
Vol.:(0123456789)

Software Quality Journal (2023) 31:211–241
https://doi.org/10.1007/s11219-022-09598-x

1 3

How do developers collaborate? Investigating GitHub
heterogeneous networks

Gabriel P. Oliveira1 · Ana Flávia C. Moura1 · Natércia A. Batista1 ·
Michele A. Brandão2 · Andre Hora1 · Mirella M. Moro1

Accepted: 1 August 2022 / Published online: 7 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Assessing the collaboration among developers is important to understand different aspects
of software lifecycle including code smell intensity, bug fixes, and software quality. This
kind of collaboration can be obtained from social networks, which represent interactions
between individuals in different contexts. In this paper, we model GitHub developers’ col-
laborations in a heterogeneous network by considering three aspects: social collaboration,
collaboration time in a repository and technical features. Then, we explore the GitHub net-
work from different perspectives: size, relevance, and potential applications. The results
show the considered metrics are not correlated, bringing new information about the col-
laborations. We also show that such information is useful for social developer ranking, an
actual task which is often part of different applications, such as team formation, commu-
nity detection and pair programming. Finally, as software quality is intrinsic to the people
who code it, our methodology and analyses represent initial steps towards people-centered
software quality analysis, as further discussed throughout this article.

Keywords Collaborative software development · Social coding · Social network metrics ·
Software quality · Mining software repositories

 * Mirella M. Moro
 mirella@dcc.ufmg.br

 Gabriel P. Oliveira
 gabrielpoliveira@dcc.ufmg.br

 Ana Flávia C. Moura
 anaciriaco@dcc.ufmg.br

 Natércia A. Batista
 natercia@dcc.ufmg.br

 Michele A. Brandão
 michele.brandao@ifmg.edu.br

 Andre Hora
 andrehora@dcc.ufmg.br

1 Computer Science Department, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
2 Instituto Federal de Minas Gerais, Ribeirão das Neves, Brazil

http://orcid.org/0000-0002-7210-6408
http://orcid.org/0000-0001-7808-9357
http://orcid.org/0000-0003-4900-1330
http://orcid.org/0000-0002-0545-2001
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-022-09598-x&domain=pdf

212 Software Quality Journal (2023) 31:211–241

1 3

1 Introduction

GitHub has quickly become the main collaborative software development online tool.
Historically, it was built to control code versioning but it soon evolved to sharing code
(and other digital objects) for collaborative development and interaction, through features
such as giving a star to a project, following users, opening issues and pull requesting. Then,
there are many ways to explore GitHub for research and assessment purposes (Rahman &
Roy, 2014; Silva & Valente, 2018; Bhasin et al., 2021), and social analyses by consider-
ing relationships between users who have collaborated within the same software project or
repository (Batista et al., 2017), function (Joblin et al., 2017), or file (Meneely et al., 2008;
Meneely & Williams, 2011; Avelino et al., 2017). All aforementioned works focus on
homogeneous networks, that is, they capture only one type of relationship among the devel-
opers at a time. Still, GitHub offers other technical interactions that are software develop-
ment oriented and could also be mapped to a network edge, e.g., creating a pull request
and opening an issue. Indeed, when separating social features (e.g., following and stars)
from such technical interactions (e.g., issues and pull requests), GitHub shows its multi-
dimensional nature of the relationships (Leibzon, 2016). The problem then becomes how to
model such a rich set of social and technical interactions over the actual software engineer
collaborations (i.e., coding within the same context).

Our solution is to map different interactions to a set of edges, then forming a het-
erogeneous network, in which nodes represent developers and edges represent distinct
interactions or collaborations. This type of networks has been largely studied in other
contexts, such as blogging and image hosting (Li et al., 2020). Its main difference is to
enable a uniform representation of features from both social and technical dimensions
at the same time. In other words, considering different types of relationships simultane-
ously is not possible in a homogeneous network. This work builds upon a preliminary
version of the heterogeneous modeling from Oliveira et al. (2018) by using its insights
to better explore GitHub semantic properties and propose a real-world application using
such a model. The solution seems rather simple, but it has specific challenges: (i) how
to model distinct relationships more accurately within a unique social network; (ii) how
to measure collaboration between any pair of developers given such new relationships;
and (iii) how to evaluate such a model and metrics. The third challenge potentially has
many solutions over a broad scope of evaluation techniques. Hence, we narrow down
the options to three research questions regarding network analyses, metrics correlation,
and how practical applications may benefit from our model and metrics. Overall, our
contributions are summarized as follows.

– We propose a new heterogeneous network model for GitHub by integrating three
aspects: social collaboration, time of collaboration in a repository, and technical fea-
tures (Sect. 3.1). Specifically, we consider four technical and social features to model
our network: issue, pull request, follower and star.

– We then propose five novel metrics for developers’ relationships (Sect. 3.2): unidirec-
tional assigned issues, unidirectional pull requests, bidirectional pull requests, bidirec-
tional intensity of followers, and unidirectional intensity of stars. They allow to uncover
new information about developers on Github by considering its specific aspects.

– We also generate networks for six programming languages (JavaScript, Python,
Ruby, Assembly, Pascal, and Visual Basic — choices justified in Sect. 4.1.1) by
mining millions of GitHub repositories. In summary, a previous analysis of net-

213Software Quality Journal (2023) 31:211–241

1 3

work properties of 12 programming languages reveals that the first three networks
(JavaScript, Python, and Ruby) are more collaborative, whereas the others (Assem-
bly, Pascal, and Visual Basic) are less collaborative. Thus, our study considers net-
works with two distinct levels of collaboration, high and low, which may reveal dif-
ferent behavior for our proposed collaboration metrics and better show the distinct
values for the metrics on extreme scenarios of collaboration levels. We then extend
an existing dataset with information extracted from such networks (Sect. 4.1.2).

– We propose three research questions to assess the new modeling and metrics, as
follows.

1. How do GitHub collaborations look like when considering heterogeneous networks?
By definition, heterogeneous networks represent distinct cooperation among devel-
opers, which may increase the size of the generated networks (Oliveira et al., 2018).
Thus, as a first research question, we aim to assess the network size in terms of
nodes, relationships and components (Sect. 5.1).

2. How do the new metrics compare to existing ones over the new heterogeneous
networks? As we define metrics for novel aspects of the network, assessing their
capability of uncovering new information about GitHub is paramount (Avelino
et al., 2016; Batista et al., 2017). Therefore, this second research question is
answered by evaluating the presence of collaboration of such new types,
and analyzing correlation between existing social metrics and the new ones
(Sect. 5.2).

3. How can software companies and open-source communities benefit from the new
heterogeneous modeling when considering an actual application? Not always is
more information better. However, when dealing with complex systems, such as
social networks and collaborative software development, more information may
be needed to represent users’ relationships better (Leibzon, 2016; Li et al., 2020).
This is the inspiration behind a heterogeneous model, to bring and consider more,
relevant information. To assess the benefits of our model in GitHub, we evaluate
the model and metrics for ranking collaborative developers (Sect. 5.3), and discuss
potential applications towards software quality (Sect. 6). Regarding the ranking
task, the heterogeneous-based ranking presented a high precision when compared
to the homogeneous (base) one. Such results indicate that considering the novel
types of interaction brings more benefits to the ranking task. Complementary, we
discuss potential applications of the heterogeneous model in software quality and
we observe that our studies can generate insights that may help developers, software
engineering and project managers to make decisions.

2 Background and related work

In this section, we overview concepts from social networks (Sect. 2.1) that are impor-
tant to understand our research and describe related work on GitHub (Sect. 2.2). Next,
we go over studies that consider developer and community-related aspects to identify
or assess software quality issues (Sect. 2.3). Then, we briefly discuss the main applica-
tion considered here, ranking (Sect. 2.4).

214 Software Quality Journal (2023) 31:211–241

1 3

2.1 Social network basics

Social Network Analysis has become a widely studied area, mostly due to the advances of
technology and online platforms. There is a plethora of published material on the topic,
which are impossible to cover in a simple paper section. Therefore, we now briefly define
some terms used throughout our work.

Formally, a social network is modeled as a graph G = (V, E) , in which V is the set of
vertices (nodes) that represent individuals (e.g., friends, developers), and E is the set of
non-directed edges that connect vertices of individuals who share a relationship. To qualify
such relationships, there are metrics for the edges weight (also known as strength and tie
strength), which can be topological (given by the network structure) or semantic (given by
the relation meaning), as described next. In a collaborative software development network,
considering time is also crucial to avoid false relationships, i.e., two developers working on
a project in very distant time windows (Hong et al., 2011).

There are different metrics to qualify a relationship in a social network. The first three
lines of Table 1 present some of the existing topological metrics that may be applied to
different types of social network. For example, Brandão and Moro (2017) used the neigh-
borhood overlap metric to the strength of collaboration in academic social networks.

2.2 GitHub social network

In this work, we focus on GitHub, the largest online platform for collaborative soft-
ware development. GitHub (or similar proprietary tools) may be used for code review,
bug assignment, quality inspection, and other tasks beyond version management (Yu
et al., 2016). Moreover, it is used by students (or young developers) to learn how to code,
get feedback from others, engage in open sourcing, then building a developer portfolio
(Bhasin et al., 2021).

Studying GitHub structure and interactions reveals knowledge about the development
process itself (Dalla Palma et al., 2020; Jiang et al., 2019; Nguyen et al., 2020), from con-
ception to maintenance. As a platform, it allows different connections and interactions.
Specifically, repositories can be forked and then joined by a pull request, which needs to
be approved by an integrator user (Rahman & Roy, 2014). Over time, the number of such
requests may increase, making it difficult for integrator users to approve. Hence, there are
methods designed to filter and select more relevant requests (Jiang et al., 2019), then filter-
ing out possible connections but increasing the effectiveness of the requests.

GitHub may be modeled as a graph: developers or team members (nodes) are connected
(edges) with whom they collaborate in a repository, file or project. Such modeling is a
homogeneous network, as it has only one type of nodes and edges. Then, different studies
explore GitHub data for a variety of purposes, such as classifying relationships over time
(Batista et al., 2017), understanding the repositories stars growth (Silva & Valente, 2018),
investigating infrastructure-as-code properties by cataloging 46 metrics (Dalla Palma
et al., 2020), and identifying core members of a project and their relation to its status
(Leibzon, 2016).

A key factor in any of such studies is how to quantify the collaborations or relation-
ships among developers. The solution usually includes proposing semantic metrics that
are strict to a specific context, as presented in the bottom half of Table 1. For example, in
the context of GitHub, a metric may consider the number of shared repositories, which is a

215Software Quality Journal (2023) 31:211–241

1 3

Table 1 Existing metrics for topological and semantic properties. For two distinct nodes X and Y, consider N(X)
as the set of neighbors of X, w(X) as the sum of the weights of all edges connected to X, and w(X, Y) as the weight
of the edge between X and Y. Also, let R be the set of all repositories in which both users X and Y collaborate

*Tieness can be used with each semantic metric of this table and the ones proposed in this work, whose
weight is w(X, Y)

Topological properties

Neighborhood Overlap (NO) According to Easley and Kleinberg (2010), it is a
measure of tie strength between nodes by considering
their neighbor similarity, thus being defined as
NO(X,Y) =

|N(X)∩N(Y)|
|N(X)∪N(Y)−{X,Y}|.

Preferencial Attachment (PA) There is a linear relation between the number
of neighbors of a node and the probability of
connecting itself to another node (Barabási &
Albert, 1999): PA(X,Y) = |N(X)||N(Y)|.

Adamic-Adar Coefficient (AA) Defined by Adamic and Adar (2003), it gives more
importance to neighbors that do not connect to

many others:
AA(X,Y) =

∑
∀Z∈N(X)∩N(Y)

1

log�N(Z)�.
Weighted topological properties (Brandão & Moro, 2017)
Tieness (T)* It measures tie strength in co-authorship networks.

In the GitHub collaboration network:
T(X,Y) =

|N(X)∩N(Y)|+1
1+|N(X)∪N(Y)−{X,Y}| ||w(X,Y)||

2 , where w(X, Y) is

the normalized edge weight.
Semantic properties (Batista et al., 2017)
Number of Shared Repositories (SR) Defined as the number of repositories shared between

two developers: SR(X,Y) = |R|.
Jointly Developers Contribution to Shared Reposi-

tories (JCSR)
Let JCSR(X,Y ,ri)

 be the ratio between the number
of developers in the relationship and the
total of developers in the repository ri . Thus,

JCSR(X,Y) =

∑
∀ri∈R

JCSR(X,Y ,ri)

�R� .
Jointly Developers Commits to Shared Repositories

(JCOSR)
Let NC(X,ri)

 be the number of commits made by a
developer X in a repository ri and NC(ri)

 the total of

commits in ri :
JCOSR(X,Y) =

∑
∀ri∈R

NC(X,ri)
+NC(Y ,ri)

NC(ri) .
Pevious Collaboration (PC) Let ND(ri ,t)

 be the number of developers in a repository
ri at a time t. Hence, PC(X,Y ,t) is defined as the
amount of collaboration offered by X and Y at the

time t: PC(X,Y ,t) =

∑
∀ri∈R

1

ND(ri ,t)

�R� . High values of the
fraction 1

ND(ri ,t)

 means that developer X is more likely
to collaborate with Y and vice versa. Therefore, the
value of PC is the average probability of X
collaborate with Y for all repositories.

Global Potential Contribution (GPC) Let T(X,Y ,ri) be the time interval in which the
developers X and Y contribute to the repository
ri and D the set of all developers in the network:

GPC(X,Y) =

∑
∀ri∈R

T(X,Y ,ri)

max∀(Di ,Dj)∈D,ri∈R
T(Di ,Dj ,ri) . In other words,

GPC corresponds to the ratio between the sum of
how many times X and Y have collaborated and the
maximum lifetime over all project repositories

216 Software Quality Journal (2023) 31:211–241

1 3

feature provided by GitHub platform; however, there is no use for such a metric in a friend-
ship social network that does not provide any software-related feature (e.g., Instagram).
Hence, this table includes existing metrics proposed in the context of GitHub-based social
networks. Although limited to specific scenarios, semantic metrics are important to deeply
assess properties and acquire information from the network. Then, proposing new metrics
is relevant to better understand the patterns and behaviors in a network. Furthermore, the
existing semantic metrics summarized here consider the amount of commits only, then
leaving room to consider other aspects, further introduced in Sect. 3.2.

The aforementioned works have two common types of information by extracting fea-
tures from: the nodes (i.e., individuals) and the edges that characterize their relationships.
Such relationships can be analyzed in different levels, and GitHub allows to create specific
contexts or ecosystems based on programming languages (Blincoe et al., 2015). Current
studies focus on one coding language or a small group of languages, and analyzing such
contexts uncover social and technical changes that affect the ecosystem or motivate devel-
opers to migrate to other ecosystems (Constantinou & Mens, 2017).

We build up over related work by introducing a solution to consider both social and
technical interactions at the same time through a heterogeneous modeling of GitHub fea-
tures. We also propose a set of new metrics for GitHub collaboration strength considering
four technical and social features: follow, issues, pull requests and stars. Although such
features have been studied individually (Anvik et al., 2006; Baysal et al., 2009; Borges
et al., 2016; Lima et al., 2014; Yu et al., 2014a, b; Silva & Valente, 2018), they were not
used to measure relationship (tie) strength on a collaboration-based developer network.

2.3 Developer and community‑related quality issues

Research on software quality usually tackles either product or process quality by proposing
or analyzing features assessed through one or more metrics. Simply put, product quality met-
rics focus on specification, design and code related features, such as size, complexity, cohe-
sion, coupling, and encapsulation (Colakoglu et al., 2021), whereas process quality focuses
on construction specification and development-related features, such as number of changes,
developers, commits, active developers and their neighbors (Rahman & Devanbu, 2013).
There is also a handful of works that tackle both product and process quality in the context
of defect prediction (Majumder et al., 2020), and others that favor process metrics in such
a context, e.g., Rahman and Devanbu (2013). For product quality, Colakoglu et al. (2021)
present a recent systematic mapping that covers 70 studies published from 2008 on. There is
also a plethora of work that focuses on distinct issues that jeopardize software quality, how
to locate, detect and predict them, including smells (code, community, design), low truck
factors, bugs, defects and faults, to name a few.

For example, Palomba et al. (2018) introduce community- and non-community-
related properties to investigate and predict code smell intensity on GitHub — a perspec-
tive closely related to software quality. The non-community-related properties are more
kin to our work because they represent the source code structure (e.g., lines of code) and
the development process (e.g., total commits, class change process, developer-related fac-
tors and maintainability measures). Likewise, Tamburri et al. (2019) propose a tool called
YOSHI (Yielding Open-Source Health Information) that considers properties such as com-
mits, pull requests, comments, and new watchers to discover community patterns.

Then, Almarimi et al. (2020) evaluate machine learning algorithms to detect commu-
nity smells in open-source software projects. Their experimental analyses consider more

217Software Quality Journal (2023) 31:211–241

1 3

than 70 projects from GitHub. Among different conclusions, we highlight: number of com-
mits and developer per timezone, number of developers per community, and betweenness
and closeness centrality are the most influential community features for detecting commu-
nity smells. Likewise, while studying critical success factors, Garousi et al. (2019) also
emphasize the influence of teams (or communities in a more abstract level). Specifically,
beside project monitoring and controlling (i.e., management and organizational features),
the expertise of a team with the task at hand and its experience with software development
methodologies are central to software project success.

Overall, the aforementioned works are some examples of current research that shows
the importance of social factors and the potential roles of developers while evaluat-
ing software quality. We note that most product related solutions are language depend-
ent (Malhotra & Chug, 2013; Colakoglu et al., 2021), and not necessarily translate
from one language or coding paradigm to another (Majumder et al., 2020; Rahman &
Devanbu, 2013). In this sense, our work also collaborates with process-related features, as
we focus on developers interactions and collaborations within code repositories. Moreo-
ver, being language-agnostic, our metrics are calculated for repositories coded in 12 of
the most popular languages on GitHub, instead of just one — as done by Lenhard et al.
(2019) and Madeyski and Jureczko (2015) for finding architectural inconsistencies and
improving defect prediction models, for example.

2.4 Collaboration and its applications

Collaboration is inherent to human behavior, being essential to software engineering.
Indeed, Bagley and Chou (2007) establish that collaboration helps inexperienced program-
mers to learn computer programming, and Singh (2010) reveals a correlation between
small-world properties of a community and the success of the software developed by its
collaborators. Regarding GitHub developer information and software quality, Çaglayan and
Bener (2016) study the effect of collaborative coding on the quality of the final product,
specially the impact on defect software proneness. The authors study how developer col-
laboration relates to software quality on source code level, and its possible reasons (devel-
oper’s experience, developer’s activities, and number of collaborations). Nonetheless, the
authors consider the Git versions of only two software projects.

Going further, Wang et al. (2018) propose a system to recommend tags that help develop-
ers to find questions to easily solve their doubts, and Zhang et al. (2017) present a new strat-
egy to detect similar repositories on GitHub. Nonetheless, understanding developers’ rela-
tionships can help improve both approaches, as those with strong relationships tend to have
similar contributing behavior. Then, studying the strength of collaboration can also help to
improve project or pull request recommendation (Palomba et al., 2018; Yu et al., 2014b) by
revealing the behavior of developers interactions, and indirectly, developers’ behavior.

Furthermore, the social aspect is present in the software development process, as a
developer’s main priority at work is to solve problems, which is done by collaborating
on projects (Batista et al., 2017) and gathering with other people as part of a software
development team (Costa et al., 2020). Other types of relationships between developers
are considered in a preliminary heterogeneous model to measure tie strength (Oliveira
et al., 2018). In fact, a developer’s social network is also relevant for the developer,
as it may lead to referrals to new jobs and promotions (Singer et al., 2013; Sarma
et al., 2016). These social skills are becoming increasingly important in the industry over-
all (Torres, 2015), which then impacts any recruiting process by software companies and

218 Software Quality Journal (2023) 31:211–241

1 3

open-source communities. For example, a study over LinkedIn network shows the impor-
tance of being at the center of focus groups during a hiring process Jere et al. (2017) —
such analysis could be easily adapted for working over a GitHub collaboration network.
Finding the right developers may also be part of a solution to untangle or avoid quality
issues such as community smells.

Overall, studying collaboration properties is relevant for other reasons as well. First, it
can help in pair programming by identifying related individuals, given the benefits of such
as strategy varies depending on their prior relationship and the nature of their exchanges.
Second, such a study may reveal soft skills to recommend or rank developers, which are
important to different job opportunities (Zhou et al., 2018; Montandon et al., 2021). Third,
following such applications, recommendation and ranking algorithms may use collabora-
tive filtering and then collect information from many users as well. At the end, our research
may potentially help any of such studies and applications, as we advance many steps
towards understanding and qualifying developers’ interactions.

Specially, we use the new semantic metrics as descriptors of social skills to rank devel-
opers on GitHub. Finally, the proposed model and metrics enable to apply the new acquired
knowledge into more interesting and complex applications, such as recommendation, team
formation, software quality analysis, and community detection — which are part of our
current and future research efforts (further connections between our work and software
quality are discussed in Sect. 6).

3 GitHub heterogeneous network

We now propose a new heterogeneous model for collaborations in GitHub (Sect. 3.1) and
semantic metrics for collaboration strength over such a network (Sect. 3.2).

3.1 Network modeling

We model the heterogeneous collaboration network for GitHub developers by starting from
the homogeneous network G = (V, E) of Sect. 2.1. We call it the base network, in which
developers (nodes) are linked (through an edge) when they contribute (i.e., make commits)
to the same repository within a time interval. Note the relationships are defined at language
level (a key feature of any repository), as it allows to understand the collaboration patterns
in different coding languages. Figure 1(a) and (b) show the base network defined for five
people who work on two repositories.

Fig. 1 Network construction from the bipartite graph (a) of developers and repositories. The base network
(b) connects developers who collaborated in the same repository within a period of time (solid lines), while
our heterogeneous model (c) incorporates the new technical interactions (dashed lines). There is no connec-
tion between {U3,U4} and {U3, U5}, as they have not collaborated within the same period of time

219Software Quality Journal (2023) 31:211–241

1 3

From the base network, our new heterogeneous modeling regards distinct types of
edges for all potential interactions. The network is then represented by a multigraph
G
� = (V, E1 ∪ E2) , where the set V still contains vertices for developers who commit to the

same repository within a time interval. The novelty relies on the two edge sets E1 and E2 ,
which represent (i) social collaboration in the same repository within a time period (from
the base network, and it is mandatory because they are collaborating developers); and (ii)
GitHub technical features for representing the creation of pull requests in the same reposi-
tory, creation of pull requests in repositories that belong to another user, creation of issues
assigned to another user, and GitHub social features for representing followers and favorite
repositories (stars). Such GitHub features were chosen because they are relevant to software
development and are available for most users and repositories (Anvik et al., 2006; Baysal
et al., 2009; Borges et al., 2016; Lima et al., 2014; Silva & Valente, 2018; Yu et al., 2014b, a).

Also, each edge in the graph (pair of developers) may be qualified by a weight value.
The weight of each set Ek of edges corresponds to the values of existing metrics for the base
network and the new metrics on collaboration strength (Sect. 3.2) for the new interaction
types. An example of heterogeneous modeling is presented in Fig. 1(c), which shows the
same five users of GitHub and their relationships through repositories and other features.

Overall, the following list summarizes the new model main features and benefits:

– Each developer within the GitHub social network has at least one edge, the one from
the base network; i.e., this person has collaborated on a repository with another person
within the same time window.

– Each pair of developers may have other connections (besides the base one) regarding
two GitHub technical features (issues and pull requests) and two social features (follow-
ers and stars).

– Having both set of edges allows to assess how collaborative each developer is; which,
in turn, enables to assess and even rank developers or pairs of developers according to
their level of collaboration, or collaboration strength.

– Having new types of relationships in the model requires new properties or metrics to
quantify them, as introduced in the following section.

Figure 2 illustrates a toy example of all types of connections allowed in the new heterogeneous
model. Each type of new edge adds information to the heterogeneous network, and we may call
them Semantic Properties as well. When assessing this network collaborations, it is clear that the

Fig. 2 Types of interactions considered in our proposed heterogeneous model

220 Software Quality Journal (2023) 31:211–241

1 3

pair (U1,U4) is less collaborative than the pair (U1,U2) , for example. Similar analyses may be
performed at the node level. For instance, user U2 is more collaborative than U4 , as the former has
more types of collaborations with more people than the latter. Note the homogeneous network
(as the base network) limits its analyses to the single type of edges (relationships) it contains. For
example, it allows to assess that users U1 and U2 have more connections than the others.

3.2 New semantic properties

This section presents the new semantic properties to measure collaboration (tie) strength
in the heterogeneous network by considering specific factors derived from the semantics
of connections that GitHub offers. Note that most existing metrics either are generic to
any kind of graph (e.g., Topological Properties from Table 1), i.e., they do not capture any
software development-related behavior, or consider only the collaboration of users in the
same repository (e.g., Semantic Properties from Table 1). Now, we improve the properties
with the new types of relationships (previous section). Such new properties are separated
according to the type of interaction considered, either technical (i.e., related to the code
itself) or social (directly between two users). The inspiration for these metrics come from
the social and technical features provided by GitHub (follow, star, issues, pull request) and
their potential influence within the strength of collaboration between developers.

For all metrics, consider two distinct developers X and Y. We start by introducing the
new semantic metrics that connect developers through two GitHub technical factors of
software development: issues and pull requests.

Unidirectional assigned issues (UAI) Issues allow to keep track of tasks, enhancements
and bugs,1 all essential to quality assessment. Finding the right developer to handle an
issue is challenging but may reduce the time to implement the change request (Anvik
et al., 2006; Baysal et al., 2009). Therefore, this metric considers issues assigned from one
user to another (i.e., unidirectional), as follows. Let NI(X,Y) be the number of issues created
by user X that are assigned to user Y, and TNI(Y) the total number of issues designated to
user Y. The metric for unidirectional assigned issues is:

This metric can be interpreted as the level of trust from one developer to another. Its
value is in the range [0, 1], and the higher the UAI value, the greater the trust of X (or X’s
team) in Y to fix an issue. For example, in Fig. 1, if four out of 10 issues assigned to U3
were created by U1 , then UAI(U1,U3)

=
4

10
= 0.4.

Unidirectional pull requests (UPR) Pull request is the primary method for coding
contributions of developers in GitHub (Yu et al., 2014b). We understand that each pull
request is a form of one person contributing with (usually) code to the repository of oth-
ers. Hence, we measure such collaboration as follows. Let PR(X,Y) be the number of pull
requests created by user X in repositories owned2 by user Y, and TPR(Y) the total number

UAI(X,Y) =
NI(X,Y)

TNI(Y)

1 GitHub Mastering Issues: https:// guides. github. com/ featu res/ issues
2 Following GitHub documentation, repositories owned by user accounts have one owner, and ownership
permissions cannot be shared with another user account. Owners may also invite users on GitHub to their
repositories as collaborators.

https://guides.github.com/features/issues

221Software Quality Journal (2023) 31:211–241

1 3

of pull requests of the repositories owned by user Y. The unidirectional metric for pull
requests is:

In other words, this metric represents the level of cooperation from one user to another
via pull requests. Its value is in the range [0, 1], and the more user X contributes to reposi-
tories owned by Y via pull requests, the higher the UPR value; i.e., higher values suggest
more cooperative work of user X towards helping user Y. For example, if U1 creates three
pull requests in repositories belonging to U2 , and the total of pull requests in U2 ’s reposito-
ries is 10, then UPR(U1,U2)

=
3

10
= 0.3.

Bidirectional pull requests (BPR) UPR measures collaboration from one direction
only. Still, having a pair of developers who mutually uses pull requests on each others’
code makes for a stronger collaboration. In other words, UPR measures the cooperation via
pull requests from user X to user Y unidirectionally, whereas BPR assesses the cooperative
work between X and Y as a reciprocal work via a bidirectional relationship, as follows. Let
NPR(X,r) be the number of pull requests created by user X in a repository r, TNPR(r) the total
number of pull requests in r, and U the universe set of the existing repositories in the data-
set. For each pair (X, Y) in a repository r ∈ U , if NPR(X,r) ≠ 0 and NPR(Y ,r) ≠ 0 , the BPR
metric is defined by:

Considering the presented metrics so far, BPR is the only one that does not have val-
ues in the range [0, 1]. These values are not normalized because doing so causes loss
of information on the strength of the relationships. The higher the BPR value, the more
cooperative work exists between users X and Y. For example, for a repository r1 in Fig. 1,
two out of the 10 existing pull requests were created by U1 and one by U2 . Then, in the
repository r2 , there are 20 pull requests, five of them created by U1 and 10 by U2 . Thus,
BPR(U1,U2)

=
2+1

10
+

5+10

20
= 0.3 + 0.75 = 1.05.

Besides its many technical features for collaborative software development, GitHub
offers two functions that are inspired by online social networks: followers and stars. As we
aim to propose a heterogeneous network that explores different aspects within the social
dimension, both followers and stars are evaluated in the next metrics.

Bidirectional intensity of followers (BIF) Developers follow other users on GitHub
to receive notifications about their activity and to discover projects in their communities.3
Thus, the social feature follow represents the interest of user X in the work of user Y (Lima
et al., 2014; Yu et al., 2014a). Hence, we propose the following values to measure such
intensity:

UPR(X,Y) =
PR(X,Y)

TPR(Y)

BPR(X,Y) =
∑

∀ri∈U

NPR(X,ri)
+ NPR(Y ,ri)

TNPR(ri)

3 Following People: https:// help. github. com/ en/ artic les/ follo wing- people

https://help.github.com/en/articles/following-people

222 Software Quality Journal (2023) 31:211–241

1 3

In other words, the intensity of followers is defined based on the relationship in which a
user X follows a user Y in GitHub. In Fig. 1, if U1 follows U2 but U2 does not follow U1 back,
the value of BIF(U1,U2)

 is 0.5. If U4 follows and is followed by U5 , BIF(U4,U5)
= 1.

Unidirectional intensity of stars (UIS) Developers star repositories to keep track of
projects they find interesting and to discover related content in their news feed.4 In addi-
tion, the star amount also represents appreciation to a project and is an important meas-
ure that the community considers before using or contributing to a project (Silva &
Valente, 2018) — note: forks are another social feature on GitHub that is strongly correlated
with stars (Borges et al., 2016); hence, there is no new metric for it. Given its importance,
intensity of stars is defined as follows. Let NS(X,Y) be the number of repositories owned by
user Y in which X is interested (by adding a star), and TNS(X) the total number of reposito-
ries in which X is interested. The unidirectional intensity of stars is:

In Fig. 1, consider that U5 starred 50 repositories, 20 of which belong to U2 . Then,
UIS(U5,U2)

=
20

50
= 0.4.

4 Evaluation design

In order to assess how the proposed heterogeneous network works, we use the evaluation
design illustrated in Fig. 3.

The first step is to acquire data from GitHub. According to current statistics from its
webpage, GitHub has more than 200 million repositories, 65 million developers, and 3

BIF(X,Y) =

⎧
⎪
⎨
⎪
⎩

1 if X follows Y AND Y follows X

0.5 if X follows Y XOR Y follows X

0 otherwise

UIS(X,Y) =
NS(X,Y)

TNS(X)

Fig. 3 Proposed study design with the main steps of our methodology

4 GitHub stars: https:// help. github. com/ en/ artic les/ saving- repos itori es- with- stars

https://help.github.com/en/articles/saving-repositories-with-stars

223Software Quality Journal (2023) 31:211–241

1 3

million businesses and organizations worldwide (as of July 2021). As it is unfeasible to
build one sole network for such huge volume of data, we study the networks of the most
popular programming languages (Sect. 4.1.1). By collecting data from the repositories and
users of such languages, we have extended an existing dataset to include the heterogeneous
features as well, which enables to build the heterogeneous network (Sect. 4.1.2).

Having the data, the next steps of the methodology contain the design to answer each
research question. For the first research question, we build the heterogeneous networks
over the base network and characterize them in terms of size, relationships and components
(Sect. 4.2). For the second question, we assess the presence of collaborations that belong
to the new types, then analyze the correlation among the new types, and between them and
the existing ones (Sect. 4.3). Finally, we apply the new heterogeneous model and metrics in
a ranking of most collaborative developers (Sect. 4.4).

4.1 GitHub data

This section describes the considered programming languages to build the developer’s col-
laboration network (Sect. 4.1.1) and presents the expanded version of GitSED (Sect. 4.1.2)
with its properties.

4.1.1 Programming languages

Our research started by considering six selected programming languages5 to perform proof
of concept for initial metrics. Note that individually analyzing each programming language
is also important for better characterizing the developers’ collaborations and communities
as well. Moreover, popular languages include not only coding languages (such as PHP and
C) but also environment-oriented languages (such as R, Jupyter Notebook and VIM), Web
design languages (such as CSS, HTML) and database languages (SQL and XML). With
such broad purposes, we decided to focus on coding languages only.

Then, we decided to expand the initial dataset to the 12 most popular programming lan-
guages (communities) in the TIOBE Index6 in March 20167 (month of our initial collecting
processes): Assembly, C, C++, C#, Java, JavaScript, Pascal, Perl, PHP, Python, Ruby and
Visual Basic. We do not consider the list of most used languages on GitHub because it
changes pretty fast and the first official list was released only in the end of 2016.8

For each of them, the data collection process selected a sample of 1,000 repositories
(sorted by their number of stars and forks) and all their developers. As initial characteri-
zation, we considered a bipartite graph with nodes for developers and repositories. Then,
edges connect the developers to the repositories in which they have contributed for the
source code. Hence, if a developer is connected to more than one repository, a bridge is
formed between each pair of such repositories.

5 The initial version of our research is published in Portuguese within a local venue (Rocha et al., 2016).
6 TIOBE Index: https:// www. tiobe. com/ tiobe- index
7 As of July 2021, most of such languages continue at the top 12, with exceptions of Ruby (17th), Perl
(18th) and Pascal (20th). Their places in the top 12 are now filled with SQL (database language at 10th),
Classic Visual Basic (at 11th), and R (environment-oriented at 12th). Hence, our analyses are still relevant
for considering the most used coding languages.
8 GitHub’s state of Octoverse: https:// octov erse. github. com/ 2016/

https://www.tiobe.com/tiobe-index
https://octoverse.github.com/2016/

224 Software Quality Journal (2023) 31:211–241

1 3

We then performed a complete characterization of each language network based on clas-
sic metrics, including node degree and giant component size (i.e., the largest connected
component of a network). From such analyses, we classified the 12 languages into four dif-
ferent groups, according to their metric value patterns: (i) Top — JavaScript, Python, Ruby;
(ii) High — Java, PHP and C; (iii) Medium — C# and C++; and (iv) Low — Assembly,
Pascal, Visual Basic and Perl. For instance, languages with a Top level of collaboration
present a larger giant component and higher node degrees when compared to those with
a Low level of collaboration. In other words, the Top-language communities (formed by
developers who code in such language) are much more interconnected and diverse, which
characterizes their collaborative nature. Therefore, we consider such levels when creating
our dataset (next), as they may influence in our experimental results.

4.1.2 Expanded GitSED

This section has two parts: a summary of the dataset used to build the base network, and
the new version obtained by adding novel information from the heterogeneous network
proposed in this work.

First, the original data is extracted from GHTorrent (Gousios, 2013; Gousios
et al., 2014),9 which is then curated and enriched — called GitSED (Oliveira
et al., 2021). It merges GHTorrent with new information obtained from the (homogene-
ous) collaboration-based network (i.e., only developers and their connections over the
same repositories during the same time interval — Sect. 2.2). For the homogeneous net-
work modeling, GitSED includes only real people as developers (i.e., changes in source
codes are all made by personal accounts).

The original GitSED contains the main information about developers and repositories
up to September 2015 and presents new features not available in GHTorrent, such as
commit-related statistics for each developer and the time interval in which they contrib-
uted to a repository. It also provides the existing topological and semantic metrics calcu-
lated for each pair of developers (Sect. 2.1).

Second, the new dataset is an expanded version of GitSED that contains more fea-
tures of six languages divided in two groups according to their level of collaboration
(Sect. 4.1.1): top with JavaScript, Ruby and Python; and low with Assembly, Pascal and
Visual Basic. The other languages (high and medium levels) present in-between perfor-
mance and, hence, are not further presented here. Thus, the behavior of the networks of the
two extreme groups of languages can be compared using the network metrics.

Table 2 Comparison of
GitSED versions

Original Version Expanded Version

Data collection Sep/2015 Jun/2019
Languages 3 6
Repositories 149,665 8,556,778
Developers 3,435,423 32,411,674
Metrics 9 13

9 GHTorrent is an offline repository of data collected through the GitHub REST API.

225Software Quality Journal (2023) 31:211–241

1 3

Using the same methodology for collecting and processing, GitSED was updated and
considerably expanded with data obtained from GHTorrent until June 201910, as sum-
marized in Table 2. Overall, the dataset has more recent data and is enhanced with the
new semantic metrics proposed in this work, being publicly available as well (Oliveira
et al., 2021).

4.2 Collaboration network (RQ1)

To answer our first research question (How do GitHub collaborations look like when con-
sidering heterogeneous networks?), we build GitHub collaboration networks for each pro-
gramming language in GitSED (both top and low level of collaboration). We follow the
model of Sect. 3.1, starting from the base networks, we add the new types of connection to
evolve such networks into the proposed heterogeneous model. To assess the collaborations
in each language, we perform a characterization analysis using the following classical net-
work science concepts (Barabási, 2016).

– Clustering Coefficient (CC): a measure of the degree to which nodes tend to cluster
together;

– Density: percentage of the number of edges in a complete graph with the same number
of vertices;

– Giant Component (GC): the largest connected component of a given network that con-
tains a finite fraction of the entire network’s vertices; and

– Node Degree: number of edges connected to a given node.

4.3 Metric evaluation (RQ2)

The second research question (How do the new metrics compare to existing ones over the
new heterogeneous networks?) aims to verify if the new semantic metrics proposed for the
heterogeneous networks (Sect. 3.2) bring relevant information about developers’ relation-
ships when compared to the existing ones. To answer such a question, we divide our analy-
ses into two main parts: presence in the network and correlation analysis.

Presence analysis The five proposed metrics quantify the new relationships added to
the heterogeneous networks. Following their definition, we may assume that if a metric
value is zero for two developers, the relationship it captures does not exist between them.
For example, if BIF(A,B) = 0 , A and B do not follow each other. Therefore, to verify the
presence of the new relationships in our networks, we count the numbers of developers
(node) and pairs (edges) that remain in the network when we remove edges that do not have
a specific relationship (i.e., its metric value is zero).

Correlation analysis In statistics, correlation is a metric that reports how two or more
variables are related. It can be represented by a numeric coefficient whose value varies
between -1 and 1 (negative and positive correlation, respectively). Here, we use such coef-
ficients to verify whether our new metrics provide new information on the relationships

10 June 2019 is the most recent available dump at the time of defining our model. As of July 2021, there are
only two versions newer than it: July 2020 and March 2021.

226 Software Quality Journal (2023) 31:211–241

1 3

when compared to the existing ones (Table 1). We calculate the two most used correlation
coefficients: Pearson (r), which measures the linear relationship between the metric values;
and Spearman (�), which measures the monotonic correlation, i.e., uses the order of the
data (rank) instead of the values themselves. We do the same analysis considering the set
of new metrics itself in order to show their independence.

4.4 Ranking application (RQ3)

Regarding RQ3 (How can anyone benefit from the new heterogeneous modeling when con-
sidering an actual application?), we present a ranking of the most collaborative developers
as a real-world application of our model and metrics. As collaboration is the core of our
methodology, we can easily map the semantic properties (existent and proposed ones) from
the GitHub context into technical and social skills desired by the industry and open-source
communities. Examples of such skills include: (i) collaborating in many repositories (met-
rics SR/JCSR/JCOSR); (ii) collaborating for a considered amount of time (metrics GPC/
PC); (iii) suggesting improvements to other people’s code (metrics UPR/BPR); (iv) report-
ing bugs and problems (metric UAI); (v) being aware of current work in their community
(metric UIS); and (vi) following other people to track their activity (metric BIF).

Here, we propose a simple yet powerful approach to build a ranking of most collabo-
rative developers in GitHub. Such a model considers collaboration as the key aspect for
ranking and the semantic properties to measure the aforementioned social skills. Hence,
a collaborative developer means a person who has a mature (above average) level for all
skills according to the metrics that represent them. We perform such ranking by following
a predefined workflow illustrated in Fig. 4 and explained as follows.

In the GitHub context, we build developer rankings for every considered programming
language, as each language has its own network. Such granularity is very useful for com-
panies and open-source communities looking for developers with high expertise in a given
language. Therefore, for the ranking based on the heterogeneous network, we select six
GitHub semantic metrics that represent the considered types of interaction in our modeling
(i.e., relevant social skills in the development process): (i) collaboration itself — SR; (ii)
period of collaboration — GPC; (iii) following users — BIF; (iv) issue assignment — UAI;
(v) pull request creation — UPR and BPR (each uncovers a distinct facet of this process);
and (vi) starring repositories — UIS. For the homogeneous-based ranking, we only con-
sider (i) and (ii) since the other interaction types are not possible in the base network.

Fig. 4 Developer ranking workflow. From the heterogeneous network (a), we rank developers for each con-
sidered metric/social skill (b), and then aggregate such rankings into one complete version (c)

227Software Quality Journal (2023) 31:211–241

1 3

From the heterogeneous network, we first build a separate ranking for each metric using
PageRank, an influence-based node ranking algorithm (Brin & Page, 1998). Then, we
combine all rankings into a final one by using two distinct aggregation strategies: Borda
(Emerson, 2013) and Condorcet (Young, 1988). Borda count is based on the general idea
of a winner by consensus, i.e., a developer is well ranked when well-positioned in all rank-
ings. The ranking is calculated through the distribution of points for each individual. In
contrast, the Condorcet procedure compares the developers’ positions in each ranking one
by one. Therefore, the best developer is the one who beats everyone else in all rankings.

Evaluating our rankings requires to select a target ranking, which stands for a real devel-
oper ordering. To the best of our knowledge, there are no existent approaches for ranking
most collaborative developers per language considering the social aspects. Thus, we collect
the Git Awards ranking11, a project that ranks GitHub developers through the number of
stars of their own repositories, i.e., repositories that must have software with recognized
quality. With that target set, we are now able to evaluate our model using two well-known
ranking metrics: Average Precision (AP) and Normalized Discounted Cumulative Gain
(NDCG) (Aggarwal, 2016). In our analyses, we do not present the Mean Average Precision
(MAP) because we want to evaluate each language separately for comparison purposes.
However, it is easily obtained from the AP values for all languages.

– Average Precision (AP@k): This metric informs if the produced ranking recommended
relevant (relevance here is binary) items at a cut-off k, also considering their order. The
higher its value, the more accurate the recommendation (i.e., the ranked developers are
relevant and are placed in the correct order).

– Normalized Discounted Cumulative Gain (NDCG@k): The goal of this metric is simi-
lar to AP, but NDCG is able to deal with a relevance scale, which means that it is now
possible to measure the relevance with numbers, not only with a binary variable, as AP
does. Therefore, higher NDCG values represent better developer recommendations.

5 Exploratory analysis and evaluation

Next, to answer RQ1 and RQ2, we present evaluations over two perspectives: characteri-
zation of the collaboration networks of each language (Sect. 5.1) and analyses of the new
semantic properties (Sect. 5.2). We then answer RQ3 by presenting a ranking of most col-
laborative developers as a real-world application of the new heterogeneous modeling and
metrics (Sect. 5.3).

5.1 Characterization of the heterogeneous networks (RQ1)

Analyzing different network properties allows to better understand the behavior of col-
laborations between developers in each programming language. Hence, we now discuss
the properties of the heterogeneous networks for six languages: the three with top level
of collaboration, and the three with low level of collaboration. The other languages (high
and medium levels) do not present any outstanding performance that would justify fur-
ther analyses here. Table 3 presents such a characterization with: number of repositories

11 Git Awards: https:// github. com/ vdaub ry/ github- awards

https://github.com/vdaubry/github-awards

228 Software Quality Journal (2023) 31:211–241

1 3

collected for each language, number of nodes within its heterogeneous network, number
of pairs of developers who are connected (through a number of edges that is potentially
greater than one), density, average node degree,12 average clustering coefficient (CC),13
number of nodes in the giant component (GC), and number of pairs of developers in the
giant component.

The more collaborative networks (left side of Table 3) have many nodes and edges in
their giant components. Also, all such GCs have more than 80% of the network edges. In
other words, these networks are well connected. Moreover, although the JavaScript net-
work has the largest number of nodes and repositories, it has the smallest number of edges,
lowest density and average node degree. This result indicates its developers do not coop-
erate as much with each other as the developers of the other two collaborative languages
(Python and Ruby). On the other hand, Ruby is the language with the lowest number of
nodes and repositories in the network, but it has almost 20 times more edges than JavaS-
cript. Such behavior is justified by the high average degree of nodes and the highest den-
sity of the networks. Therefore, Ruby developers collaborate a lot with each other. Finally,
almost all edges of the Ruby network belong to its GC; i.e., it is the most collaborative
language studied here.

The less collaborative languages (right side of Table 3) have similar behavior in their
networks: all have a low average node degree and a low percentage of edges in the GC.
Thus, the repositories of such languages are mostly composed by few developers who
collaborate little among themselves. Also, higher density for such languages when com-
pared to JavaScript and Python means their networks are more complete.14 As such lan-
guages have much fewer developers, their connections may represent higher density values.
Besides, as the order of magnitude of such metric for all languages (except Ruby) is the
same, we cannot affirm that the behavior of such languages is different based only on the
density value.

Table 3 General characterization and statistics on the networks of each language

Top Level of Collaboration Low Level of Collaboration

JavaScript Python Ruby Assembly Pascal Visual Basic

of repositories 4,649,111 2,343,276 1,376,993 31,860 16,867 38,971
of nodes 1,152,467 711,232 305,980 9353 4241 7419
of pairs (edges) 5,262,491 7,633,287 103,637,391 18,843 8894 11,359
Density (10−3) 0.008 0.030 2.214 0.431 0.989 0.413
Average Degree 9.13 21.46 677.41 4.03 4.19 3.06
Average CC 0.37 0.39 0.48 0.35 0.37 0.31
Nodes on GC 43.35% 46.21% 62.80% 5.74% 16.95% 2.41%
Pairs on GC 88.06% 90.58% 99.88% 21.89% 29.62% 17.82%

12 The average node degree is calculated over all nodes in the network.
13 The average CC is calculated over all nodes in the network.
14 A graph is complete when all its nodes are connected by a unique edge.

229Software Quality Journal (2023) 31:211–241

1 3

Summary of RQ1 How do GitHub collaborations look like when considering heterogene-
ous networks? (1) Ruby is the most collaborative language, (2) JavaScript developers coop-
erate less than Python and Ruby ones, and (3) Assembly, Pascal, and Visual Basic develop-
ers collaborate little among themselves. This analysis may bring to light good practices that
should be fomented by those communities (e.g., high collaboration) and harmful ones that
should be avoided (e.g., high isolation).

5.2 Analyses of the new semantic properties (RQ2)

To answer RQ2, we now assess the new metrics on two different perspectives: a fil-
tered analysis focusing on the presence of the new relationships in the heterogene-
ous networks (Sect. 5.2.1), and two correlation analyses among the proposed metrics
(Sect. 5.2.2) and against existing metrics (Sect. 5.2.3).

5.2.1 Presence of collaboration types in the heterogeneous networks

To assess the proportion of developers and pairs for each of the four features and their
metrics in the whole network, we perform a filter per metric (related to a relationship).
Table 4 shows the number of remaining developers and pairs when we remove edges
that do not have a specific metric. For example, after filtering the JavaScript network by
the UAI metric, 4.5% of the developers and 0.54% of the pairs remain in relation to the
complete network.

Overall, the results show few nodes and edges remain in the network for metrics
with social factors (BIF and UIS); i.e., most GitHub developers do not consider such
functionalities when collaborating in a repository. Regarding technical metrics (UAI,
UPR and BPR), there are fewer nodes and edges, because a large part of issues and
pull requests in the repositories comes from external users, i.e., non-collaborators. Such
behavior may occur because, most probably, they are made by the software (or applica-
tion) users or developers who forked the base repository. As forks are not considered in
our modeling, they are not accounted for in the relationships based on technical features.

Table 4 Participation in the network from selected metrics (absolute and percentage values)

UAI Unidirectional Assigned Issues, UPR Unidirectional Pull Requests, BPR Bidirectional Pull Requests,
BIF Bidirectional Intensity of Followers, UIS Unidirectional Intensity of Stars

Metric Developers Pairs

JavaScript Assembly JavaScript Assembly

UAI 51,907 4.5% 132 1.41% 56,418 0.54% 98 0.26%
UPR 114,260 9.91% 462 4.94% 96,548 0.92% 331 0.88%
BPR 208,469 18.09% 1286 13.75% 828,157 7.87% 2640 7.01%
BIF 178,957 15.53% 2486 26.58% 194,769 1.85% 1736 4.61%
UIS 84,180 7.3% 472 5.05% 82,284 0.78% 314 0.83%
Size 1,152,467 9,353 10,524,982 37,686

230 Software Quality Journal (2023) 31:211–241

1 3

5.2.2 Correlation analysis of new metrics

Now, we verify the correlation among the new metrics to assess their independence, or
ability to provide new information. Figure 5 presents the correlation matrix between the
five new metrics for JavaScript and Assembly networks.

For both languages, the correlation between the new metrics is small or insubstantial,
with values close to zero. Such result is somehow expected, as each metric considers dif-
ferent factors to calculate the interaction between pairs of developers. The small correlation
between UPR and BPR is justified as: UPR considers only a fraction of the total set of
pull requests (those created in repositories of a given user); whereas BPR considers all the
repositories in the dataset and analyzes the number of pull requests made by the pairs of
developers. The low correlation between the metrics is a strong indicator that the proposed
semantic properties add new information to the GitHub collaboration network. Therefore,
they can all be considered for measuring the strength of such relationships.

5.2.3 Correlation with existing metrics

This section analyzes the correlation between the set of new metrics and properties from the
GitHub state-of-the-art; i.e., we show that our proposed metrics bring new information about
developers’ collaboration. The results are similar for both correlation coefficients and for
all programming languages, with some exceptions. Figure 6 presents the Pearson correla-
tion matrices for JavaScript and Assembly.

There is no significant linear or monotonic correlation between most properties. A sig-
nificant difference between the more and less collaborative languages is the existence of
negative correlation between JCOSR with GPC, PA, AA and NO for Assembly, Pascal and
Visual Basic. Such a result indicates that in less collaborative languages, the relationships

UA
I

BIF

BP
R

UP
R

UI
S

UAI

BIF

BPR

UPR

UIS

(a) JavaScript

UA
I

UP
R

BP
R

BIF

UI
S

UAI

UPR

BPR

BIF

UIS

(b) Assembly

Fig. 5 Pearson correlation analysis among the new metrics. Values are in the range [−1, 1] , in which -1
indicates a complete negative correlation, 1 stands for a total positive correlation, and zero means no linear
correlation. Values marked with a cross are not statistically significant (p-values ≥ 0.05). Obs: UAI, Unidi-
rectional Assigned Issues; UPR, Unidirectional Pull Requests; BPR, Bidirectional Pull Requests; BIF, Bidi-
rectional Intensity of Followers; UIS, Unidirectional Intensity of Stars. a JavaScript. b Assembly

231Software Quality Journal (2023) 31:211–241

1 3

of a pair of developers with their neighbors negatively influence the joint contribution by
commits. On the other hand, the negative correlation between JCOSR and GPC indicates
that pairs of developers tend not to contribute to the same repository for long period. In
turn, this result is an insight on a possible high turnover of developers, which may jeopard-
ize the quality of those products with low truck factor or any community smell.

Additionally, Fig. 7 shows a strong correlation between Tieness weighted by all the
studied metrics. Tieness allows to combine a topological property with a semantic one by
considering it as the weight in its formula. The high correlation indicates that Tieness with

UA
I

UP
R

UI
S

BIF

JC
OS

R

JC
SR

PC

GP
C

SR

BP
R

NO

AA

PA

UAI

UPR

UIS

BIF

JCOSR

JCSR

PC

GPC

SR

BPR

NO

AA

P

(a) JavaScript

SR

GP
C

NO

AA

PA

UA
I

BIF

JC
OS

R

JC
SR

PC

UI
S

UP
R

BP
R

SR

GPC

NO

AA

PA

UAI

BIF

JCOSR

JCSR

PC

UIS

UPR

BPR

(b) Assembly

Fig. 6 Pearson correlation analysis among the existing metrics and the proposed ones. Values marked with
a cross are not statistically significant (p-values ≥ 0.05). Obs: JCOSR, jointly developers commits to shared
repositories; JCSR, jointly developers contribution to shared repositories; PC, previous collaboration; GPC,
global potential contribution; SR, number of shared repositories; NO, neighborhood overlap; AA, Adamic-
Adar coefficient; PA, preferencial attachment. a JavaScript. b Assembly

T_
BIF

T_
SR

T_
GP

C

T_
BP
R

T_
JC
OS

R

T_
JC
SR

T_
PC

T_
UA
I

T_
UP
R

T_
UI
S

T_BIF

T_SR

T_GPC

T_BPR

T_JCOSR

T_JCSR

T_PC

T_UAI

T_UPR

T_UIS

(a) JavaScript

T_
SR

T_
GP

C

T_
BIF

T_
BP
R

T_
JC
OS

R

T_
JC
SR

T_
PC

T_
UA
I

T_
UP
R

T_
UI
S

T_SR

T_GPC

T_BIF

T_BPR

T_JCOSR

T_JCSR

T_PC

T_UAI

T_UPR

T_UIS

(b) Assembly

Fig. 7 Pearson correlation analysis among Tieness weighted with all semantic metrics. Values are statisti-
cally significant (p-values < 0.05). a JavaScript. b Assembly

232 Software Quality Journal (2023) 31:211–241

1 3

different weights brings the same information to the analysis of tie strength, and thus, we
may choose one to measure such force. In this case, it is better to use metrics with low
computational cost, such as T_BIF or T_SR (combination of T with BIF and T with SR,
respectively). These results reinforce that the location of a pair relative to their neighbors
strongly influences their relationships.
Summary of RQ2 Finally, as an example of application, the new metrics may be used to
represent technical and social skills desired by the industry and open-source communities,
such as collaborating in repositories, suggesting improvements to code, reporting bugs and
problems, and so on. Evaluating such skills is fundamental for both developers and com-
panies. For the first, they may lead to referrals to new jobs and promotions, whereas for the
latter, they help building a highly collaborative team.

How do the new metrics compare to existing ones over the new heterogeneous networks?
The proposed metrics represent new information about developers’ collaboration. Our new
metrics are then potentially useful to applications that must represent such collaborations
in a more realistic way, e.g., by aggregating more information.

5.3 Using model and metrics within an application (RQ3)

Improving only technical skills does not guarantee success in the software development
industry. Thus, in this section, we rank developers through social skills as a real-world
application of the novel heterogeneous modeling and metrics (RQ3). We build and evalu-
ate such a ranking by following the workflow of Sect. 4.4 and compare the results obtained
from the heterogeneous with the homogeneous networks.

In all considered languages, both rankings (Borda and Condorcet) are highly correlated
(using both Pearson and Spearman coefficients), with 𝜌 > 0.9 . Therefore, we are able to
select only one method without losing meaningful information. We then choose Borda
count, as it is much more simple and computationally less expensive.

The ranking evaluation for JavaScript and Assembly using AP@k and NDCG@k
is presented in Figs. 8 and 9, respectively. We choose k = 1, 000 and set as relevant all
developers who appear on the top k ranking of Git Awards. The relevance metric for

(a) JavaScript (b) Assembly

Fig. 8 Results of Average Precision (AP@k) for the top 1000 recommended developers for a JavaScript and
b Assembly

233Software Quality Journal (2023) 31:211–241

1 3

NDCG is set as the rank_score for each user. The rank_score of a user i is obtained as
rank_score(i) = max_rank − rank(i) + 1 , where max_rank is the lowest rank of the list and
rank(i) is the rank of the user.

The evaluation for the JavaScript ranking (Figs. 8a and 9a) shows the ability to iden-
tify well the top 20 developers (AP@k ≥ 0.5 and NDCG@k ≥ 0.9), as in this case, col-
laborative developers (in terms of social skills) are also between the most popular on Git
Awards. However, when increasing the value of k, precision decreases, probably because
social skills (the core of our method) are not always related to popularity, which is the Git
Awards methodology.

Regarding less collaborative languages, such as Assembly, the gap between our ranking
and Git Awards is higher. Despite having a lower average precision, the NDCG close to 0.7
when k = 20 reveals that the developers who are recommended by our ranking are indeed
popular. Overall, when comparing more versus less collaborative languages, we note the
more collaborative the language, the higher the relation between social skills and popu-
larity. In fact, the less collaborative ones have fewer developers and repositories (i.e., a
smaller community), then affecting their amount of stars.

In general, precision for the heterogeneous-based ranking is higher when compared to
the homogeneous (base) one for both languages. Such results emphasize the proposed net-
work model brings information to the ranking task, since they reflect the importance of
social skills in classifying developers. The exception is the Top 10 developers for Assem-
bly (Figs. 8b and 9b), in which the homogeneous-based ranking performs best. As afore-
mentioned, smaller communities do not present a strong relationship between social skills
and popularity. Moreover, the low precision values show that our ranking is not similar to
Git Awards for high values of k. This is expected, since both rankings have different meth-
odologies. As future work, we plan to assess such ranking with actual teams; i.e., to verify
if team members agree with the rankings produced.

Finally, we compare the two rankings in terms of the social skills considered in our het-
erogeneous modeling: followers, repositories, issues, pull requests, and stars. Table 5 shows
that our model succeeds in capturing developers with higher average issues and pull requests
and stars. The number of followers and repositories are more related to the developer’s
popularity, which explains the higher averages on Git Awards. Moreover, considering that
social skills are crucial to make a good developer, our ranking approach manages to com-
bine all such factors in a simple and easily understandable model. Therefore, such a novelty

(a) JavaScript (b) Assembly

Fig. 9 Normalized Discounted Cumulative Gain (NDCG@k) for the top 1000 recommended developers for
a JavaScript and b Assembly

234 Software Quality Journal (2023) 31:211–241

1 3

Ta
bl

e
5

 C
om

pa
ris

on
 b

et
w

ee
n

ou
r p

ro
po

se
d

ra
nk

in
g

m
et

ho
d

an
d

G
it

A
w

ar
ds

 c
on

si
de

rin
g

th
e

m
ai

n
so

ci
al

 fe
at

ur
es

 w
ith

in
 G

itH
ub

. V
al

ue
s

ar
e

th
e

av
er

ag
e

nu
m

be
r o

f f
ol

lo
w

er
s,

re
po

si
to

rie
s,

is
su

es
, p

ul
l r

eq
ue

st
an

d
st

ar
s c

al
cu

la
te

d
fro

m
 a

ll
ra

nk
ed

 u
se

rs

To
p

50
 D

ev
el

op
er

s
To

p
1,

00
0

D
ev

el
op

er
s

Ja
va

Sc
ri

pt
A

ss
em

bl
y

Ja
va

Sc
ri

pt
A

ss
em

bl
y

O
ur

 R
an

ki
ng

G
it

A
w

ar
ds

O
ur

 R
an

ki
ng

G
it

A
w

ar
ds

O
ur

 R
an

ki
ng

G
it

A
w

ar
ds

O
ur

 R
an

ki
ng

G
it

A
w

ar
ds

Fo
llo

w
er

s
49

99
.5

67
64

.8
19

1.
4

28
4.

1
11

02
.4

14
83

.5
79

.4
20

1.
5

Re
po

si
to

rie
s

80
.6

91
.8

9.
9

9.
5

46
.4

37
.4

6.
3

7.
9

Is
su

es
10

47
.8

45
1.

9
15

6.
6

10
0.

0
52

9.
7

24
5.

5
86

.6
66

.0
Pu

ll
re

qu
es

ts
23

78
.9

15
84

.4
28

1.
7

12
7.

7
98

4.
0

52
2.

6
16

1.
5

10
2.

6
St

ar
s

78
2.

3
53

9.
4

22
8.

5
10

5.
8

49
2.

9
48

2.
6

10
4.

3
20

6.
3

235Software Quality Journal (2023) 31:211–241

1 3

is shown to be relevant and necessary to find and recommend the best people for software
projects, bringing benefits for both software companies and open-source communities.
Summary of RQ3 How can software companies and open-source communities benefit
from the new heterogeneous modeling when considering an actual application? Ranking
developers from collaboration metrics sheds light on the importance of the social aspect
in the software development process, as the ability to solve problems does not rely on
technical skills only. Besides, finding the most collaborative developers benefit both soft-
ware companies and open-source communities, as this process assures the recommended
developers are also socially collaborative people. Moreover, having a highly qualified and
collaborative team improves the development process, resulting in software products with
higher quality.

6 Potential connections to software quality

In practice, there are many ways to assess and improve software quality. Most approaches include
identifying, assessing, predicting and solving issues related to software that jeopardize quality.
For example, Meneely et al. (2008) argue that few failure-predicting models consider a key cause
of failures, i.e., people, and the reliability of final products could be explained by understand-
ing the structure of people collaboration, i.e., how developers collaborate within common files.
Later, Meneely and Williams (2011) corroborate metrics based on social network analysis do
represent socio-technical collaborations in open-source projects. This work builds up on such
literature and introduces a model that allows to measure different aspects of developers’ collabo-
ration. The next step is to combine our model to existing software quality metrics, which will
then allow to properly compare ours to the aforementioned work. In other words, we focus on
developers and the way they collaborate in common repositories — technical, and interact in a
collaborative software development platform — social.

How may software quality-oriented approach that considers technical and social fea-
tures from the developers collaboration network benefit from the new network model and
respective metrics? For example, Meneely et al. (2008) propose a simple approach based
on topological metrics over developer networks for predicting failures. Such an approach
could be tailored to work over our heterogeneous model. The main challenge would be
to adapt the model to work at code level, instead of repository. Likewise, approaches that
focus on the developers’ communities and their interactions as a team may also benefit.
For example, Almarimi et al. (2020) define eight issues as community smells; finding and
qualifying some of them (specially organizational silo effect and truck factor) could also
benefit from our work, as our metrics add information relevant to such issues.

First, the organizational silo effect is defined as the presence of highly decoupled sub-
groups of developers within the same repository (Almarimi et al., 2020). In our modeling,
they can be detected by comparing a combination of metrics over the base network and the
new metrics. An example is finding a group of 10 developers in the base network which
is clearly divided in two decoupled groups when considering the new technical and social
metrics. Second, the truck factor (TF) issue is a metric for the number of people who con-
centrate knowledge in software development environments (Almarimi et al., 2020; Avelino
et al., 2016). Our novel metrics Unidirectional Assigned Issues (UAI) and Unidirectional

236 Software Quality Journal (2023) 31:211–241

1 3

Pull Requests (UPR) both point to developers who are potentially central do the project:
those who are able to solve issues (UAI) and to those who have solved issues or contrib-
uted in anyway with the project (UPR). Such information may be used to tailor or improve
any TF metric, and even to help identify who those developers captured by TF are.

Furthermore, we evaluate our model and metrics to developer rankings. Both applica-
tions are relevant to current software quality techniques, mostly those that predict issues.
Specially, temporal classification may be adapted to work for detecting community smells,
and developer rankings for assessing truck factors — both are relevant issues that jeopard-
ize quality, as explained by Almarimi et al. (2020).

7 Threats to validity

Generalization of the results We analyze millions of projects hosted on GitHub, which is
currently the most popular social coding platform. We cover six programming languages as
JavaScript and Assembly, and therefore our results only apply to such language communi-
ties within GitHub. Nonetheless, as usual in empirical software engineering, our findings
cannot be directly generalized to other social coding platforms (e.g., GitLab) nor to pro-
jects written in other programming languages.

Base network In a collaboration network, relationships may be created when developers
modify the same software entity, for example, project or repository (Batista et al., 2017)
and function (Joblin et al., 2017). In this study, the base network represents developers who
make commits to the same repository. Thus, the generated network models the interactions
of developer at repository level. Such a design choice may include developers who work in
distinct modules in a large project; but, they may not be considered collaborators as they do
not interact directly. Therefore, further analysis can be performed to cover collaboration at
lower levels of granularity, such as when developers modify the same function or file.

Collaboration dependence We focus on how other technical and social properties impact
on the strength of relationships between GitHub developers. The relationships here are
based on collaboration (through commits), meaning that a pair of developers must have
collaborated for them to be connected (base network). Only after that, the other types of
interactions are analyzed. Therefore, a limitation is the model does not consider develop-
ers who have not coded in GitHub but rather interacted in other ways (e.g., following each
other only). Further adaptations could be developed to consider such relationships that do
not depend on collaboration.

Aggregation method The proposed model for ranking the best developers is simple and
efficient, but some limitations on the aggregation method can deeply influence its results.
For instance, the fact that Borda Count penalizes an individual who is not very well ranked
in any of the rankings may strongly affect their final position. For the human resources
office of a software company, the popularity factor (measured by BIF and UIS) may not
be so relevant, which means that even if someone is not well ranked in this regard, they
can still be a good candidate for a job position. Thus, further improvements must consider
weighting the rankings at aggregation.

Ranking assessment To evaluate the proposed model, we use Git Awards as a target rank-
ing. However, the difference between the date of such ranking (collected in 2020) and ours

237Software Quality Journal (2023) 31:211–241

1 3

(obtained from GitSED 2019) may impact our results. For example, developers who were
not relevant in 2019 may become popular in 2020 or the opposite. Nonetheless, as our goal
is only to present a real application of the new network modeling and metrics, we believe
that our evaluation is still worthwhile.

8 Conclusion and future work

This paper introduced a heterogeneous model for the developers network on GitHub and
five new semantic metrics for collaboration strength, which allow to evaluate networks
built from more and less collaborative programming languages. The analysis of such met-
rics revealed a lack of linear and monotonic correlation between them, i.e., they all repre-
sent new information about the relationships. Other conclusions include: pairs of devel-
opers with intense joint contribution in repositories may not connect with many other
developers; and the location of a pair of developers relative to their neighbors influences
their relationships.

Further, we used the new metrics in a social model to rank the most collaborative devel-
opers, and the findings revealed that the new interaction types can capture developers with
a high collaboration strength and well-developed social skills in the network. Finally, we
also found that social interactions on GitHub may contribute to more intense collaborations
and also affect the number of repository stars. Such findings emphasize the relevance of the
social aspect in the software development process, benefiting not only the software com-
panies but also the Software Engineering community. For example, developers may invest
in certain skills to improve their status within their communities (i.e., programming lan-
guages), and companies may use the social developer ranking to build highly qualified and
socially collaborative team.

As future work, we plan to investigate the relation between the semantic properties and
the influence of developers in GitHub, as well as to explore the relation between semantic
properties and process-related quality metrics. Furthermore, we plan to assess our ranking
approach with actual teams; i.e., to verify if the rankings produced are in accordance with
the real team members.

Author contribution Gabriel P. Oliveira: conceptualization, methodology, software, formal analysis, investi-
gation, writing — original draft, visualization. Ana Flávia C. Moura: software, investigation, data curation.
Natércia A. Batista: conceptualization, methodology, investigation, writing — original draft. Michele A.
Brandão: conceptualization, methodology, formal analysis, investigation, writing — original draft. Andre
Hora: conceptualization, validation, writing — review and editing supervision. Mirella M. Moro: conceptu-
alization, resources, writing — review and editing, supervision, project administration, funding acquisition.

Funding This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Availability of data and material Our dataset, called GitHub Socially Enhanced Dataset (GitSED), is pub-
licly available in Zenodo (Oliveira et al., 2021).

Code availability All relevant information related to this work is available in Project Apoena homepage:
https:// bit. ly/ proj- apoena

Declarations

Conflict of interest The authors declare no competing interests.

https://bit.ly/proj-apoena

238 Software Quality Journal (2023) 31:211–241

1 3

References

Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the Web. Social Networks, 25(3), 211–230.
https:// doi. org/ 10. 1016/ S0378- 8733(03) 00009-1

Aggarwal, C. C. (2016). Recommender Systems - The Textbook. Springer. https:// doi. org/ 10. 1007/
978-3- 319- 29659-3

Almarimi, N., Ouni, A., & Mkaouer, M. W. (2020). Learning to detect community smells in open source soft-
ware projects. Knowledge-Based Systems, 204, 106201. https:// doi. org/ 10. 1016/j. knosys. 2020. 106201

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who should fix this bug? In International Conference on Soft-
ware Engineering (pp. 361–370). Shanghai, China. https:// doi. org/ 10. 1145/ 11342 85. 11343 36

Avelino, G., Passos, L., Hora, A., & Valente, M. T. (2016). A novel approach for estimating truck factors.
In Int’l Conf. on Program Comprehension (pp. 1–10). IEEE Computer Society. https:// doi. org/ 10. 1109/
ICPC. 2016. 75037 18

Avelino, G., Passos, L., Hora, A., & Valente, M. T. (2017). Assessing code authorship: The case of the
Linux kernel. In International Conference on Open Source Systems (OSS) (pp. 151–163). Buenos
Aires, Argentina. https:// doi. org/ 10. 1007/ 978-3- 319- 57735-7_ 15

Bagley, C. A., & Chou, C. C. (2007). Collaboration and the importance for novices in learning java com-
puter programming. SIGCSE Bulletin, 39(3), 211–215.

Barabási, A. L. (2016). Network science. Cambridge University Press.
Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.
Batista, N. A., Brandão, M. A., Alves, G. B., da Silva, A. P. C., & Moro, M. M. (2017). Collaboration

strength metrics and analyses on GitHub. In Proceedings of the International Conference on Web
Intelligence (pp. 170–178). Leipzig, Germany.

Baysal, O., Godfrey, M. W., & Cohen, R. (2009). A bug you like: A framework for automated assignment
of bugs. In International Conference on Program Comprehension (pp. 297–298). Vancouver, Canada.
https:// doi. org/ 10. 1109/ ICPC. 2009. 50900 66

Bhasin, T., Murray, A., & Storey, M. D. (2021). Student experiences with github and stack overflow: An
exploratory study. In IEEE/ACM Int’l Workshop on Cooperative and Human Aspects of Software Engi-
neering (CHASE) (pp. 81–90). IEEE, Madrid, Spain. https:// doi. org/ 10. 1109/ CHASE 52884. 2021. 00017

Blincoe, K., Harrison, F., & Damian, D. (2015). Ecosystems in github and a method for ecosystem identifi-
cation using reference coupling. In IEEE/ACM 12th Working Conference on Mining Software Reposi-
tories (pp. 202–211). https:// doi. org/ 10. 1109/ MSR. 2015. 26

Borges, H., Hora, A., & Valente, M. T. (2016). Understanding the factors that impact the popularity of
GitHub repositories. In IEEE International Conference on Software Maintenance and Evolution (pp.
334–344). https:// doi. org/ 10. 1109/ ICSME. 2016. 31

Brandão, M. A., & Moro, M. M. (2017). The strength of co-authorship ties through different topological prop-
erties. Journal of the Brazilian Computer Society, 23(1). https:// doi. org/ 10. 1186/ s13173- 017- 0055-x

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Net-
works, 30(1–7), 107–117. https:// doi. org/ 10. 1016/ S0169- 7552(98) 00110-X

Çaglayan, B., & Bener, A. B. (2016). Effect of developer collaboration activity on software quality in
two large scale projects. Journal of Systems and Software, 118, 288–296.

Colakoglu, F. N., Yazici, A., & Mishra, A. (2021). Software product quality metrics: A systematic map-
ping study. IEEE Access, 9, 44647–44670. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30547 30

Constantinou, E., & Mens, T. (2017). Socio-technical evolution of the ruby ecosystem in github. In
IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (pp.
34–44). Klagenfurt, Austria. https:// doi. org/ 10. 1109/ SANER. 2017. 78846 07

Costa, A., et al. (2020). Team formation in software engineering: A systematic mapping study. IEEE
Access, 8, 145687–145712. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30150 17

Dalla Palma, S., et al. (2020). Towards a catalogue of software quality metrics for infrastructure code.
Journal of Systems and Software, p 110726.

Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: Reasoning about a highly connected
world. Cambridge University Press.

Emerson, P. (2013). The original borda count and partial voting. Social Choice and Welfare, 40(2), 353–358.
Garousi, V., Tarhan, A., Pfahl, D., Coşkunçay, A., & Demirörs, O. (2019). Correlation of critical success

factors with success of software projects: an empirical investigation. Software Quality Journal, 27,
429–493. https:// doi. org/ 10. 1007/ s11219- 018- 9419-5.

Gousios, G. (2013). The GHTorrent Dataset and Tool Suite. In Proceedings of the 10th Working Confer-
ence on Mining Software Repositories (pp. 233–236).

Gousios, G., et al. (2014). Lean GHTorrent: GitHub data on demand. In 11th Working Conference on Min-
ing Software Repositories (pp. 384–387). Hyderabad, India. https:// doi. org/ 10. 1145/ 25970 73. 25971 26

https://doi.org/10.1016/S0378-8733(03)00009-1
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1016/j.knosys.2020.106201
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1109/ICPC.2016.7503718
https://doi.org/10.1109/ICPC.2016.7503718
https://doi.org/10.1007/978-3-319-57735-7_15
https://doi.org/10.1109/ICPC.2009.5090066
https://doi.org/10.1109/CHASE52884.2021.00017
https://doi.org/10.1109/MSR.2015.26
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1186/s13173-017-0055-x
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1109/ACCESS.2021.3054730
https://doi.org/10.1109/SANER.2017.7884607
https://doi.org/10.1109/ACCESS.2020.3015017
https://doi.org/10.1007/s11219-018-9419-5
https://doi.org/10.1145/2597073.2597126

239Software Quality Journal (2023) 31:211–241

1 3

Hong, Q., et al. (2011). Understanding a developer social network and its evolution. In IEEE 27th
International Conference on Software Maintenance, ICSM (pp. 323–332). IEEE Computer Society.
https:// doi. org/ 10. 1109/ ICSM. 2011. 60807 99

Jere, S., Jayannavar, L., Ali, A., & Kulkarni, C. (2017). Recruitment graph model for hiring unique com-
petencies using social media mining. In Proceedings of the International Conference on Machine
Learning and Computing (pp. 461–466). Singapore. https:// doi. org/ 10. 1145/ 30556 35. 30565 75

Jiang, J., et al. (2019). Who should make decision on this pull request? analyzing time-decaying relation-
ships and file similarities for integrator prediction. Journal of Systems and Software, 154, 196–210.
https:// doi. org/ 10. 1016/j. jss. 2019. 04. 055

Joblin, M., et al. (2017). Classifying developers into core and peripheral: An empirical study on count
and network metrics. In Proceedings of the 39th International Conference on Software Engineer-
ing (pp. 164–174). Buenos Aires, Argentina. https:// doi. org/ 10. 1109/ ICSE. 2017. 23

Leibzon, W. (2016). Social network of software development at GitHub. In IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (pp. 1374–1376). San Francisco,
USA. https:// doi. org/ 10. 1109/ ASONAM. 2016. 77524 19

Lenhard, J., Blom, M., & Herold, S. (2019). Exploring the suitability of source code metrics for indicating archi-
tectural inconsistencies. Software Quality Journal, 27, 241–274. https:// doi. org/ 10. 1007/ s11219- 018- 9404-z

Li, H., et al. (2020). Privacy leakage via de-anonymization and aggregation in heterogeneous social net-
works. IEEE IEEE Transactions on Dependable and Secure Computing, 17(2), 350–362. https://
doi. org/ 10. 1109/ TDSC. 2017. 27542 49

Lima, A., Rossi, L., & Musolesi, M. (2014). Coding together at scale: Github as a collaborative social
network. In Proceedings of the Eighth International Conference on Weblogs and Social Media
(pp. 295–304). Ann Arbor, USA.

Madeyski, L., & Jureczko, M. (2015). Which process metrics can significantly improve defect prediction models?
an empirical study. Software Quality Journal, 23, 393–422. https:// doi. org/ 10. 1007/ s11219- 014- 9241-7.

Majumder, S., Mody, P., & Menzies, T. (2020). Revisiting process versus product metrics: a large scale
analysis. CoRR abs/2008.09569. https:// arxiv. org/ abs/ 2008. 09569

Malhotra, R., & Chug, A. (2013). An empirical study to redefine the relationship between software
design metrics and maintainability in high data intensive applications. In Proceedings of the World
Congress on Engineering and Computer Science (vol. 1).

Meneely, A., & Williams, L. (2011). Socio-technical developer networks: Should we trust our measure-
ments? In Proceedings of the International Conference on Software Engineering (pp. 281–290).
Honolulu, USA. https:// doi. org/ 10. 1145/ 19857 93. 19858 32

Meneely, A., et al. (2008). Predicting failures with developer networks and social network analysis. In
ACM SIGSOFT International Symposium on Foundations of Software Engineering (pp. 13–23).
Atlanta, USA. https:// doi. org/ 10. 1145/ 14531 01. 14531 06

Montandon, J. E., et al. (2021). What skills do IT companies look for in new developers? A study with stack over-
flow jobs. Information and Software Technology, 129, 106429. https:// doi. org/ 10. 1016/j. infsof. 2020. 106429

Nguyen, P. T., Rocco, J. D., Rubei, R., & Ruscio, D. D. (2020). An automated approach to assess the similarity of
github repositories. Software Quality Journal, 28(2), 595–631. https:// doi. org/ 10. 1007/ s11219- 019- 09483-0

Oliveira, G. P., Batista, N. A., Brandão, M. A., & Moro, M. M. (2018). Tie strength in gitHub heterogeneous
networks. In Brazilian Symposium on Multimedia and the Web (pp. 363–370). https:// doi. org/ 10. 1145/
32430 82. 32431 01

Oliveira, G. P., Moura, A. F. C., Batista, N. A., Brandão, M. A., & Moro, M. M. (2021). GitSED: GitHub
Socially Enhanced Dataset. https:// doi. org/ 10. 5281/ zenodo. 50213 29

Palomba, F., et al. (2018). Beyond technical aspects: How do community smells influence the intensity of
code smells? IEEE Transactions on Software Engineering.

Rahman, F., & Devanbu, P. T. (2013). How, and why, process metrics are better. In D. Notkin, B. H. C.
Cheng, & K. Pohl (Eds.). International Conference on Software Engineering, IEEE Computer Soci-
ety (pp. 432–441). https:// doi. org/ 10. 1109/ ICSE. 2013. 66065 89

Rahman, M. M., & Roy, C. K. (2014). An insight into the pull requests of github. In ACM 11th Working
Conference on Mining Software Repositories (pp. 364–367).

Rocha, L. M. A., et al. (2016). Análise da Contribuição para Código entre Repositórios do GitHub. In Bra-
zilian Symposium on Databases - Short Papers (pp 103–108).

Sarma, A., et al. (2016). Hiring in the global stage: Profiles of online contributions. In 11th IEEE International
Conference on Global Software Engineering (pp. 1–10). Orange County, CA, USA. https:// doi. org/ 10. 1109/
ICGSE. 2016. 35

Silva, H., & Valente, M. T. (2018). What’s in a GitHub star? understanding repository starring practices in
a social coding platform. Journal of Systems and Software, 146, 112–129. https:// doi. org/ 10. 1016/j. jss.
2018. 09. 016.

https://doi.org/10.1109/ICSM.2011.6080799
https://doi.org/10.1145/3055635.3056575
https://doi.org/10.1016/j.jss.2019.04.055
https://doi.org/10.1109/ICSE.2017.23
https://doi.org/10.1109/ASONAM.2016.7752419
https://doi.org/10.1007/s11219-018-9404-z
https://doi.org/10.1109/TDSC.2017.2754249
https://doi.org/10.1109/TDSC.2017.2754249
https://doi.org/10.1007/s11219-014-9241-7
https://arxiv.org/abs/2008.09569
https://doi.org/10.1145/1985793.1985832
https://doi.org/10.1145/1453101.1453106
https://doi.org/10.1016/j.infsof.2020.106429
https://doi.org/10.1007/s11219-019-09483-0
https://doi.org/10.1145/3243082.3243101
https://doi.org/10.1145/3243082.3243101
https://doi.org/10.5281/zenodo.5021329
https://doi.org/10.1109/ICSE.2013.6606589
https://doi.org/10.1109/ICGSE.2016.35
https://doi.org/10.1109/ICGSE.2016.35
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1016/j.jss.2018.09.016

240 Software Quality Journal (2023) 31:211–241

1 3

Singer, L., et al. (2013). Mutual assessment in the social programmer ecosystem: an empirical investigation
of developer profile aggregators. In Computer Supported Cooperative Work (pp. 103–116) San Antonio,
TX, USA. https:// doi. org/ 10. 1145/ 24417 76. 24417 91

Singh, P. V. (2010). The small-world effect: The influence of macro-level properties of developer collabora-
tion networks on open-source project success. ACM Transactions on Software Engineering and Meth-
odology, 20(2), 6:1–6:27.

Tamburri, D. A., et al. (2019). Discovering community patterns in open-source: a systematic approach and
its evaluation. Empirical Software Engineering, 24(3), 1369–1417.

Torres, N. (2015). Technology is only making social skills more important. Harvard Business Review, pp
August 26, 2015.

Wang, S., et al. (2018). Entagrec ++: An enhanced tag recommendation system for software information
sites. Empirical Software Engineering, 23(2), 800–832. https:// doi. org/ 10. 1007/ s10664- 017- 9533-1

Young, H. P. (1988). Condorcet’s theory of voting. American Political science review, 82(4), 1231–1244.
Yu, Y., Wang, H., Yin, G., & Wang, T. (2016). Reviewer recommendation for pull-requests in github: What can we

learn from code review and bug assignment? Information and Software Technology, 74, 204–218. https:// doi.
org/ 10. 1016/j. infsof. 2016. 01. 004

Yu, Y., et al. (2014a). Exploring the patterns of social behavior in github. In International Workshop on Crowd-
based Software Development Methods and Technologies (pp. 31–36). https:// doi. org/ 10. 1145/ 26665 39.
26665 71

Yu, Y., et al. (2014b). Reviewer recommender of pull-requests in github. In International Conference on Software
Maintenance and Evolution (pp. 609–612). Victoria, Canada. https:// doi. org/ 10. 1109/ ICSME. 2014. 107

Zhang, Y., et al. (2017). Detecting similar repositories on github. In IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (pp. 13–23). Klagenfurt, Austria. https:// doi. org/ 10.
1109/ SANER. 2017. 78846 05

Zhou, C., Kuttal, S. K., & Ahmed, I. (2018). What makes a good developer? an empirical study of develop-
ers’ technical and social competencies. In IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC (pp. 319–321). Lisbon, Portugal. https:// doi. org/ 10. 1109/ VLHCC. 2018. 85065 77

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Gabriel P. Oliveira received the M.Sc. degree from the Computer Sci-
ence Graduate Program at Universidade Federal de Minas Gerais
(UFMG). He received the B.Sc. degree in computer science from
UFMG in 2018. He is currently a member of the Laboratory of Inter-
disciplinary Computer Science (CS+X) and his research interests
include data science and social network analysis, with a strong empha-
sis on data analysis in collaborative domains.

Ana Flávia C. Moura is a BSc student in the Computer Science Depart-
ment at the Federal University of Minas Gerais (UFMG), Brazil. Her
research interest is focused on social network analysis, such as data
analysis in collaborative domains.

https://doi.org/10.1145/2441776.2441791
https://doi.org/10.1007/s10664-017-9533-1
https://doi.org/10.1016/j.infsof.2016.01.004
https://doi.org/10.1016/j.infsof.2016.01.004
https://doi.org/10.1145/2666539.2666571
https://doi.org/10.1145/2666539.2666571
https://doi.org/10.1109/ICSME.2014.107
https://doi.org/10.1109/SANER.2017.7884605
https://doi.org/10.1109/SANER.2017.7884605
https://doi.org/10.1109/VLHCC.2018.8506577

241Software Quality Journal (2023) 31:211–241

1 3

Natércia A. Batista is a M.Sc. student in the Computer Science Gradu-
ate Program at Universidade Federal de Minas Gerais (UFMG). She
received bachelor’s degree in Information Systems from UFMG in
2017. Currently, she is a member of the Laboratory of Interdiscipli-
nary Computer Science (CS+X) and her main research interests
include data analysis, social networks and collaborative metrics.

Michele A. Brandão is a Professor at IFMG. She finished her postdoc-
toral in the Graduate Program in Computer Science at the Federal Uni-
versity of Minas Gerais (UFMG) in 2018, and has received PhD and
MS in Computer Science at UFMG, Bachelor in Computer Science at
the Universidade Estadual de Santa Cruz (UESC, Bahia). Her main
research interests include data science, social networks and digital
forensics.

Andre Hora is a Professor in the Computer Science Department at the
Federal University of Minas Gerais (UFMG), Brazil. His research
interests include software evolution, software repository mining, and
empirical software engineering. He earned his PhD in Computer Sci-
ence from the University of Lille, France. Webpage: www. dcc. ufmg.
br/ ~andre hora.

Mirella M. Moro is Professor at the Computer Science department at
UFMG (Belo Horizonte, Brazil). She holds a Ph.D. in Computer Sci-
ence (University of California Riverside - UCR, 2007), and MSc and
BSc in Computer Science as well (UFRGS, Brazil). She was a member
of the ACM Education Council and the Education Director of the Bra-
zilian Computer Society (SBC). She is currently a Council Member of
the SBC and part of the SBC Meninas Digitais (Digital Girls) Steering
Committee. Her research interests include data-driven research, social
analysis, gender diversity, and education in Computer Science. She is
also an advocate for increasing women participation in Computer Sci-
ence, coordinating projects such as BitGirls.

http://doi.org/www.dcc.ufmg.br/~andrehora
http://doi.org/www.dcc.ufmg.br/~andrehora

	How do developers collaborate? Investigating GitHub heterogeneous networks
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Social network basics
	2.2 GitHub social network
	2.3 Developer and community-related quality issues
	2.4 Collaboration and its applications

	3 GitHub heterogeneous network
	3.1 Network modeling
	3.2 New semantic properties

	4 Evaluation design
	4.1 GitHub data
	4.1.1 Programming languages
	4.1.2 Expanded GitSED

	4.2 Collaboration network (RQ1)
	4.3 Metric evaluation (RQ2)
	4.4 Ranking application (RQ3)

	5 Exploratory analysis and evaluation
	5.1 Characterization of the heterogeneous networks (RQ1)
	5.2 Analyses of the new semantic properties (RQ2)
	5.2.1 Presence of collaboration types in the heterogeneous networks
	5.2.2 Correlation analysis of new metrics
	5.2.3 Correlation with existing metrics

	5.3 Using model and metrics within an application (RQ3)

	6 Potential connections to software quality
	7 Threats to validity
	8 Conclusion and future work
	References

