16.6 17.4 14 13.6
BUG-CAT 16.7 17.5 14.5 13.1
BUG-FIX 18.3 17.9 12.5 13.1
CK+00 7 6 12.8 12
CK 13 13.8 12.2 16
00 8.2 11 12 11
LOC 24.4 23.8 23.4 23
HCM 15.6 16.8 12.2 11.4
WHCM 14.8 15.2 9.4 8.6
EDHCM 16.8 16.2 12 11.6
LDHCM 14.4 15.6 10.4 10.2
LGDHCM 14.4 15 9.4 10
CHU 14.2 13.6 16.8 18.2
WCHU 10.4 11.8 13.4 12.8
LDCHU 7.8 6.6 7 12.4
EDCHU 10.8 7 11 10.8
LGDCHU 9 10 12.8 11
HH 9.8 8.4 15 13.8
HWH 12 11.2 13.6 13.8
LDHH 8.4 7.2 10 8.6
EDHH 9.4 8.4 12.6 14.4
LGDHH 8.2 7.6 11.8 10.6
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the entropy of source code metrics) are same when imbalanced and balanced datasets
are used for training. Similarly, the worst performers for classification (i.e., LOC and
NFIX-ONLY) are also same when imbalanced and balanced datasets are used for train-
ing. For the remaining approaches also no major difference exists in the Average Rank-
ings. The Average Rankings of the approaches are more or less same when the result-
ant balanced datasets from the BLSMOTE are used for model training as compared
to using the original imbalanced datasets. Therefore, we conclude the data imbalance
does not have much effect on the ranking of the evaluated approaches.

10 Threats to validity

Construct validity Threats to construct validity are related to the bias of data utilized in
model training and metrics employed to assess the prediction performance. Since we use
a public data set, we cannot directly validate the quality of data. However, D‘Ambros et al.
D’Ambros et al. (2010) describe in detail the procedure they used to mine different data
repositories to create the Bug Prediction Dataset, which makes us count on the validity of
the dataset used in our experiments. We evaluate the approaches in three different evalua-
tion scenarios (classification, ranking, ranking with effort consideration).

Statistical conclusion validity To check if the performance difference between each
approach is significant we perform Nemenyi’s post hoc test. The test only separates the
extremely best from the extremely worst performers. Due to its conservative behavior, the
test has a higher possibility that it will fail to reject the null hypothesis of approaches per-
forming equally. Therefore, we test the performance difference between duo of approaches
with the Mann-Whitney U test at a 95% confidence level.

Internal validity Threats to the internal validity relate to the data transformation used,
feature selection methods used, and the training algorithms used for the experiments. The
software metrics measured at different scales contribute differently in model training and
may result in biasing the model. Therefore, feature scaling (Min-Max scaling) is applied to
the datasets. The multicollinearity and a large number of features in model training results
in model overfitting. To address the problem of multicollinearity and use only informative
features in model training a feature selection technique (sequential floating forward selec-
tion) is used on datasets before model training.

External validity Threats to external validity are related to the risks of generalizing the
findings of a study to other contexts and datasets. The controversial results in different sce-
narios about the performance of defect prediction approaches presented in this article show
how results obtained in a certain context and evaluated with a particular evaluation metric
are problematic to generalize to different contexts, and evaluation metrics. In our experi-
ments, we use data about five open-source projects from Bug Prediction Dataset. The repli-
cation of the study on other datasets is required to generalize the findings of the study.
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11 Conclusions

The driving factor for defect prediction is resource allocation. Given an accurate esti-
mate of the distribution of defects across software components, the quality assurance
effort can be prioritized towards the problematic parts of the system. Many approaches
differing in the data sources used, training methods, and evaluation methods have been
developed to predict the defects in software components. The earlier studies compare
the data sources to only a few other data sources, evaluate them using distinct perfor-
mance indicators without any effort consideration, or compare them only in the within-
project context.

We evaluated a set of representative defect prediction approaches from the literature
in the within-project and cross-project context in three different scenarios: classification,
ranking, and ranking with effort consideration. In the within-project context, for classifica-
tion, process metrics followed by product metrics, the churn of source code and entropy of
source code metrics perform the best. A subsequent evaluation identified, process metrics
significantly outperform the other three approaches. The process metrics also perform best
for ranking without effort consideration, followed by the entropy of source code, the churn
of source code metrics, and product metrics. The subsequent evaluation found the differ-
ence between the top three not significant. In ranking with effort consideration, the entropy
and churn of source code perform best, followed by product and process metrics. The sub-
sequent evaluation did not find any significant difference.

In cross-project context, for classification, churn of source code succeeded by pro-
cess metrics, the entropy of changes, the entropy of source code metrics, and product
metrics perform the best. A subsequent evaluation could not find any significant dif-
ference in the top performers. In ranking without effort consideration, the process met-
rics perform best, succeeded by the churn of source code, entropy of source code, and
entropy of changes. A subsequent evaluation could not find any significant difference in
the top performers. In ranking with effort consideration, the entropy of source code and
defect metrics perform best. The subsequent evaluation found no significant difference
between any of the approaches.

In general, under all three evaluation scenarios we observe that the process metrics, the
churn of source code, and entropy of source code perform significantly better in within-
project as well as cross-project contexts. The defect metrics and other single metric
approaches (entropy of changes, number of revisions, lines of code, number of fixes) gener-
ally perform worse in all three scenarios. Moreover, in general, for both WPDP and CPDP
contexts no vivid difference in the Average Ranking of the approaches is observed between
the models trained on the original imbalanced datasets and models trained on the datasets
balanced through BLSMOTE technique. Therefore, we conclude that the data imbalance
does not have any substantial effect on the ranking of the evaluated approaches.

We suggest considering the process metrics, the churn of source code, and entropy of
source code metrics in future defect prediction studies as predictors and taking a great
deal of care when considering the single metric approaches (number of revisions, lines
of code, number of fixes, etc.). We reckon the instance selection and transfer learning
techniques used for alleviating the distribution mismatch between software projects over
the last decade if used after careful selection of the predictor metrics in software defect
prediction could improve the performance. In future, we suggest to study the effects of
feature selection in combination with instance selection and transfer learning on the pre-
diction performance.

@ Springer



942 Software Quality Journal (2023) 31:917-946

We also observe that different ordering of approaches is generated by each evaluation
scenario, in within-project as well as cross-project contexts. That means each problem
has distinct characteristics. Therefore, conclusions from within-project defect prediction
studies should not be generalized to cross-project defect predictions.
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