
Vol.:(0123456789)

Software Quality Journal (2023) 31:655–685
https://doi.org/10.1007/s11219-022-09602-4

1 3

Predicting Android malware combining permissions and API 
call sequences

Xin Chen1 · Haihua Yu1 · Dongjin Yu1  · Jie Chen1 · Xiaoxiao Sun1

Accepted: 26 September 2022 / Published online: 18 November 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Malware detection is an important task in software maintenance. It can effectively protect 
user information from the attack of malicious developers. Existing studies mainly focus 
on leveraging permission information and API call information to identify malware. How-
ever, many studies pay attention to the API call without considering the role of API call 
sequences. In this study, we propose a new method by combining both the permission 
information and the API call sequence information to distinguish malicious applications 
from benign applications. First, we extract features of permission and API call sequence 
with a decompiling tool. Then, one-hot encoding and Word2Vec are adopted to represent 
the permission feature and the API call sequence feature for each application, respectively. 
Based on this, we leverage Random Forest (RF) and Convolutional Neural Networks 
(CNN) to train a permission-based classifier and an API call sequence-based classifier, 
respectively. Finally, we design a linear strategy to combine the outputs of these two classi-
fiers to predict the labels of newly arrived applications. By an evaluation with 15,198 mali-
cious applications and 15,129 benign applications, our approach achieves 98.84% in terms 
of precision, 98.17% in terms of recall, 98.50% in terms of F1-score, and 98.52% in terms 
of accuracy on average, and outperforms the state-of-art method Malscan by 2.12%, 0.27%,  
1.20%, and 1.24%, respectively. In addition, we demonstrate that the method combining two  
features achieves better performance than the methods based on a single feature.

Keywords Android malware · Malware detection · Permission · API call sequence · CNN

 * Dongjin Yu 
 yudj@hdu.edu.cn

 Xin Chen 
 chenxin4391@hdu.edu.cn

 Haihua Yu 
 yuhaihua@hdu.edu.cn

 Jie Chen 
 cjie@hdu.edu.cn

 Xiaoxiao Sun 
 sunxiaoxiao@hdu.edu.cn

1 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, 
China

http://orcid.org/0000-0001-8919-1613
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-022-09602-4&domain=pdf


656 Software Quality Journal (2023) 31:655–685

1 3

1 Introduction

Along with the rapid growth of mobile devices, mobile applications become more and 
more important and powerful in our daily lives and work. In the first quarter of 2020, there 
are about 2.56 and 1.85 millions available applications in Google Play1 and Apple Store2  
for downloading. Due to the open source nature, Android systems have attracted many 
mobile terminal providers and developers, and become a mainstream operating system 
in mobile devices. However, motivated by the strong business benefit, some developers 
attempt to develop malicious applications to steal user information for seeking economic 
benefits or other motivations. The G DATA report showed that about 750,000 new mali-
cious Android applications were discovered during the first quarter of 20173. Also, in Q1 
2020, Kaspersky’s mobile products and technologies detected 1,152,662 malicious instal- 
lation packages, which are 171,669 more than that  in the previous quarter4. It can be 
foreseen that a large number of malicious applications will continue to be developed and 
spread, which will cause various cyber crimes on Android devices. However, due to the 
invisibility of Android malware, it is difficult to distinguish malicious applications from 
benign applications for smartphone users.

Recently, researchers have developed many methods for detecting Android malware. 
In existing studies, the permission feature is widely used for Android malware detection 
(Alazab et al., 2020; Arp et al., 2014; Peiravian & Zhu, 2013; Wang et al., 2014). Since 
Android systems apply the permission mechanism to control the accessibility of sensitive 
resources, some researchers adopt source code analysis tools to extract the permission fea-
ture and build classifiers to determine whether an application is malicious. However, many 
of these methods are easily evaded by obfuscations because the permission feature lacks 
both semantic information and contextual information of program behaviors. To overcome 
this challenge, some researchers adopted the Android API call sequence feature to detect 
malware (Jerbi et  al., 2020; Pektaş & Acarman, 2020; Wu et  al.,  2012). Generally, they 
leverage some tools to decompile an application for extracting API call sequence informa-
tion and analyze the potential malicious patterns contained in the API call sequences. Then 
these features are encoded to train a classifier for predicting the label of each new applica-
tion. In summary, these studies adopt either the permission feature or the API call sequence 
feature to detect Android malware, the performance is not promising.

In this paper, we propose a new method based on both the permission feature and the 
API call sequence feature. Firstly, we extract permission lists from the manifest files con-
tained in the installation packages and API call sequences from the source code files by 
a decompiling tool. Then, given the great difference between permissions and API call 
sequences, we adopt two strategies to represent these two features. For the permission fea-
ture, we employ a one-hot vector to represent each permission. For the API call sequence 
feature, we leverage the Word2Vec technique to transform each API into a low-dimensional 
vector. After that, the Random Forest (RF) algorithm and the Convolutional Neural Net-
work (CNN) algorithm are applied to train a permission-based classifier and an API call 
sequence-based classifier, respectively. Finally, a linear strategy is designed to combine the 
outputs of the two classifiers to predict the labels of newly arrived applications.

1 https:// play. google. com/ store/ apps
2 https:// www. apple. com/ ios/ app- store/
3 https:// www. gdata softw are. com/ blog/ 2018/ 11/ 31255- cyber- attac ks- on- andro id- devic es- on- the- rise
4 https:// secur elist. com/ it- threat- evolu tion- q1- 2020- stati stics/ 96959/

https://play.google.com/store/apps
https://www.apple.com/ios/app-store/
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://securelist.com/it-threat-evolution-q1-2020-statistics/96959/


657Software Quality Journal (2023) 31:655–685 

1 3

To validate the effectiveness of the proposed approach, we conduct extensive experi-
ments on the dataset including 15,129 benign applications and 15,198 malicious appli-
cations provided by Wu et  al. (2019). Then, we investigate five research questions and 
employ widely used metrics, namely precision, recall, F1-score and accuracy, to evaluate 
the performance of our approach in malware detection. In addition, we select two clas-
sic methods (DroidAPIMiner (Aafer et al., 2013) and Drebin (Arp et al., 2014)), and two 
state-of-the-art methods (Malscan (Wu et al., 2019) and MalDozer (Karbab et al., 2018)) 
as baselines for comparison. The experimental results show that our approach achieves 
98.84%, 98.17%, 98.50%, and 98.52% in terms of precision, recall, F1-score, and accuracy 
on average, respectively. Compared with the methods based on a single feature, our method 
combining two features can achieve better performance for detecting Android malware. 
Furthermore, we experimentally investigate the most important API call sub-sequences 
and permissions for identifying Android malware.

In this paper, we make the following contributions:

– In this paper, we present our attempts towards resolving the problem of malware detec-
tion by combining both the permission information and the API call sequence informa-
tion.

– We build a permission-based classifier and an API call sequence-based classifier and 
design a linear strategy to integrate the outputs of these classifiers to predict the label of 
each new application.

– We conduct extensive experiments to evaluate the performance of the proposed 
approach on a public available dataset. Experimental results show that our approach 
achieves better performance than the baseline methods.

The remainder of this paper is organized as follows. Section  2 describes the back-
ground and the motivation for conducting this paper. The details of our approach are 
detailed in Sect. 3. Sections 4 and 5 present the experimental setup and the experimental 
result, respectively. The threats to validity are discussed in Sect. 6 and the related work is 
reviewed in Sect. 7. Finally, we conclude this paper and outline the future work in Sect. 8.

2  Background and motivation

In this section, we detail the background of Android malware and explain the motivation 
for performing this work.

Malware is a kind of intentionally designed software which will damage a computer, 
server, client, or computer network (Nash,  2005). Android malware aims at attacking 
Android systems and contains a wide variety of malware types, including spyware (Herley  
et al., 2015), ransomware (Young & Yung, 1996), and trojans (Landwehr et al., 1994). For 
example, the spyware monitors specific users by illegally recording the voice call, chat 
messages and other personal information. Thus, user privacy and secret are exposed by 
these malicious applications. The ransomware can illegally encipher the important data of 
users. If the users do not know the secret key, they cannot acquire the enciphered infor-
mation. By this way, the attackers can threat the users to pay ransom. As a consequence, 
these malicious applications seriously damage information security. Actually, most new 
malicious applications are variants of known malware applications by reusing malicious 
components. Zhou and Jiang (2012) found that 86% of Android malicious applications 



658 Software Quality Journal (2023) 31:655–685

1 3

are produced by repacking legitimate applications with malicious components. Generally, 
malicious developers download and decompile some popular benign applications from 
Google Play. After injecting the malicious components or code into these applications, the 
developers adopt obfuscation tools to evade the detection, and finally repack and upload 
them to third-party markets to attract users.

To prevent malicious attacks, Android systems usually provide multiple layers of pro-
tection. The most important is the permission control strategy which is one of the central 
design points of the Android security mechanism. It can effectively protect the privacy of 
users by restricting some special operations (Alazab et  al.,  2020) based on the fact that 
Android applications must request corresponding permissions for accessing sensitive data 
(such as contacts and GPS) and certain system functions (such as camera and recorder). In 
the development phase of an Android application, the developer declares the permission 
requests in a manifest file, namely AndroidManifest.xml. When installing an application, a 
dialog will be displayed to exhibit the requested permission list and ask the user whether 
these relevant permissions can be granted or not. Empirically, different permissions have 
different impacts on an application. Google divides permissions into three levels accord-
ing the riskiness degree of permissions, namely normal, signature and dangerous5. The 
normal permissions are very little risk to the privacy of users or the operation of other 
applications, while the dangerous permissions potentially damage some important files or 
data of users. Table 1 shows some permissions and the corresponding protection levels. For 
example, the protection level of the ACCESS_NETWORKST_ATE permission is normal, 
and it allows applications to access the network information.

Figure 1 shows the distribution of applications with different number of request per-
missions on our dataset. We can observe that more than 50% of benign applications request 
less than 5 permissions. In addition, compared with benign applications, malicious appli-
cations usually request extra permissions which can effectively support their malicious 
behaviors. Therefore, many researchers tend to leverage permissions to identify malware 
(Alazab et al., 2020; Arp et al., 2014; Peiravian & Zhu, 2013; Wang et al., 2014). Although 
these studies have proven that the permission feature is helpful for Android malware detec-
tion, there exist some limitations in the permission-based methods. For example, an appli-
cation may declare the requested permissions in the manifest file, but these permissions are 

Table 1  The partial list of 
Android permissions

Permission Protection level

ACCESS_NETWORK_STATE normal
ACCESS_WIFI_STATE normal
CHANGE_WIFI_STATE normal
WAKE_LOCK normal
BATTERY_STATS signature
BIND_DEVICE_ADMIN signature
SYSTEM_ALERT_WINDOW signature
ACCESS_COARSE_LOCATION dangerous
READ_PHONE_STATE dangerous
WRITE_EXTERNAL_STORAGE dangerous

5 https:// devel oper. andro id. google. cn/ guide/ topics/ permi ssions/ overv iew? hl= en

https://developer.android.google.cn/guide/topics/permissions/overview?hl=en


659Software Quality Journal (2023) 31:655–685 

1 3

not used at all in practice. This will provide misleading permission information to influ-
ence the detection results. In addition, Shao et al. (2016) discovered that some applications 
can still access sensitive resources without permissions, thus these applications are hard to 
be identified by the permission-based methods.

Therefore, some studies leverage API call information to distinguish malicious applica-
tions from benign applications (Alazab et al., 2020; Peiravian & Zhu, 2013). In the Android 
platform, an API is used to interact with the underlying Android system and an application 
can implement its functions by invoking different APIs. Thus, researchers can analyze the 
malicious behaviors of applications by the API call information for identifying malware. 
However, most of these methods just extract API call information but ignore the sequence 
information between API calls. Thus, they are hard to identify some malicious applications  
that have similar API calls in benign applications. Figure 2 shows a decompiled frag-
ment of a malicious application, which is a spyware of SMS. This fragment orderly invokes 
some APIs, namely [init, init, getLastScan,...,query, getColumnIndex, ...]. In this fragment, 
the current operation is based on the previous one and influences the next one. By invoking  
these APIs in order, the malicious application can obtain the SMS list. Thus, analyzing the 
API call sequences can help understand the intention of an application and improve the 
accuracy of detecting malware.

Fig. 1  The statistics of permissions

Fig. 2  Decompiled code of a basic block



660 Software Quality Journal (2023) 31:655–685

1 3

Based on the above background, we attempt to explore a new classification method 
which combines the permission feature and the API call sequence feature to detect mali-
cious applications.

3  Methodology

In this section, we systematically describe the whole flow of our approach. As shown in 
Fig. 3, our approach takes in the corresponding vectors of Android application files as the 
input and then outputs the class label of an application, namely malware and benign. More 
specifically, we firstly extract permissions and API call sequences from the decompiled 
application. Then, in the stage of the vector representation, we adopt two different strate-
gies to represent the permissions and the API call sequences, respectively. After that, RF 
is applied to train a permission-based classifier, meanwhile CNN is applied to train an API 
call sequence-based classifier. Finally, we use a linear strategy to combine  the results of 
these two classifiers to predict the labels of newly arrived applications.

3.1  Feature extraction

Normally, an Android application package includes a manifest file and a dex file. The man-
ifest file describes essential information about the application, and the dex file contains 
all the code of the application. In our approach, we respectively extract the permission 
feature and the API call sequence feature from the manifest file and the dex file by utilizing 
Androguard (Mercaldo et al., 2016), a widely used python tool for reverse engineering of 
Android applications.

For the permission feature, we use Androguard to decompile the Android application 
and return an apk object which contains some information about this application, such as 
permissions, decompiled instructions, and activities. Thus, we can directly obtain the per-
mission list from this apk object.

Fig. 3  The overview architecture of our approach



661Software Quality Journal (2023) 31:655–685 

1 3

For the API call sequence feature, we can collect API calls and orderly organize them 
to form API call sequences through decompiled instructions. As shown in Fig. 2, a normal 
API call instruction is formatted as follows:

invoke-direct v0, Ljava/util/ArrayList;-><init>()V
The opcode is invoke-direct, and the invoked API is java/util/ArrayList;-><init>()V. 

Generally, the opcode used for invocation includes invoke-direct, invoke-static, invoke-
interface; java/util is the package name of this API, ArrayList is the class name, and init is 
the function name. This API is called for the initialization of an array object. Thus, through 
checking the type of opcode, we can discriminate that those instructions are used to invoke 
APIs. Inspired by Karbab et al. (2018), the API call sequence of an Android application 
is generated by merging the API call sequence of each basic block within this applica-
tion in order. Suppose the decompiled application denoted by d is composed by n basic 
blocks, d = {b1, b2, ..., bn} . Each basic block consists of a series of instructions. Thus the 
API call sequence of a basic block is produced by recording the operands of the selected 
instructions. For the whole application, we ignore the relationship between basic blocks, 
and orderly combine the API call sequence of each basic block as the API call sequence of 
the whole application.

3.2  Preprocessing

After feature extraction, we preprocess the permission feature and the API call sequence 
feature by filtering out the useless information, such as custom permissions and user-defined 
functions.

For the permission feature, we build a dictionary containing the officially defined per-
missions. Given an application, we first extract all the permissions. Then, if a permission 
does not match any permission in the dictionary, it is deleted. Finally, the retained permis-
sions are the officially defined ones. In fact, Google continuously updates permissions in 
every version of API levels by adding some permissions or deleting some permissions. 
Thus the number of permissions between different API levels is different. For example, the 
latest Android version (API level 30 released in 2020) contains 166 permissions, while the 
earliest Android version (API level 1) involves 76 permissions. Considering that the appli-
cations of our dataset are from 2011 to 2018, we collect the officially defined permissions 
from API levels 1 to 28 and remove the duplicate permissions to form the final permission 
dictionary.

By investigating the API calls, we observe that there exist some third-party libraries 
including API calls and user-defined function calls, which are considered as noise in API 
call sequences since they are usually composed of mixed symbols or words, thus imped-
ing the classification results. Therefore, we need to filter out the noise data. We identify 
the package name of each API call. If an API call involves the official packages, including 
android, org, java, dalvik, javax and junit, we keep these API calls. Meanwhile, all other 
API calls are filtered out.

3.3  Vector representation

After feature extraction, the main task is to represent the feature information for each sam-
ple. In this study, we extract two types of features. There are differences between them. 
First, the number of APIs far exceeds that of permissions. Therefore, we need to adopt two 
different strategies to represent these two types of features. Second, the API call sequence 



662 Software Quality Journal (2023) 31:655–685

1 3

feature contains semantic information. Thus, the strategy for API call sequences should 
effectively reflect the semantic information and the context information.

3.3.1  Vector representation for permissions

For the permission feature, we adopt the one-hot encoding method. More specifically, each 
permission can be represented by an N-dimensional vector, where N is the number of per-
missions. The vector consists of 0s in all cells with the exception of a single 1 in a cell used 
uniquely to identify the corresponding permission (Harris & Harris, 2010). For example, 
there are three permissions a, b, c. [1, 0, 0] represents a, [0, 1, 0] represents b, and [0, 0, 1] 
represents c. Thus, if an application requests the permissions a and b, its vector representa-
tion is [1, 1, 0].

3.3.2  Vector representation for API call sequences

Different from permissions, the number of APIs is very large. The one-hot encoding is not 
suitable for representing API call sequences since an overly high number of dimensions 
may lead to the curse-of-dimensionality problem. Therefore, we attempt to adopt neural 
network methods for the vector representation of API call sequences, such as Word2Vec 
and Auto-Encoder. Since we need to consider the semantic information contained in API 
call sequences, we use the Word2Vec technique to represent API call sequences since 
Word2Vec can transform each API call sequence into a low-dimensional vector and mean-
time keep the certain context information of each vector.

Word2Vec is a widely used technique for Natural Language Processing (NLP). It was orig-
inally designed to transform each word within word sequences into a low-dimensional vector. 
In general, Word2Vec includes continuous bag-of-words (CBOW) (Mikolov et  al.,  2013a) 
and continuous skip-gram (Skip-gram) (Mikolov et al., 2013b). The CBOW model predicts 
the current word based on the context, while the Skip-gram model aims to predict the context 
based on the given input word. Considering the Skip-gram model works much better than 
the CBOW model on semantic tasks (Mikolov et al., 2013a), we select the Skip-gram model 
for representing API call sequences in our approach. Figure 4 shows the framework of Skip-
gram model and gives an example to explain how it works. In Fig. 4a, the skip-gram model 
contains three layers, an input layer, a hidden layer and an output layer. It aims to obtain the 
weight parameter matrix WV×N between the input layer and the hidden layer, where V is the 
vocabulary size of the training set and N is the hidden layer size. In the input layer, the word 
is represented by a one-hot vector and the vector length is also V. Based on WV×N , Skip-gram 
propagates the input to the hidden layer h which is defined as follows:

where x is the vector representation of the k-th word in the vocabulary list. Since x is a vec-
tor with xk = 1 and x

k�
= 0 for all k′ ≠ k , the output of h is the k-th row of WV×N , namely 

W(k,).
Then, the output of the hidden layer continues to propagate forward. In the figure, the 

input word is wx and the context length is set to 2d + 1 . The output layer outputs 2d multi-
nomial distributions, and each output is computed by the softmax function with the same 
parameter matrix. According to the input of wx , Skip-gram tries to predict the context 
words of wx , and the probability is calculated by the following formula:

(1)h = xTWV×N = W(k,)



663Software Quality Journal (2023) 31:655–685 

1 3

where wi,j is the j-th word on the i-th panel of the output layer, wO,j is the actual con-
text words of the j-th word, ui,j is the value of the j-th unit on the i-th panel of the out-
put layer. The Skip-gram model aims to maximize the probability of the actual output 
[ wx−d, ...,wx−1,wx+1, ...,wx+d ], the loss function is transformed into:

Through the back propagation, Skip-gram optimizes the output by tuning the param-
eter matrix WV×N . After the training, we obtain the matrix WV×N , thus each API call 
sequence can be represented by a low-dimensional vector. In Fig. 4b, we select the text 
“an example for the skip-gram model” to predict the surrounding context of the center 
word “the”. With the one-hot vector [0, 0, 0, 1, 0, 0, 0] as the input, the model outputs 
another vector [0.13, 0.15, 0.13, 0.16, 0.15, 0.14, 0.14] which is very different from the 
target vector [0, 1, 1, 0, 1, 1, 0] when d = 2 . In this work, we utilize a python tool Gensim 

(2)p(wi,j = wO,i�wx) =
exp(ui,j)

∑2d

i�=1
exp(ui�,j)

(3)E = − log p(wx−d, ...,wx−1,wx+1, ...,wx+d|wx)

Fig. 4  The Skip-gram model for word embedding



664 Software Quality Journal (2023) 31:655–685

1 3

(Srinivasa-Desikan,  2018), an open-source library for unsupervised topic modeling and 
NLP, to train the Skip-gram model.

3.4  Classifiers

Similarly, given the characteristics of the vector representation methods, we adopt two dif-
ferent method, namely Random Forest (RF) and Convolutional Neural Networks (CNN), to 
train the classifiers in this study, respectively.

3.4.1  Random Forest

RF is a classification and regression algorithm developed by Breiman et al. (2001). It is 
an ensemble of a set of decision trees learned on reduced training sets, and these deci-
sion trees are independent of each other. A reduced training set is constituted by randomly 
sampling from both samples and features. To determine the class of a test sample, the out-
puts from all decision trees are voted to determine the final output. Since each decision 
tree is unpruned and grown fully, it has the characteristic of low bias (Zhu et al., 2018). 
Meantime, due to the randomness of these two operations, RF can correct the overfitting 
problem of decision trees. The final prediction result is determined based on the prediction 
results of these decision trees.

In this study, we adopt RF to build a permission-based classifier to distinguish mali-
cious applications from benign applications. Specifically, we implement the RF classifier 
by utilizing scikit-learn (Pedregosa et  al.,  2011), a python library for machine learning. 
Besides, there are some parameters impacting the performance of the RF classifier, e.g., 
min_samples_leaf and n_estimators. min_samples_leaf refers to the minimum number of 
samples required in a leaf node. n_estimators refers to the number of trees in the forest. To 
optimize the classifier, we tune these parameters via a grid search (LeCun et al., 1998a).

3.4.2  CNN

Many studies have demonstrated the good performance of deep learning in classification 
and regression. In our approach, we adopt CNN (Hui et al., 2021) to implement the API 
call sequence-based classifier. The overview of the neural network architecture of the CNN 
model is depicted in Fig. 5. 

1. Input and embedding layers: Firstly, each application is represented as a sequence 
of API calls d = (API1,API2, ...,APIn) , and input into the input layer. Then, in the 
embedding layer, a dictionary is generated by Word2Vec and each API is transformed 
into a d-dimensional vector. Thus, each application can be represented by a matrix, 
d = (v1, v2, ..., vn) , where vi is the vector of the i-th API call.

2. Convolutional layer: A convolutional layer contains a set of filters whose parameters 
need to be learned. In our approach, we adopt three kinds of sized convolutional kernels, 
namely 3, 4 and 5, to extract different features from the input layer. In addition, ReLU 
is applied as the activation function, which is defined as follows: 

(4)ReLU = max(0,wTx + b)



665Software Quality Journal (2023) 31:655–685 

1 3

 where w is the convolutional kernel, x is the input vector, and b is the offset that needs 
to be learned during the model training.

3. Pooling layer: The pooling layer is used to reduce the redundancy of the output of the 
convolution layer. In this layer, we adopt the max pooling which can divide the input 
into regions without overlap and select the maximum value of each region as the output.

4. Full connected and output layers: The full connected layer combines each output of the 
pooling layer as a feature vector. After that, the feature vector is forwarded as an input to 
the output layer. Through the softmax function, the output layer predicts the probability 
of each class, namely malicious or benign.

5. Model training: During the training of this model, we adopt the adaptive learning rate 
method Adam (Kingma & Ba, 2014) which is the extension of the Stochastic Gradient 
Descent algorithm (Bottou, 1998) to optimize the model. Through this method, the 
parameters of our model can be updated efficiently in the training process.

3.5  Classifier fusion

This step is to integrate these two classifiers of which each contributes to the final result. 
In general, there are two methods to merge the outputs of different classifiers. One is cal-
culating the average value of the outputs of all classifiers. However, this method cannot 
reflect the importance of different features. The other is calculating the weighted result of 
each classifier. This method can effectively reflect the importance of different features, but 
needs to set an extra parameter. In this study, since the contribution of each classifier to the 
final result is different, we calculate the weighted result of each classifier, which is defined  
as follows:

(5)R = (1 − �)RRF + �RCNN ,R ∈ {0, 1}

Vector
matrix

...

Vector
matrix

...

Vector
matrix

...

Vector
matrix

...

Vector
matrix

...

Vector
matrix

...

size
@3

...

size
@3

...

size
@4

...

size
@4

...

size
@5

...

size
@5

...

Vector
matrix

...

Vector
matrix

...

Vector
matrix

...

size
@3

...

size
@4

...

size
@5

...

......
......

......
...

...
...

64
dim

64
dim

64
dim

64
dim

...

64
dim

64
dim

64
dim

64
dim

...

...
...

...
...

...
...

Benign

Malware

Benign

Malware

Full connected
layer

Output
layerPooling layerConvolutional layerEmbedding layerInput layer

1
API

2
API

3
API

n
API

...

Kernel

Fig. 5  The neural network architecture of the CNN model



666 Software Quality Journal (2023) 31:655–685

1 3

where � is a parameter to reflect the contribution of different classifiers, RRF is the result of 
the RF-based classifier, RCNN is the result of the CNN-based classifier, and R is the round 
value, 0 means benign and 1 means malicious.

4  Experiment setup

In this section, we detail the experimental setup. First, we present the research questions 
(RQs). Then we explain the dataset used in this study. After that, we introduce the baseline 
methods. Finally, we describe the experimental platform and parameter settings.

4.1  Research questions

In this paper, we mainly investigate the following five RQs to validate the effectiveness of 
our method from different aspects.

– RQ1: Can our method outperform the baseline methods?
– RQ2: How effective is the combination of these two features?
– RQ3: How does the parameter � impact the effectiveness of our approach?
– RQ4: What is the performance of our method when the training set and the test set 

belong to different years?
– RQ5: What are the most important permissions and API call sub-sequences for identi-

fying malware?

RQ1 is designed to evaluate the effectiveness of our approach by comparing with the base-
line methods. RQ2 is designed to investigate whether the method based on the combination 
of these two features outperforms the methods based on a single feature. RQ3 is designed 
to investigate the impact of different � on the classification results. RQ4 is designed to test 
the robustness of our approach when the testing set and training set belong to different 
years. RQ5 is designed to investigate the most important permissions and API call sub-
sequences for identifying malware.

4.2  Dataset

In the literature, Wu et al. (2019) created a dataset by crawling apks from Andrzoo (Allix 
et al., 2016), which currently contains over twelve millions apks of which each is detected 
by tens of different antiVirus products to determine whether it is malicious or not. In this 
study, we also crawl apks from Andrzoo according the apk list provided by Wu et al. (2019) 
and remove 388 damaged apk files. Eventually, the dataset is composed of 30,327 samples, 
including 15,129 benign applications and 15,198 malicious applications.

To evaluate the effectiveness of our method better, we divide the dataset into sub-datasets 
by year. Table 2 shows the summary information of the dataset. We can see that the dataset 
is constituted by 8 sub-datasets and the applications of each sub-dataset are from the same 
year, such as 2011 and 2012. As shown in the table, the number of benign applications and 
malicious applications in each sub-dataset is close to each other. For example, the number 
of benign applications and malicious applications is 1,919 and 1,916 in 2011, respectively. 
Meanwhile, the total number of benign applications and malicious applications is close to 1:1. 



667Software Quality Journal (2023) 31:655–685 

1 3

Notably, we only crawl data following the list provided by Wu et al. (2019) and do not perform 
extra operations to keep this balance. The balance kept by Wu et al. may be because it benefits 
the training of classifiers. Besides, we can find that the average size of apks from 2013 to 2018 
is about 7MB while the average size of apks from 2011 and 2012 is 2.48MB and 3.70MB. 
The reason may be that there are a small number of mobile applications in 2011 and 2012. 
The configuration of mobile devices is hard to run complex applications and users have no 
expectation about mobile applications.

4.3  Metrics

In our study, we aim to detect malware from raw applications, which can be regarded as a 
binary classification problem. In many studies about binary classification, precision, recall, 
F1-score (F1) and accuracy, are frequently applied to evaluate the effectiveness of automated 
techniques. Therefore, we also employ these four metrics to evaluate the effectiveness of our 
approach.

Let TP refer to the number of correctly classified malicious samples, TN refer to the num-
ber of correctly classified benign samples, FP refer to the number of incorrectly classified 
malicious samples, FN refer to the number of incorrectly classified benign samples.

Precision evaluates the correctness degree of the prediction results. The formula for calcu-
lating precision is as follows.

Recall reflects the consistency degree between the prediction results and the ground truth. 
The formula for calculating recall is as follows.

F1-score is the tradeoff between precision and recall. The formula for calculating F1-score 
is as follows.

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)F1 = 2 ∗
Precision ∗ Recall

Precision + Recall

Table 2  Summary of the datasets Dataset Benign Malware Total Average 
Size (MB)

2011 1919 1916 3835 2.48
2012 1872 1996 3868 3.70
2013 1896 2000 3896 6.55
2014 1826 1982 3808 7.15
2015 1811 1839 3650 8.36
2016 2014 1939 3953 8.46
2017 1792 1705 3497 7.60
2018 1999 1821 3820 7.94
Total 15129 15198 30327 6.51



668 Software Quality Journal (2023) 31:655–685

1 3

Accuracy refers to the degree of correctness between the predicted results of all classes 
and the ground truth. The formula for calculating accuracy is as follows.

4.4  Evaluation method

In order to reduce the impact of overfitting and the selection bias, researchers usually adopt 
tenfold cross-validation to evaluate their approaches (Kohavi et  al.,  1995). Thus, in this 
study, we also employ tenfold cross-validation to evaluate our approach. More specifically, 
we randomly split the dataset into 10 folds and each fold includes the same number of 
samples. In each run, a model is trained using 9 folds as the training set; then, the trained 
model is evaluated by the remaining fold. We run the experiment 10 times for each dataset 
and measure the metrics. Then the average values of these metrics are calculated as the 
final results.

4.5  Baselines

In order to evaluate our approach, we select two classic methods and two state-of-the-art 
methods for comparison.

Drebin (Arp et al., 2014) A classic Android malware detection method, which conducted a 
broad analysis to extract as many features as possible from an apk, such as permissions, urls, 
and intents. After embedding these features into a vector, they trained a SVM (Vapnik, 2013)-
based model to detect malware.

DroidAPIMiner (Aafer et al., 2013) A classic Android malware detection method, which 
leveraged permissions, API calls and the parameters of APIs to represent an application. 
Then they adopted the k-nearest neighbor algorithm to identify malware.

Malscan (Wu et  al.,  2019) A state-of-the-art Android malware detection method, which 
treats the function call graphs of Android applications as a social network and conducts the 
social network-based centrality analysis to extract semantic features for detecting malware.

MalDozer (Karbab et  al.,  2018) A state-of-the-art Android malware detection method, 
which extracts the API call sequences as a feature. After embedding the API in a low-
dimensional vector space, they adopt a CNN-based model to identify malware.

4.6  Experimental platform and parameter settings

In this paper, all the experiments are conducted with Python 3.7, compiled by Pycharm 
2019.2 and run on a PC with 64-bit Ubuntu 16.04, an Intel Core (TM) i9-7900X CPU and 
a GeForce GTX 1080Ti GPU.

RF and CNN contain a series of parameters which have great impacts on the perfor-
mance of our method. Thus, to achieve good performance, the parameters are setting as 
follows. In the RF model, we conduct an experiment for determining these two parameters. 

(9)Accuracy =
TP + TN

TP + TN + FP + FN



669Software Quality Journal (2023) 31:655–685 

1 3

Eventually, the number of trees is set to 131 and the minimum number of leaf nodes is set 
to 1. Meanwhile, other parameters are default. For the CNN model, the parameter settings 
are presented in Table  3. CNN involves six hyperparameters. We leverage the gradient 
search method (LeCun et al., 1998b) to obtain the suitable values for the hyperparameters. 
Number of epochs is the number of epochs to train the model. Batch size is the number of 
samples in each gradient updating. Dropout rate is a rate which refers to the fraction of 
the input units to drop. Embedding size is the dimensionality of the API call vector in the 
embedding layer. Number of the convolution filters is the number of convolution filters in 
the convolution layer. Convolution filter size is the size of a convolution kernel.

5  Experiment results

In the section, we aim to evaluate our proposed method and answer the previous mentioned 
RQs.

5.1  Investigation to RQ1

Motivation In this paper, we propose a novel method to detect Android malware by com-
bining the permission feature and the API call sequence feature. Currently, there have been 
many methods that are adopted to resolve this problem. To evaluate the effectiveness of our 
method, we select two classic methods (DroidAPIMiner (Aafer et al., 2013) and Drebin (Arp 
et  al.,  2014)) and two state-of-the-art methods (Malscan (Wu et  al.,  2019) and MalDozer 
(Karbab et al., 2018)) as baselines for comparison. In this RQ, we investigate whether our 
approach can outperform the baseline methods in detecting Android malware.

Approach We train the RF classifier and the CNN classifier using the dataset with mali-
cious applications and benign applications. In this study, we divide the samples from 
each year into 10 equivalent folds of which each includes both malicious applications and 
benign applications according to the tenfold cross-validation method. For each year, we 
use the samples from 9 folds to create the training set. The samples from the remaining 1 
fold are used to evaluate the effectiveness of these two classifiers in detecting malware. We 
repeat this process for each of 10 folds, each training on 9 folds and testing on the remain-
ing 1 fold. The average results are calculated in the 10 runs for each year.

Since these four methods only adopt some of the metrics used in this paper to evaluate 
the effectiveness of their methods, and the used datasets in their experiments are differ-
ent from this study, we cannot directly copy the experimental results from their studies to  

Table 3  The parameter settings 
of our CNN model

Hyper-parameter Value

Number of epochs 10
Batch size 64
Dropout rate 0.5
Embedding size 64
Number of the convolution filters 512
Convolution filter size [3, 4, 5]



670 Software Quality Journal (2023) 31:655–685

1 3

validate the effectiveness of our method. Therefore, in this experiment, we reproduce these 
four methods by fully following the descriptions from their studies. First, we leverage the 
same python tool to extract features used in these four baseline methods. Then, we cre-
ate the training set and the testing set based on the used evaluation method in the studies  
(Aafer et al., 2013; Arp et al., 2014; Wu et al., 2019; Karbab et al., 2018). Finally, we train 
the classifiers by the training set and predict the labels of testing set to evaluate the effec-
tiveness of these four methods.

Results Table 4 presents the experimental result of our approach and the baseline methods 
in terms of precision, recall, F1-score and accuracy, respectively. In the table, we use “P”, 
“R”, “F1” and “A” to represent precision, recall, F1-score and accuracy, respectively. In 
addition, the best result on each sub-dataset is highlighted in bold.

As shown in Table 4, our approach can obtain the highest F1-score on each sub-dataset. 
On average, our approach achieves 98.50% in terms of F1-score, which is 1.21%, 4.71%, 
2.29% and 2.32% higher than Malscan, MalDozer, DroidAPIMiner and Drebin, respec-
tively. Meantime, our approach also achieves the best results in terms of precision and 
accuracy on these sub-datasets. The potential reason is that our approach combines the 
advantages of the permission feature and the API call sequence feature to detect malware 
comprehensively. However, on some sub-datasets, some baseline methods achieve slightly 
higher recall than our approach. For example, Malscan achieves 98.58% in terms of recall 
and is 1.03% higher than our method in 2018. This may due to that our approach conducts 
classification by combining the outputs of two classifiers with a weight which may have 
impacts on the final result when selecting different weight values. That is, our approach 
may achieve better results when the parameter � is set to another different value on this 
sub-dataset. Additionally, as seen from Table 4, we can observe that the precision achieved 
by our method is higher than the recall achieved by our method on all sub-datasets. This 
indicates that our approach may achieve higher precision at expense of recall. We will 
answer this problem by presenting the results of our method under different weights in 
RQ3.

In these baseline methods, Malscan and MalDozer both apply a single feature to detect 
malware. Compared with MalDozer, Malscan achieves better performance in terms of 
F1-score on most of the sub-datasets. The potential reason is that Malscan can extract the 
structural semantics of sensitive APIs to detect malware. Similarly, DroidAPIMiner and 
Drebin apply permissions and API calls to detect malware. They focus on the syntactic 
information, i.e., they only consider whether some APIs are called, but ignore the role of 
sequence information of API calls. In addition to the syntactic information, we also con-
sider the sequence information of API calls to detect malware, hence our approach has bet-
ter performance than DroidAPIMiner and Drebin.

In summary, our approach achieves 98.84%, 98.17%, 98.50%, and 98.52% in terms of 
precision, recall, F1-score, and accuracy on average, respectively, and outperforms these 
baseline methods.

5.2  Investigation to RQ2

Motivation Existing methods usually adopt either the permission feature or the API call 
sequence feature for malware detection. In this study, given their respective advantages, we 
attempt to combine these two features to detect malware. However, we do not acknowledge 
whether the combination of two features outperforms a single feature in malware detection. 



671Software Quality Journal (2023) 31:655–685 

1 3

Ta
bl

e 
4 

 T
he

 e
xp

er
im

en
ta

l r
es

ul
t o

f o
ur

 a
pp

ro
ac

h 
an

d 
ba

se
lin

e 
m

et
ho

ds

D
at

as
et

O
ur

 m
et

ho
d

M
al

sc
an

M
al

D
oz

er
D

ro
id

A
PI

M
in

er
D

re
bi

n

P%
R

%
F1

%
A

%
P%

R
%

F1
%

A
%

P%
R

%
F1

%
A

%
P%

R
%

F1
%

A
%

P%
R

%
F1

%
A

%

20
11

98
.9
4

98
.3

4
98
.6
3

98
.6
4

96
.3

8
97

.6
3

97
.0

0
97

.0
0

95
.8

8
96

.9
6

96
.4

0
96

.3
7

97
.4

0
98
.3
8

97
.8

8
97

.8
6

97
.4

1
97

.2
3

97
.3

2
97

.3
1

20
12

99
.0
0

98
.5

6
98
.7
7

98
.7
3

97
.2

4
98
.8
5

98
.0

3
97

.9
6

94
.5

6
96

.5
6

95
.5

1
95

.6
1

97
.3

9
83

.3
0

89
.7

7
90

.2
0

97
.9

6
98

.1
9

98
.0

7
98

.0
1

20
13

99
.1
5

98
.8
6

99
.0
0

98
.9
7

96
.1

4
98

.2
9

97
.2

0
97

.1
0

96
.4

4
95

.3
1

95
.8

0
96

.0
0

97
.5

9
97

.9
6

97
.7

7
97

.7
1

97
.4

8
98

.1
5

97
.8

1
97

.7
4

20
14

99
.3
4

98
.3
8

98
.8
6

98
.8
2

96
.4

4
96

.9
7

96
.7

0
96

.5
6

92
.8

7
96

.6
2

94
.5

8
94

.6
7

98
.5

4
97

.6
7

98
.1

0
98

.0
5

96
.9

3
97

.5
1

97
.2

1
97

.1
2

20
15

98
.7
4

98
.2
2

98
.4
8

98
.4
7

96
.5

5
97

.1
6

96
.8

3
96

.8
2

94
.7

5
92

.4
4

93
.5

1
93

.7
0

97
.2

6
94

.6
6

95
.9

4
95

.9
7

95
.1

5
96

.1
5

95
.6

3
95

.5
9

20
16

98
.6
5

97
.9

3
98
.2
9

98
.3
3

96
.9

4
98
.3
7

97
.6

4
97

.6
7

89
.9

9
95

.0
7

92
.3

7
92

.0
1

97
.9

1
96

.6
8

97
.2

9
97

.1
9

95
.9

1
95

.9
9

95
.9

4
96

.0
9

20
17

98
.2
4

97
.5
5

97
.8
9

97
.9
7

96
.5

3
97

.3
4

96
.9

2
97

.0
0

90
.1

2
90

.9
8

90
.2

8
90

.0
5

97
.9

8
94

.1
2

96
.0

0
96

.1
8

94
.7

8
94

.8
1

94
.7

8
94

.9
2

20
18

98
.6
8

97
.5

3
98
.1
0

98
.1
9

97
.5

3
98
.5
8

98
.0

4
98

.1
2

90
.3

3
93

.8
4

91
.8

8
91

.4
7

97
.2

8
96

.6
1

96
.9

3
97

.0
8

92
.9

4
92

.5
0

92
.6

9
93

.0
7

A
ve

ra
ge

98
.8
4

98
.1
7

98
.5
0

98
.5
2

96
.7

2
97

.9
0

97
.3

0
97

.2
8

93
.1

2
94

.7
2

93
.7

9
93

.7
3

97
.6

7
94

.9
2

96
.2

1
96

.2
8

96
.0

7
96

.3
2

96
.1

8
96

.2
3



672 Software Quality Journal (2023) 31:655–685

1 3

In this RQ, we mainly focus on investigating the effectiveness of the combination of these 
two features.

Approach In this RQ, we compare our approach with two variants of our method, namely 
the permission-based method and the API call sequence-based method. In this experiment, 
we remove one classifier and keep another classifier. Additionally, in the process of model 
training, we keep the other steps unchanged to verify its detection effectiveness. Notably, 
we adopt different vector representation methods for these two variants since we have 
experimentally demonstrated that the one-hot encoding is more suitable for the permission-
based method and the skip-gram model is more suitable for the API call sequence-based 
method.

Results Table  5 shows the experimental results of our approach and these two variants 
in terms of precision, recall, F1-score and accuracy. As shown in the table, our approach 
achieves 98.84%, 98.17%, 98.50% and 98.52% in terms of precision, recall, F1-score, and 
accuracy on average, respectively, and outperforms both the permission-based method and 
the API call sequence-based method. In addition, our approach and the API call sequence-
based method outperform the permission-based method in terms of precision, recall, 
F1-score and accuracy on all the sub-datasets. The potential reason may be that the dimen-
sionality of API call sequences is much higher than that of permissions. The higher the 
number of dimensions is, the more information the API call sequences convey. In addi-
tion, the API call sequence feature contains some semantic information, e.g., the program 
behavior information, which can improve the performance of classification.

Besides, we can find that our approach achieves high results in terms of F1-score in 
the last five years, but slightly low results in the first three years. The potential reason is 
that in the first years android applications are relatively simple and with small size. As 
shown in Table 2, the average size of Android applications in 2011, 2012 and 2013 is 
lower than that of the next five years. Generally, with the increase of the size of Android 
applications, the complexity of these applications may also increase correspondingly, 
which may impact the detection performance of the API call sequence-based method. 
Compared with the API call sequence-based method, our approach also combines the 

Table 5  The experimental result of two single feature-based methods and our approach

Dataset API call sequence Permission Our approach

P% R% F1% A% P% R% F1% A% P% R% F1% A%

2011 99.15 98.44 98.79 98.80 91.51 93.80 92.62 92.54 98.94 98.34 98.63 98.64
2012 99.24 98.70 98.97 98.94 94.38 92.29 93.31 93.17 99.00 98.56 98.77 98.73
2013 99.30 98.86 99.08 99.05 93.73 94.51 94.12 93.97 99.15 98.86 99.00 98.97
2014 99.59 97.84 98.70 98.66 93.14 95.62 94.35 94.04 99.34 98.38 98.86 98.82
2015 98.69 98.16 98.42 98.41 94.93 93.76 94.34 94.33 98.74 98.22 98.48 98.47
2016 97.78 97.72 97.74 97.80 95.95 94.36 95.13 95.30 98.65 97.93 98.29 98.33
2017 98.29 97.37 97.81 97.91 81.77 94.01 87.46 86.85 98.24 97.55 97.89 97.97
2018 97.97 97.16 97.55 97.67 87.07 76.09 79.76 81.81 98.68 97.53 98.10 98.19



673Software Quality Journal (2023) 31:655–685 

1 3

permission feature to detect malware, thus achieving better detection performance in 
these years.

In summary, our approach combining permission and API call sequences can achieve 
better performance than the methods based on a single feature in detecting malware.

5.3  Investigation to RQ3

Motivation In our method, we adopt the permission information and the API call sequence 
information to build classifiers, respectively. Considering that the outputs of these two  
classifiers contribute the prediction result of a sample from the test set, we design a lin-
ear strategy to integrate the outputs of classifiers to determine the final result by setting a 
parameter � . Intuitively, � has an important impact on the effectiveness of our method in 
identifying malware. In this RQ, we conduct experiments to investigate the impact of � on 
our approach and seek a suitable value for � to achieve good results on these sub-datasets.

Approach In this experiment, we vary the value of � from 0 to 1. Meanwhile, we set the 
step to 0.1. We select two sub-datasets to run the experiment for determining the best value 
of � , and present the results of our method on other sub-datasets to analyze whether the 
selected parameter value is suitable for other sub-datasets. Specifically, we select the mid-
dle part (namely 2014 and 2015) of all the years as the tuning sub-datasets. Since F1-score 
is the tradeoff between precision and recall, we select F1-score as the main evaluation met-
ric to determine the best value of �.

Results Table 6 shows the experimental results of our approach with different � in terms 
of F1-score. In Fig. 6, we use two sub-figures to present the tuning results when � varies 
from 0 to 1. As shown in Fig. 6a, in 2014, when � is 0, our approach achieves the lowest 
result in terms of F1-score. With the increase of � , the F1-score achieved by our approach 
also increases and reaches the peak when � is set to 0.6. After that the F1-score achieved by 
our approach stays relatively stable and slightly lower than the maximum value. Similarly, 
in 2015 our approach also achieves the best result in terms of F1-score when � is equal to 
0.6. Besides, in these two years, our approach also achieves the best result in terms of accu-
racy when � = 0.6 . Therefore, we select 0.6 as the default parameter value for � since our 
approach can achieve relatively good performance in malware detection.

In other years, we also conduct experiments with different � to verify whether our 
approach can achieve good performance when � is set to the default value 0.6. Figure 7 
uses six sub-figures to present the experimental results of our method. In these sub-
figures, our approach shows the basically similar tendency with the change of � . For 
example, as shown in Fig.  7f, the result achieved by our approach rises from 79.76% 
to 98.10% and then falls slightly from 98.10% to 97.55% in terms of F1-score with 
the continuous growth of � in 2018. As seen from Table  6, we can observe that our 
approach can achieve the maximum or approximate maximum F1-score in all the years 
when � is set to 0.6.

In summary, our approach obtains different results in terms of precision, recall, F1-score 
and accuracy under different � . When � is set to 0.6, the optimal results or approximate 
optimal results can be obtained by our method. Thus, we select 0.6 as the default value of �.



674 Software Quality Journal (2023) 31:655–685

1 3

Ta
bl

e 
6 

 T
he

 e
xp

er
im

en
ta

l r
es

ul
t o

f o
ur

 a
pp

ro
ac

h 
w

ith
 d

iff
er

en
t �

 in
 te

rm
s o

f F
1-

sc
or

e

D
at

as
et

�
=
0

�
=
0
.1

�
=
0
.2

�
=
0
.3

�
=
0
.4

�
=
0
.5

�
=
0
.6

�
=
0
.7

�
=
0
.8

�
=
0
.9

�
=
1

20
11

92
.6

2%
93

.5
4%

94
.3

6%
95

.4
0%

96
.6

8%
98

.3
6%

98
.6

3%
98

.7
1%

98
.7

4%
98

.7
6%

98
.7
9%

20
12

93
.3

1%
93

.9
8%

94
.6

6%
95

.9
8%

97
.8

2%
98

.5
7%

98
.7

7%
98

.7
5%

98
.8

0%
98

.8
7%

98
.9
7%

20
13

94
.1

2%
94

.8
4%

95
.9

3%
96

.6
2%

97
.5

8%
98

.8
2%

99
.0

0%
99
.0
8%

99
.0
8%

99
.0
8%

99
.0
8%

20
14

94
.3

5%
95

.1
9%

96
.1

5%
97

.1
4%

97
.7

1%
98

.6
5%

98
.8
6%

98
.7

8%
98

.8
0%

98
.7

3%
98

.7
0%

20
15

94
.3

4%
95

.0
5%

95
.5

5%
96

.3
8%

96
.8

4%
98

.2
6%

98
.4
8%

98
.4

2%
98

.3
7%

98
.4

5%
98

.4
2%

20
16

95
.1

3%
95

.6
4%

96
.1

1%
96

.6
0%

97
.8

9%
98

.2
6%

98
.2
9%

98
.0

0%
97

.8
4%

97
.8

2%
97

.7
4%

20
17

87
.4

6%
92

.0
8%

95
.4

9%
96

.4
1%

97
.1

8%
97

.8
1%

97
.8
9%

97
.8

8%
97

.8
8%

97
.8

1%
97

.8
1%

20
18

79
.7

6%
95

.0
1%

95
.7

0%
96

.7
2%

97
.0

7%
97

.9
3%

98
.1
0%

97
.9

6%
97

.7
1%

97
.6

3%
97

.5
5%



675Software Quality Journal (2023) 31:655–685 

1 3

5.4  Investigation to RQ4

Motivation As mentioned above, we adopt tenfold cross-validation to train classifiers. 
In such a way, the training set and the test set may belong to the same year. However,  
in a real scenario, we actually need to predict the labels of newly arrived samples through  
historical samples. There must be a gap between the training set (historical samples) and 
the test set (newly arrived samples) with respect to features. Thus, the effectiveness of our  
method may be impacted. In this RQ, we attempt to investigate the effectiveness of our 
method by modeling a real scenario.

Approach In this experiment, to simulate the real scenario, we leverage the samples from 
the last year to predict the labels of the samples from the next year. As shown in Table 2, 
the details for each year in the dataset have been displayed. Therefore, we can directly use 
the samples from the last year to build classifiers. For example, if we selected the samples 
from 2017 as the training set, the samples from 2018 will be the test set. In other years, 
we repeat this way to select the training set and the test set. Notably, we do not report the 
results of the samples from 2011 since there is no sample from 2010. Meanwhile, we com-
pare the results of our method with those of the baseline methods.

Results Table 7 presents the experimental result of our approach and the baseline meth-
ods in terms of precision, recall, F1-score, and accuracy, respectively.

As seen from the table, we can observe that the F1-score achieved by our approach is 
higher than all baseline methods on most of the sub-datasets, namely, 2013, 2014, 2016 and 
2018. This may be due to the small number of samples on each training set. Specifically, 
we adopt a CNN-based model to implement the API call sequence-based classifier. Since 
the CNN-based model usually needs a large number of samples for training, our approach 
performs poorly on some sub-datasets, such as 2012. It is well known that improving the 
result of a metric may be at expense of another metric when solving a software engineering 
problem. For example, MalDozer achieves the highest recall on most of the sub-datasets 
but the precision is low, especially in 2014, MalDozer achieves 100.00% in terms of recall 
but 72.75% in terms of precision. Conversely, in the table we can observe that the precision 

(b)(a)

Fig. 6  The experimental result of our approach with different � in 2014 and 2015



676 Software Quality Journal (2023) 31:655–685

1 3

achieved by our approach is high on most of the sub-datasets, but the recall achieved by  
our method is relatively low. However, as mentioned before, � impacts the final result of  
our approach, i.e., our approach can achieve different results in terms of recall under 

(a) (b)

(c) (d)

(e) (f)

Fig. 7  The experimental result of our approach with different � in rest years



677Software Quality Journal (2023) 31:655–685 

1 3

Ta
bl

e 
7 

 T
he

 e
xp

er
im

en
ta

l r
es

ul
t o

f o
ur

 a
pp

ro
ac

h 
an

d 
ba

se
lin

e 
m

et
ho

ds
 to

 p
er

fo
rm

 c
la

ss
ifi

ca
tio

n 
w

he
n 

th
e 

tra
in

in
g 

sa
m

pl
es

 a
nd

 th
e 

te
st 

sa
m

pl
es

 b
el

on
g 

to
 d

iff
er

en
t y

ea
rs

Te
st 

se
t

O
ur

 a
pp

ro
ac

h
M

al
sc

an
M

al
D

oz
er

D
ro

id
A

PI
M

in
er

D
re

bi
n

P%
R

%
F1

%
A

%
P%

R
%

F1
%

A
%

P%
R

%
F1

%
A

%
P%

R
%

F1
%

A
%

P%
R

%
F1

%
A

%

20
12

97
.9
0

72
.5

5
83

.3
4

85
.0

3
89

.8
2

88
.8

8
89

.3
5

89
.0
6

76
.1

3
96
.5
8

85
.1

4
83

.6
9

84
.8

0
95

.8
9

90
.0
1

89
.0

1
93

.2
1

73
.7

2
82

.3
3

83
.6

7
20

13
91

.9
2

95
.6

0
93
.7
3

93
.4
3

82
.4

1
97
.9
0

89
.4

9
88

.1
9

93
.3

3
70

.1
5

80
.1

0
83

.0
3

90
.2

3
90

.5
0

90
.3

6
90

.0
9

93
.3
5

93
.3

0
93

.3
2

93
.1

3
20

14
99
.2
7

82
.9

0
90
.3
5

90
.7
8

95
.2

6
74

.0
2

83
.3

0
84

.5
6

72
.7

5
10
0.
00

84
.2

3
82

.0
4

95
.4

1
85

.1
3

89
.9

8
90

.2
3

92
.7

7
80

.5
4

86
.2

2
86

.7
6

20
15

95
.0
8

46
.2

8
62

.2
5

71
.7

3
90

.6
5

61
.6

6
73

.4
0

77
.4

8
61

.4
2

95
.7
5

74
.8

4
68

.0
5

70
.5

7
55

.4
7

62
.1

2
65

.8
9

93
.3

8
69

.1
2

79
.4
4

82
.0
7

20
16

98
.3
5

82
.9

9
90
.0
2

90
.9
7

96
.2

2
76

.1
3

85
.0

1
86

.8
3

71
.3

4
98
.2
1

82
.6

5
78

.9
9

87
.5

3
61

.1
7

72
.0

1
75

.1
1

96
.9

1
77

.0
8

85
.8

7
87

.7
7

20
17

96
.3
6

66
.8

0
78

.9
1

82
.5

9
91

.9
0

77
.8

3
84
.2
8

85
.8
5

73
.0

2
94
.9
8

82
.5

6
79

.4
4

86
.5

8
36

.0
4

50
.8

9
66

.0
5

91
.1

9
74

.5
1

82
.0

1
84

.0
9

20
18

96
.5
2

89
.7

9
93
.0
3

93
.5
9

95
.1

7
90

.9
4

93
.0

1
93

.4
8

82
.8

8
96
.6
5

89
.2

4
87

.8
0

93
.9

4
27

.3
6

42
.3

8
64

.5
0

88
.8

3
83

.3
4

86
.0

0
87

.0
8



678 Software Quality Journal (2023) 31:655–685

1 3

different � . Thus, if we employ a suitable � , our approach may achieve a good result in 
terms of recall.

In addition, we can observe that the F1-score achieved by our approach, Malscan, 
MalDozer and Drebin is all above 62% on all sub-datasets, but the F1-score achieved by 
DroidAPIMiner varies from 42.38% to 90.01%. It indicates that our approach, Malscan, 
MalDozer and Drebin are more stable than DroidAPIMiner. The potential reason is that 
our approach, Malscan and MalDozer leverage semantic information contained in API call 
sequences to detect malware and such semantic information may vary slightly between dif-
ferent years. Although both Drebin and DroidAPIMiner use the permission and API call 
features for malware detection, they neglect the role of sequence information in API calls.

In summary, compared with the baseline methods, our approach has relatively good per-
formance on identifying newly arrived samples by leveraging historical samples.

5.5  Investigation to RQ5

Motivation In this study, we use permission and API call sequence features to detect mal-
ware and conduct experiments to validate the effectiveness of our approach in previous 
RQs. For further understanding and explaining the classification results of our approach, 
in this RQ, we attempt to investigate the most important permissions and API call sub-
sequences for identifying malware.

Approach First, we combine all the sub-datasets to create a dataset to train a permission-
based classifier and an API call sequence-based classifier. Then we use these classifiers to 
obtain the most important permissions and API call sub-sequences, respectively. Specifi-
cally, in our permission-based classifier, each dimension of a feature vector is correspond-
ing to a permission. Therefore, we use the weight of each permission in the RF classifier to 
represent the importance of the permission. For the API call sequence-based classifier, we 
try to extract key sub-sequence by de-convolution. As mentioned at Sect. 3.4.2, our CNN 
model applies the convolution and max pooling layers to extract features from the API call 
sequence of an application, and classifies the application based on these features. During 
these layers, the feature can be traced back to find the corresponding sub-sequence. Mean-
time we regard the possibility of the feature belonging to malware class as the importance 
of the sub-sequence. Finally, we can select the top-10 important permissions and API call 
sub-sequences.

Result Table 8 presents the top-10 important permissions and API call sub-sequences on 
the whole dataset. It is worth noting that the “THIRD_PART” permission refers to unof-
ficial permissions, such as custom permissions.

The table shows that the “READ_PHONE_STATE” is the most important permission to 
identify malware. The reason may be that malicious applications usually request “READ_ 
PHONE_STATE” to access the information of the phone which is one of the main tar-
gets. In addition, we can find that most of these top-10 permissions are related to access 
personal information. For example, “GET_TASKS” allows an application to obtain  
information about currently or recently running tasks, “ACCESS_COARSE_LOCATION” 
and “ACCESS_FINE_LOCATION” allow an application to access approximate and pre-
cise location, respectively. This indicates that many malicious applications attempt to 



679Software Quality Journal (2023) 31:655–685 

1 3

Ta
bl

e 
8 

 T
he

 to
p-

10
 p

er
m

is
si

on
s a

nd
 A

PI
 c

al
l s

ub
-s

eq
ue

nc
es

R
an

k
Pe

rm
is

si
on

A
PI

 c
al

l s
ub

-s
eq

ue
nc

e

1
R

EA
D

_P
H

O
N

E_
ST

A
TE

La
yo

ut
Pa

ra
m

s.a
dd

Ru
le

, V
ie

w.
in

it,
 V

ie
w.

in
it,

 V
ie

w.
se

tL
ay

ou
tP

ar
am

s, 
V

ie
w.

se
tV

is
ib

ili
ty

2
G

ET
_T

A
SK

S
C

on
te

xt
.st

ar
tS

er
vi

ce
, S

er
vi

ce
.o

nC
re

at
e,

 S
er

vi
ce

.o
nD

es
tro

y
3

SY
ST

EM
_A

LE
RT

_W
IN

D
O

W
St

rin
g.

ge
tB

yt
es

, S
tri

ng
.g

et
B

yt
es

, S
tri

ng
.g

et
B

yt
es

, O
bj

ec
t.i

ni
t, 

Fl
oa

t.p
ar

se
Fl

oa
t

4
A

C
C

ES
S_

W
IF

I_
ST

A
TE

St
rin

g.
ge

tB
yt

es
, S

tri
ng

.g
et

B
yt

es
, S

tri
ng

.g
et

B
yt

es
, S

tri
ng

.le
ng

th
, S

tri
ng

.le
ng

th
5

IN
ST

A
LL

_S
H

O
RT

C
U

T 
St

rin
gB

ui
ld

er
.to

St
rin

g,
 V

ie
w.

fin
dV

ie
w

B
yI

d,
 L

ay
ou

tP
ar

am
s.i

ni
t, 

V
ie

w.
in

it,
 V

ie
w.

se
tL

ay
ou

tP
ar

am
s

6
A

C
C

ES
S_

CO
A

R
SE

_L
O

CA
TI

O
N

In
te

nt
Fi

lte
r.a

dd
D

at
aS

ch
em

e,
 S

er
vi

ce
.o

nC
re

at
e,

 S
er

vi
ce

.o
nD

es
tro

y
7

TH
IR

D
_P

A
RT

 
Se

rv
ic

e.
fin

al
iz

e,
 S

er
vi

ce
.o

nC
re

at
e,

 S
er

vi
ce

.o
nD

es
tro

y
8

A
C

C
ES

S_
FI

N
E_

LO
CA

TI
O

N
Se

rv
ic

e.
in

it,
 S

er
vi

ce
.o

nC
re

at
e,

 S
er

vi
ce

.o
nD

es
tro

y
9

W
R

IT
E_

EX
TE

R
N

A
L_

ST
O

R
A

G
E

St
rin

g.
ge

tB
yt

es
, S

tri
ng

.g
et

B
yt

es
, S

tri
ng

.g
et

B
yt

es
, B

yt
eA

rr
ay

O
ut

pu
tS

tre
am

.w
rit

e,
 S

ys
te

m
.c

ur
re

nt
Ti

m
eM

ill
is

10
R

EC
EI

V
E_

BO
O

T_
CO

M
PL

ET
ED

Te
xt

V
ie

w.
se

tC
om

po
un

dD
ra

w
ab

le
sW

ith
In

tri
ns

ic
B

ou
nd

s, 
Se

rv
ic

e.
in

it,
 S

er
vi

ce
.o

nC
re

at
e,

 S
er

vi
ce

.o
nD

es
tro

y



680 Software Quality Journal (2023) 31:655–685

1 3

access and steal this personal information, and these permissions have higher impact on the 
classification result and require more attention from developers.

6  Threats to validity

In this paper, we combine the API call sequence and permission features to classify the 
Android applications into malicious and benign. Although the experimental results show 
that the proposed method has good performance in resolving this problem, there are still 
some limitations from the following aspects.

External validity The main threat to external validity may be the difference between API 
versions since some APIs will be changed during the iteration of API versions. For exam-
ple, some APIs may be modified, replaced or removed, and new APIs will be added. In 
our approach, we apply the Word2Vec technique to represent APIs, and each API can be 
transformed into a vector with semantic information. By this way, some APIs with similar 
functions may be close to each other in the vector space. In addition, compared with all the 
APIs, the number of changed APIs is relatively small. Thus, this bias is minimized.

Internal validity The potential threat to internal validity may be the impact of � . As we 
mentioned before, � can influence the final prediction result. Since our method may obtain 
the best results under different parameter values of � on different datasets. Thus, it will 
cause a bias on the scalability of our approach. In our approach, we select two sub-datasets 
to determine the optimal � , and use the rest sub-datasets to verify its validity. The experi-
mental result shows that our approach can achieve the best or approximate best result when 
� is set to 0.6. Therefore, this threat can be greatly weakened.

7  Related work

Existing studies have proposed many methods for Android malware detection. In general, 
they can be divided into static, dynamic, and hybrid.

Static detection is to directly analyze source code or decompiled code for feature extrac-
tion and malware detection. For example, Arp et al. (2014) extracted eight features from 
the decompiled dex file and the manifest file, and then adopted the SVM algorithm to train 
a classifier for detecting Android malware. Similarly, Peiravian et  al. (2013) leveraged 
some classification methods, such as SVM, Decision Tree (Quinlan, 1986) and Bagging 
(Burguera et  al.,  2011), to train classifiers to detect malware by combining the permis-
sion and API call features of each application. In addition, Alazab et al. (2020) proposed a  
grouping strategy which divides API calls into Ambiguous group, risky group, and disrup-
tive group and then selected the most valuable API calls to maximize the identification 
of Android malicious applications. Different from the aforementioned studies, Wang et al. 
(2014) used only the permission feature for malware detection. They conducted an in-depth 
investigation through the loop forward selection and the principal-component analysis. 
They analyzed the riskiness of different permissions and selected the top-k permissions as 
features for detecting malware. Recently, some researchers combined other domain knowl-
edge to detect Android malware. For instance, Wu et al. (2019) developed an Android mal-
ware detection system (Malscan), which combines the concept of social network. Malscan 



681Software Quality Journal (2023) 31:655–685 

1 3

transformed the API call graph into a social network, and then built a SVM-based classifier 
by performing social network-based centrality analysis as the semantic features.

Although the static detection is widely used and proven its effectiveness, the accuracy 
of these static methods is relatively low since these methods do not take into account the 
semantic information contained in the features. To solve this challenge, some researchers 
attempted to design dynamic methods to capture the runtime information by running appli-
cations. For example, Han et al. (2014) collected the execution traces by running programs 
in a virtual environment. After extracting the instruction sequences from the primary 
performed blocks, they transformed instruction sequences into matrix images. Then they 
adopted the similarity calculation to distinguish malicious applications from benign appli-
cations. Besides, Karbab et al. (2016) developed a dynamic malware detection system by 
generating a summary based on the dynamic analysis of malware samples related to exist-
ing known malware. Meantime, they leveraged NLP to solve the problem of dynamic code 
changes. Although the dynamic methods can capture the runtime features to help detect 
malware, they usually have some inevitable problems, such as low coverage rate and high 
computational cost.

Besides, some researchers proposed hybrid detection algorithms which combine static 
detection and dynamic detection to integrate their advantages. For example, Xu et  al. 
(2016) used the dynamic analysis to record system call sequences as the dynamic feature 
and combined some static features. Then these features were represented by vectors and the 
SVM algorithm was leveraged to train a classifier for malware detection. In addition, Garg 
et al. (2019) also used the hybrid analysis to detect malware. They trained multiple classifi-
ers by using static and dynamic features respectively, and implemented the final classifica-
tion based on different ensemble techniques.

Recently, researchers proposed some methods based on neural networks to detect 
malware. For example, MalDozer (Karbab et  al.,  2018), which was based on API call 
sequences, transformed each API call into a vector through Word2Vec and adopted a CNN-
based model for classification. Besides, Vasan et  al. (2020) tried to directly convert raw 
malicious binary code into colored images, and trained a CNN-based model to distinguish 
malicious applications from benign applications. In this paper, we proposed a novel static 
detection method combining the API call sequence and permission features. But unlike 
the existing studies, we respectively trained an API call sequence-based classifier and a 
permission-based classifier, and then designed a linear strategy to combine these two clas-
sifiers to distinguish malicious applications from benign applications.

8  Conclusion and future work

In this paper, we propose an effective Android malware detection method based on permis-
sion and API call sequence features. More specially, we first leverage a decompiling tool to 
extract the permission feature and the API call sequence feature. After preprocessing, we 
adopt two methods to transform permissions and API calls into vectors, respectively. Then 
we apply RF and CNN to learn a permission-based classifier and an API call sequence-
based classifier, respectively. Finally, we linearly combine the outputs of these two clas-
sifiers to predict the labels of new applications. For evaluating our approach, we conduct 
experiments and compare the results with four baseline methods. Experimental results 
indicate that our approach can effectively detect malware and outperform the baseline 



682 Software Quality Journal (2023) 31:655–685

1 3

methods. In addition, when the training samples and the test samples belong to different 
years, our approach can also achieve relatively good detection performance.

In the future, we will collect more datasets to evaluate the effectiveness and generaliz-
ability of our method, and try to design new methods to improve the classification results. 
Furthermore, in this paper, the problem we study is a binary classification problem, which 
means we only predict whether the application is malicious or not. In the future, we will 
design a multi-classification model to detect which malicious family the malware belongs 
to.

Funding This work was supported in part by the Natural Science Foundation of Zhejiang Province under 
Grant LY21F020020, in part by the National Natural Science Foundation of China under Grant 61902096, 
and in part by Key Project of Science and Technology of Zhejiang Province under Grant 2020C01165.

Declarations 

Conflict of interest The authors declare no competing interests.

References

Aafer, Y., Du, W., & Yin, H. (2013). Droidapiminer: Mining API-level features for robust malware detec-
tion in android. In International Conference on Security and Privacy in Communication Systems (pp. 
86–103). Springer.

Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., & Awajan, A. (2020). Intelligent mobile malware 
detection using permission requests and API calls. Future Generation Computer Systems, 107, 509–
521. Publisher: Elsevier.

Allix, K., Bissyand, T. F., Klein, J., & Le Traon, Y. (2016). Androzoo: Collecting millions of android apps 
for the research community. In 2016 IEEE/ACM 13th Working Conference on Mining Software Reposi-
tories (MSR) (pp. 468–471). IEEE.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. (2014). Drebin: Effective 
and explainable detection of android malware in your pocket. NDSS, 14, 23–26.

Bottou, L. (1998). Online learning and stochastic approximations. On-line Learning in Neural Networks, 
17(9), 142.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. Publisher: Springer.
Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011). Crowdroid: behavior-based malware detection sys-

tem for android. In Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones 
and Mobile Devices (pp 15–26).

Garg, S., & Baliyan, N. (2019). A novel parallel classifier scheme for vulnerability detection in android. 
Computers & Electrical Engineering, 77, 12–26. Publisher: Elsevier.

Han, K., Kang, B., & Im, E. G. (2014). Malware analysis using visualized image matrices. The Scientific 
World Journal, 2014. Publisher: Hindawi.

Harris, D., & Harris, S. (2010). Digital design and computer architecture. Morgan Kaufmann.
Herley, C. E., Keogh, B. W., Hulett, A. M., Marinescu, A. M., Williams, J. S., & Nurilov, S. (2015). Spy-

ware detection mechanism. Google Patents.
Hui, T., Tang, X., & Loy, C. C. (2021). A lightweight optical flow CNN - revisiting data fidelity and regu-

larization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(8), 2555–2569.
Jerbi, M., Dagdia, Z. C., Bechikh, S., & Said, L. B. (2020). On the use of artificial malicious patterns for 

android malware detection. Computers & Security, 92, 101743. Publisher: Elsevier.
Karbab, E. B., Debbabi, M., Alrabaee, S., & Mouheb, D. (2016). DySign: Dynamic fingerprinting for the 

automatic detection of android malware. In 2016 11th International Conference on Malicious and 
Unwanted Software (MALWARE) (pp. 1–8) IEEE.

Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2018). MalDozer: Automatic framework for 
android malware detection using deep learning. Digital Investigation, 24, S48–S59. Publisher: Elsevier.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. Preprint retrieved from http:// 
arxiv. org/ abs/ 1412. 6980

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


683Software Quality Journal (2023) 31:655–685 

1 3

Kohavi, R., et al. (1995). A study of cross-validation and bootstrap for accuracy estimation and model 
selection. In IJCAI (vol. 14, pp. 1137–1145). Montreal, Canada.

Landwehr, C. E., Bull, A. R., McDermott, J. P., & Choi, W. S. (1994). A taxonomy of computer program secu-
rity flaws. ACM Computing Surveys (CSUR), 26(3), 211–254. Publisher: ACM New York, NY, USA.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998a). Gradient-based learning applied to document 
recognition. Proceedings of the IEEE, 86(11), 2278–2324. Publisher: IEEE.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document 
recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Mercaldo, F., Visaggio, C. A., Canfora, G., & Cimitile, A. (2016). Mobile malware detection in the 
real world. In 2016 IEEE/ACM 38th International Conference on Software Engineering Companion 
(ICSE-C) (pp. 744–746) IEEE.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in 
vector space. Preprint retrieved from http:// arxiv. org/ abs/ 1301. 3781

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Distributed representations of 
words and phrases and their compositionality. In Advances in Neural Information Processing Sys-
tems (pp. 3111–3119).

Nash, T. (2005). An undirected attack against critical infrastructure. US-CERT Control Systems Secu-
rity Center: Technical Report.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, 
P., Weiss, R., Dubourg, V., et  al. (2011). Scikit-learn: Machine learning in Python. The Journal of 
Machine Learning Research, 12, 2825–2830. Publisher: JMLR. org

Peiravian, N., & Zhu, X. (2013). Machine learning for android malware detection using permission and 
API calls. In 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (pp. 
300–305). IEEE.

Pektaş, A., & Acarman, T. (2020). Deep learning for effective Android malware detection using API call 
graph embeddings. Soft Computing, 24(2), 1027–1043. Publisher: Springer.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. Publisher: Springer.
Shao, Y., Chen, Q. A., Mao, Z. M., Ott, J., & Qian, Z. (2016). Kratos: Discovering inconsistent security 

policy enforcement in the android framework. In NDSS.
Srinivasa-Desikan, B. (2018). Natural language processing and computational linguistics: A practical 

guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd.
Vapnik, V. (2013). The nature of statistical learning theory. Springer Science & Business Media.
Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B., & Zheng, Q. (2020). IMCFN: Image-based 

malware classification using fine-tuned convolutional neural network architecture. Computer Net-
works, 171, 107138. Publisher: Elsevier.

Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., & Zhang, X. (2014). Exploring permission-induced 
risk in android applications for malicious application detection. IEEE Transactions on Information 
Forensics and Security, 9(11), 1869–1882. Publisher: IEEE.

Wu, D. J., Mao, C. H., Wei, T. E., Lee, H. M., & Wu, K. P. (2012). Droidmat: Android malware detec-
tion through manifest and API calls tracing. In 2012 Seventh Asia Joint Conference on Information 
Security (pp 62–69). IEEE.

Wu, Y., Li, X., Zou, D., Yang, W., Zhang, X., & Jin, H. (2019). MalScan: Fast market-wide mobile mal-
ware scanning by social-network centrality analysis. In 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE) (pp. 139–150). IEEE

Xu, L., Zhang, D., Jayasena, N., & Cavazos, J. (2016). HADM: Hybrid analysis for detection of mal-
ware. In Proceedings of SAI Intelligent Systems Conference (pp. 702–724). Springer.

Young, A., & Yung, M. (1996). Cryptovirology: Extortion-based security threats and countermeasures. 
In Proceedings 1996 IEEE Symposium on Security and Privacy (pp 129–140). IEEE.

Zhou, Y., & Jiang, X. (2012). Dissecting android malware: Characterization and evolution. In 2012 
IEEE Symposium on Security and Privacy (pp 95–109). IEEE.

Zhu, H. J., Jiang, T. H., Ma, B., You, Z. H., Shi, W. L., & Cheng, L. (2018). HEMD: A highly efficient 
random forest-based malware detection framework for Android. Neural Computing and Applica-
tions, 30(11), 3353–3361. Publisher: Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is 
solely governed by the terms of such publishing agreement and applicable law.

http://arxiv.org/abs/1301.3781
https://JMLR.org


684 Software Quality Journal (2023) 31:655–685

1 3

Xin Chen received the Ph.D. degree in software engineering in 2018 
from the School of Software, Dalian University of Technology, in 
Dalian, China. He is currently an Associate Professor of Hangzhou 
Dianzi University, in Hangzhou, China. His research interests include 
mining software repositories, search based software engineering, and 
evolutionary computation. He is a member of the CCF and the IEEE. 
He is also a member of Technical Committee of Software Engineering 
CCF (TCSE CCF).

Haihua Yu is currently a master candidate in Hangzhou Dianzi Univer-
sity. His main research interests include mining software repositories 
and intelligent software engineering.

Dongjin Yu is currently a professor at Hangzhou Dianzi University, 
China. His research efforts include intelligent software engineering, 
data engineering and service computing. He is the director of Big Data 
Institute, and the director of Computer Software Institute of Hangzhou 
Dianzi University. He is a member of IEEE, and a senior member of 
China Computer Federation (CCF). He is also a member of Technical 
Committee of Software Engineering CCF (TCSE CCF) and a member 
of Technical Committee of Service Computing CCF (TCSC CCF).



685Software Quality Journal (2023) 31:655–685 

1 3

Jie Chen is an Assistant Professor in the College of Computer Science 
at Hangzhou Dianzi University, China. She received the PhD degree 
from the Lab of Internet Software Technologies, Institute of Software 
Chinese Academy of Sciences (ISCAS), in Beijing, China, in 2016. 
She was a visiting scholar in the Department of Computer Science, 
University of Massachusetts Amherst from September 2012 to Sep-
tember 2013. Her research interests are in software process simulation, 
resource scheduling and code analysis.

Xiaoxiao Sun received her Ph.D. degree from Zhejiang University in 
2017. She is now a lecturer at Hangzhou Dianzi University. Her research 
efforts include spatio-temporal data analysis, business process manage-
ment and big data.


	Predicting Android malware combining permissions and API call sequences
	Abstract
	1 Introduction
	2 Background and motivation
	3 Methodology
	3.1 Feature extraction
	3.2 Preprocessing
	3.3 Vector representation
	3.3.1 Vector representation for permissions
	3.3.2 Vector representation for API call sequences

	3.4 Classifiers
	3.4.1 Random Forest
	3.4.2 CNN

	3.5 Classifier fusion

	4 Experiment setup
	4.1 Research questions
	4.2 Dataset
	4.3 Metrics
	4.4 Evaluation method
	4.5 Baselines
	4.6 Experimental platform and parameter settings

	5 Experiment results
	5.1 Investigation to RQ1
	5.2 Investigation to RQ2
	5.3 Investigation to RQ3
	5.4 Investigation to RQ4
	5.5 Investigation to RQ5

	6 Threats to validity
	7 Related work
	8 Conclusion and future work
	References


