
Vol.:(0123456789)

Software Quality Journal (2023) 31:721–773
https://doi.org/10.1007/s11219-022-09603-3

1 3

Matching terms of quality models and meta‑models:
toward a unified meta‑model of OSS quality

Nebi Yılmaz1,2 · Ayça Kolukısa Tarhan1,3

Accepted: 2 October 2022 / Published online: 17 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Context In the last two decades, open-source software (OSS) has gained increasing atten-
tion due to its voluntary supporters, growing community, and ease of accessibility in cloud
repositories. Standardization in OSS quality is of vital importance as a communication
vehicle for stakeholders in identifying and selecting high-quality products. Thus, meta-
models help to define a standardized language and enable to propose quality models that
can be used to perform comparable measurements.
Objective Considering the lack of a comprehensive meta-model of OSS quality in the litera-
ture, there appears a need to see a more complete picture of OSS quality and to represent
its concepts more formally. Therefore, in this study, it is aimed to develop a solid base for
a comprehensive meta-model of OSS quality to create a common understanding among
stakeholders.
Method A systematic way has been followed toward developing a common structure,
defining a consistent terminology and, finally, providing a meta-model of OSS quality. In
this context, (1) the common structure of the quality models for OSS has been investigated,
(2) the terms of the general-purpose meta-models of software quality have been analyzed
based on the international standards, and (3) the terms of the quality models for OSS have
been mapped with the elements of these meta-models.
Results An initial meta-model of OSS quality, which employs a unified structure from the
OSS quality models and eliminates the inconsistencies determined in the general-purpose
meta-models of software quality, has been proposed and an implementation of this meta-
model has been demonstrated.
Conclusion This initial meta-model of OSS quality with a standard terminology can be
taken as a guide by researchers who will propose or revise their OSS quality models. It will
allow developing multiple OSS quality models with homogenous structure and terms, and
also enable comparing the evaluation results obtained by these models.

Keywords Software quality · Quality evaluation · Quality measurement · Quality metrics ·
Meta-model · Quality model · Open-source software · OSS

 * Nebi Yılmaz
 yilmaz@cs.hacettepe.edu.tr

Extended author information available on the last page of the article

http://orcid.org/0000-0002-0591-4667
http://orcid.org/0000-0003-1466-9605
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-022-09603-3&domain=pdf

722 Software Quality Journal (2023) 31:721–773

1 3

1 Introduction

Open-source software (OSS) and its components are used as part of software that supports
many activities of human life (Miguel et al., 2014; Tassone et al., 2018) and have attracted
noteworthy attention in the last two decades (Adewumi et al., 2019; Rossi et al., 2012).
Considering this increasing attention, evaluating the quality of OSS has become more cru-
cial and essential (Maki-Asiala & Matinlassi, 2006). OSS data is accessible from cloud
repositories in two aspects which are code-based (e.g., lines of code, number of bugs) and
community-based (e.g., mailing list, number of developers). Because the data is scattered
in a variety of databases and heterogeneous sources, defining and evaluating the quality
of OSS are considered more challenging in comparison to its proprietary counterpart (i.e.,
commercial software). In other words, OSS has a dynamic and diverse nature, and accord-
ingly, its quality is affected by various variables (e.g., the longevity of the project, the mail-
ing list density). Therefore, defining situation-based procedures for determining evalua-
tion criteria becomes a challenging task (Adewumi et al., 2019; Petrinja et al., 2010; Sung
et al., 2007).

As modeling may facilitate controlling and understanding of complex concepts, several
quality models for OSS have been developed by researchers such as SQO-OSS (Samoladas
et al., 2008) and OSMM (Duijnhouwer & Widdows, 2003). Despite the existence of these
models, they are not complete or not sufficient in some aspects. For example, they are not
flexible enough to be applicable in all business domains (Adewumi et al., 1936), not applica-
ble by external parties (Jean-Christophe & Alexandre, 2008), not cover all aspects of quality
(Aversano & Tortorella, 2013; Ciolkowski & Soto, 2008), and not fair in quality validation
(Adewumi et al., 2013), etc. The results of our recent SLR study (Yılmaz & Tarhan, 2022)
on OSS quality models and some other studies (Hauge et al., 2009; Lenarduzzi et al., 2020;
Stol & Babar, 2010; Thapar et al., 2012) have indicated that these models have some chal-
lenges of adoption in practice. In general, as identified by our SLR study (Yılmaz & Tarhan,
2022), the quality models for OSS have arisen from the needs of evaluators, such as organiza-
tions and software practitioners; and the variety in the needs and expectations of these evalu-
ators has caused the structure of the developed models to be heterogeneous. Accordingly, the
majority of the models consists of a wide variety of information in their bodies in various
structures, as the base for specifying and evaluating OSS quality. As a consequence of this
situation, results obtained by using different OSS quality models for the same product with
the same purpose may diverge from each other, and it becomes impossible to have a common
and consistent basis for comparing the OSS quality in the community (Yılmaz & Tarhan,
2022). Considering that the results of such comparisons can be input to OSS selection and/or
adoption by companies, the importance of having a standard in terminology and modeling to
evaluate OSS quality becomes even more prominent.

In this regard, a comprehensive meta-model to guide stakeholders in specifying and
evaluating OSS quality may create and enhance a common understanding in the com-
munity. However, the results of our SLR study on meta-models for software quality and
its evaluation (SQiE) (Yılmaz & Tarhan, 2020) indicated that generally, there is a lack
of meta-models targeted for OSS quality. Meta-models are defined as models of models
with the rules needed to build specific models, so the models which are derived from the
meta-models could have homogenous structures and common terms. In other words, meta-
models are important because they enable to standardize model development (Garcia et al.,
2007; Wagner et al., 2015). Standardization assists organizations to interoperate using

723Software Quality Journal (2023) 31:721–773

1 3

engineering discipline with agreed and well-recognized practices and technologies (Garcia
et al., 2006; Ramamoorthy et al., 1984). Accordingly, results obtained from different mod-
els for the same purpose can be compared.

In order to develop a comprehensive meta-model of OSS quality, first, the software
quality meta-models in literature should be analyzed. Despite the fact that researchers have
developed quality meta-models for different types of software (e.g., OSS (Mens et al.,
2011), custom (Mohagheghi & Dehlen, 2008), and commercial-of-the-shelf (Wagner
et al., 2012), concepts and terminology used in these meta-models differ among them
(Garcia et al., 2009; Nistala et al., 2019; Yılmaz & Tarhan, 2020). Throughout this study,
the reader should consider that the term “software quality meta-model (SQMM)” or
“meta-model” correspond to the quality of all types of software, unless it is indicated that
it corresponds to specific type of software (e.g., OSS). The same is also true for the term
“software quality model.” Specifically, the abbreviation for our initial meta-model devel-
oped within the scope of this study is indicated as OSS-QMM (Open Source Software
Quality Meta Model). Inconsistencies among the terms of the SQMMs prevent standardi-
zation of software quality measurements so that results cannot be compared and the cur-
rent state of the software products cannot be improved. For example, some terms are used
interchangeably among the SQMMs (e.g., metric vs. measure) or the same terms can be
named differently in different SQMMs (e.g., factor vs. measurable concept). In parallel
to the efforts for international standardization such as ISO/IEC 15939 (2007), software
measurement terminology continues to be defined, consolidated, and agreed upon. Inter-
national standards that were proposed once upon a time (i.e., withdrawn or replaced) for
software quality or measurement caused a lack of consensus on the terminology and con-
cepts used in this field (Bertoa et al., 2006; Garcia et al., 2006; Ruiz et al., 2003). Conse-
quently, inconsistencies and terminology conflicts appeared even between international
standards (Garcia et al., 2006; Rout, 1999), and the inconsistencies in the terminology of
them were reflected in the SQMMs.

To cope with the aforementioned challenges, in this study, the systematic research pro-
cess has been followed toward proposing an initial meta-model of OSS quality. In this con-
text, first of all, since inconsistencies among the terminology of international standards are
reflected in the SQMMs, the terms of the SQMMs have been analyzed with respect to the
terms of international standards for software quality and measurement. Then, the terms
of the software quality models have been analyzed to elicit the inconsistencies among the
terms of the quality models. Then, a matching has been performed between the terms of
the quality models for OSS and the terms of the SQMMs. As a result of this systematic
process, an initial meta-model has been proposed for defining and evaluating OSS quality.
Finally, initial validation of the proposed meta-model has been performed over an example
evaluation.

More specifically, the contributions of this study to the literature can be listed as
follows:

• Comparative analysis of concepts and terms used in SQMMs has contributed to harmo-
nizing the terms and concepts of different SQMMs, and also has formed the basis for
proposing an initial OSS-QMM.

• The investigation on how the terms used in the SQMMs are expressed in the referenced
standards has also contributed to eliminating inconsistencies in the international stand-
ards proposed so far.

724 Software Quality Journal (2023) 31:721–773

1 3

• The terminology in the quality models of OSS has been mapped with the terminology
of the SQMMs, which has contributed to the resolution of the terminology conflicts
between the quality models of OSS and the SQMMs.

• The initial OSS-QMM will allow to develop OSS quality models that are flexible
enough to apply in various business domains, and that fulfill the needs of stakeholders,
allow to obtain comparable results, cover various aspects of quality, etc.

• Since the initial OSS-QMM has been proposed considering the common structure of
important OSS quality models, similar quality models to be proposed in the future
using this initial OSS-QMM will have the chance of adopting a standard structure.

This study can be beneficial for two types of audiences: first, for OSS evaluators who
may be confused by inconsistent terminology in the existing SQMMs; second, standard
or meta-model developers for OSS quality, who will propose new meta-models or inte-
grate consistent terms into the existing meta-models. Overall, this study has an effort to
contribute to the provision of “coherent” and “consistent” terminology for OSS-specific
meta-models.

The rest of this article is organized as follows: In Sect. 2, the background that forms the
basis for the development process of the OSS-QMM is given. In Sect. 3, related studies
in our scope are briefly discussed. In Sect. 4, the methodology followed in the develop-
ment of the initial OSS-QMM is explained. In Sect. 5, the development process is elabo-
rated, the OSS-QMM is presented, its initial validation is provided, and potential threats
to its validity are discussed. Finally, in Sect. 5.6, conclusions and plans for future work are
presented.

2 Background

A systematic way has been followed for the initial OSS-QMM developed within the scope
of this study, as detailed in Sect. 4. In order to create a solid basis for the steps of this
systematic process and to understand the structures used in this process, background anal-
ysis has been performed with the help of the literature in this section. It is essential to
analyze the existing related quality models and meta-models in the literature in order to
develop a meta-model fit to purpose (Othman & Beydoun, 2010; Wagner et al., 2012).
In this context, first of all, the current situations and deficiencies of the existing SQMMs
are analyzed in Sect. 2.1. This section has formed the infrastructure for the analyses per-
formed in Sect. 5.1. Then, the quality models are addressed according to their structures,
together with an analysis of which model was derived from which other, by considering
basic and tailored models, in Sect. 2.2. These analyses have formed the basis for the pro-
cess of obtaining the common structure of quality models, as explained in Sect. 5.2. Then,
since the inconsistencies between the terms of the meta-models arise from the measure-
ment standards and proposals, these sources are explained and analyzed in Sect. 2.3. This
analysis is important to ensure that the matching process performed in Sect. 5.3 and the
concepts of the OSS-QMM developed and explained in Sect. 5.4 are consistent. Finally, in
Sect. 2.4, information is given about the MOF standard (2019) that has been used as a basis
in our OSS-QMM development process.

725Software Quality Journal (2023) 31:721–773

1 3

2.1 Software quality meta‑models (SQMMs), including OSS quality meta‑models

In this section, the current situation of meta-models for OSS quality will be explored based
on literature search. The SQMMs are important because they allow to standardize quality
models and, thus, they create a common understanding between stakeholders for proper
quality management throughout the entire life of a software product. Also, the SQMMs
allow us to see a more complete picture of software quality and to represent concepts of
software quality more formally (Wagner et al., 2015). Despite the fact that SQMMs are
important for specifying and evaluating the quality of software products, research on
SQMMs for OSS quality are not at the desired level in terms of mainly three deficiencies:

1. Few number of meta-models and their adoption in the community,
2. Lack of depth in their content, and
3. Inconsistent terminology among them.

The results of the SLR study (Yılmaz & Tarhan, 2020) verify the first two deficien-
cies that the number of meta-models for OSS quality is low and that their content remains
shallow. Also, the results in that SLR study have triggered us to examine inconsistencies
between the terms of the meta-models. Thus, we are currently reporting this research to
verify the third deficiency, that is, the inconsistency in their terminologies. In this regard,
inconsistencies, commonalities, and terminology conflicts in the SQMMs proposed for
OSS and custom type of software have been analyzed and verified, as explained in detail
in Sect. 5.1. In the SLR study (Yılmaz & Tarhan, 2020), a total of 28 meta-models were
analyzed, and the results indicated that only two meta-models (Eghan et al., 2019; Mens
et al., 2011) were developed for evaluating OSS quality and that their evaluation aspect was
not widely explored. In the first study (Mens et al., 2011), only few elements were defined
in the meta-model to evaluate the quality of evolving OSS systems. In the second study
(Eghan et al., 2019), a meta-model was proposed to measure the quality of external OSS
libraries in terms of trustworthiness. Therefore, it became apparent from the review results
that has been no comprehensive meta-model proposed for OSS quality and the need to
define one have remained open.

In the SLR study (Yılmaz & Tarhan, 2020), methods used to validate meta-models in
the studies were also examined since the maturity of the meta-models is related to their
validation. The results indicated that 13 of meta-models were validated by case studies, 6
by toy experiments, 4 by peer reviews by experts, and 1 by pilot project application. How-
ever, 5 studies did not explicitly mention the method of validation, and 1 did not use any
validation method. It should be stated that a study might have used more than one valida-
tion method for its meta-model. Also, among all 28 meta-models analyzed in the SLR,
the two meta-models proposed for OSS were both validated by designing case studies. An
important finding out of these results was that a real-world case has not been used by the
studies to validate their meta-models. Another important finding was that maturity of the
meta-models and adoption of the meta-models in practice have remained limited.

2.2 Software quality models (SQMs), including OSS quality models

Software quality is vital for diverse types of organizations, so developing high-quality
software in a cost-effective and timely manner has become a major challenge in software
engineering (Suman & Rohtak, 2014). This is not a current issue and studies have been

726 Software Quality Journal (2023) 31:721–773

1 3

conducted on software quality for years. As technology in the software industry is con-
stantly evolving, expectations from software quality are constantly changing. Therefore,
an array of quality models is observed to measure and evaluate software quality, and the
evolution of them over years is shown in Fig. 1. As seen from the figure, quality models are
classified as basic quality models developed until 2001 and tailored quality models devel-
oped after this year (Miguel et al., 2014; Sadeghzadeh & Rashidi, 2017). Detailed informa-
tion is given in Sect. 2.2.1.2 for both basic and tailored quality models, which is important
to understand the structure and content of quality models proposed for OSS, prior to the
matching process between terms of OSS quality models and SQMMs. Also, it is important
in shaping the structure of an initial OSS-QMM quality developed within the scope of this
study and in shaping the structure of SQMMs to be developed in the future.

The primary motivation behind this study is to enable the proposal of standardized qual-
ity models that can perform comparable measurements for OSS. In this context, SQMMs
are important because they may be used to standardize the quality models. To propose a
comprehensive quality meta-model, the structure of existing quality models must be well
understood since the quality models are the instances of the SQMMs. In this regard, we
have conducted an SLR study (Yılmaz & Tarhan, 2022) to characterize the existing qual-
ity evaluation models or frameworks (QEMoF) for OSS and to examine comprehensively
their content and structure for identifying the gap between theory and practice. In this SLR
study, the results are presented together with evaluation factors (EFs), which are used to
assign a quality score for each OSS quality model. Among the OSS quality models with
the highest scores in this study, the most cited and used five OSS quality models in the
literature have been determined and listed in the last five rows of Table 1. Also, due to their
importance in the community, the OSS quality models examined within the scope of this
study have been the subjects to the systematic studies (i.e., systematic mappings and sys-
tematic literature reviews) such as (Adewumi et al., 1936; Lenarduzzi et al., 2020) and to
the comparison studies such as (Haaland et al., 2010; Jean-Christophe & Alexandre, 2008;
Zahoor et al., 2017). These models fall into the “tailored” quality models category because
of their construction based on the basic quality models (e.g., ISO/IEC 9126, 2001, Boehm
et al., 1978) and due to their particular application domains (e.g., a specific quality char-
acteristic of OSS product (Duijnhouwer & Widdows, 2003; Wasserman & Chan, 2006).

Fig. 1 Basic and tailored quality models over the years (quality models in bold text indicate OSS quality
models)

727Software Quality Journal (2023) 31:721–773

1 3

Basic quality models, on the other hand, were mostly adopted for commercial products and
therefore overlooked some specific properties of OSS. Nevertheless, the basic quality mod-
els, in addition to the OSS specific ones, have also been analyzed in this research for sev-
eral reasons: they have been widely studied in the literature, have provided partial evalua-
tion for OSS quality, and have formed the basis of the OSS quality models thanks to their
well-designed structure. In the SLR study (Yılmaz & Tarhan, 2022), the basic models that
OSS quality models refer to have been investigated as well. The results have indicated that
most of the OSS quality models are based on the basic models given in Table 1. Also, due
to their importance, they are the most cited and used basic quality models in the literature.
Consequently, a total of ten quality models, the first five being the basic quality models
and the next five being the quality models tailored as specific to OSS, have been analyzed
in this study (as already listed in Table 1). Among the basic models, ISO/IEC 9126 quality
model was withdrawn and replaced by ISO/IEC 25010 which has many common quality
characteristics with it. However, within the scope of this research, ISO/IEC 9126 has been
included rather than ISO/IEC 25010 since the results of the SLR study have indicated that
the majority of OSS quality models were directly derived from ISO/IEC 9126, and there
has been no model yet derived from ISO/IEC 25010. In the following sub-sections, the
structure of the quality models will be classified before their structural analysis is carried
out in Sect. 5.2. This way, a solid basis is formed for developing the OSS-QMM.

2.2.1 Classification of quality models

Many quality models have been proposed in literature, which serve the same application
domain and even the same type of software products. As such, it has become a challenging
task to compare the results of the measurements performed by using these quality models.
Likewise, there are many quality models in the literature for evaluating OSS. Therefore,
before proposing further quality models for OSS, it is necessary to review and classify
the quality models that were proposed in the past and whose results cannot be currently
compared. More specifically, developing a comprehensive OSS-QMM may support the
development or revision of the OSS quality models with a standard structure, content, and
terminology, and in turn, may reduce potential conflicts and confusion in future proposals.

Table 1 Classification of software quality models w.r.t. structural and basic/tailored properties

Model/category Structural Basic and tailored

Hierarchical Dynamic Basic Tailored Based on (if tailored)

McCall ✓ ✓
Boehm ✓ ✓
Dromey ✓ ✓ ✓
Furps ✓ ✓
ISO/IEC 9126 ✓ ✓
OSMM ✓ ✓ ISO/IEC 9126
QSOS ✓ ✓ ISO/IEC 9126
OpenBRR ✓ ✓ ISO/IEC 9126 and OSMM
SQO-OSS ✓ ✓ ISO/IEC 9126 and OSMM
QualOSS ✓ ✓ OSMM, OpenBRR and QSOS

728 Software Quality Journal (2023) 31:721–773

1 3

In this context, examining the structure of the previously proposed quality models in detail
will support the validity, consistency, and comprehensiveness of the OSS-QMM to be
developed. Accordingly, in this section, classification and analysis are performed before
eliciting common structures of the quality models that have been proposed for OSS quality
or taken as the basis for their development. Structural classification enables realizing the
importance of the hierarchical structure used in quality models and establishing a com-
mon structure of the quality models on this basis. Basic and tailored classification enables
understanding the basics of the OSS quality models, examining of well-designed quality
models as well as OSS quality models and thus, shaping the structure of the OSS-QMM.
Classification according to the evaluation aspect enables understanding of the OSS aspects
evaluated in OSS quality models and shaping the content of the OSS-QMM.

2.2.1.1 Structural classification In literature, each quality model is composed of a set
of building blocks including quality objectives, factors, criteria, sub-criteria, and metrics
(Sadeghzadeh & Rashidi, 2017). The names of these building blocks may vary in different
models. For example; characteristic, attribute, or factor can be used interchangeably. The
organization of these building blocks and their interactions with each other are examined as
a structural classification (Wagner, 2008). In this context, quality models examined in this
study are classified as having hierarchical or dynamic structures.

Hierarchical quality models are the models that build the quality of the software in a
hierarchical structure of building blocks. The main purpose of this structure is to decom-
pose the concept of quality into some quality attributes so that each attribute covers a cer-
tain aspect of product quality (Sadeghzadeh & Rashidi, 2017). In hierarchical quality mod-
els, quality attributes are generally quite abstract, so it is not possible to evaluate these
attributes directly. Therefore, these are decomposed into less abstract forms known as sub-
attributes. For example, in ISO/IEC 25010 quality model, the “maintainability” attribute,
which can be defined as “the ease of change to the desired properties of software after
its delivery,” is decomposed into five sub-attributes of modifiability, reusability, testabil-
ity, analyzability, and modularity. Considering that these sub-attributes are still abstract
and cannot be measured directly, it is necessary to associate each sub-attribute with a set
of metrics that enable concrete measurements. Although these metrics provide concrete
results within the quality models, interpretation of the results obtained is not easy as they
are not fully covered in all the quality models. The list of the quality models with a hierar-
chical structure is included in Table 1.

Dynamic quality models state that the quality evaluation process of each software prod-
uct is different and that dynamic development of quality attributes for the evaluation pro-
cess is required. This type of models such as (Dromey, 1995) focuses on the relationship
between attributes and sub-attributes to provide flexibility in the evaluation of different
software products (Al-Badareen et al., 2011). Although the dynamic quality models are
not as comprehensive and abstract as the meta-models, they support the meta-modeling
logic because they provide flexibility in the evaluation process. More specifically, the
dynamic models concentrate on the relationship between building blocks such as attributes
and sub-attributes, while meta-models are comprehensive enough for creating consistent
quality models and focus on a variety of building blocks covering all quality engineering
tasks (Sadeghzadeh & Rashidi, 2017). The only quality model that falls into this category
is Dromey’s quality model (Dromey, 1995). As also shown in Table 1, a quality model can
fall into more than one category in structural classification.

729Software Quality Journal (2023) 31:721–773

1 3

2.2.1.2 Basic and tailored classification Basic quality models developed until 2001 are the
models that mostly focus on comprehensive evaluation and that aim to evaluate software
products from many aspects (Miguel et al., 2014). This type of quality models is generally
stand-alone which means quality-related aspects determined by these models are based on
their approach. Accordingly, a set of factors, criteria, and metrics are structured with the
guidance of the determined aspects. Since basic models are the first known quality models,
they are mostly considered as definition models that investigate meanings of quality for
products aside from evaluating quality. Basic models form the basis of the tailored models,
thanks to their well-designed structure. However, these quality models mostly have been
adopted to commercial software (e.g., COTS) and have overlooked some specific properties
of OSS (e.g., community-based aspects) (Adewumi et al., 1936; Khatri & Singh, 2016).
Thus, they do not provide sufficient support for assessing the quality of OSS (Adewumi
et al., 2019; Miguel et al., 2014; Samoladas et al., 2008). Basic models are already shown in
Fig. 1 and also listed in Table 1.

Tailored quality models developed after 2001 are mostly specific for a particular domain
of application and focus on evaluating specific types of software products such as OSS
(Miguel et al., 2014). In general, they are derived from the basic models by making some
modifications to certain parts of the basic models. Tailored quality models have been pro-
posed for the needs of organizations or software practitioners to perform a specialized
evaluation on individual components (Miguel et al., 2014; Sadeghzadeh & Rashidi, 2017).
For example, the MIDAS quality model proposed by Siemens (Siemens company, website
url:https:// www. sieme ns. com/ global/ en. html, xxxx) is used to design software products
in their infrastructure in the industry. Consistent measurement results cannot be expected
from such tailored models created within the needs of users unless these kinds of models
are standardized. Like the basic models, tailored models are shown in Fig. 1 and also listed
in Table 1. In addition, Table 1 shows in its rightmost column which quality models are
based on which other quality models. As also seen in that column, a tailored model could
be derived from more than one basic or tailored model.

2.2.1.3 Classification according to evaluation aspect and the evaluated characteristic The
quality models determined within the scope of this study are classified according to their
evaluation aspects and key quality characteristics they possess, as shown in Fig. 2. The qual-

Fig. 2 Classification w.r.t. evaluation aspects and quality characteristics of A OSS quality models and B
basic quality models. M, Maintainability; R, reliability; F, functionality; P, performance; O, operability; Se,
security; Ef, effectiveness; C, compatibility; T, transferability; U, usability; Ei, efficiency; Sa, satisfaction;
Sf, safety; Mc, maintenance capacity; Su, sustainability; Pm, process maturity

http://www.siemens.com

730 Software Quality Journal (2023) 31:721–773

1 3

ity characteristics used in the quality models are classified with respect to the quality char-
acteristics of ISO/IEC 25010, which is the latest quality model. Also, some quality charac-
teristics such as maintenance capacity, sustainability, and process maturity (Adewumi et al.,
1936; Yılmaz & Tarhan, 2022) that belong to the community side of OSS are included.
Abbreviations of the quality characteristics evaluated in each quality model are given just
below the figure. As seen in Fig. 2A, in order to evaluate the quality characteristics, the
OSS quality models allow measuring the code-based aspect, the community-based aspect,
or both aspects of the OSS product. However, the situation is different in basic quality mod-
els since they do not provide sufficient support for evaluating the quality of OSS. This is
because the basic quality models are mostly adapted for commercial products and overlook
some specific properties of OSS, e.g., community properties (Adewumi et al., 2019; Yılmaz
& Tarhan, 2022). As it is not possible to obtain public information about the development
details of the commercial software, the basic models group the quality characteristics con-
sidering the quality of the product output, as seen in Fig. 2B. For example, they group
characteristics under “quality in use” considering quality when using the product, or under
“product transition” considering adaptability of the product to new environments, etc. In
Fig. 2B, these high-level characteristics covered by the models are specified using color-
coding. Although the OSS quality models have been derived from the basic models, they
fall apart from them at this point. That is, several types of data can be accessed with regard
to the development details, such as code-based and community-based aspects, in OSS qual-
ity evaluation since the source code is open and historical data are stored in various cloud
repositories (e.g., GitHub) belonging to the community (Adewumi et al., 2019; Yılmaz &
Tarhan, 2022). Therefore, OSS quality models have modified their content to use all these
relevant data for evaluation. We should note that the classification presented in this sub-
section has served as a base for understanding the OSS aspects evaluated by the OSS quality
models and for shaping the concepts of the OSS-QMM concerning these aspects.

2.3 Standards for software measurement

In this section, general information about the measurement standards or proposals that
were taken as the basis of the SQMMs is given and some inferences are made about them.
One of the primary goals of software engineering is to release high-quality software to
the market. Software measurement is at the core of software engineering since improv-
ing the quality of software without measuring is impossible. In this context, a number of
international standards and research proposals have been released to measure the quality of
software. Standardization is essential for meaningful measurement since it enables to com-
pare measurement results, with the pre-requisite that vocabulary in measurement standards
or proposals are consistent. The standards and research proposals to measure the quality
of software have emerged in time sequence and some have overwritten the others. Con-
sequently, inconsistencies in their terminology have been reflected in various studies that
proposed the SQMMs.

Software measurement is an ongoing process, and approaches, methods, and termi-
nologies of software measurement continue to be defined, consolidated, and agreed. The
important organization and standardization bodies such as ISO, IEC, and IEEE have devel-
oped many international standards for software engineering. There is a large number of
the international standards developed by only ISO for measuring software processes and
products, as presented in Fig. 3.

731Software Quality Journal (2023) 31:721–773

1 3

Considering also the international standards proposed by organizations other than ISO
and the research proposals related to software measurement, it is not surprising that there
is inconsistency in the concepts and terminology used in this field due to the large number
of sources. Terminology conflicts and inconsistencies appear not only among the interna-
tional standards of different organizations but also among those of the same organization
(Garcia et al., 2006). Inconsistencies, commonalities, and terminology conflicts in all these
sources are reflected in SQMMs because they are created by adopting the terminology and
concepts from the international standards.

The SLR study (Yılmaz & Tarhan, 2020) that we performed to understand the structure
and content of the meta-models for software quality and its evaluation (SQiE) has provided us
with the opportunity to investigate the content and terminology of the meta-models. Comple-
mentary to that, in this study, it has been attempted to determine the international standards
whose terminology is largely referenced by the SQMMs that have been proposed for OSS
and custom type of software. In accordance with this purpose, ISO/IEC 14598 (Software
Engineering-Product Evaluation) (1999), ISO/IEC 15939 (Software Engineering-Software
Measurement Process) (2007), and VIM (International Vocabulary of Basic and General
Terms in Metrology) (1993) are determined from ISO and IEC organizations. Also, IEEE
1061 Software Quality Metrics Methodology (1998) and IEEE 610.12 (1990) are determined
from the IEEE organization. Descriptions of these international standards are overviewed in
Table 2. The use of terminology of these standards in the SQMMs and terminology conflicts
among the standards will be discussed in Sect. 5.1.

In addition to the standards mentioned above, some research proposals by Kitchenham
et al. (2001), Briand et al. (2002), and Kim (1999), all related to software measurement,
are included in this study since terminology of these proposals has been adopted by some
SQMMs such as (Garcia et al., 2007). Thus, terminology conflicts among the research pro-
posals related to software measurement are also addressed in this work. Descriptions of
these proposals are included in Table 2, as the descriptions of the international standards.

The international standards and research proposals related to software measurement and
quality can be classified under three main categories according to particular topics they
address (Garcia et al., 2006): software measures, measurement processes, and targets and
goals, which are respectively denoted by C1, C2, and C3 in Table 2. The first category of

Fig. 3 Main relationships between the ISO/IEC standards of software quality and software measurement,
and their relation with the CMMI model, as adapted from Czarnacka (2009)

732 Software Quality Journal (2023) 31:721–773

1 3

Ta
bl

e
2

 S
ta

nd
ar

ds
 a

nd
 p

ro
po

sa
ls

 w
ho

se
 te

rm
in

ol
og

y
is

 re
fe

re
nc

ed
 b

y
SQ

M
M

s

C
1

so
ftw

ar
e

m
ea

su
re

s,
C

2
m

ea
su

re
m

en
t p

ro
ce

ss
, C

3
ta

rg
et

 a
nd

 g
oa

ls
, Y

 y
es

, N
 n

o,
 P

 p
ar

tia
lly

St
an

da
rd

/p
ro

po
sa

l
C

1
C

2
C

3
D

es
cr

ip
tio

n

IE
EE

 6
10

.1
2

(1
99

0)
Y

N
N

It
is

 a
 st

an
da

rd
 th

at
 is

 u
se

d
as

 a
 g

lo
ss

ar
y

of
 S

of
tw

ar
e

En
gi

ne
er

in
g

te
rm

in
ol

og
y.

 T
hi

s s
ta

nd
ar

d
fo

cu
se

s o
n

th
e

de
fin

iti
on

 o
f t

er
m

s o
nl

y,
 re

ga
rd

le
ss

 o
f t

he
ir

re
la

tio
n

to
 so

ftw
ar

e
m

ea
su

re
m

en
t

V
IM

 (1
99

3)
Y

N
N

It
is

a
sta

nd
ar

d
th

at
 in

cl
ud

es
 m

an
y

te
rm

s o
f s

ub
je

ct
s r

el
at

ed
 to

 so
ftw

ar
e

m
ea

su
re

m
en

t.
A

lth
ou

gh
 it

 is
 n

ot

fo
cu

se
d

on
 so

ftw
ar

e
m

ai
nl

y,
 it

 is
 u

se
d

to
 d

efi
ne

 so
ftw

ar
e

m
ea

su
re

m
en

t c
on

ce
pt

s i
n

lit
er

at
ur

e
by

 m
an

y
stu

di
es

sin

ce
 te

rm
s a

re
 d

efi
ne

d
co

m
pl

et
el

y
an

d
in

 d
et

ai
l

IE
EE

 1
06

1
(1

99
8)

P
P

P
It

is
 a

 st
an

da
rd

 th
at

 e
na

bl
es

 to
 o

bt
ai

n
qu

al
ity

 re
qu

ire
m

en
ts

, a
nd

 a
ls

o
en

ab
le

s t
o

id
en

tif
y,

 im
pl

em
en

t,
an

al
yz

e,

an
d

va
lid

at
e

fo
r q

ua
lit

y
m

ea
su

re
s o

f s
of

tw
ar

e.
 It

 c
an

 b
e

us
ed

 b
y

al
l t

yp
es

 o
f s

of
tw

ar
e

in
 a

ny
 p

ha
se

 o
f t

he

so
ftw

ar
e

lif
e

cy
cl

e.
 It

 c
on

ta
in

s t
er

m
s f

ro
m

 a
ll

ca
te

go
rie

s,
bu

t n
ot

 c
om

pl
et

el
y

fro
m

 e
ac

h
ca

te
go

ry
IS

O
/IE

C
 1

45
98

 (1
99

9)
Y

P
N

It
is

 a
 st

an
da

rd
 th

at
 e

na
bl

es
 to

 m
ea

su
re

, a
ss

es
s,

an
d

ev
al

ua
te

 th
e

qu
al

ity
 o

f s
of

tw
ar

e
pr

od
uc

ts
. I

t e
na

bl
es

 to

pe
rc

ei
ve

 th
e

ev
al

ua
tio

n
pr

oc
es

s f
ro

m
 d

iff
er

en
t p

oi
nt

s o
f v

ie
w

 su
ch

 a
s a

cq
ui

re
rs

, d
ev

el
op

er
s,

an
d

ev
al

ua
to

rs
IS

O
/IE

C
 1

59
39

 (2
00

7)
P

Y
P

It
is

a
sta

nd
ar

d
th

at
 e

na
bl

es
 to

 d
efi

ne
 th

e
ap

pr
oa

ch
es

 n
ee

de
d

fo
r i

de
nt

ify
in

g,
 d

efi
ni

ng
, s

el
ec

tin
g,

 a
pp

ly
in

g,
 a

nd

im
pr

ov
in

g
so

ftw
ar

e
m

ea
su

re
m

en
t.

It
al

so
 d

efi
ne

s s
om

e
m

ea
su

re
m

en
t t

er
m

s t
ha

t a
re

 c
om

m
on

ly
 u

se
d

in
 th

e
so

ftw
ar

e
in

du
str

y.
It

co
ve

rs
 tw

o
m

ai
n

co
m

po
ne

nt
s a

s s
of

tw
ar

e
m

ea
su

re
m

en
t p

ro
ce

ss
 a

nd
 m

ea
su

re
m

en
t

in
fo

rm
at

io
n

m
od

el
. T

he
 so

ftw
ar

e
m

ea
su

re
m

en
t p

ro
ce

ss
 is

 e
sta

bl
ish

ed
 b

y
th

e
in

fo
rm

at
io

n
ne

ed
s o

f t
he

or

ga
ni

za
tio

n.
 T

he
 m

ea
su

re
m

en
t i

nf
or

m
at

io
n

m
od

el
 p

ro
vi

de
s a

 re
la

tio
ns

hi
p

be
tw

ee
n

in
fo

rm
at

io
n

ne
ed

s a
nd

m

ea
su

re
s.

It
de

sc
rib

es
 h

ow
 q

ua
lit

y
at

tri
bu

te
s a

re
 m

ea
su

re
d

an
d

ho
w

 d
ec

isi
on

-m
ak

in
g

is
pe

rfo
rm

ed
 b

y
us

in
g

in
di

ca
to

rs
K

im
 (1

99
9)

N
N

Y
It

is
a

m
ea

su
re

m
en

t o
nt

ol
og

y
th

at
 a

llo
w

s o
rg

an
iz

at
io

ns
 to

 ev
al

ua
te

 w
he

th
er

 th
ey

 c
om

pl
y

w
ith

 th
e

IS
O

/IE
C

90
00

sta

nd
ar

d.
 It

 is
 n

ot
 p

ro
po

se
d

pr
im

ar
ily

 fo
r s

of
tw

ar
e

pr
oc

es
se

s a
nd

 p
ro

du
ct

s b
ut

 it
 c

ov
er

s m
an

y
te

rm
in

ol
og

ie
s

th
at

 c
an

 b
e

us
ed

 fo
r m

ea
su

re
m

en
t p

ro
ce

ss
es

K
itc

he
nh

am
 e

t a
l.

(2
00

1)
N

N
Y

It
is

a
co

nc
ep

tu
al

 m
od

el
 th

at
 c

ov
er

s t
he

 d
efi

ni
tio

n
of

 m
an

y
so

ftw
ar

e
m

ea
su

re
s a

nd
 re

la
tio

ns
hi

ps
 a

m
on

g
th

em
. I

t
co

ns
ist

s o
f t

hr
ee

 c
om

po
ne

nt
s;

fir
st,

 g
en

er
ic

 c
om

po
ne

nt
s w

hi
ch

 d
efi

ne
 c

on
ce

pt
s;

se
co

nd
, d

ev
el

op
m

en
t m

od
el

co

m
po

ne
nt

s t
ha

t p
ro

vi
de

 th
e

lin
k

be
tw

ee
n

m
ea

su
re

s a
nd

 e
nt

iti
es

; a
nd

 th
ird

, p
ro

je
ct

 d
om

ai
n

co
m

po
ne

nt
s t

ha
t

pr
es

en
t t

he
 m

et
ric

 v
al

ue
s o

bt
ai

ne
d

fro
m

 p
ro

je
ct

s a
nd

 li
nk

 th
em

 to
 a

ct
ua

l i
ns

ta
nc

es
 o

f t
he

 e
nt

iti
es

Br
ia

nd
 e

t a
l.

(2
00

2)
N

N
Y

It
is

an
 a

pp
ro

ac
h

th
at

 is
 b

as
ed

 o
n

th
e

G
Q

M
 a

pp
ro

ac
h

(S
ol

in
ge

n
et

 a
l.,

 2
00

2)
 a

nd
 d

efi
ne

s m
ea

su
re

s o
f s

of
tw

ar
e

pr
od

uc
t a

ttr
ib

ut
es

. T
he

 p
rim

ar
y

go
al

 o
f t

he
 a

pp
ro

ac
h

is
no

t t
o

de
fin

e
th

e
co

nc
ep

ts,
 b

ut
 to

 re
pr

es
en

t t
he

ir
us

e
in

 th
e

G
Q

M
 p

ro
ce

ss

733Software Quality Journal (2023) 31:721–773

1 3

software measures (C1) focuses on main elements such as measures, unit of measurements,
and scale in the definition of software metrics. The second category of measurement pro-
cess (C2) focuses on the definition of terminology related to software measurement act
such as measurement methods and measurement results. The third category of target and
goals (C3) focuses on gathering concepts related to objectives and scope of the measure-
ment process, such as attribute, measurable entity, and information need. The categories
that the standards or proposals address are denoted in columns 2–4 in Table 2. In the table,
“Y” (yes) means that the standard or proposal covers the majority of the terms in that cat-
egory, “P” (partially) means that the standard or proposal covers some of the terms in that
category, and “N” (no) means that the standard or proposal does not contain any of the
terms in that category. It is seen from the table that there is no single standard or recom-
mendation that completely covers all the categories of C1, C2, and C3 (Garcia et al., 2006).
Here, it is important to note that the terminologies of standards or research proposals that
focus on the same category are not homogeneous.

Apart from the standards and research proposals that are listed in Table 2 and exam-
ined within the scope of this study, there are important models such as CMMI (Capability
Maturity Model Integration) (2010) and standards such as ISO/IEC 12207 (Standard for
Software Life Cycle Processes) (2008) and ISO/IEC 15504 (Standard for Software Pro-
cess Assessments) (2004) which was lately revised by ISO/IEC 33000 series. The relation-
ships between all these ISO/IEC standards with respect to covering software quality and
measurement, and the relationships of these standards with CMMI are also represented
in Fig. 3. It should be noted that the standards or models other than those listed in Table 2
have not been analyzed in this study although some standards were withdrawn, e.g., ISO/
IEC 14598 was replaced by ISO/IEC 25040 later. One reason for this is that the SQMMs
examined within the scope of this study have been created based on the standards or pro-
posals investigated in Table 2, as they mentioned them in their studies, as required by the
years of publications. Therefore, the most important factor for a standard or proposal to
be included in this study is that its terms have been adopted by the SQMMs. Another rea-
son is that some of the standards or models not included in this study have been defined
using the terms of the standards or proposals examined in this study and that some of them
define only the terms specific to certain domains. For example, CMMI adopts the termi-
nology of the ISO/IEC 15939 standard (2007), and functional size measurement (FSM)
standards (e.g., ISO/IEC 14143, 2012; ISO/IEC 19761, 2002) are totally aligned with VIM
(1993) (International Vocabulary of Basic and General Terms in Metrology). Also, some
standards contain terminology specific to the particular domain that is not adopted by the
SQMMs concerned in this study. For example, ISO/IEC 15504 standard includes termi-
nology such as “software process target” and “software process metric” which have been
adopted to the process assessment domain.

2.4 Meta‑object‑facility (MOF) standard

The quality models were not proposed by adhering to a certain SQMM, and this nega-
tively affects the comparison of evaluation results and, therefore, the possibility of stand-
ardization in measurement. As a solution to this problem, quality models need to be cre-
ated in the language defined by SQMMs. Information systems researchers have proposed
a variety of meta-modeling frameworks (e.g., OMG & MOF, 2019; Henderson-Sellers &
Bulthuis, 1996) in the literature. In this study, we have followed the meta-modeling frame-
work based on the Meta-Object-Facility (MOF) standard in developing our OSS-QMM.

734 Software Quality Journal (2023) 31:721–773

1 3

The abstraction levels of the MOF architecture and the levels of modeling language are
given in Fig. 4. The MOF standard has four-layered architecture that includes, from the
bottom to the up: M0 (run-time layer), M1 (model layer), M2 (meta-model layer), and M3
(meta-meta-model layer). In the MOF, the layer Mi contains an instance of the layer Mi+1
and the layer Mi+1 describes the layer Mi. That is, meta-models are defined as models of
models and a model is an instance of a meta-model. Accordingly, the model in level (i)
is written in the modeling language described by the model in level (i + 1). A modeling
language consists of its syntax, semantics, and notation. The syntax describes the elements
and rules for creating models and is described by grammar, the semantics describes the
meaning of a modeling language and consists of a semantic domain and the semantic map-
ping, and the notation describes the visualization of a modeling language. A meta-model,
therefore, allows the development of multiple models with the homogenous structure and
common terms by using the same modeling language that it proposes. Within the scope
of this research, in order to create a common OSS-QMM at layer M2 with the purpose of
standardizing OSS quality measurements, the language defined at layer M3 should be used.
Then, by using this OSS-QMM as a modeling language, OSS quality models with a com-
mon structure and terminology could be obtained as the instances of the meta-model.

3 Related work

Studies have been reported in literature on the consistency of terminologies of different
standards in this field. However, to the best of our knowledge, our study is the first one to
perform a matching process between the terms of the SQMMs and the terms of the quality
models for OSS. Also, this is the first study that investigates inconsistency among the terms

Fig. 4 Abstraction levels of models and levels of modeling languages (OMG & MOF, 2019; Karagiannis &
Kühn, 2455)

735Software Quality Journal (2023) 31:721–773

1 3

of the SQMMs. Since the terminology of the SQMMs is determined based on the measure-
ment standards emerged in time, the studies that investigate harmonization of vocabulary
used in these standards as well as the studies that investigate the terms of the meta-models
are valuable for our study. Accordingly, the studies that reveal the inconsistency of termi-
nology in different standards and also, our recent SLR study (Yılmaz & Tarhan, 2020) that
addresses the terms of the meta-models for software quality and its evaluation, are summa-
rized in this section.

García et al. (Garcia et al., 2006) conducted a study that addresses and analyzes incon-
sistent terminology, discrepancies, and gaps between software measurement proposals.
For this purpose, a few international standards and articles were examined and inconsist-
ent concepts and terminologies between them were investigated. In this context, a basic
software measurement ontology was presented to help the consistency of terminology for
standards and measurement proposals. The authors did not claim that this study would
completely resolve the inconsistency between standards and software measurement pro-
posals since it is a very challenging task. Considering the importance of standardization
and harmonization, they stated that inconsistency between standards should be focused on,
which supports the discussions in this field. In addition, the studies of Garcia et al. (2009)
and (Bertoa et al., 2006) had a similar purpose as the study (Garcia et al., 2006) outlined
above. Both also investigated inconsistent terminology between software measurement
standards and proposed a software measurement ontology.

Barcellos and Almeida Falbo (2013) stated that there is a semantic interoperability
problem in literature since it is a challenging task to jointly use different measurement-
related standards. Thus, they aimed to support the semantic integration of software applica-
tions that support measurement (Barcellos & Almeida Falbo, 2013). In accordance with
this purpose, they proposed a software measurement task ontology (SMTO) to establish
a common conceptualization that considers the software measurement process. The pro-
cess of software measurement is very diverse and complex, so this ontology considers only
core activities such as measurement planning, execution, and analysis. The authors used
this task ontology to harmonize the process of software measurement addressed in ISO/
IEC 15939 (2007), PSM (Mcgarry et al., 2002), ISO/IEC/IEC 12207 (2008), and CMMI
(2010). In addition, the study of Barcellos et al. (2010) had a similar purpose as the study
(Barcellos & Almeida Falbo, 2013) outlined above, and also proposed a software measure-
ment ontology to contribute to the semantic interoperability problem of standards.

Chirinos et al. (2005) stated that software measures generally are poorly defined in the
industry and this causes the collected data to be invalid and incomparable. Therefore, it is
not considered sufficient whether a definition is theoretically correct for just one measure-
ment and also, everyone should understand what the measured values represent (Chirinos
et al., 2005). In order to define software measures used in literature and to contribute to
performing reliable and comparable measurements, the authors presented a data MOdel for
Software MEasurement (MOSME) which is a conceptual model and describes a consistent
measurement process. This model focused on the definition of terminology which is used
in software measurement and it supported ISO/IEC 15939, ISO/IEC 14598, and also Goal
Question Metric (GQM) (Solingen et al., 2002) approach.

Yilmaz and Tarhan (2020) conducted a systematic literature review (SLR) study to
address in detail the structure and content of the meta-models developed for software
quality and its evaluation (SQiE). The motivation for the SLR study was the fact that
meta-models are important for standardization, harmonization, and consistency of soft-
ware measurement. The study examined the meta-models from many aspects, but the
most important contribution and motivation related to our current study are that it

736 Software Quality Journal (2023) 31:721–773

1 3

addressed the terms used in the meta-models and provided the frequency of use of these
terms in the included meta-models. Therefore, the study triggered the investigation of the
inconsistency of the terms in the meta-models and also in the standards since the terms
of the meta-models were determined based on the measurement standards appeared in
time.

As seen above, efforts have been put to eliminate the inconsistencies between differ-
ent standards and to make the software measurements reliable and comparable. Since the
SQMMs are of great importance for the standardization of the quality models, an effort has
been spent to eliminate the inconsistencies between meta-models of OSS quality, unlike
others, in this study. Therefore, this study is expected to have an important role that soft-
ware quality meta-models proposed in the future will have consistent and coherent termi-
nology and concepts.

4 Methodology

In this section, the methodology followed in developing the OSS-QMM is explained. The
OSS-QMM is a set of constructs and their relationships identified as quality modeling lan-
guage, which corresponds to the M2 layer (i.e., meta-model level) of the MOF architecture
given in Fig. 4. In this regard, by considering the MOF architecture, an iterative, step-based
process for meta-model creation has been adapted from Beydoun et al. (2009) and Othman
et al. (2014), as shown in Fig. 5. This process has been used by several other studies in the
literature such as (Al-Dhaqm et al., 2017; Othman & Beydoun, 2010). As seen from the
figure, the development process of the OSS-QMM is iterative with a continuous refinement
of new concepts. A systematic process is followed in development and each step of the pro-
cess is explained in the following sub-sections briefly.

4.1 Literature search‑1 (step 1)

In order to develop a complete SQMM, the structure and content of the existing quality
meta-models in the literature should be well understood. In this context, an SLR study
(Yılmaz & Tarhan, 2020) was performed and a total of 28 SQMMs were analyzed. This
enhances our domain awareness as recommended in Beydoun et al. (2009) as an initial step
for any meta-modeling process. This SLR study addressed the frequency of use of concepts

Fig. 5 Development methodology of the OSS-QMM

737Software Quality Journal (2023) 31:721–773

1 3

in the included meta-models and showed that there are inconsistencies between the terms
of the meta-models. Therefore, in our current study, a detailed analysis has been performed
to eliminate these inconsistencies. The origins of these terms have been explored and these
terms have been analyzed based on international standards (as later shown in Table 3 in
Sect. 5.1). As a result, the output of step 1 has formed the basis of shaping the content of
our OSS-QMM.

4.2 Literature search‑2 (step 2)

This step covers gathering the knowledge sources to be used, as in step 1. In order to
develop a complete SQMM, the structure and content of the existing quality models in the
literature should be analyzed, since the quality models are the instances of the SQMMs.
In this context, we have performed another SLR study (Yılmaz & Tarhan, 2022) and ana-
lyzed a total of 36 quality evaluation models or frameworks (QEMoF) proposed for OSS.
This SLR study has examined the QEMoF from many aspects, but one of the most impor-
tant findings is that there is little or no adoption of these models/frameworks in practice.
Other secondary studies (Adewumi et al., 1936; Lenarduzzi et al., 2020) also support this
situation. As revealed in the SLR study (Yılmaz & Tarhan, 2022), this is because quality
models moved away from standardization and turned into individual models. That is, OSS
quality models vary in terms of the software aspects they evaluate, subjective and objective
evaluations, the quantitative and qualitative evaluations, the aggregation techniques, the
level of user skill in using the model, the data type of the evaluation results provided to the
user, and so on. All this diversity has led to the proliferation of individual heterogeneous
quality models. Therefore, in our current study, the OSS quality models are aimed to have
a common structure in order to eliminate this heterogeneity. In this context, a total of 10
quality models have been determined, and the process of determining these quality models
is explained in Sect. 2.2. The results of our second SLR study (Yılmaz & Tarhan, 2022)
have revealed that most of the OSS quality models have a hierarchical structure, as already
shown in Table 1. Therefore, we have observed that all the quality models are based on
a common structure consisting of five levels (as later given in Table 4 in Sect. 5.2). As a
result, the output of Step 2 has formed the basis of shaping the structure of our OSS-QMM.

4.3 Mapping process (step 3)

As a result of the analysis performed in step 1, the inconsistencies between the terminolo-
gies of the meta-models have been analyzed according to their meanings in the related
meta-models and international standards. This analysis has provided knowledge about the
meanings of the terms to be used in the OSS-QMM to be developed, in other words, its
semantics. In step 2, the structure of the quality models has been analyzed and this anal-
ysis has provided knowledge about the structure of the OSS-QMM to be developed, in
other words, its syntax. Then, the concepts of the quality meta-models should be matched
to the terms of the quality models since models are defined as instances of meta-models
according to the MOF architecture (Facility and (MOF) 2019). In this regard, a level-based
matching process has been carried out in iterations, as already shown in Fig. 5. That is,
during the matching process, a series of meetings have been held between the authors of
this article, and as a result of these iterations, the final version of the matching has been

738 Software Quality Journal (2023) 31:721–773

1 3

Ta
bl

e
3

 L
ist

 o
f t

er
m

s i
n

SQ
M

M
s a

nd
 a

na
ly

si
s o

f t
he

ir
in

co
ns

ist
en

ci
es

C
at

eg
or

y
of

 S
Q

M
M

 e
le

m
en

t
Pr

op
er

tie
s o

f t
er

m
s

Sy
no

ny
m

s i
n

di
ffe

re
nt

SQ

M
M

s
Sy

no
ny

m
s i

n
di

ffe
re

nt

st
an

da
rd

s
So

ur
ce

 o
f t

er
m

s
St

an
da

rd
s

de
fin

in
g

te
rm

s
di

ffe
re

nt
ly

V
ie

w
po

in
t

N
ew

 te
rm

V
ie

w
Q

ua
lit

y
go

al
Q

ua
lit

y
re

qu
ir

em
en

t
N

ew
 te

rm
D

ev
el

op
m

en
t p

ha
se

N
ew

 te
rm

In
fo

rm
at

io
n

ne
ed

A
do

pt
ed

 te
rm

N
ee

d
Pu

rp
os

e
Ta

rg
et

Br
ia

nd
: C

or
po

ra
tiv

e
ob

je
ct

iv
e

K
im

: Q
ua

lit
y

re
qu

ire
m

en
t

IS
O

/IE
C

 1
59

39
Br

ia
nd

K
im

IS
O

/IE
C

 1
59

39
K

im

En
tit

y
A

do
pt

ed
 te

rm
Q

ua
lit

y
en

tit
y

En
tit

y
ty

pe
M

ea
su

ra
bl

e
en

tit
y

A
rti

fa
ct

C
om

po
ne

nt
En

tit
y

cl
as

s
So

ftw
ar

e
en

tit
y

K
itc

he
nh

am
: P

ro
je

ct

ob
je

ct
 o

cc
ur

re
nc

e
IS

O
/IE

C
 1

59
39

Br
ia

nd
K

itc
he

nh
am

K
im

IE
EE

 6
10

.1
2

IE
EE

 6
10

.1
2

IS
O

/IE
C

 1
59

39

A
gg

D
er

iv
at

io
n

N
ew

 te
rm

Be
ha

vi
or

N
ew

 te
rm

Q
ua

lit
y

m
od

el
A

da
pt

ed
 te

rm
Q

ua
lit

y
fr

am
ew

or
k

Q
ua

lit
y

K
itc

he
nh

am
:

D
ev

el
op

m
en

t m
od

el
K

im
: E

nt
er

pr
is

e
qu

al
ity

m

od
el

IE
EE

 1
06

1:
 M

et
ric

s
fr

am
ew

or
k

IS
O

/IE
C

 1
45

98
K

itc
he

nh
am

K
im

IE
EE

 6
10

.1
2

IS
O

/IE
C

 1
4,

59
8

K
im

IE
EE

 6
10

.1
2

739Software Quality Journal (2023) 31:721–773

1 3

Ta
bl

e
3

 (c
on

tin
ue

d)

C
at

eg
or

y
of

 S
Q

M
M

 e
le

m
en

t
Pr

op
er

tie
s o

f t
er

m
s

Sy
no

ny
m

s i
n

di
ffe

re
nt

SQ

M
M

s
Sy

no
ny

m
s i

n
di

ffe
re

nt

st
an

da
rd

s
So

ur
ce

 o
f t

er
m

s
St

an
da

rd
s

de
fin

in
g

te
rm

s
di

ffe
re

nt
ly

C
ha

ra
ct

er
ist

ic
A

da
pt

ed
 te

rm
A

ttr
ib

ut
e

Fa
ct

or
Pr

op
er

ty
Q

ua
lit

y-
ca

rr
yi

ng
 p

ro
pe

rty
Fa

ct
Q

ua
lit

y
as

pe
ct

Q
ua

lit
y

fa
ct

or

V
IM

: M
ea

su
ra

bl
e

qu
an

tit
y

K
itc

he
nh

am
: G

en
er

ic

at
tri

bu
te

K
im

: M
ea

su
re

d
at

tri
bu

te

IS
O

/IE
C

 1
45

98
V

IM
IS

O
/IE

C
 1

59
39

IE
EE

 6
10

.1
2

Br
ia

nd
K

itc
he

nh
am

K
im

IE
EE

 1
06

1

IE
EE

 1
06

1
IE

EE
 6

10
.1

2
IS

O
/IE

C
 1

59
39

IS
O

/IE
C

 1
45

98
V

IM
K

im

A
gg

Su
b-

ch
ar

ac
te

ris
tic

N
ew

 te
rm

Su
b-

at
tri

bu
te

Su
b-

fa
ct

or
B

as
e

at
tri

bu
te

D
er

iv
ed

 a
ttr

ib
ut

e
M

ea
su

ra
bl

e
co

nc
ep

t
A

do
pt

ed
 te

rm
IS

O
/IE

C
 1

59
39

IS
O

/IE
C

 1
59

39
M

ea
su

re
A

da
pt

ed
 te

rm
M

et
ric

K
itc

he
nh

am
:

D
ev

el
op

m
en

t m
od

el
,

el
em

en
t m

ea
su

re
 ty

pe
IE

EE
 1

06
1:

 M
et

ric
IE

EE
 6

10
.1

2:
 M

et
ric

IS
O

/IE
C

 1
45

98
: M

et
ric

IS
O

/IE
C

 1
45

98
IE

EE
 6

10
.1

2
Br

ia
nd

K
itc

he
nh

am
IE

EE
 1

06
1

IS
O

/IE
C

 1
45

98
IE

EE
 1

06
1

IE
EE

 6
10

.1
2

A
gg

Ba
se

 m
ea

su
re

A
da

pt
ed

 te
rm

B
as

e
m

et
ric

IE
EE

 1
06

1:
 D

ire
ct

 m
et

ric
IS

O
/IE

C
 1

45
98

: D
ire

ct

m
ea

su
re

V
IM

: B
as

e
qu

an
tit

y

V
IM

IS
O

/IE
C

 1
59

39
IS

O
/IE

C
 1

45
98

IE
EE

 1
06

1

V
IM

IS
O

/IE
C

 1
59

39
IS

O
/IE

C
 1

45
98

IE
EE

 1
06

1
D

er
iv

ed
 m

ea
su

re
A

da
pt

ed
 te

rm
D

er
iv

ed
 m

et
ric

C
om

po
se

d
m

et
ric

V
IM

: B
as

e
qu

an
tit

y
IS

O
/IE

C
 1

45
98

: I
nd

ire
ct

m

ea
su

re

V
IM

IS
O

/IE
C

 1
59

39
IS

O
/IE

C
 1

45
98

V
IM

IS
O

/IE
C

 1
59

39
IS

O
/IE

C
 1

45
98

In
di

ca
to

r
A

do
pt

ed
 te

rm
IS

O
/IE

C
 1

59
39

IS
O

/IE
C

 1
45

98
IS

O
/IE

C
 1

59
39

IS
O

/IE
C

 1
45

98

740 Software Quality Journal (2023) 31:721–773

1 3

Ta
bl

e
3

 (c
on

tin
ue

d)

C
at

eg
or

y
of

 S
Q

M
M

 e
le

m
en

t
Pr

op
er

tie
s o

f t
er

m
s

Sy
no

ny
m

s i
n

di
ffe

re
nt

SQ

M
M

s
Sy

no
ny

m
s i

n
di

ffe
re

nt

st
an

da
rd

s
So

ur
ce

 o
f t

er
m

s
St

an
da

rd
s

de
fin

in
g

te
rm

s
di

ffe
re

nt
ly

M
ea

su
re

m
en

t a
pp

ro
ac

h
N

ew
 te

rm
A

gg
M

ea
su

re
m

en
t m

et
ho

d
A

do
pt

ed
 te

rm
V

IM
IS

O
/IE

C
 1

59
39

V
IM

IS
O

/IE
C

 1
59

39
M

ea
su

re
m

en
t f

un
ct

io
n

A
da

pt
ed

 te
rm

IS
O

/IE
C

 1
59

39
IS

O
/IE

C
 1

59
39

An
al

ys
es

 m
od

el
A

da
pt

ed
 te

rm
A

na
ly

si
s d

ec
is

io
n

IS
O

/IE
C

 1
59

39
IS

O
/IE

C
 1

59
39

M
ea

su
re

m
en

t r
es

ul
ts

A
da

pt
ed

 te
rm

IS
O

/IE
C

 1
4,

59
8:

 M
ea

su
re

IS
O

/IE
C

 1
59

39
: M

ea
su

re
K

itc
he

nh
am

: R
ec

or
de

d
va

lu
e

K
im

: M
ea

su
re

m
en

t p
oi

nt
IE

EE
 1

06
1:

 M
et

ric
 v

al
ue

IS
O

/IE
C

 1
59

39
IS

O
/IE

C
 1

45
98

Br
ia

nd
K

itc
he

nh
am

K
im

IE
EE

 1
06

1

IS
O

/IE
C

 1
59

39
IS

O
/IE

C
 1

45
98

K
im

IE
EE

 1
06

1

M
ea

su
re

m
en

t
A

da
pt

ed
 te

rm
IS

O
/IE

C
 1

59
39

IS
O

/IE
C

 1
45

98
V

IM
K

im
IE

EE
 1

06
1

IS
O

/IE
C

 1
59

39
IS

O
/IE

C
 1

45
98

V
IM

K
im

IE
EE

 1
06

1
A

gg
M

ea
su

re
m

en
t d

at
a

N
ew

 te
rm

D
ec

isi
on

 c
ri

te
ri

a
A

do
pt

ed
 te

rm
IS

O
/IE

C
 1

45
98

: R
at

in
g

Le
ve

l
IS

O
/IE

C
 1

59
39

IS
O

/IE
C

 1
45

98
IS

O
/IE

C
 1

59
39

IS
O

/IE
C

 1
45

98
A

gg
In

te
rp

re
ta

tio
n

ru
le

N
ew

 te
rm

In
st

ru
m

en
t

N
ew

 te
rm

To
ol

Im
pa

ct
N

ew
 te

rm
M

ea
su

re
m

en
t s

ca
le

A
do

pt
ed

 te
rm

Ty
pe

 o
f s

ca
le

K
itc

he
nh

am
: G

en
er

ic

sc
al

e
ra

ng
e

V
IM

: R
ef

er
en

ce
-v

al
ue

sc

al
e

IS
O

/IE
C

 1
45

98
V

IM
IS

O
/IE

C
 1

59
39

K
itc

he
nh

am

IS
O

/IE
C

 1
45

98
V

IM
IS

O
/IE

C
 1

59
39

741Software Quality Journal (2023) 31:721–773

1 3

Ta
bl

e
3

 (c
on

tin
ue

d)

C
at

eg
or

y
of

 S
Q

M
M

 e
le

m
en

t
Pr

op
er

tie
s o

f t
er

m
s

Sy
no

ny
m

s i
n

di
ffe

re
nt

SQ

M
M

s
Sy

no
ny

m
s i

n
di

ffe
re

nt

st
an

da
rd

s
So

ur
ce

 o
f t

er
m

s
St

an
da

rd
s

de
fin

in
g

te
rm

s
di

ffe
re

nt
ly

U
ni

t o
f m

ea
su

re
m

en
t

A
do

pt
ed

 te
rm

U
ni

t
K

itc
he

nh
am

: G
en

er
ic

 u
ni

t
IS

O
/IE

C
 1

45
98

: U
ni

t
V

IM
IS

O
/IE

C
 1

59
39

IS
O

/IE
C

 1
45

98
K

im
K

itc
he

nh
am

V
IM

IS
O

/IE
C

 1
59

39
IS

O
/IE

C
 1

45
98

Ev
al

ua
tio

n
N

ew
 te

rm
Ev

al
ua

tio
n

m
et

ho
d

A
ss

es
sm

en
t m

od
el

A
ss

es
sm

en
t t

yp
e

A
gg

Te
xt

 e
va

lu
at

io
n

N
ew

 te
rm

M
an

ua
l e

va
lu

at
io

n
N

ew
 te

rm
Fo

rm
-b

as
ed

 e
va

lu
at

io
n

N
ew

 te
rm

Im
pa

ct
 e

va
lu

at
io

n
N

ew
 te

rm
Q

ua
lit

y
as

pe
ct

 e
va

lu
at

io
n

N
ew

 te
rm

Ev
al

ua
tio

n
re

su
lt

N
ew

 te
rm

Q
ua

lit
y

as
pe

ct
 e

va
lu

at
io

n
re

su
lts

A
gg

Si
ng

le
 m

ea
su

re
 e

va
lu

at
io

n
re

su
lts

N
ew

 te
rm

M
ul

ti
m

ea
su

re
 e

va
lu

at
io

n
re

su
lts

N
ew

 te
rm

Im
pa

ct
 e

va
lu

at
io

n
re

su
lts

N
ew

 te
rm

742 Software Quality Journal (2023) 31:721–773

1 3

Ta
bl

e
4

 S
tru

ct
ur

e
co

m
pa

ris
on

 o
f s

of
tw

ar
e

qu
al

ity
 m

od
el

s (
th

e
fir

st
fiv

e
ar

e
ba

si
c

an
d

th
e

la
st

fiv
e

ar
e

sp
ec

ifi
c

to
 O

SS
)

Le
ve

l/m
od

el
M

cC
al

l
Bo

eh
m

FU
R

PS
D

ro
m

ey
IS

O
/IE

C

91
26

O
SM

M
Q

SO
S

O
pe

nB
R

R
SQ

O
-O

SS
Q

ua
lO

SS

Le
ve

l 1
V

ie
w

V
ie

w
V

ie
w

V
ie

w
V

ie
w

V
ie

w
V

ie
w

V
ie

w
V

ie
w

V
ie

w
Le

ve
l 2

M
aj

or

pe
rs

pe
ct

iv
e

H
ig

h-
lev

el

ch
ar

ac
te

ris
tic

–
Pr

od
uc

t
pr

op
er

tie
s

C
ha

ra
ct

er
ist

ic
G

ro
up

To
p-

le
ve

l
cr

ite
ria

–
Ev

al
ua

tio
n

as
pe

ct
Ev

al
ua

tio
n

as
pe

ct
Le

ve
l 3

Fa
ct

or
In

ter
m

ed
iat

e-
lev

el

ch
ar

ac
te

ris
tic

C
ha

ra
ct

er
ist

ic
Q

ua
lit

y
at

tri
bu

te
Su

b-

ch
ar

ac
ter

ist
ic

In
di

ca
to

r
C

rit
er

ia
C

ha
ra

ct
er

ist
ic

Q
ua

lit
y

at
tri

bu
te

C
ha

ra
ct

er
ist

ic

Le
ve

l 4
C

rit
er

ia
Pr

im
iti

ve

ch
ar

ac
te

ris
tic

Su
b-

ch

ar
ac

ter
ist

ic
Su

b-
at

tri
bu

te
Q

ua
lit

y
at

tri
bu

te
Su

b-
in

di
ca

to
r

Su
b-

cr
ite

ria
Su

b-

ch
ar

ac
ter

ist
ic

Su
b-

at
tri

bu
te

Su
b-

ch

ar
ac

te
ris

tic
Le

ve
l 5

M
et

ric
M

et
ric

M
et

ric
M

et
ric

M
et

ric
M

et
ric

M
et

ric
M

et
ric

M
et

ric
M

et
ric

743Software Quality Journal (2023) 31:721–773

1 3

Ta
bl

e
5

 M
at

ch
in

g
te

rm
s o

f q
ua

lit
y

m
od

el
s f

or
 O

SS
 a

nd
 te

rm
s o

f S
Q

M
M

s w
ith

 re
sp

ec
t t

o
le

ve
ls

Th
e

“*
”

sy
m

bo
l i

nd
ic

at
es

 th
at

 e
va

lu
at

io
n

ca
n

be
 p

er
fo

rm
ed

 a
t a

ny
 le

ve
l w

ith
 re

sp
ec

t t
o

th
e

ag
gr

eg
at

io
ns

 n
ee

ds

Le
ve

l
Sp

ec
ifi

ca
tio

n
M

ea
su

re
m

en
t

Ev
al

ua
tio

n

1
D

ev
el

op
m

en
t p

ha
se

,
Q

ua
lit

y
re

qu
ire

m
en

t,
V

ie
w

po
in

t (
Sy

n:
 V

ie
w

, q
ua

lit
y

go
al

)

Ev
al

ua
tio

n
ag

gr
eg

at
io

n*

2
En

tit
y

(S
yn

: Q
ua

lit
y

en
tit

y,
 E

nt
ity

 ty
pe

, M
ea

su
ra

bl
e

en
tit

y,
 A

rti
fa

ct
, C

om
po

ne
nt

, E
nt

ity
 c

la
ss

, S
of

tw
ar

e
en

tit
y)

,
In

fo
rm

at
io

n
ne

ed
 (S

yn
: N

ee
d,

 P
ur

po
se

, T
ar

ge
t),

Q
ua

lit
y

m
od

el
 (S

yn
: Q

ua
lit

y
fr

am
ew

or
k)

Ev
al

ua
tio

n
ag

gr
eg

at
io

n*

3
C

ha
ra

ct
er

is
tic

 (S
yn

: A
ttr

ib
ut

e,
 F

ac
to

r,
Pr

op
er

ty
, Q

ua
lit

y-
ca

rr
yi

ng
 p

ro
pe

rty
, F

ac
t,

Q
ua

lit
y

as
pe

ct
,

Q
ua

lit
y

fa
ct

or
)

Ev
al

ua
tio

n
ag

gr
eg

at
io

n*

4
Su

b-
ch

ar
ac

te
ris

tic
 (S

yn
: S

ub
-a

ttr
ib

ut
e,

 S
ub

-fa
ct

or
, B

as
e

at
tri

bu
te

, D
er

iv
ed

 a
ttr

ib
ut

e)
Ev

al
ua

tio
n

ag
gr

eg
at

io
n*

5
D

ec
is

io
n

cr
ite

ria
,

Im
pa

ct
,

M
ea

su
ra

bl
e

co
nc

ep
t

In
str

um
en

t (
Sy

n:

To
ol

),
M

ea
su

re
 (S

yn
:

M
et

ric
),

M
ea

su
re

m
en

t,
M

ea
su

re
m

en
t

ap
pr

oa
ch

,
M

ea
su

re
m

en
t

re
su

lts
,

M
ea

su
re

m
en

t s
ca

le

(S
yn

: T
yp

e
of

sc

al
e)

,
U

ni
t o

f m
ea

su
re

m
en

t
(S

yn
: U

ni
t)

Ev
al

ua
tio

n
(S

yn
: E

va
lu

at
io

n
m

et
ho

d,

A
ss

es
sm

en
t m

od
el

, A
ss

es
sm

en
t

ty
pe

),
Ev

al
ua

tio
n

re
su

lts
 (S

yn
: Q

ua
lit

y
as

pe
ct

 e
va

lu
at

io
n

re
su

lts
)

744 Software Quality Journal (2023) 31:721–773

1 3

obtained (as later given in Table 5 in Sect. 5.3). While performing the matching, the mean-
ings of the terms and their intended use have been taken into account.

4.4 Proposal of OSS‑QMM (step 4)

In the fourth step, an initial proposal for a meta-model of OSS quality has been proposed
by considering the outputs of steps 1, 2, and 3 (as later shown in Fig. 7 in Sect. 5.4). The
content of the OSS-QMM has been determined as the output of step 1, and the structure
of OSS-QMM has been determined as the output of step 2. In step 3, the meta-model con-
cepts corresponding to each level of the quality model have been determined. Then, as
seen in Fig. 5, the fourth step consists of three sub-steps, namely, steps 4.1, 4.2, and 4.3. It
should be noted that in performing each sub-step, review-and-revise process has been fol-
lowed. That is, a series of meetings has been held between authors of this article to review
meta-model (i.e., step 4) and its development process (i.e., steps 1–3), and then to revise
the meta-model. Also, in these meetings, refinements have been made as a result of the
activities mentioned in steps 5 and 6. Thus, the final decisions have been taken as a result
of a series of iterations.

First of all, in step 4.1, the candidate concepts to include in our OSS-QMM have been
decided by considering the meaning of these concepts. After the review-and-revise pro-
cess, a list of final concepts has been obtained. The first SLR study (Yılmaz & Tarhan,
2020) has indicated that the important meta-models (e.g., Garcia et al., 2007; Wagner
et al., 2012) in the literature have a layered structure. That is, they group the terms in
certain layers according to their content. Therefore, we have created three layers to group
determined concepts in our OSS-QMM as specification, measurement, and evaluation.
Also, this classification has made the matching process in step 3 more meaningful. In
this context, in step 4.2, the determined concepts have been designated into one of these
groups. After the review-and-revise process, the layer of each concept has been deter-
mined. Then, in step 4.3, the relationships between the concepts of the OSS-QMM have
been determined. Association, specialization, and aggregation relationships have been
used to link the concepts in the OSS-QMM. After the review-and-revise process, the final
versions of the relationships between the concepts have been determined. For example,
there is a specialization relationship between the concepts of OSS aspect and the concepts
of code-based or community-based. As a result of these three steps including the itera-
tions, the initial version of the OSS-QMM has been finalized.

4.5 Review by SQM experts (step 5)

In this step, the practical applicability, structure, and content of the OSS-QMM has been
reviewed by experts on software quality models, using the suggestions by Tanrıover
and Bilgen (2011) and Kläs et al. (2010). That is, it has been aimed to examine the OSS-
QMM by external parties other than the authors of the article. In this context, a total of four
subject matter experts has been determined, two from industry and two from academia. In
determining the experts, a prerequisite has been applied that an expert would have 7 years
or more experience in the field of software quality and its modeling. The first and the sec-
ond experts with industry background have had 8 and 10 years of software quality mod-
eling experience, respectively. The other two experts with academic background have been
researchers lecturing and consulting on information systems and software engineering for

745Software Quality Journal (2023) 31:721–773

1 3

more than 11 years. The questions listed in Appendix 1 were prepared in order to obtain
feedback from these experts. As seen in this appendix, these questions have been aimed
at obtain feedback about the practical applicability, structure, and content of the proposed
OSS-QMM. Then, a series of online meetings have been held to discuss and gather answer
for each question with the experts, each one interviewed individually. In these meetings,
development process has been presented to the experts (i.e., steps 1–3), as well as the OSS-
QMM itself together with the concepts, their meanings and intended use, and the relation-
ships between these concepts. As shown in Fig. 5, this step has progressed by the iterations
of review-and-revise process, with respect to the suggestions of the experts about the OSS-
QMM. That is, the meta-model (i.e., step 4) and its development process (i.e., steps 1–3)
have been reviewed by the expert for each question in Appendix 1 and the OSS-QMM has
been revised in the line with the suggestions obtained from the experts. In this context, the
review-and-revise process has continued until the experts have agreed that; the content of
the OSS-QMM is sufficient to apply in practice, the structure and generality of the OSS-
QMM is complete, the concepts and relationship between concepts are compatible, and the
OSS-QMM is understandable. Thus, the OSS-QMM have matured and taken its final form
with the feedback obtained for each question.

4.6 Initial validation of OSS‑QMM (step 6)

In this step, an example implementation of our OSS-QMM has been performed (as later
detailed in Sect. 5.5). Also, examples of an operationalized OSS quality model and an
existing OSS quality model have been derived from the OSS-QMM, as given in Appendi-
ces 2 and 3, respectively. Therefore, this step could be considered as the initial valida-
tion process of the OSS-QMM. During this process, the meta-model has been reviewed
to investigate whether there was an unmatched concept in the OSS-QMM or the derived
quality models, whether there was a problem in the relationships between the concepts,
and whether it could be applied in practice. Then, the meta-model has been revised in case
that one of these situations was encountered. In this step, the OSS-QMM has been refined
by new concepts and relationships, in iterations again. That is, this step has contributed to
both validation and improvement of our OSS-QMM.

5 Development of OSS quality meta‑model (OSS‑QMM)

The development steps of the OSS-QMM are elaborated throughout this section in accord-
ance with the methodology presented in Sect. 4. Also, using the background provided in
Sect. 2, detailed analysis is performed on the concepts of SQMMs as well as the common
structure of SQMs. Then, the level-based matching process is explained in detail. Next,
the initial version of OSS-QMM is presented and its initial validation is explored over an
example. Finally, potential threats to validity are discussed.

5.1 Terms analysis of SQMMs

The SQMMs create a common understanding between stakeholders for proper quality
management throughout the entire life of a software product. However, the terminology of
the SQMMs must be consistent among themselves in order for the SQMMs to serve their

746 Software Quality Journal (2023) 31:721–773

1 3

purposes properly. Therefore, in this section, inconsistencies, commonalities, and termi-
nology conflicts in the SQMMs proposed for OSS as well as custom type of software are
analyzed. This is aimed to explore inconsistent terminology in the SQMMs for future pro-
posals as well as to help us determine the terminology of the initial OSS-QMM presented
in Sect. 5.4.

Since the meta-models for OSS quality are seldom, they are not likely to bring suffi-
cient information to create the aforementioned background. Thus, meta-models proposed
for the custom type of software have also been included in the analysis since they have
been frequently taken as the base for OSS quality models and, thus, are related to OSS in
some parts. In this context, meta-models proposed for the custom type of software have
been identified from the primary studies of the SLR (Yılmaz & Tarhan, 2020). As a result,
a total of 20 meta-models, 2 for OSS quality and 18 for the quality of custom type of soft-
ware, have been analyzed in this study. That is, meta-models proposed for other types of
software (e.g., commercial-of-the-shelf software (COTS) or web services) have not been
included in this analysis.

It is also necessary to analyze in detail the international standards or proposals (already
listed in Table 2) as references to the terminology of the SQMMs, and to understand any
inconsistencies in terminology. The terms of the SQMMs have been generally derived from
these standards or proposals, and Fig. 6 shows the percent distributions of the sources. This
figure has been created based on the number of international standards or proposals which
were taken as sources for the terms used in the SQMMs. These terms are listed in Table 3.
It should be noted that a term used in SQMMs can have more than one source, as shown in
the column entitled “source of terms” in Table 3. Also, if a term does not have any source,
it is considered as “new term” in the second column of the table. Terminology conflicts
and inconsistencies are not only between the international standards of different organiza-
tions but also among those of the same organization (Garcia et al., 2006). While there are
inconsistent terms among the standards considered mature, it is perfectly normal to have
inconsistent terms among the SQMMs that are not as mature as the standards, considering

Fig. 6 Percent distribution of sources (standards and proposals) that contribute to the terminology in
SQMMs

747Software Quality Journal (2023) 31:721–773

1 3

especially that the meta-models have not been validated by designing real-world cases, as
previously mentioned in Sect. 2.1.

In Fig. 6, it is addressed to what extent the SQMMs use the concepts of the standards or
proposals in their structure. As shown in the figure, among the standards and proposals; 15
(18%) of all the terms used in the SQMMs were directly taken from the concepts of ISO/
IEC 15939 that is followed by ISO/IEC 14598 with 11 terms (13%). Also, the SQMMs
employed the least number of terms from IEEE 610.12 (with 5%) and then, from IEEE
1061 (with 6%) and Briand (with 6%). Apart from these, a quarter (%26) of the terms are
new, which were not transferred from any standard or proposal. It is seen that the SQMMs
employed more terms from ISO/IEC 15939 and ISO/IEC 14,598 since these are software
measurement and software quality evaluation standards, respectively.

Despite the fact that there are studies conducted to investigate inconsistencies among
the vocabulary of international standards as summarized in Sect. 3, no study has been
found concerning the inconsistencies among the terms of the SQMMs. Therefore, Table 3
has been created to see all the terminology used in the SQMMs. In the first column of
the table, the terms of the SQMMs are categorized according to the most frequently used
ones among their synonyms. The definition of the terms in these standards or proposals
is given in Yilmaz and Kolukısa Tarhan (2022). Also in the first column, the aggrega-
tion (Agg) of each term in each category are listed to denote sub-categories or aggregated
concepts under that category. In the second column, the terms are classified according to
their properties that address how they were transferred from the sources. Adopted term,
adapted term, and new term are used for this classification. The terms taken directly from
the sources (standards or proposals) without any changes, including their definitions, are
classified as “adopted term.” The terms borrowed from the sources either by changing their
definitions or original names are classified as “adapted term.” The terms not transferred
from any source are classified as “new term.” In the third column of Table 3, synonymous
terms used for each category in different SQMMs are listed. This column is important to
see the inconsistencies among the terms of the different SQMMs. The fourth column lists
the synonyms with which the SQMM elements in each category appear in different stand-
ards or proposals. This column is important to see the inconsistencies among the terms of
the different standards or proposals. In the fifth column, the sources (standards or propos-
als) from which the SQMM terms in each category were adapted or adopted are listed. In
the sixth and last column, the standards or proposals that differently described the SQMM
terms in each category are listed. An important point here is that if a standard or proposal
exists in the fifth column but not in the sixth column, it means that the term was used in the
source but not defined in that source.

A term can have more than one definition by standards or proposals as also seen in
Table 3. For example, the most defined terms (with their frequencies) are “characteristic”
(6), “measurement” (5), “measurement results” (4), “base measure” (4), “measure” (3),
“derived measure” (3), “quality model” (3), “scale” (3) and “unit of measurement” (3).
These are the most essential terms of the measurement process, and the last column in
Table 3 shows that there is a lack of agreement even in the original sources to define a
same term. Also, it is observed that there are 24 cases of synonyms in the standards or
proposals, which confirms the lack of consensus among them in terminology. Inconsist-
encies, commonalities, and terminology conflicts in all these standards or proposals are
reflected in the SQMMs, and accordingly, there are 38 cases of synonyms for 15 terms in
the SQMMs. In addition, it is observed that 17 (45%) of the terms were transferred from
the sources directly (8 adopted terms) or with changes (9 adapted terms), and 21 (55%) of
them were not transferred from any source (i.e., new term).

748 Software Quality Journal (2023) 31:721–773

1 3

5.2 Structure analysis of SQMs, including OSS quality models

As we overview in Sect. 2.2, the quality models determined within the scope of this
study are explained together with the reasons of their inclusion. In this context, a
total of 10 quality models, five being the basic quality models and five being the qual-
ity models tailored as specific to OSS, have been analyzed in this study, as listed in
Table 4. As shown in the table, aside from OSS quality models, the structures of some
cornerstone basic quality models have also been examined since they provide partial
evaluation opportunity for OSS as well as form the basis of the OSS quality models. In
Sect. 2.2.1.1, the structure of the determined quality models is classified before their
structural analysis is performed. Therefore, in this section, guided by this classification,
a structural analysis is carried out using the common hierarchical structure of the qual-
ity models. In other words, with the purpose of defining a common language and using
it in proposing or revising the quality models in the future, the structures of the quality
models listed in Table 1 are investigated and compared. This effort is important in shap-
ing the structure of an initial OSS quality meta-model to develop within the scope of
this study. It may also enhance the development of individual OSS quality models.

Considering the comparison of structures of the quality models listed in the table, all
the quality models are based on a common structure consisting of five levels. It has been
observed that some quality models, from both basic and tailored models such as FURPS
and OpenBRR, respectively, do not include model elements of level 2 in their model
structures. The levels of structure applied to all the quality models are explained below.

Level 1: Software quality is complex, multifaceted, and hard to define since the
expectations of stakeholders are different from software products. Therefore, these
stakeholders perceive software quality from their points of view. In this context, at level
1, all quality models are shaped with their content according to a specific point of view
such as customer, manager, developer, tester, and designer.

Level 2: After determining the point of view that the software quality is evaluated
from, it is determined which aspects of the product are evaluated. At level 2, the evalua-
tion aspects can have some synonymous words in the quality models, such as high-level
characteristics and groups (product and application indicators). Although each evalua-
tion aspect has an impact on overall software product quality, most of the quality mod-
els focus on one or more aspects such as community quality, quality in use, or service
quality, rather than on evaluating overall product quality. Among the quality models, the
only distinctions are FURPS and OpenBRR, which do not concentrate specifically on an
evaluation aspect of the software quality.

Level 3: After determining the evaluation aspects of the software product, the quality
attributes associated with these evaluation aspects are determined in the quality mod-
els examined. At level 3, the quality attributes can have some synonymous words in
the quality models such as factor, characteristic, criteria, or indicator. Quality attributes
are measurable or testable concepts of software quality and they are used to control
quality and to determine how well the software product or system satisfies the needs
of its stakeholders. However, despite the fact that the quality attributes are defined as
measurable concepts, they are generally quite abstract concepts that cannot be measured
directly.

Level 4: After the quality attributes are associated with the evaluation aspects, at
level 4, these quality attributes are decomposed into sub-attributes in the quality models
since the quality attributes remain abstract to evaluate directly. Quality sub-attributes

749Software Quality Journal (2023) 31:721–773

1 3

can have synonymous words in the quality models such as factor, sub-characteristic,
sub-criteria, or primitive characteristic. Sub-attributes are defined for the quality attrib-
utes that represent a wide range of aspects of software use, in order to allow for valid
measurements of compliance (Sadeghzadeh & Rashidi, 2017). However, sub-attributes
are still abstract to evaluate directly, so they can be considered as less abstract forms of
quality attributes.

Level 5: After the sub-attributes are associated with the quality attributes; finally, at
level 5, sub-attributes are associated with software metrics that allow concrete measure-
ments directly. Generally, the quality models use analysis tools to assign values to software
metrics; however, the quality models of OSS use scoring criteria according to the rule sets
defined in the models, especially for the metrics related to the community aspect. Since
a quality sub-attribute is often associated with more than one software metric, the values
obtained for all metrics are aggregated to obtain a single value for quality measurement of
the sub-attribute.

5.3 Matching between terms of OSS quality models and terms of SQMMs

Initial research has been conducted to investigate the structure of OSS quality models in
Sect. 5.2, and it has been observed that all the quality models investigated have a com-
mon structure consisting of five levels as already given in Table 4. Also, in Sect. 5.1, the
structure of the quality meta-models proposed for OSS and for custom type of software
have been examined, and the terms used in these SQMMs have been categorized together
with their synonyms and aggregations. In this way, it is aimed to understand the common
structure of the quality models and to eliminate the inconsistencies among the terms of
the SQMMs. In this section, then, the level-based matching process has been carried out
between the terms of the OSS quality models and the terms of the SQMMs, as shown
Table 5, since ideally, a quality model should be an instance of a meta-model. This match-
ing has been performed in accordance with the MOF standard (Facility and (MOF) 2019).
That is, the terms of the quality models of OSS (at layer M1) are matched with the terms
of the SQMMs (at layer M2) for the categories of SQMM elements specified in the first
column of Table 3. This matching is an important step in that the OSS quality models to
develop or revise will have a homogeneous structure and that the measurements performed
using these quality models can be standardized. In this matching process, some accepted
standards (ISO/IEC 19761, 2002; ISO/IEC 15939, 2007; ISO/IEC 25020, 2019) have been
taken as bases in the process of determining the terms of the SQMMs corresponding to
each level. In addition, the intended usage of the terms in the SQMMs, the classification of
the terms in some SQMMs (Nistala et al., 2019; Yılmaz & Tarhan, 2020), and a common
output obtained from the definitions of these terms in the international standards have been
taken as reference in this matching. Moreover, a series of meetings has been held between
the authors of this article, following an iterative process, as already shown in Fig. 5. Con-
sidering all these sources, meta-model terms have been matched with the most appropriate
terms in the levels of the OSS quality models.

In Table 5, the terms of the SQMMs for each level are categorized into three groups
as specification, measurement, and evaluation in order to make the matching process
more systematic and comprehensible. These categories are identified in order not to put
apples and pears in the same group. The terms grouped under “specification” are used to
determine which aspect and what feature of the OSS product to measure. The viewpoint
of stakeholders is taken into account in determining these characteristics. For example,

750 Software Quality Journal (2023) 31:721–773

1 3

the specification includes from which stakeholder viewpoint the product will be evalu-
ated, which entity of the OSS product will be measured, and which characteristics will be
required to measure it. The terms under “measurement” are used to quantify some charac-
teristics of an OSS product. Generally, some standardized tools are required for a consistent
and meaningful measurement process. For example, software metrics such as lines of code
(LOC), depth of inheritance tree (DIT), and cyclomatic complexity (CC) are measured and
some numerical values are obtained. These terms provide a solid base to perform an evalu-
ation. Finally, the terms under “evaluation” are used to seek if the OSS is the best possible
fit for the needs of evaluators by using measurement results. In other words, the terms clas-
sified under “evaluation” are used to interpret the numeric value obtained as a result of the
measurement for any metric and to address whether this value is satisfactory or not. An
important point is that although the terms related to the evaluation are usually considered
at level 5, evaluation can be performed at any level with respect to the aggregations needs.
However, measurement-related terms are matched to level 5 since measurement requires
concrete data and takes place at the bottom-most level. This matching process is important
in shaping the structure of the meta-model developed for OSS quality within the scope of
this study as well as the ones to be developed in the future for OSS quality or other types of
software quality. It is also useful to easily recognize the general abstract form of the quality
models from the structure of the SQMMs.

5.4 The OSS quality meta‑model (OSS‑QMM)

An initial proposal for a meta-model of OSS quality has been proposed, as shown in Fig. 7,
by considering the outputs of the processes explained so far in this study. Common termi-
nology for the initial meta-model proposal for OSS quality has been defined in order to
help eliminate incompleteness and inconsistency available in the SQMMs. First of all, the
terms of this initial meta-model have been determined by considering the most used terms
of the quality meta-models proposed for OSS and custom type of software. Then, the level-
based matching process, details of which are explained in Sect. 5.3, has been carried out
between the terms of the OSS quality models and the terms of the meta-models. Finally,
the initial proposal for a meta-model of OSS quality has emerged as a result of this match-
ing process. The concepts used in the proposed meta-model have been demonstrated using
color-coding in Fig. 7, with respect to the levels of terms in the OSS quality models as
matched in Table 5. In addition, the categories (or stages, i.e., specification, measurement,
and evaluation) of the terms used in the meta-model are also shown in the figure in accord-
ance with the classification of terms given in Table 5. It should be reminded that during
development of OSS-QMM, an iterative process has been followed. In this context, a series
of meetings has been held between the authors of this article within the review-and-revise
process, and refinements have been performed as a result of the issues identified during this
process.

Detailed definitions of the terms used in the proposed meta-model are given in Yilmaz
and Kolukısa Tarhan (2022), and definitions of the corresponding concepts will not be
repeated here. Instead, the purposes that these concepts are used for and the relationships
that exist between them in the meta-model are explained. Furthermore, in order to make the
usage of the proposed meta-model more concrete, an example of an operationalized quality
model for OSS (as an instance of the proposal) is given in Appendix 2. The intended uses
of the terms included in this quality model are summarized in the following paragraphs.

751Software Quality Journal (2023) 31:721–773

1 3

In the specification stage, a quality model, which is an instance of the proposed meta-
model, is a set of measurable concepts and quality characteristics, and should have a view-
point. The starting point of an OSS quality model is the viewpoint. Since stakeholders
will perceive software quality from their points of view, the OSS quality model will be
shaped with its content according to a specific viewpoint, e.g., of customer or developer.
The OSS to be selected may be required for use as a component of a larger project and
thus the software needs to be interoperable, or the OSS may be required for constant daily
use by the adopter either in its original form or with modifications (Adewumi et al., 2019).
Each stakeholder will have its own information need that is an insight necessary to manage
objectives, goals, risks, and problems (e.g., request for calculation of e-mail density to eval-
uate maintainability, from the viewpoint of developer). An entity is an object to be charac-
terized by measuring its attributes. The concept of entity is a part of a software product

Fig. 7 Initial proposal for OSS-QMM

752 Software Quality Journal (2023) 31:721–773

1 3

and is considered during the measurement process, e.g., source code (from code-based
aspect) and contributor (from community-based aspect). An entity may have one or more
properties that are of interest to meet an information need (ISO/IEC, 2007). An informa-
tion need is related to quality characteristics that are used to control quality and to deter-
mine how well the software product or system satisfies the needs of its stakeholders. Qual-
ity characteristics are generally quite abstract concepts that cannot be measured directly
(e.g., maintainability). Quality characteristics are decomposed into sub-characteristics
(e.g., analyzability and testability) in quality models. However, sub-characteristics are still
abstract to evaluate directly, so they can be considered as less abstract forms of quality
characteristics. Therefore, sub-characteristics should be associated with measurable con-
cepts which relate to one or more measures directly. The measurable concept covers the
property of the OSS product that is associated with the quality of the product. It is defined
in such a way that it is possible to talk about the extent to which it is present in the prod-
uct. Also, it should satisfy the concept of information need. The measurable concept is
characterized by an OSS aspect that can be specialized as code-based (e.g., the complexity
of source code) or community-based (e.g., e-mail density by version, or bug solving suc-
cess rate). There is an important point in the relationship between measurable concepts and
sub-characteristics. That is, there can be a positive or negative relationship between them,
called impact. This concept has a direct effect on evaluation results. For example, higher
complexity of the code is undesirable for maintainability (indicating a negative effect),
whereas higher bug solving success is desirable for maintainability (indicating a positive
effect). To determine whether the effect is positive or negative, the need should be elic-
ited from quality requirements. Also, the importance of sub-characteristics and the OSS
aspect may differ with respect to the viewpoint of an evaluator. For example, testability
may be important from the viewpoint of test analyst, while modifiability may be important
from the viewpoint of developer. Likewise, considering that the evaluator is a developer
and will adapt the product according to his/her own needs, the code-based aspect may be
more important. Therefore, the concept of weighting is employed to assign weights to sub-
characteristics and OSS aspects using weighting method (e.g., AHP). Also, the importance
of each sub-characteristic may be different for each OSS aspect, from a particular view-
point. In this regard, the weights of the sub-characteristics should be distributed on the
OSS aspects according to the importance of the aspects, by using the concept of weight
aggregation method. The rationale behind this concept, for example, is that the evaluator is
a developer and the code-based aspect is more important from this viewpoint. Therefore,
the analyzability (as a sub-characteristic) of the source code (in code-based aspect) should
have greater importance in this evaluation. In other words, the weight of analyzability on
the code-based side should be greater than that on the community-based side.

In the measurement stage, after specifying the measurable concept, the concept
should be quantified by measures to obtain concrete results. A measure can be a base
measure (e.g., m1: line of documented source code, and m2: effort spent) or a derived
measure (e.g., productivity represented by m3: m1/m2) that is generated using a meas-
urement function. Also, each measure should have a scale (e.g., integers from zero to
infinite) and unit (e.g., defects, days, or lines). After measures are specified to quan-
tify the measurable concept, measurement method determines how to assign value for
a specified measure. The measurement method can be applied manually (e.g., counting
measures from the website of OSS repository such as GitHub) or automatically (e.g.,
over static code analyzer tool as an instrument). Since measurement data are accessible
from both code-based and community-based aspects of OSS, these data are scattered
in a variety of databases and thus heterogeneous. Therefore, the concept of normalized

753Software Quality Journal (2023) 31:721–773

1 3

measure is used to make measurement result meaningful and also comparable with
those of different products. In case more than one measure is used to quantify a measur-
able concept, the normalized measures under the measurable concept are aggregated by
aggregated measure using measure aggregation method (e.g., average). Then, a one-to-
one relationship is obtained between measurable concept and measure. After the nec-
essary infrastructure for the measurement process is determined, measurement is real-
ized as an action and measurement result is produced as an output of the measurement
performed.

In the evaluation stage, concepts are used to interpret the measurement results, and
accordingly, to identify whether the quality of the OSS product fits the needs of the
evaluator. The resulting values, impacts, and weights of sub-characteristics are used as
inputs for evaluation which helps interpreting measurement results. All these inputs are
aggregated using evaluation aggregation consisting of evaluation aggregation method
(e.g., TOPSIS) and evaluation aggregation function (e.g., weighting aggregation func-
tion). The concept of evaluation can be specialized by evaluation function (e.g., linear
utility function) or manual evaluation (e.g., expert opinion). After measurement results
are interpreted by the concept of evaluation, an evaluation result between 0 to MaxPoint
is obtained (e.g., range between 0 and 1). By this way, the quality of the OSS product
concerning its specified quality characteristics is evaluated.

5.5 Initial validation of OSS‑QMM

In this section, initial validation of the OSS-QMM is provided over an example evalua-
tion. An operationalized OSS quality model has been derived from the proposed meta-
model, as given in Appendix 2, and the stages of the quality evaluation using this
model are explained. In this evaluation, an example is demonstrated to identify the OSS
product that best meets the evaluator’s needs among the alternatives. Quality evaluation
scores are calculated for each alternative OSS product, since one of the best ways to
understand the quality of a product is to compare it with those of possible alternatives.
All these efforts are targeted to demonstrate the application of the OSS-QMM, allow-
ing it to be visualized and better understood. In order to increase the traceability of
the implementation of the quality model, this section also provides the techniques (i.e.,
methods, formulations, or functions) to use in the example evaluation, as explained in
Sect. 5.5.1.

In addition, three existing OSS quality models (OpenBRR, OSMM, and SQO-OSS)
have been derived from the OSS-QMM. In doing this, the terms of these models have
been matched with the concepts of the OSS-QMM, as provided in Appendix 3. Since
the purpose is to demonstrate that the existing models can be derived from the proposed
meta-model, only the determined terms belonging to the levels of the models (i.e., char-
acteristics, sub-characteristics, measure, etc.) have been used as examples in the match-
ing process. That is, not all terms in each level of these models have been used. For
example, maintainability is decomposed into four sub-characteristics in the OSMM, but
only one of them (i.e., integration) is used in the matching process in the appendix. This
applies to any level of matching. In addition, the concepts of the OSS-QMM listed in
Table 6 (i.e., techniques) are not shown in the matching given in Appendix 10. since
these concepts enable to perform some calculations by using some other concepts
(impact, measure, OSS aspect, etc.) matched in the appendix.

754 Software Quality Journal (2023) 31:721–773

1 3

5.5.1 Techniques to use in example evaluation

In order to use the OSS-QMM in practice, some techniques should be determined for the
concepts of the OSS-QMM (e.g., evaluation aggregation, weighting method) prior to qual-
ity evaluation. In this regard, the list of methods to use in the example evaluation is shown
in Table 6. In the following sub-sections, information about these techniques is presented.

5.5.1.1 Integrated AHP‑TOPSIS The OSS products have a diverse and dynamic nature,
and their quality is affected by many variables. That is, a lot of quantitative and qualitative
historical data can be accessed in both code-based and community-based aspects for the
evaluation of the OSS products. Accordingly, aggregating heterogeneous data from dif-
ferent sources is a difficult process. Therefore, evaluation of OSS has been considered as
a Multi-Criteria Decision Making (MCDM) problem (Jadhav & Sonar, 2011) to deal with
these complex and diverse data sources. MCDM allows managing multiple complex and
conflicting objectives to be used in the evaluation and accordingly assign quality scores
to alternatives (Wang et al., 2013). A number of well-known MCDM methods exist such
as Analytic Hierarchy Process (AHP), Analytic Network Process (ANP), Data Envelop-
ment Analysis (DEA), DEMATEL, Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS), VIKOR, and PROMETHEE. In the MCDM problem, the most
widely used methods are AHP (Saaty, 1980) and TOPSIS (Hwang & Yoon, 1981), due to
their strong mathematical background and systematic way of data collection (Ahmad &
Laplante, 2013; Khondoker et al., 2014). They have been applied and validated in numer-
ous multidisciplinary fields since their initial development such as engineering (Özcan
et al., 2017), economics (Wang et al., 2020), and social science (Saaty & Sagir, 2015).
While the AHP method is employed for weighting a set of alternatives by performing the
pair-wise comparison, the TOPSIS method is employed for some determined criteria for
weighting a set of alternatives.

In this study, in order to cope with the diverse and conflicting data sources of the
OSS products, the integrated AHP-TOPSIS method shown in Fig. 8 has been used to
perform quality evaluation following the concepts in the proposed meta-model. More
specifically, AHP method is used to weight the criteria in the specification part (i.e., for
code-based and community-based aspects), and TOPSIS is used to evaluate the alterna-
tives by using these weights as inputs. The weights obtained from the AHP method, the
results obtained from the concept of impact, and the measurement results obtained are

Table 6 List of techniques to use for the relevant concepts in the OSS-QMM

Concept of OSS-QMM Techniques to use in example evaluation

Weighting method Integrated AHP-TOPSIS method (AHP, steps 1–7)
Weight aggregation method Weighted distribution
Normalized measure Integrated AHP-TOPSIS method (TOPSIS, step 2)
Measure aggregation method Average of the measure
Measurement function Some mathematical equations
Evaluation aggregation method Integrated AHP-TOPSIS method (TOPSIS, steps 3–7)
Manual evaluation Expert opinion

755Software Quality Journal (2023) 31:721–773

1 3

used as inputs for the TOPSIS method. Thus, the quality evaluation is performed using
the strengths and validated aspects of both methods.

The steps of integrated AHP TOPSIS, which is the one of most important techniques
used in initial validation, are explained above, and each step described in Fig. 8 consists
of equations. Aside from integrated AHP-TOPSIS, other techniques given in Table 6 are
also expressed by equations. The equations and brief descriptions of these techniques
used in initial validation are given in Table 7. In the next sub-section, the application of
these equations during initial validation is explained in detail.

5.5.2 Carrying out example evaluation

In this section, the use of the OSS-QMM (Fig. 7) to carry out OSS quality evaluation is
demonstrated over an example. For this example, a quality model has been derived from
the OSS-QMM, as shown in Appendix 2. It should be reminded that the concepts
of the OSS-QMM are classified as specification, measurement, and evaluation. Respec-
tively, in the following paragraphs, the meta-model concepts, which are shown in italics
and bold to increase traceability, are explained in accordance with this classification.

In the specification part of the OSS-QMM, considering the quality model given in
Appendix 2, assume for the example evaluation that three OSS products are selected
as P1, P2 and P3; the developer as the viewpoint; maintainability as the characteristic;
and analyzability (A), testability (T), and modifiability (M) as the sub-characteristics.
Also, assume that the measurable concepts (MC) for measuring sub-characteristics and
the impacts of these measurable concepts on the sub-characteristic are determined using
quality requirements. Apart from them, assume that the entity and information needs
are determined. For example, on the code-based aspect considering analyzability, the
measurable concept might be the “complexity of the source” code. Accordingly, the
entity is the `”source code,” information need is “calculation of source code complexity
to evaluate maintainability,” and impact is negative since “complexity of the source”
affects the analyzability negatively. Then, the evaluator assigns weights to both the sub-
characteristics and the OSS aspects (i.e., code-based and community-based) according
to his/her perceived importance, by using the concept of weighting. In this example,
AHP method (steps 1–7) is used as the weighting method as already shown in Table 6.
The steps of the AHP method are given in Fig. 8 and its application is explained in
Sect. 5.5.1.1 (see Saaty, 1980, 2008; Işıklar & Büyüközkan, 2007 for details). The
outputs obtained at each step of AHP method for the example evaluation are provided
below.

Fig. 8 Quality evaluation process of integrated AHP-TOPSIS

756 Software Quality Journal (2023) 31:721–773

1 3

Ta
bl

e
7

 D
es

cr
ip

tio
n

of
 te

ch
ni

qu
es

 w
ith

 e
qu

at
io

ns
 u

se
d

in
 in

iti
al

 v
al

id
at

io
n

Te
ch

ni
qu

e
D

es
cr

ip
tio

n
Eq

ua
tio

n

A
H

P
Th

e
A

H
P

m
et

ho
d

co
ns

ist
s o

f t
he

 fo
llo

w
in

g
ste

ps
. P

le
as

e
se

e
(S

aa
ty

, 1
98

0;
 Iş

ık
la

r &
 B

üy
ük

öz
ka

n,

20
07

; S
aa

ty
, 2

00
8)

 fo
r d

et
ai

ls
St

ep
 1

Fi
rs

t,
str

uc
tu

ra
l h

ie
ra

rc
hi

es
 a

re
 c

re
at

ed
. T

he
 c

on
ce

pt
s o

f O
SS

 a
sp

ec
t a

nd
 q

ua
lit

y
ch

ar
ac

te
ris

tic

pr
ov

id
e

th
is

 c
on

di
tio

n
N

o
eq

ua
tio

n

St
ep

 2
A

 p
ai

r-w
is

e
co

m
pa

ris
on

 m
at

rix
 A

 (s
iz

e
n ×

 n)
 is

 c
on

str
uc

te
d

to
 c

om
pa

re
 th

e
cr

ite
ria

 in
 p

ai
rs

.
Ea

ch
 O

SS
 a

sp
ec

t a
nd

 re
la

te
d

su
b-

ch
ar

ac
te

ris
tic

s a
re

 a
s “

cr
ite

ria
”

A
=
[x

ij
] n
×
n

M
at

rix
 A

 is
 p

ai
r-w

is
e

co
m

pa
ris

on
 m

at
rix

St
ep

 3
Pa

ir-
w

ise
 c

om
pa

ris
on

s a
re

 p
er

fo
rm

ed
 b

y
co

m
pa

rin
g

re
la

tiv
e

im
po

rta
nc

e
of

 tw
o

se
le

ct
ed

 c
rit

er
ia

.
Th

e
m

at
rix

 A
 is

 fi
lle

d
by

 u
sin

g
th

e
sc

al
e

1–
9,

 a
s p

ro
po

se
d

by
 S

aa
ty

 (S
aa

ty
, 1

98
0)

 (s
ee

 (I
şık

la
r

&
 B

üy
ük

öz
ka

n,
 2

00
7)

 fo
r d

et
ai

ls)

Pa
irw

is
e

co
m

pa
ris

on
 is

 p
er

fo
rm

ed
 o

n
m

at
rix

 A
 a

nd
 th

e
m

at
rix

 is
 fi

lle
d

ou
t

St
ep

 4
Th

e
m

at
rix

 A
 is

 n
or

m
al

iz
ed

, a
nd

 n
or

m
al

iz
ed

 p
ai

rw
is

e
co

m
pa

ris
on

 d
ec

is
io

n
m

at
rix

 A
no

rm

m
at

rix
 is

 o
bt

ai
ne

d.
 In

 th
is

 fo
rm

ul
a,

 e
ac

h
el

em
en

t o
f m

at
rix

 A
 in

 a
 c

ol
um

n
is

 d
iv

id
ed

 b
y

th
e

su
m

 o
f t

he
 e

le
m

en
ts

 in
 th

e
sa

m
e

co
lu

m
n

A
n
o
rm

=
[a

ij
] n
×
n
=
x i
j
∕
∑

n i=
1
x i
j

(1
)

St
ep

 5
Fi

na
l w

ei
gh

t o
f e

ac
h

cr
ite

rio
n

is
 c

al
cu

la
te

d
w
i
=
∑

n j=
1
a
ij
∕
n
 a

nd
 ∑

n i=
1
w
i
=
1

i,
j
=
1
,
2
,
…

n

(2
)

St
ep

 6
C

on
si

ste
nc

y
ra

tio
 (C

R
) i

s c
al

cu
la

te
d

to
 c

he
ck

 c
on

si
ste

nc
y

of
 d

ec
is

io
n-

m
ak

er
’s

 ju
dg

m
en

t.
Fi

rs
t,

C
on

si
ste

nc
y

In
de

x
(C

I)
 is

 c
al

cu
la

te
d,

 w
he

re
 λ

m
ax

 is
 th

e
ei

ge
nv

al
ue

 (s
ee

 (S
aa

ty
, 2

00
8;

 Iş
ık

la
r

&
 B

üy
ük

öz
ka

n,
 2

00
7)

 fo
r d

et
ai

ls
) c

or
re

sp
on

di
ng

 to
 th

e
m

at
rix

 o
f p

ai
r-w

is
e

co
m

pa
ris

on
s

an
d

n
is

 th
e

nu
m

be
r o

f c
rit

er
ia

 b
ei

ng
 c

om
pa

re
d.

 T
he

n,
 C

R
 is

 c
al

cu
la

te
d.

 H
er

e,
 R

an
do

m

In
de

x
(R

I)
 is

 a
 v

al
ue

 th
at

 d
ep

en
ds

 o
n

th
e

nu
m

be
r o

f c
rit

er
ia

 (n
) (

se
e

(S
aa

ty
, 2

00
8;

 Iş
ık

la
r &

B

üy
ük

öz
ka

n,
 2

00
7)

 fo
r v

al
ue

s o
f R

I a
cc

or
di

ng
 to

 n
)

C
I
=
(�

m
a
x
−
n
) ∕
(n

−
1
)

(3
)

C
R
=
C
I∕
R
I

(4
)

St
ep

 7
Fi

na
l w

ei
gh

t o
f e

ac
h

cr
ite

rio
n

is
 a

pp
ro

ve
d

N
o

eq
ua

tio
n

TO
PS

IS
Th

e
fin

al
 w

ei
gh

t o
f e

ac
h

cr
ite

rio
n

ob
ta

in
ed

 fr
om

 A
H

P
m

et
ho

d
is

 u
se

d
as

 in
pu

t t
o

TO
PS

IS

m
et

ho
d.

 T
he

 T
O

PS
IS

 m
et

ho
d

co
ns

ist
s o

f t
he

 fo
llo

w
in

g
ste

ps
 (p

le
as

e
se

e
H

w
an

g
&

 Y
oo

n,

19
81

; H
as

na
in

 e
t a

l.,
 2

02
0;

 Iş
ık

la
r &

 B
üy

ük
öz

ka
n,

 2
00

7
fo

r d
et

ai
ls

)
St

ep
 1

Fi
rs

t,
de

ci
si

on
 m

at
rix

 B
 =

 [b
ij]

m
×n

, w
he

re
 m

 is
 a

lte
rn

at
iv

es
 (i

.e
.,

O
SS

 p
ro

du
ct

s)
 in

 th
e

ro
w

s a
nd

n

is
 e

va
lu

at
io

n
cr

ite
ria

 (i
.e

.,
m

ea
su

ra
bl

e
co

nc
ep

ts
) i

n
th

e
co

lu
m

ns
, i

s c
on

str
uc

te
d

B
=
[b

ij
] m

×
n

M
at

rix
 B

 is
 d

ec
is

io
n

m
at

rix
St

ep
 2

N
or

m
al

iz
ed

 d
ec

is
io

n
m

at
rix

 R
 =

 [r
ij]

m
×n

 is
 c

on
str

uc
te

d
R
=
[r

ij
] m

×
n
=
b
ij
∕
�

∑
m i=
1
b
2 ij

i
=
1
,
2
,
3
…

m
; a

nd
 j
=
1
,
2
,
3
…

n

(5
)

757Software Quality Journal (2023) 31:721–773

1 3

Ta
bl

e
7

 (c
on

tin
ue

d)

Te
ch

ni
qu

e
D

es
cr

ip
tio

n
Eq

ua
tio

n

St
ep

 3
Th

e
fin

al
 w

ei
gh

ts
 o

bt
ai

ne
d

fro
m

 A
H

P
m

et
ho

d
ar

e
m

ul
tip

lie
d

by
 th

e
va

lu
es

 o
f t

he
 n

or
m

al
iz

ed

de
ci

si
on

 m
at

rix
 R

. T
hu

s,
w

ei
gh

te
d

no
rm

al
iz

ed
 d

ec
is

io
n

m
at

rix
 V

 =
 [v

ij]
m

×n
. i

s o
bt

ai
ne

d
V
=
[v i

j] m
×
n
=
w
j
×
r i
j

i
=
1
,
2
,
3
…

m
; a

nd
 j
=
1
,
2
,
3
…

n

(6
)

St
ep

 4
In

 th
is

 st
ep

, t
w

o
ar

tifi
ci

al
 a

lte
rn

at
iv

es
, A

+
 (t

he
 p

os
iti

ve
 id

ea
l s

ol
ut

io
n)

 a
nd

 A
−
 (t

he
 n

eg
at

iv
e

id
ea

l s
ol

ut
io

n)
, a

re
 d

efi
ne

d
by

 E
q.

 (7
) a

nd
 E

q.
 (7

),
re

sp
ec

tiv
el

y
H

er
e,

 J
is

 th
e

su
bs

et
 o

f {
I =

 1,
 2

, …
, m

},
 w

hi
ch

 p
re

se
nt

s t
he

 c
on

ce
pt

 o
f i

m
pa

ct
 (p

os
iti

ve

im
pa

ct
) i

n
th

e
O

SS
-Q

M
M

, a
nd

 J−
 is

 th
e

co
m

pl
em

en
t s

et
 o

f J

A
+
=
{
(m

a
x
iv

ij
|j
∈
J
)(
m
in

iv
ij
|j
∈
J
−
)

|i
=
1
,
2
,
3
,
…

m
}
=
{
v
+ 1
,
v+ 2
,
…

v+ j
,
…

v+ n
}

(7
)

A
−
=
{
(m

in
iv

ij
| | |j
∈
J
) (

m
a
x
iv

ij
|j
∈
J
−
)

|i
=
1
,
2
,
3
,
…

m
}
=
{
v− 1
,
v− 2
,
…

v− j
,
…

v− n
}

(8
)

St
ep

 5
In

 th
is

 st
ep

, s
ep

ar
at

io
n

m
ea

su
re

m
en

t i
s p

er
fo

rm
ed

 b
y

ca
lc

ul
at

in
g

th
e

di
st

an
ce

 b
et

w
ee

n
ea

ch

al
te

rn
at

iv
e

in
 V

 a
nd

 th
e

id
ea

l v
ec

to
r A

+
 o

r t
he

 n
eg

at
iv

e
id

ea
l A

−
 b

y
us

in
g

th
e

Eu
cl

id
ea

n
di

st
an

ce
, w

hi
ch

 is
 g

iv
en

 b
y

Eq
. (

7)
 a

nd
 E

q.
 (8

),
re

sp
ec

tiv
el

y.
 A

t t
he

 e
nd

 o
f s

te
p

5,
 tw

o

va
lu

es
, n

am
el

y,
 S

+
 a

nd
 S

−
, f

or
 e

ac
h

al
te

rn
at

iv
e

ha
s b

ee
n

co
un

te
d;

 th
es

e
tw

o
va

lu
es

 re
pr

es
en

t
th

e
di

st
an

ce
 b

et
w

ee
n

ea
ch

 a
lte

rn
at

iv
e

an
d

bo
th

 th
e

id
ea

l a
nd

 n
eg

at
iv

e
id

ea
l

S
+ i
=

�
∑

n j=
1

� v i
j
−
v+ j

� 2
 , i

=
{
1
,
2
,
3
…

m
}

(9
)

S
− i
=

�
∑

n j=
1

� v i
j
−
v− j

� 2
 , i

=
{
1
,
2
,
3
…

m
}

(1
0)

St
ep

 6
In

 th
is

 p
ro

ce
ss

, t
he

 c
lo

se
ne

ss
 o

f A
i (

ith
 a

lte
rn

at
iv

e)
 to

 th
e

id
ea

l s
ol

ut
io

n
A
+
 is

 d
efi

ne
d,

 a
s s

ho
w

n
in

 E
q.

 (7
).
C
∗ i
=
1 i

f a
nd

 o
nl

y
if
A
i
=
A
+
 ; s

im
ila

rly
, C

∗ i
=
0
 if

 a
nd

 o
nl

y
if
A
i
=
A
−

C
∗ i
=
S
− i
∕
(S

− i
+
S
+ i

)
0
<
C
∗ i
<
1
,
i
=
{
1
,
2
,
3
…

m
}

(1
1)

St
ep

 7
Th

e
se

t o
f a

lte
rn

at
iv

es
 A

i c
an

 n
ow

 b
e

ra
nk

ed
 a

cc
or

di
ng

 to
 d

es
ce

nd
in

g
or

de
r o

f C
∗ i
 , i

nd
ic

at
in

g
th

at
 a

 h
ig

he
r v

al
ue

 c
or

re
sp

on
ds

 w
ith

 b
et

te
r p

er
fo

rm
an

ce
N

o
eq

ua
tio

n

W
ei

gh
te

d
di

st
ri

b
Th

e
w

ei
gh

t o
f e

ac
h

su
b-

ch
ar

ac
te

ris
tic

 fo
r e

ac
h

O
SS

 a
sp

ec
t c

an
 b

e
di

ffe
re

nt
 (t

he
se

 w
ei

gh
ts

 a
re

ca

lc
ul

at
ed

 in
 th

e
A

H
P

pr
oc

es
s)

. T
he

re
fo

re
, t

he
 fi

na
l w

ei
gh

t o
f e

ac
h

su
b-

ch
ar

ac
te

ris
tic

 a
s

sp
ec

ifi
c

to
 th

e
O

SS
 a

sp
ec

t i
s c

al
cu

la
te

d
H

er
e,

 X
i i

s t
he

 fi
na

l w
ei

gh
t o

f a
 su

b-
ch

ar
ac

te
ris

tic
 fo

r a
n

O
SS

 a
sp

ec
t,
w
a i
 a

re
 th

e
w

ei
gh

ts
 o

f
O

SS
 a

sp
ec

ts
, w

s j a
re

 th
e

w
ei

gh
ts

 o
f O

SS
 su

b-
ch

ar
ac

te
ris

tic
s,
i i

s t
he

 n
um

be
r o

f O
SS

 a
sp

ec
ts

(th

er
e

ar
e

tw
o

O
SS

 a
sp

ec
ts

),
an

d
m

 is
 th

e
nu

m
be

r o
f s

ub
-c

ha
ra

ct
er

ist
ic

s

X
i
=
(w

a i
×
w
s j
)∕

∑
n i=
1
w
a i

∑
n i=
1
w
a i
=
1 (

se
e

Eq
. (

7)
)

i
=
{
1
o
r2
}
j
=
{
1
,
2
,
3
…

m
}

(1
2)

So
m

e
m

at
h.

 e
qu

at
io

n
So

m
e

m
at

he
m

at
ic

al
 e

qu
at

io
ns

 a
re

 u
se

d
to

 o
bt

ai
n

de
riv

ed
 m

ea
su

re
s f

ro
m

 th
e

ba
se

 m
ea

su
re

s i
n

th
e

co
nc

ep
t o

f m
ea

su
re

m
en

t f
un

ct
io

n.
 F

or
 ex

am
pl

e,
 M

1
an

d
M

2
ar

e
ba

se
 m

ea
su

re
s,

an
d

M
3

is
a

de
riv

ed
 m

ea
su

re
 th

at
 is

 o
bt

ai
ne

d
fro

m
 M

1
an

d
M

2
by

 u
sin

g
fo

llo
w

in
g

m
at

he
m

at
ic

al
 e

qu
at

io
n:

M

3 =
 M

1/
(M

1 +
 M

2)
. T

he
re

fo
re

, t
hi

s e
qu

at
io

n
co

rr
es

po
nd

s t
o

th
e

co
nc

ep
t o

f m
ea

su
re

m
en

t
fu

nc
tio

n
in

 th
e

O
SS

-Q
M

M

It
ca

n
be

 d
iff

er
en

t k
in

ds
 o

f e
qu

at
io

ns

758 Software Quality Journal (2023) 31:721–773

1 3

Ta
bl

e
7

 (c
on

tin
ue

d)

Te
ch

ni
qu

e
D

es
cr

ip
tio

n
Eq

ua
tio

n

Av
er

ag
e

of
 th

e
m

ea
su

re
s

In
 c

as
es

 th
at

 m
ul

tip
le

 m
ea

su
re

s a
re

 a
ss

oc
ia

te
d

w
ith

 a
 m

ea
su

ra
bl

e
co

nc
ep

t,
th

es
e

m
ea

su
re

s
sh

ou
ld

 b
e

ag
gr

eg
at

ed
. I

n
th

is
 a

gg
re

ga
tio

n
pr

oc
es

s,
th

e
no

rm
al

iz
ed

 m
ea

su
re

s (
ob

ta
in

ed
 in

 st
ep

2

of
 T

O
PS

IS
) a

ss
oc

ia
te

d
w

ith
 a

 m
ea

su
ra

bl
e

co
nc

ep
t a

re
 av

er
ag

ed
H

er
e,

 p
 is

 th
e

nu
m

be
r o

f a
lte

rn
at

iv
e

(O
SS

 p
ro

du
ct

),
m

(k
) i

s n
ew

 v
al

ue
 o

f m
ea

su
re

s a
ss

oc
ia

te
d

w
ith

 a
 m

ea
su

ra
bl

e
co

nc
ep

t f
or

 k
th

 a
lte

rn
at

iv
e,

 r i
j i

s a
 n

or
m

al
iz

ed
 m

ea
su

re
 (s

te
p

2
of

 T
O

PS
IS

),
an

d
m
,
n
 a

re
 th

e
fir

st
an

d
th

e
la

st
in

di
ce

s o
f m

ea
su

re
s a

ss
oc

ia
te

d
w

ith
 m

ea
su

ra
bl

e
co

nc
ep

t,
re

sp
ec

tiv
el

y

m
(k
)
=
∑

n j=
1
r i
j∕
n

i
=
{
m
…

n
}
k
=
{
1
,
2
,
3
…

p
}

(1
3)

Ex
pe

rt
 o

pi
ni

on
Th

e
ev

al
ua

tio
n

re
su

lts
 a

re
 m

an
ua

lly
 in

te
rp

re
te

d
ac

co
rd

in
g

to
 th

e
ne

ed
s o

f t
he

 e
va

lu
at

or
, a

fte
r

th
e

re
su

lts
 a

re
 o

bt
ai

ne
d

N
o

eq
ua

tio
n

759Software Quality Journal (2023) 31:721–773

1 3

• Step 1: Since maintainability is decomposed into three sub-characteristics and qual-
ity evaluation is performed in two OSS aspects, the necessary hierarchy for AHP
implementation is provided.

• Step 2: The pairwise comparison matrix A (size n × n) is constructed to compare crite-
ria (e.g., OSS aspect and sub-characteristics) in pairs as shown in Table 8(A).

• Step 3: A scale from 1 to 9 is used for ratings in the AHP method (please see (Saaty,
1980) for details) for the evaluator’s judgments in pairwise comparison. The matrix A
is filled out as a result of the pairwise comparison is given in Table 8(A).

• Step 4: The normalized decision matrix Anorm is given in Table 8(B). To find the nor-
malized values, the value in each cell is divided by the total value at the bottom of the
column, as shown in Eq. (7).

• Step 5: The weights of the sub-characteristics with respect to their importance are cal-
culated as shown in Table 8(C). These weights are calculated by using Eq. (7).

• Step 6: The Consistency Ratio (CR) value is calculated to measure the consistency of
the judgments of decision-makers by using Eqs. (3, 4), as shown Table 8(C). The cal-
culation of CR value is explained in detail in the studies (Işıklar & Büyüközkan, 2007;
Saaty, 2008) and is not repeated here to save space.

• Step 7: The value of CR must be less than 0.1 for the result of AHP be accepted as con-
sistent (Işıklar & Büyüközkan, 2007). If this is not the case, the pairwise comparison
(step 3) should be revised. In this regard, since the CR value (0.0212) is less than 0.1 as
shown in Table 8(C), the weights of sub-characteristics are consistent.

Assuming that the AHP method is applied according to the developer’s viewpoint and
at the end of the process, a weight of 0.650 is obtained for the code-based aspect and
a weight of 0.350 is obtained for the community-based aspect, as shown in Table 9(B).

Table 8 A Pairwise comparison results, B values of normalized decision matrix, and C weights of sub-
characteristics w.r.t importance

(A)
A T M

A 1 2 5

T 1/2 1 4

M 1/5 1/4 1

Total 1.7 3.25 10

(B)
A T M

A 0.588 0.620 0.500

T 0.294 0.31 0.400

M 0.118 0.08 0.100

(C)
WEIGHT

A 0.568
T 0.334
M 0.098
CR 0.0212

A: Analyzability, T: Testability, M: Modifiability, and CR: Consistency ratio

nxn

A= Anorm =

nxn

Table 9 A Weights of sub-characteristics w.r.t importance, B weights of OSS aspects w.r.t importance, and
C final weights for sub-characteristics

(A)
WEIGHT

A 0.568
T 0.334
M 0.098

(C)
OSS aspect Code-based (0.650) Community-based (0.350)

Sub-

characteristic

A

(0.568)

T

(0.334)

M

(0.098)

A

(0.568)

T

(0.334)

M

(0.098)

Final weight 0.369 0.217 0.063 0.198 0.116 0.034
(B)

WEIGHT
CODE-BASED 0.650
COMMUNITY-

BASED
0.350

A: Analyzability, T: Testability, M: Modifiability

Apply Eq. (12)

760 Software Quality Journal (2023) 31:721–773

1 3

Next, the final weight of each sub-characteristics affecting each OSS aspect is calculated
as shown in Table 9(C) by using the concept of weighting aggregation method. While
determining these weights, weighted distribution formula shown in Eq. (7) is used as the
concept of the weighting aggregation method. The rationale behind this formula is that
from a particular viewpoint, the importance of each sub-characteristic may be different
in each OSS aspect. That is, the weights of the sub-characteristics should be distrib-
uted on the OSS aspects according to the importance of the OSS aspects. For example,
assume that the evaluator is a developer and the code-based aspect is more important
for this viewpoint. Accordingly, the analyzability (i.e., sub-characteristic) of the source
code (in code-based aspect) should be of greater importance for this evaluator. In other
words, the weight of analyzability in the code-based side should be greater than that in
the community-based side.

In the measurement part of the OSS-QMM, the concepts are used to quantify the
quality of an OSS product via measures belonging to code-based and community-based
aspects. Assume that the measures (M) are determined for each measurable concept as
shown in Table 10. Assume that the type of the specified measures is base measure and
no mathematical equation is used for a derived measure. Then, they are computed by
using a measurement method. In this case, the values of these measures can be com-
puted automatically or manually. Assume that all measures are computed manually
for this example. After this stage, the TOPSIS method is used, which allows assign-
ing weights to the OSS products at the end of the evaluation. The steps of the TOPSIS
method are already shown in Fig. 8 and its application is explained in Sect. 5.5.1.1 (see
Hwang & Yoon, 1981; Işıklar & Büyüközkan, 2007; Hasnain et al., 2020 for details).
The outputs obtained at each step of the TOPSIS method for the example evaluation are
provided in the items below.

• Step 1: After obtaining the values of code-based and community-based measures for
the OSS products (i.e., P1, P2, and P3), the decision matrix B = [bij]m×n (TOPSIS, step
1) is constructed as represented in Table 10. In this matrix, m is the number of alterna-
tives (i.e., OSS products) and n is the number of evaluation criteria (i.e., the measures).

• Step 2: Since scales and units for the measures can be heterogeneous, the values of
the measures must first be normalized. In this context, they are normalized using the
concept of normalized measure. In the normalization stage, Eq. (7) is applied to the
decision matrix (B = [bij]m×n) and as represented in Table 11(A), normalized decision
matrix R = [rij]m×n is obtained (TOPSIS, step 2).

If a measurable concept (MC) is associated with more than one measure, these associ-
ated measures should be aggregated by using the concept of aggregated measure. In this
regard, Eq. (7) is applied as the concept of measure aggregation method for the measures
associated with MC1 and MC6 shown in Table 11(A). Then, measurement is performed
as action, and measurement results are produced for each measurable concept before the
evaluation phase.

In the evaluation part of the OSS-QMM, the concept of evaluation uses three inputs to
initiate the evaluation: final weights of the sub-characteristics, impacts, and measurement
results to start the evaluation. These three inputs should be aggregated by using the concept
of evaluation aggregation. In the example evaluation, the concept of the evaluation aggre-
gation method is used to aggregate these three inputs. That is, the integrated AHP-TOPSIS

761Software Quality Journal (2023) 31:721–773

1 3

Ta
bl

e
10

Fi

na
l w

ei
gh

ts
 o

f s
ub

-c
ha

ra
ct

er
ist

ic
s,

im
pa

ct
 o

f m
ea

su
ra

bl
e

co
nc

ep
t (

M
C

) o
n

su
b-

ch
ar

ac
te

ris
tic

s,
m

ea
su

re
s r

el
at

ed
 to

 M
C

, m
ea

su
re

 v
al

ue
s f

or
 e

ac
h

pr
od

uc
t,

an
d

de
ci

-
si

on
 m

at
rix

A
sp

ec
t

C
od

e-
ba

se
d

C
om

m
un

ity
-b

as
ed

Su
b-

ch
ar

ac
te

ri
st

ic
A

na
ly

za
bi

lit
y

(A
)

Te
st

ab
ili

ty
 (T

)
M

od
ifi

ab
ili

ty
 (M

)
A

na
ly

za
bi

lit
y

(A
)

Te
st

ab
ili

ty
 (T

)
M

od
ifi

ab
ili

ty
 (M

)
Fi

na
l w

ei
gh

t
0.

36
9

0.
21

7
0.

06
3

0.
19

8
0.

11
6

0.
03

4
Im

pa
ct

N
eg

at
iv

e
(−

)
N

eg
at

iv
e

(−
)

Po
si

tiv
e

(+
)

Po
si

tiv
e

(+
)

Po
si

tiv
e

(+
)

Po
si

tiv
e

(+
)

M
ea

su
ra

bl
e

co
nc

ep
t

M
C

1
M

C
2

M
C

3
M

C
4

M
C

5
M

C
6

M
ea

su
re

M
1 1

M
1 2

M
2

M
3

M
4

M
5

M
6 1

M
6 2

M
6 3

Pr
od

uc
t 1

1.
60

2
1.

63
4

17
.2

35
2.

36
5

0.
78

5
0.

54
5

35
6

31
0

30
9

Pr
od

uc
t 2

2.
28

7
1.

97
5

20
.6

54
2.

12
5

0.
55

6
0.

52
3

21
1

28
7

32
7

Pr
od

uc
t 3

1.
98

6
2.

02
4

27
.2

56
1.

07
5

0.
87

6
0.

72
3

22
0

20
5

23
5

762 Software Quality Journal (2023) 31:721–773

1 3

method (TOPSIS, steps 3–7) is used as already specified in Table 6. The remaining steps of
the TOPSIS are provided in the items below.

• Step 3: The final weight of each sub-characteristic (in Table 11A) is multiplied by each
associated normalized measure by using Eq. (7), in order to obtain the weighted nor-
malized matrix V = [vij]m×n shown in Table 11(B).

• Step 4: Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS) are deter-
mined (as shown in Table 11C) from the weighted normalized matrix by considering
the impacts (i.e., (+) or (−)). The equations for calculating PIS and NIS are given in
Eq. (7) and Eq. (7), respectively. If the impact is negative, the PIS value is the mini-
mum of the normalized measure in the associated column as shown in Table 11(B); if it
is positive, it is the maximum one, and vice versa for the NIS value.

• Step 5: Separation measurement based on Euclidian distance for PIS and NIS (i.e., Si
+

and Si
−) are calculated with Eq. (7) and Eq. (7), respectively, as shown in Table 12(A).

• Step 6: Each OSS product is assigned a final quality score using Eq. (7) in Table 12(B).
• Step 7: The OSS products are ranked according to their final quality score, indicating

that a higher value corresponds to better quality.

The final quality score for each OSS product obtained from the concept of the evalu-
ation aggregation method can be interpreted with the concepts of evaluation function or
manual evaluation. In this example evaluation, expert opinion is used as the concept of
manual evaluation. In this context, the evaluation results are interpreted by an expert.
Considering the ranks of the products shown in Table 12 (B), the most preferable prod-
uct in terms of maintainability is determined as P1, and it is followed by P3 and P2,
respectively. Also, considering the final scores, the difference in quality between P1 and
P3 is greater than the difference in quality between P2 and P3.3

Table 11 A Normalized decision matrix, B weighted normalized decision matrix, and C value of PIS and
NIS

(a)
Final Weight 0.369 0.217 0.063 0.198 0.116 0.034

Impact - - + + + +

MC MC1 MC2 MC3 MC4 MC5 MC6

M M1 M2 M3 M4 M5 M6

P1 0.483 0.450 0.705 0.603 0.521 0.676

P2 0.636 0.539 0.633 0.427 0.500 0.568

P3 0.599 0.712 0.320 0.673 0.691 0.456

(b)
Impact - - + + + +

MC MC1 MC2 MC3 MC4 MC5 MC6

M M1 M2 M3 M4 M5 M6

P1 0.178 0.098 0.045 0.120 0.061 0.023

P2 0.235 0.117 0.040 0.085 0.058 0.019

P3 0.221 0.154 0.020 0.134 0.081 0.016

(c)
v+(PIS) 0.178 0.098 0.045 0.134 0.081 0.023

v-(NIS) 0.235 0.154 0.020 0.085 0.058 0.016

MC: Measurable concept, M: measure, P1: Product 1, P2: Product 2, P3: Product 3, PIS: Positive ideal solution, and NIS: Negative ideal solution

R =
V =

Table 12 A Separation measurements for PIS and NIS, and B final weights of OSS products and ranks
(a)

 Si+ Si-
P1 0.024284 0.071388

P2 0.080561 0.042505

P3 0.075499 0.053774

(b)
 Final Product weight

(Closeness to PIS)
Rank of
product

P1 0.7170 1

P2 0.3032 3

P3 0.4696 2

P1: Product 1, P2: Product 2, P3: Product 3, Si
+ and Si

-
: Separation measurements

763Software Quality Journal (2023) 31:721–773

1 3

5.6 Discussion

In this study, an initial proposal for OSS-QMM has been made by considering the step-
based meta-modeling creation process (Beydoun et al., 2009; Othman et al., 2014). Despite
the fact that a systematic process has been followed for developing the OSS-QMM, several
threats to its validity might have arisen regarding understandability and potentially over-
looked concepts of the OSS-QMM. To cope with the former, all the concepts and steps
used in the development of the OSS-QMM are explained in detail with their sources in this
study, in order to increase the understandability of the meta-model. The concepts of the
OSS-QMM are classified by specification, measurement, and evaluation, in order to make
them more meaningful for the corresponding stakeholders. The OSS-QMM is aimed to be
used by all users in need, e.g., requirements analysts, project leaders, developers, and qual-
ity assurance staff. However, it may be difficult for an evaluator without quality modeling
and evaluation background to understand the OSS-QMM and use it in practice. To alleviate
this threat, a guidance document on the use of the OSS-QMM will be developed.

As explained in Fig. 5, development process of the OSS-QMM is systematic and
includes iterations. In this process, the development of the OSS-QMM has been carried out
with the help of the related studies in literature. However, it is possible that there are con-
cepts that have been overlooked or misused. To alleviate this threat, a series of meetings
have been held between the authors of this article to discuss the matching process, concepts
and their relationships, and the structure of the OSS-QMM. In addition, during the initial
validation that includes example evaluation and derivation of existing OSS quality models,
the practical applications (i.e., instantiations) of the OSS-QMM have been experienced. As
a result, the shortcomings in the meta-model have been observed throughout these activi-
ties and revised as necessary. Moreover, external feedback from the SQM experts, two each
from of industry and academia, has been received to strengthen the confidence in this ini-
tial validation of the OSS-QMM. Detailed information has been provided to the experts
about the development process and content of the OSS-QMM. Although the experts have
found the content and implementation of the OSS-QMM sufficient, we admit that it may be
difficult to come up with a completely correct interpretation without applying it in practice.
In this context, experts have been asked to use the OSS-QMM for deriving their own qual-
ity models (either an individual model used in their company or an existing model). How-
ever, this is an ongoing process which is left as an upcoming work. That is, although the
OSS-QMM is built by providing a solid base, it is possible to make minor refinements to
some concepts and, thus, the content of the meta-model may slightly change in the future.

6 Conclusion and future work

The motivation for this study was the lack of meta-models for OSS quality and the
inconsistent terminology among the existing general-purpose SQMMs. Therefore, the
main achievements of this study have been to eliminate the inconsistency in terminolo-
gies of the SQMMs, to make a matching between the terms of the SQMMs and the
terms of the quality models for OSS, to provide an initial version of the OSS-QMM,
and as a result, to provide the opportunity for developing OSS quality meta-models and
models that enable comparable measurements.

764 Software Quality Journal (2023) 31:721–773

1 3

In this context, first of all, meta-models have been examined in detail by performing
an SLR study (Yılmaz & Tarhan, 2020), and thus deficiencies have been discovered in
this domain and the current status of the meta-models for OSS quality has been analyzed.
Then, another SLR study (Yılmaz & Tarhan, 2022) has been performed to analyze the OSS
quality models. Considering the output of this SLR, the common structure of the tailored
quality models which were proposed for OSS and that of the basic quality models which
provide partial evaluation for OSS have been analyzed. Consequently, it has been observed
that these quality models have a common structure consisting of five levels. Following that,
inconsistencies and terminology conflicts between international standards and proposals
have been identified and analyzed since these standards or proposals are the basis for the
SQMMs. Then, terminologies of the SQMMs have been analyzed, and how inconsistencies
and terminology conflicts in standards or proposals are reflected in the SQMMs have been
discussed. It has been observed that the SQMMs cover more terms from ISO/IEC 15939
than the others since other sources identify concepts for only certain application domains
and purposes. The synonyms of the terms in different SQMMs have been listed and the
terms have been categorized according to the most used ones among their synonyms. The
aggregations of the terms under each category have also been listed. Consequently, it has
been observed that 38 cases of synonymity exist for 15 terms in the SQMMs, and this situ-
ation has confirmed that there are inconsistencies among the terms of different SQMMs.
Next, the terms at each level of the OSS quality models and the terms of the SQMMs in
each category have been matched since quality models are assumed to be the instances
of the SQMMs. As a result of all these processes, the infrastructure for developing con-
sistent meta-models of OSS quality has been established. Next, an initial version of the
OSS-QMM has been proposed to help eliminate incompleteness and inconsistency in sev-
eral SQMMs. During the development of the meta-model, an iterative process has been
followed to refine the OSS-QMM. Finally, an example instantiation of the meta-model of
OSS quality has been illustrated.

It is aimed that this initial version of the OSS-QMM motivates developing further OSS
quality models with homogenous structure and common terms, by using a same modeling
language defined by the proposed meta-model. Also, it is aimed that this meta-model con-
tributes to the standardization of OSS quality measurements, which in turn will provide
an important communication vehicle to companies in interoperating. However, the lack of
consistency and completeness identified in the international standards and accordingly in
the SQMMs may negatively affect this standardization. Therefore, in this study, a compara-
tive analysis among the terms of the SQMMs has been carried out to identify inconsistent
terminology in software quality measurement. Then, a common terminology provided by
an initial OSS-QMM has been proposed to help eliminate incompleteness and inconsist-
ency available in the SQMMs.

Nevertheless, it cannot be claimed that the effort spent in this study and the initially pro-
posed meta-model will solve all the problems related to consistency and harmonization in a
way that will be accepted by all parties in the OSS community. Still, it can serve as a guide
for OSS quality specification and evaluation by forming the basis of discussions to solve
the problems with standardization. It can serve as a guide for evaluators who are confused
by inconsistent terminology in the existing SQMMs or international standards, and also for
meta-model developers who will propose new SQMMs or integrate consistent terms into
the developed SQMMs.

As future work, in the light of the efforts spent and the output produced in this study,
we aim to elaborate further on this initial proposal of the OSS-QMM. Since the stage cat-
egories of the meta-model have processes of their own, we aim to detail each category

765Software Quality Journal (2023) 31:721–773

1 3

by visualizing it with further UML diagrams. Also, it should be noted that the empirical
validation of the OSS-QMM is currently in progress. In this context, the following activi-
ties are planned. First, we will apply the new operationalized quality model, which has
been derived from the OSS-QMM and used in example evaluation in this study, to several
OSS products in real-world cases. Then, we will instantiate the widely known OSS quality
models from the proposed OSS-QMM and use them to evaluate the same OSS products in
real-world cases. Consequently, we will compare the results of the operationalized quality
model with those obtained by the widely known OSS quality models. Also, we plan that
companies will derive their own quality models from the OSS-QMM and implement them
in practice without our intervention. Furthermore, we will develop a guidance document on
how to use the proposed meta-model so that it can be taken as a base by interested stake-
holders. Finally, we aim to develop a tool to automate the use of the OSS-QMM.

Appendix 1 List of questions to obtain feedback from experts

Feedback on the applicability of OSS-QMM
in practice

Purpose of question

Q1 Suppose that you would match the terms of the
quality model used in your own company for
software evaluation, with the terms of the
OSS-QMM. Which of the meta-model terms
would you match?

It is asked to see the usefulness of the concepts
in our meta-model and find out if there are any
unused concepts

Q2 As a result of the matching you performed in the
previous question (Q1), are there any unused
concept of our OSS-QMM?

It is asked to see if there is a missing concept in
our meta-model and get feedback from experts
in this context

Q3 Do you agree that the terms of the example OSS
quality model given in Appendix 2 (derived
from OSS-QMM) and the terms of the OSS-
QMM are compatible with each other?

Experts are asked to derive an OSS quality model
using our meta-model. Then, it is asked to get
feedback on the compatibility of the model they
derived with the model we derived (Appendix
2)

Feedback on the structure of OSS-QMM
Q1 Do you agree that the mapping process is

compatible with the (5-level) structure of the
OSS-QMM?

It is asked to get feedback on the compatibility of
the matching process with the structure of the
meta-model

Q2 Do you agree that the classification of the OSS-
QMM terms (under specification, measurement,
and evaluation) are useful?

It was asked to get feedback on whether the clas-
sification process contributes to a better under-
standing of our meta-model and the coexistence
of compatible concepts

Q3 Do you agree that the OSS quality models to be
derived from the OSS-QMM will have homo-
geneous structure?

In order to benefit from the software quality mod-
eling experiences of the experts, they are asked
for their opinions on whether the structure of the
models to be developed from our meta-model
would be homogeneous

Q4 Do you agree that the OSS-QMM is understand-
able?

Experts are asked whether the developed meta-
model was understandable and their feedback to
make it more understandable

Feedback on the content of OSS-QMM

766 Software Quality Journal (2023) 31:721–773

1 3

Feedback on the applicability of OSS-QMM
in practice

Purpose of question

Q1 Do you agree that the OSS-QMM is sufficiently
general to describe any existing OSS quality
model that you already know? (e.g., OSMM,
SQO-OSS, and QualOSS)?

Experts are asked to derive an existing OSS
quality model they know using our meta model.
Then, it is asked whether there were deficiencies
in our model

Q2 Do you agree that that relationship between
concepts is compatible?

It is asked to get feedback on whether the relation-
ships used between concepts were compatible
with the concepts and the structure of our meta-
model

Q3 Do you agree that the OSS-QMM is complete? Considering the structure of the meta-model, its
concepts, and the relationships among them, it
was asked to get feedback on whether quality
models derived from our meta-model address all
aspects of OSS products (e.g., code-based and
community-based aspects)

Appendix 2 The new operationalized quality model derived
from OSS‑QMM

767Software Quality Journal (2023) 31:721–773

1 3

Appendix 3 Matching concepts of OSS‑QMM and existing OSS quality
models (OSMM, OpenBRR, and SQO‑OSS)

OSS-QMM
concepts

Quality models terms

Quality model OSMM OpenBRR SQO-OSS
Viewpoint Developer Developer Developer
OSS aspect Community-

based
Code-based Community-

based
Code-based Community-

based
Information

need
Calculation of

developer
size to evalu-
ate maintain-
ability

Calculation
of fault
proneness
to evaluate
maintain-
ability

Calculation of
developer
productivity
to evaluate
maintain-
ability

Calculation
of comment
frequency
to evaluate
maintain-
ability

Calculation of
documenta-
tion quality to
evaluate main-
tainability

Characteristic Maintainability Maintainability Maintainability Maintainability Maintainability
Sub-

characteristic
Acceptance Product quality Product quality Analyzability Analyzability

Entity Developer Source code Contributor Source code Contributor
Quality

requirement
The large size

of developer
is desirable
for maintain-
ability

The low error
proneness of
the source
code is
desirable for
maintain-
ability

The productive
developers
are desirable
for maintain-
ability

The high
comment
frequency is
desirable for
maintain-
ability

The large number
of documents
is desirable for
maintainability

Impact Positive Negative Positive Positive Positive
Measurable

concepts
The size of

developer
The fault

proneness of
source code

Productivity of
contributors

Complexity of
source code

Completeness of
documentation

Measure Number of
developers

(Base measure)

Defect density
(Derived meas-

ure)

Number of
releases

(Base measure)

Weighted
method per
class

(WMC)
(Base measure)

Number of docu-
ments

(Base measure)

Unit Developer Defects, lines Release Methods Documents
Scale Integer from

zero to five
(The score

(1–5) is
assigned w.r.t.

rules given
in OSMM)

Integer from
zero to three

(The score
(1–3) is
assigned
w.r.t. rules
given in
OpenBRR)

Integer from
zero to three

(The score
(1–3) is
assigned w.r.t.
rules given in
OpenBRR)

Integer from
zero to infin-
ity

Integer from zero
to infinity

Measurement
method

Manually Automatically
(e.g., Under-

stand scitool,
CKJM,
Intellij IDEA,
etc.)

Manually Automatically
(e.g., Under-

stand scitool,
CKJM,
Intellij IDEA,
etc.)

Manually

768 Software Quality Journal (2023) 31:721–773

1 3

OSS-QMM
concepts

Quality models terms

Measurement
function

There is no
measurement
function
because it is a
base measure

Number of
defects/LOC

There is no
measurement
function
because it is a
base measure

There is no
measurement
function
because it is a
base measure

There is no
measure-
ment function
because it is a
base measure

Acknowledgements This study was carried out as part of a PhD study pursued by the first author at the
Graduate School of Science and Engineering of Hacettepe University.

Data Availability The data that support the findings of this study are openly available in Zenodo at the follow-
ing URL: definition of the terminologies in the SQMM, Zenodo, https:// doi. org/ 10. 5281/ zenodo. 63675 96.

Declarations

Conflict of interest The authors declare no competing interests.

References

Adewumi, A., Misra, S., & Omoregbe, N. (2013). A review of models for evaluating quality in open source
software. IERI Procedia, 4, 88–92.

Adewumi, A., Misra S., Omoragbe, N., Crawford, B., & Soto, R. (2016). A systematic literature review of
open source software quality assessment models. SpringerPlus, 5.1, 1936.

Adewumi, A., Misra S., & Omoragbe, N. (2019). FOSSES: framework for open‐source software evaluation
and selection. Software: Practice and Experience, 49.5, 780–812.

Ahmad, N., & Laplante, P. A. (2013). A systematic approach to evaluating open source software. Howard C,
ed. Strategic Adoption of Technological Innovations. Hershey, PA: IGI Global: pp 50–69.

Al-Badareen, A. B., Selamat, M. H., Jabar, M. A., Din, J., & Turaev, S. (2011). Software quality models: a
comparative study. International Conference on Software Engineering and Computer Systems, (pp.
46–55). Springer, Berlin, Heidelberg.

Al-Dhaqm, A., Razak, S., Othman, S. H., Ngadi, A., Ahmed, M. N., & Ali Mohammed, A. (2017). Devel-
opment and validation of a database forensic metamodel (DBFM). PloS one, 12(2), e0170793.

Alfonzo, O., Domínguez, K., Rivas, L., Perez, M., Mendoza, L., & Ortega, M. (2008). Quality measurement
model for analysis and design tools based on FLOSS. 19th Australian conference on software engi-
neering. Perth, (pp 26–28) Australia.

Alvaro, A., Almeida, E. S., & Meira, S. R. L. (2010). A software component quality framework. ACM SIG-
SOFT Software Engineering Notes, 35(1), 1–4.

Aversano, L., & Tortorella, M. (2013). Quality evaluation of floss projects: application to ERP systems.
Information and Software Technology. 55.7, 1260–1276.

Barcellos, M.P., de Almeida Falbo, R., & Dal Moro, R. (2010). A well-founded software measurement
ontology. FOIS, (pp. 213–226).

Barcellos, M. P., & de Almeida Falbo, R. (2013). A software measurement task ontology. Proceedings of
the 28th Annual ACM Symposium on Applied Computing, (pp. 311–318).

Bertoa, M., & Vallecillo, A. (2002). Quality attributes for COTS components”, I+D Computación, Vol 1.
Nro, 2, 128–144.

Bertoa, M. F., Vallecillo, A., & García, F. (2006). An ontology for software measurement. Ontologies for
Software Engineering and Software Technology, (pp. 175–196). Springer, Berlin, Heidelberg.

Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J. J., Pavon, J., & Gonzalez-
Perez, C. (2009). FAML: A generic metamodel for MAS development. IEEE Transactions on Soft-
ware Engineering, 35(6), 841–863.

Boehm, B. W., Brown, H., & Lipow, M. (1978). Quantitative evaluation of software quality. Proceedings of
the 2nd International Conference on Software Engineering, (pp. 592–605).

https://doi.org/10.5281/zenodo.6367596

769Software Quality Journal (2023) 31:721–773

1 3

Briand, L., Morasca, S., & Basili, V. (2002). An operational process for goal driven definition of measures.
IEEE Transactions on Software Engineering, 28(12), 1106–1125.

Ciolkowski, M., & Soto, M. (2008). Towards a comprehensive approach for assessing open source projects.
Software Process and Product Measurement, (pp. 316–330). Springer, Berlin, Heidelberg.

Chirinos, L., Losavio, F., & Bøegh, J. (2005). Characterizing a data model for software measurement. Jour-
nal of Systems and Software, 74(2), 207–226.

Czarnacka, C. B. (2009). The ISO/IEC Standards for the Software Processes and Products Measurement.
(pp. 187–200).

Del Bianco, V., Lavazza, L., Morasca, S., & Taibi, D. (2009). Quality of open source software: The Qual-
iPSo Trustworthiness Model. IFIP International Conference on Open Source Systems. Springer, Ber-
lin, Heidelberg.

Dromey, R. G. (1995). A model for software product quality. IEEE Transactions on Software Engineering,
21(2), 146–162.

Duijnhouwer, F. W., & Widdows, C. (2003). Capgemini Expert Letter Open Source Maturity Model,
Capgemini, tinyu rl. com/ yxdbv jk6.

Eghan, E. E., Alqahtani, S.S., Forbes, C., & Rilling, J. (2019). API trustworthiness: an ontological approach
for software library adoption. Software Quality, Journal, 27.3, 969–1014.

Garcia, F., Bertoa, M. F., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M., & Genero, M. (2006). Towards
a consistent terminology for software measurement. Information and Software Technology, 48(8),
631–644.

Garcia, F., Ruiz, F., Calero, C., Bertoa, M. F., Vallecillo, A., Mora, B., & Piattini, M. (2009). Effective use
of ontologies in software measurement. Knowledge Eng. Review, 24(1), 23–40.

Garcia, F., Serrano, M., Cruz-Lemus, J., Ruiz, F., Piattini, M., & ALARCOS Research Group. (2007). Man-
aging software process measurement: a metamodel-based approach. Information Sciences, 177(12),
pp. 2570–2586.

Georgiadoui, E. (2003). GEQUAMO–a generic, multilayered, customizable software quality model.
Software Quality Journal, 11(4), 313–323. https:// doi. org/ 10. 1023/A: 10258 17312 035

Grady, R. B. (1992). Practical software metrics for project management and process improvement. Pren-
tice Hall.

Haaland, K., Groven, A.K., Regnesentral, N., Glott, R., Tannenberg, A., & FreeCode, A.S. (2010). Free/
libre open source quality models–a comparison between two approaches. 4th FLOS International
Workshop on Free/Libre/Open Source Software, (pp. 1–17).

Hauge, O., Osterlie, T., & Sorensen, C. F. (2009). An empirical study on selection of open source soft-
ware–preliminary results. ICSE Workshop on Emerging Trends in Free/Libre/Open Source Soft-
ware Research and Development. IEEE.

Hasnain, S., Ali, M. K., Akhter, J., Ahmed, B., & Abbas, N. (2020). Selection of an industrial boiler
for a soda-ash production plant using analytical hierarchy process and TOPSIS approaches. Case
Studies in Thermal Engineering, 19, 100636.

Henderson-Sellers, B., & Bulthuis, A. (1996). COMMA: Sample metamodels. JOOP, 9(7), 44–48.
Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications.

Springer-Verlag.
Işıklar, G., & Büyüközkan, G. (2007). Using a multi-criteria decision making approach to evaluate

mobile phone alternatives. Computer Standards & Interfaces, 29(2), 265–274.
IEEE. (1998). Standard for a Software Quality Metrics Methodology. IEEE Standards, (pp. 1061–1998).
IEEE 610.12. (1990). IEEE Standard Glossary of Software Engineering Terminology.
ISO/IEC 9126–1. (2001). Software Engineering - Product Quality - Part 1: Quality Model, International

Organization for Standardization, Geneva, Switzerland.
ISO/IEC 15939. (2007). Software engineering – software measurement process, second edition.
ISO/IEC 25010. (2008). Software Engineering: Software Product Quality Requirements and Evaluation

(SQuaRE) Quality Model and Guide. International Organization for Standardization. Geneva,
Switzerland.

ISO/IEC 14598. (1999). Information Technology, Software Product Evaluation: Process for Developers.
Software Engineering.

ISO/IEC 15504–1. (2004). Information technology – Process assessment – Concepts and vocabulary.
ISO/IEC 14143–6. (2012). Information technology, Software measurement, Functional size measurement.
ISO/IEC. ISO/IEC 12207. (2008). System and software engineering – Software life-cycle processes, sec-

ond edition.
ISO/IEC 19761. (2002). Software Engineering COSMIC-FFP, A functional size measurement method.

International Organization for Standardization ISO, Geneva.

https://tinyurl.com/yxdbvjk6
https://doi.org/10.1023/A:1025817312035

770 Software Quality Journal (2023) 31:721–773

1 3

ISO/IEC 25020. (2019). Systems and software engineering, Systems and software Quality Requirements
and Evaluation (SQuaRE), Quality measurement framework.

ISO, International Standard ISO VIM. (1993). International Vocabulary of Basic and General Terms in
Metrology, International Standards Organization, Geneva, Switzerland, second edition.

Jadhav, A. S., & Sonar, R. M. (2011). Framework for evaluation and selection of the software packages:
A hybrid knowledge based system approach. Journal of Systems and Software, 84(8), 1394–1407.

Jean-Christophe, D., & Alexandre, S. (2008). Comparing assessment methodologies for free/open source
software: OpenBRR and QSOS. International Conference on Product Focused Software Process
Improvement. Springer, Berlin, Heidelberg.

Khatri, S. K., & Singh, I. (2016). Evaluation of open source software and improving its quality. 5th
International Conference on Reliability, Infocom Technologies and Optimization (ICRITO). IEEE.

Karagiannis, D., & Kühn, H. (2002). Metamodelling platforms. EC-Web, 2455, p. 182.
Khondoker, R., Zaalouk, A., Marx, R., & Bayarou, K. (2014). Feature-based comparison and selection

of software defined networking (SDN) controllers. World Congress on Computer Applications and
Information Systems (WCCAIS). Hammamet, Tunisia.

Kim, H. M. (1999). Representing and reasoning about quality using enterprise models. PhD thesis, Dept.
Mechanical and Industrial Engineering, University of Toronto, Canad.

Kitchenham, B., Hughes, R. T., & Linkman, S. G. (2001). Modeling software measurement data. IEEE
Transactions on Software Engineering, 27(9), 788–804.

Kläs, M., Lampasona, C., Nunnenmacher, S., Wagner, S., Herrmannsdörfer, M., & Lochmann, K.
(2010). How to evaluate meta-models for software quality. Proceedings of the 20th International
Workshop on Software Measurement.

Kuwata, Y., Takeda, K., & Miura, H. (2014). A study on maturity model of open source software com-
munity to estimate the quality of products. Procedia Computer Science, 35, 1711–171.

Lenarduzzi, V., Taibi, D., Tosi, D., Lavazza, L., & Morasca, S. (2020). Open source software evaluation,
selection, and adoption: a systematic literature review. 46th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA). IEEE.

Maki-Asiala, P., & Matinlassi, M. (2006). Quality assurance of open source components: integrator point
of view. 30th Annual International Computer Software and Applications Conference (COMP-
SAC’06), (Vol 2). IEEE.

Mc Call, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in Software Quality, Volumes I, II, and III.
US Rome Air Development Center Reports, US Department of Commerce, USA.

Mcgarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., & Hall, F. (2002). Practical software meas-
urement: objective information for decision makers. Addison Wesley.

Mens, T., Doctors, L., Habra, N., Vanderose, B., & Kamseu, F. (2011). Qualgen: Modeling and analysing
the quality of evolving software systems. 15th European Conference on Software Maintenance and
Reengineering. IEEE.

Miguel, J. P., Mauricio, D., & Rodríguez, G. (2014). A review of software quality models for the evaluation
of software products. arXiv preprint arXiv: 1412. 2977.

Mohagheghi, P., & Dehlen, V. (2008). A metamodel for specifying quality models in model-driven engi-
neering. Proceedings of the Nordic Workshop on Model Driven Engineering.

Nistala, P., Nori, K. V., & Reddy, R. (2019). Software quality models: a systematic mapping study. 2019
IEEE/ACM International Conference on Software and System Processes (ICSSP), (pp. 125–134).
IEEE.

Object Management Group (OMG), Meta Object Facility (MOF). (2019). Core Specification Version
2.5.1. https:// www. omg. org/ spec/ MOF/2. 5.1/ PDF

Othman, S. H., & Beydoun, G. (2010). Metamodelling approach to support disaster management knowledge
sharing. 21st Australasian Conference on Information Systems.

Othman, S. H., Beydoun, G., & Sugumaran, V. (2014). Development and validation of a Disaster Manage-
ment Metamodel (DMM). Information Processing & Management, 50(2), 235–271.

Orijin, A. (2006). Method for qualification and selection of open source software (QSOS) version 2.0, http://
www. qsos. org/.

Özcan, E. C., Ünlüsoy, S., & Eren, T. (2017). A combined goal programming–AHP approach supported
with TOPSIS for maintenance strategy selection in hydroelectric power plants. Renewable and Sus-
tainable Energy Reviews, 78, 1410–1423.

Petrinja, E., Sillitti, A., & Succi, G. (2010). Comparing OpenBRR, QSOS, and OMM assessment models.
IFIP International Conference on Open Source Systems. Springer, Berlin, Heidelberg.

Raffoul, E., Domínguez, K., Perez, M., Mendoza, L. E., & Griman, A. C. (2008). Quality model for the
selection of FLOSS-based issue tracking system. Proceedings of the IASTED international confer-
ence on software engineering, Innsbruck, Austria.

http://arxiv.org/abs/1412.2977
https://www.omg.org/spec/MOF/2.5.1/PDF
http://www.qsos.org/
http://www.qsos.org/

771Software Quality Journal (2023) 31:721–773

1 3

Ramamoorthy, C. V., Prakash, A., Tsai, W. T., & Usuda, Y. (1984). Software engineering: Problems and
perspectives. Computer, 17(10), 191–209.

Rawashdeh, A., & Matalka, B. (2006). A new software quality model for evaluating COTS components”.
Journal of Computer Science, 2(4), 373–381.

Raza, A., Capretz, L. F., & Ahmed, F. (2012). An open source usability maturity model (OS-UMM). Com-
puters in Human Behavior, 28.4, 1109–1121.

Rossi, B., Russo, B., & Succi, G. (2012). Adoption of free/libre open source software in public organiza-
tions: factors of impact. Information Technology & People.

Rout, T. P. (1999). Consistency and conflict in terminology in software engineering standards. Proceedings
4th IEEE International Software Engineering Standards Symposium and Forum (ISESS’99).

Ruiz, F., Genero, M., García, F., Piattini, M., & Calero, C. (2003). A proposal of a software measurement
ontology. Conference on Computer Science and Operational Research, Buenos Aires, Argentina.

Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting and resource allocation.
McGraw-Hill.

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services
Sciences, 1(1), 83–98.

Saaty, T. L., & Sagir, M. (2015). Ranking countries more reliably in the Summer Olympics. International
Journal of the Analytic Hierarchy Process, 7(3), 589–610.

Sadeghzadeh, H. M., & Rashidi, H. (2017). Software quality models: A comprehensive review and analysis.
Journal of Electrical and Computer Engineering Innovations (JECEI), 6(1), 59–76.

Samarthyam, G., Suryanarayana, G., Sharma, T., & Gupta, S. (2013). MIDAS: a design quality assessment
method for industrial software. Software Engineering in Practice, (pp 911–920). San Francisco, CA,
USA.

Samoladas, I., Goussios G., & Spinellis, D. (2008). The SQO-OSS quality model: measurement based open
source software evaluation. IFIP international conference on open source systems. Springer, Boston,
MA.

Sarrab, M., & Rehman, O. M. H. (2014). Empirical study of open source software selection for adoption,
based on software quality characteristics. Advances in Engineering Software, 69, 1–11.

Siemens company, https:// www. sieme ns. com/ global/ en. html
Software Engineering Institute. (2010). CMMI for development, version 1.3, Technical Report CMU/

SEI-2010-TR-033.
Sohn H., Lee M. G., Seong B. M., & Kim J. B. (2015). Quality evaluation criteria based on open source

mobile HTML5 UI framework for development of cross-platform. International Journal of Soft-
ware Engineering and Its Applications, 9.6, 1–12.

Soto, M., & Ciolkowski, M. (2009). The QualOSS open source assessment model measuring the perfor-
mance of open source communities. Proceedings of the 3rd International Symposium On Empiri-
cal Software Engineering and Measurement.

Stol, K. J., & Babar, M. A. (2010). Challenges in using open source software in product development: a
review of the literature. Proceedings of the 3rd international workshop on emerging trends in free/
libre/open source software research and development.

Suman, M. W., & Rohtak, M. D. U. (2014). A comparative study of software quality models. Interna-
tional Journal of Computer Science and Information Technologies, 5(4), 5634–5638.

Sung, W. J., Kim, J. H., & Rhew, S. Y. (2007) A quality model for open source software selection. Sixth
International Conference on Advanced Language Processing and Web Information Technology
(ALPIT 2007). IEEE.

Taibi, D., Lavazza, L., & Morasca, S. (2007). OpenBQR: A framework for the assessment of OSS. In:
IFIP International Conference on Open Source Systems. Springer, Boston, MA.

Tanrıöver, Ö. Ö., & Bilgen, S. (2011). A framework for reviewing domain specific conceptual models.
Computer Standards & Interfaces, 33(5), 448–464.

Tassone, J., Xu, S., Wang, C., Chen, J., & Du, W. (2018). Quality assessment of open source soft-
ware: a review. IEEE/ACIS 17th International Conference on Computer and Information Science
(ICIS) (pp. 411–416). IEEE.

Thapar, S. S., Singh, P., & Rani, S. (2012). Challenges to development of standard software quality
model. International Journal of Computer Applications, 49(10).

Upadhyay, N., Despande, B. M., & Agrawal, V. P. (2011). Towards a software component quality model.
International Conference on Computer Science and Information Technology, (pp. 398–412).
Springer, Berlin, Heidelberg.

Van Solingen, R., Basili, V., Caldiera, G., & Rombach, H. D. (2002). Goal question metric (GQM)
approach. Encyclopedia of Software Engineering.

https://www.siemens.com/global/en.html

772 Software Quality Journal (2023) 31:721–773

1 3

Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., Lochmann, K., Mayr, A., Plösch, R.,
Seidl, A., Streit, J., & Trendowicz, A. (2015). Operationalised product quality models and assess-
ment: The Quamoco approach. Information and Software Technology, 62, 101–123.

Wagner, S., Lochmann, K., Heinemann, L., Kläs, M., Trendowicz, A., Plösch, R., & Streit, J. (2012).
The Quamoco product quality modelling and assessment approach. 2012 34th International Con-
ference on Software Engineering (ICSE), (pp. 1133–1142). IEEE.

Wagner, S. (2008). Cost-optimisation of analytical software quality assurance: models, data, case stud-
ies. VDM Verlag.

Wang, X. F., Wang, J. Q., & Deng, S. Y. (2013). A method to dynamic stochastic multi-criteria decision
making with log-normally distributed random variables. The Scientific World Journal.

Wang, Y., Xu, L., & Solangi, Y. A. (2020). Strategic renewable energy resources selection for Pakistan:
Based on SWOT-Fuzzy AHP approach. Sustainable Cities and Society, 52, 101861.

Wasserman, M. P., Chan, C. (2006). Business Readiness Rating Project, BRR Whitepaper RFC 1, tinyu
rl. com/ y5srd 5sq.

Wasserman, A. I., Guo, X., McMillian, B., Qian, K., Wei, M. Y., & Xu, Q. (2017). OSSpal: finding
and evaluating open source software. IFIP International Conference on Open Source Systems.
Springer, Cham.

Yılmaz, N., & Tarhan, A.K. (2022). Quality evaluation models or frameworks for open source software:
a systematic literature review. Journal of Software: Evolution and Process, 34(6):e2458. https://
doi. org/ 10. 1002/ smr. 2458.

Yılmaz, N., & Tarhan, A. K. (2020). Meta-models for software quality and its evaluation: a systematic
literature review. International Workshop on Software Measurement and the 15th International
Conference on Software Process and Product Measurement, Mexico.

Yilmaz, N., & Kolukısa Tarhan, A. (2022). Definition of the terminologies in the SQMM. Zenodo. https://
doi. org/ 10. 5281/ zenodo. 63675 96

Zahoor, A., Mehboob, K., & Natha, S. (2017). Comparison of open source maturity models. Procedia Com-
puter Science, 111, 348–354.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Nebi Yılmaz is currently working as a Research Assistant at Computer
Engineering Department of Hacettepe University. He works as a
researcher in the area of software engineering for seven years. His
major research interests are internal and external software quality,
software evaluation and cost of quality. He received M. Sc. Degree in
Computer Engineering from Hacettepe University, Ankara, Turkey in
2017. He is currently pursuing his Ph. D. degree from Ankara, Hac-
ettepe University. You may contact his by yilmaz@cs.hacettepe.edu.tr

http://tinyurl.com/y5srd5sq
http://tinyurl.com/y5srd5sq
https://doi.org/10.1002/smr.2458
https://doi.org/10.1002/smr.2458
https://doi.org/10.5281/zenodo.6367596
https://doi.org/10.5281/zenodo.6367596

773Software Quality Journal (2023) 31:721–773

1 3

Ayça Kolukısa Tarhan is an Assoc. Prof. in Software Engineering and
working as a researcher and practitioner in this area for twenty years.
She has led or been involved in projects originating from industry-
academia collaborations on software quality evaluation, software meas-
urement, business process modeling, and system/software requirements
elicitation. She had PhD in Information Systems from Informatics Insti-
tute of Middle East Technical University. She was an Adjunct Faculty
for Software Management Program of the same institute between 2002-
2006, and was a visiting researcher between 2013-2015 in Eindhoven
University of Technology. Her research interests include internal and
external software quality, software development methodologies, soft-
ware measurement, process maturity, and process mining. She is a fac-
ulty with Computer Engineering Department of Hacettepe University
in Ankara. You may contact her by atarhan@cs.hacettepe.edu.tr

Authors and Affiliations

Nebi Yılmaz1,2 · Ayça Kolukısa Tarhan1,3

 Ayça Kolukısa Tarhan
 atarhan@cs.hacettepe.edu.tr

1 Software Engineering Research Group (HUSE), Hacettepe University, Ankara, Turkey
2 Hacettepe University Graduate School of Science and Engineering, Ankara, Turkey
3 Computer Engineering Department, Hacettepe University, Ankara, Turkey

http://orcid.org/0000-0002-0591-4667
http://orcid.org/0000-0003-1466-9605

	Matching terms of quality models and meta-models: toward a unified meta-model of OSS quality
	Abstract
	Context
	Objective
	Method
	Results
	Conclusion

	1 Introduction
	2 Background
	2.1 Software quality meta-models (SQMMs), including OSS quality meta-models
	2.2 Software quality models (SQMs), including OSS quality models
	2.2.1 Classification of quality models
	2.2.1.1 Structural classification
	2.2.1.2 Basic and tailored classification
	2.2.1.3 Classification according to evaluation aspect and the evaluated characteristic

	2.3 Standards for software measurement
	2.4 Meta-object-facility (MOF) standard

	3 Related work
	4 Methodology
	4.1 Literature search-1 (step 1)
	4.2 Literature search-2 (step 2)
	4.3 Mapping process (step 3)
	4.4 Proposal of OSS-QMM (step 4)
	4.5 Review by SQM experts (step 5)
	4.6 Initial validation of OSS-QMM (step 6)

	5 Development of OSS quality meta-model (OSS-QMM)
	5.1 Terms analysis of SQMMs
	5.2 Structure analysis of SQMs, including OSS quality models
	5.3 Matching between terms of OSS quality models and terms of SQMMs
	5.4 The OSS quality meta-model (OSS-QMM)
	5.5 Initial validation of OSS-QMM
	5.5.1 Techniques to use in example evaluation
	5.5.1.1 Integrated AHP-TOPSIS

	5.5.2 Carrying out example evaluation

	5.6 Discussion

	6 Conclusion and future work
	Appendix 1 List of questions to obtain feedback from experts
	Appendix 2 The new operationalized quality model derived from OSS-QMM
	Appendix 3 Matching concepts of OSS-QMM and existing OSS quality models (OSMM, OpenBRR, and SQO-OSS)
	Acknowledgements
	References

