
Vol.:(0123456789)

https://doi.org/10.1007/s11219-021-09582-x

1 3

Experience report on the application of genetic algorithms
to reduce costs of the software validation process
in the automotive sector during an engine control unit
project

Pedro Miguel Ortega‑Cabezas1 · Antonio Colmenar‑Santos1 · David Borge‑Diez2 ·
Jorge Juan Blanes‑Peiró2 · Jorge Higuera‑Pérez1 · Eric Alcaide1

Accepted: 9 December 2021 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The number of electronic control units (ECU) installed in vehicles is increasingly high.
Manufacturers must improve the software quality and reduce cost by proposing innovative
techniques. This research proposes a technique being able to generate not only test-cases
in real time but to decide the best means to run them (hardware-in-the-loop simulations
or prototype vehicles) to reduce the cost and software testing time. It is focused on the
engine ECU software which is one of the most complex software installed in vehicles. This
software is coded by using Simulink® models. Two genetic algorithms (GAs) were coded.
The first one is in charge of choosing which parts of the Simulink® models should be vali-
dated by using hardware-in-the-loop (HIL) simulations and by using prototype
vehicles. The second one tunes the inputs of the software module (SM) under validation
to cover these parts of the Simulink® models. The usage of dynamic-linked libraries (dlls)
is described to deal with the issues linked to SM interactions when running HIL simula-
tions. GAs found at least 7 more bugs than traditional techniques and improved the func-
tional and code coverage by between 3 and 11% for functional coverage and by between
1.4 and 7% for code coverage depending on the SM complexity. The validation time is
reduced by 11.9% compared to traditional techniques. GAs perform better than traditional
techniques improving software quality and reducing costs and validation time. The usage
of dlls allows testing the software in real time as described in this study.

Keywords Engine control unit software testing · Genetic algorithms · Model-based
testing · Black-box testing · Cause-effect technique

 * Pedro Miguel Ortega-Cabezas
 pedro.ortegacabezas@gmail.com

1 Department of Electric, Electronic and Control Engineering, UNED, Juan del Rosal, 12 – Ciudad
Universitaria, 28040 Madrid, Spain

2 Department of Electrical and Control Engineering, Universidad de León, León, Spain

Published online: 15 January 2022

Software Quality Journal (2022) 30:687–728

http://orcid.org/0000-0002-6217-8301
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-021-09582-x&domain=pdf

1 3

1 Introduction

1.1 Background

Both the number of electronic control units (ECUs) installed in vehicles and their complex-
ity are increasing (Krûguer et al., 2016; Gajjar, 2017; Rajan & Wahl, 2013). Thus, manu-
facturers must assure software quality and reliability (Kasoju et al., 2013). The software
and hardware validation of an engine ECU is performed by using the hardware-in-the-loop
(HIL) simulation and prototype vehicles (Lockledge & Salustri, 2010). The HIL simulation
has several advantages as no vehicle with all the ECUs updated with the latest software
version is necessary. Secondly, the ECU behaviour in the network can be checked by ana-
lysing the frames transmitted and received when conducting a HIL simulation. However,
the real interactions between ECUs are not tested as all frames received are sent by a model
and not by real ECUs. Regarding prototype vehicles, the engine ECU software is tested in
real vehicles that must have all ECUs properly updated: ESP (electronic stability program),
ADAS (advanced driver-assistance system), ATCU (automatic transmission control unit),
etc.

This research is focused on one of the most complex software installed in vehicles: the
engine ECU software. It proposes the usage of genetic algorithms (GAs) aiming at choos-
ing the most adequate means to be used for validation while generating test-cases automati-
cally at the same time. The main goals are:

(a) Choosing automatically the optimal means to reduce the validation time and costs.
(b) Finding solutions to technical problems when using the HIL simulation due to software

module (SM) interactions.
(c) Assessing whether GAs perform better than other techniques such as the model-based

testing and the black-box techniques.
(d) Verifying whether GAs are able to find bugs when other techniques fail.
(e) Assessing the staff skill impact on the validation process.

1.2 Related works

The engine ECU software development comprises three phases (V-cycle development):
implementing models based on Simulink® models to control the engine performance, gen-
erating C-code and checking the final integration of the software into the hardware. During
the entire process, the engine software completes three levels of testing: model-in-the-loop
(MIL), software-in-the-loop (SIL) and HIL simulations as stated by Raikwar et al. (2019).
Consequently, the software is tested to assure that it meets all requirements. During the MIL,
a controller model is implemented and applied to the Simulink® model aiming at check-
ing if the model behaves as expected (Plummer, 2006; Vivas et al., 2011; Zhan & Clark,
2008). During the HIL simulation, the integration between software and hardware is tested
with a controller (i.e. the engine ECU and its software) which controls the system that imi-
tates the engine behaviour (HIL simulator) (Martin et al., 2020; Haghighatkhah et al., 2017;
Hooshyar et al., 2015; National Instrument, 2020; Ortega‐Cabezas et al., 2019a, b). In addi-
tion, prototype vehicles are used to test some functions which cannot be completely vali-
dated when using HIL simulations such as ADAS (Meloa et al., 2019). Therefore, the most

688 Software Quality Journal (2022) 30:687–728

1 3

adequate means to validate the software must be chosen to reduce time and costs. Finally, SIL
is employed to test an executable code within a modelling environment (Vandi et al., 2014).

Currently, software is tested based on software, architecture and system requirements
(Raikwar et al., 2019). At this point, how to test software requirements is a key point dis-
cussed in some standards such as ASPICE (2020). Software testability depends on five
factors such as requirements, built-in test capabilities, the test-case design, the test support
environment and the software process in which testing is conducted (Garousi et al., 2018).
Regarding software requirements, the most significant cause of accidents due to software is
linked to poorly created software requirements or requirements that are partially delivered
to developers (Walia & Carver, 2009; Ågren et al., 2019). Dos Santos et al. (2019) carried
out a detailed analysis about software requirements testing approaches such as requirement-
driven testing (Abadeh, 2020).

Regarding the engine ECU, test-cases are derived from specification-based testing,
regression tests and experience-based testing (Linderman et al., 2009; Raikwar et al.,
2019; Roychoudhury, 2009; Sun et al., 2016; Yi et al., 2016). Focusing on the soft-
ware and hardware integration by using HIL simulations, when a test-case is run, the
obtained result is compared to the expected one to check whether the software has
run properly. The black-box technique has been widely used in the automotive sector
(Garousi & Mäntylä, 2016; Meloa et al., 2019). In this technique, test-cases are based
on engineers’ experience, which usually involves gaps and test-redundancies. Chunduri
(2016) proposes to work on three factors: enhancing the function requirements specifi-
cation, establishing traceability across test levels and obtaining comprehensive function
test-coverage information. Research has been focused on time reduction and code/func-
tional coverage improvement. Zhou et al. (2015) proposed the optimised use of sym-
bolic simulation aiming at reducing the time required to generate a test-case. Sopan-
Barhate (2015) presented a theory about designing representative test-cases based on
priorities by using orthogonal arrays testing.1 Raffaëlli et al. (2016) presented research
focused on the use of functional models to model a function combined with the com-
mercial software Matelo® (2018) in order to assess the functional coverage accurately
as all branches of the model could be tested. GAs have been used in software testing.
Esfandyari and Rafe (2018) proposed a method based on a variable t-way minimal
test suite generation approach. Sharma et al. (2013) did a survey on software testing
techniques using GAs showing that GAs could be applied to white-box, grey-box and
black-box testing, regression and model-based testing. The results showed that their
performance and testing results were improved as confirmed by Sharma et al. (2016).
Concolic testing has also been applied in many industries to test software. As stated by
Kim et al. (2020), “concolic testing combines dynamic concrete execution and static
symbolic execution to explore all possible execution paths of a target program, which
can achieve high code coverage”. Some constraints found by Kim et al. (2020) were
based on the current automatic test generation techniques and tools not supporting sym-
bolic settings for function pointers due to the limitations of solvers of concolic testing.
To solve this issue, they proposed another technique which reduces the time needed
for manual validation. In addition, the code coverage is increased. In all the techniques

1 “Orthogonal array testing is a black box testing technique that is a systematic, statistical way of software
testing. It is used when the number of inputs to the system is relatively small, but too large to allow for
exhaustive testing of every possible input to the systems. It is particularly effective in finding errors associ-
ated with faulty logic within computer software systems” (Delius, 2004).

689Software Quality Journal (2022) 30:687–728

1 3

already described, the relationship between time needed to run test-cases and the most
adequate means is not considered when generating test-cases.

The HIL automation process is mainly based on black-box techniques such as those
reported by Köhl et al. (2003). Petrenko et al. (2015) reported the main problems and solu-
tions associated with the software validation in the automotive sector. Their solution was
based on the “tester-in-the-loop” concept, in which the test engineer leads the system to a
desired operation point, considered as a crucial operation point aimed at assuring the cor-
rect execution of the test-case to check that the software runs as expected. Once the crucial
point is reached, a series of automated actions is performed to finish the test-case execu-
tion. Tatar and Mauss (2014) proposed to use a virtual platform instead of HIL simulations.
However, bugs linked to the software integration on the hardware are not found.

Concerning autonomous driving, ISO 26262 only covers functional safety when a fail-
ure occurs but not when there is no system failure. Therefore, the safety of the intended
functionality (SOTIF) ISO 21448 came out (Feldhütter et al., 2018; ISO, 2019). Some key
topics to validate the software are focused on 3D modelling and sensor buildings. The for-
mer aims to create a realistic environment while the latter consists of modelling and testing
sensors among others (Utesch et al., 2020). Huang et al. (2016) detail in their research the
main trends to validate software such as software testing, simulation testing, x-in-the-loop
testing and driving test in real conditions. Riedmaier et al. (2020) describe an important
method to test the software: the scenario-based approach which allows individual traffic
situations to be tested by using virtual simulations. Other approaches such as formal veri-
fication, a function-based approach, real-world testing, shadow mode testing2 and traffic
simulation-based approach are used to test SOTIF. The main difference among them is that
in the scenario-based and function-based approaches, a microscopic statement about the
safety of the system is first made to be transferred to a macroscopic statement. The rest of
the methods result directly in a macroscopic statement. There are solutions in the market
which allow rapid prototype, MIL/SIL simulations, HIL simulations and real test drives
(dSpace, 2018).

Cybersecurity in the automotive industry involves three main factors to be considered
such as authentication and access control, protection from external attacks, and detection
and incident response (Möller & Hass, 2019). The factors which make automotive security
more efficient include the integration of appropriate solutions such as firewalls, protect-
ing communications, authenticating communications and encrypting data (El-Rewini et al.,
2019; Vector, 2019). These topics are important to deliver performance such as on-the-air
software update and V2X communication (Placho et al., 2020; Koegel & Wolf, 2018). As
detailed by McAfee (2016), the scope of cybersecurity involves the distributed security
architecture, hardware and software security and finally network security. Standards such
as ISO/SAE 21,434 will help the automotive sector to implement solutions for effective
compliance with cybersecurity requirements as today’s knowledge sharing is inadequate
(Morris et al., 2020; ISO, 2020).

This paper is organised as follows. “Section 2” describes the method used to detail how
engine ECU software models are developed as well as how GAs and test-cases are imple-
mented. “Section 3” presents the results showing the different key performance indicator
(KPI) values obtained when using different techniques to test the software. “Section 4”

2 Wang and Winner present a method, in which the automated driving function is executed passively, in
series production vehicles, which is sometimes known as the shadow mode (Riedmaier et al., 2020; Wang
& Winner, 2019).

690 Software Quality Journal (2022) 30:687–728

1 3

discusses the results obtained based on topics such as test-case formulation, means opti-
misation, test-case automation, among others. “Section 5” analyses the validity of this
research by performing a sensitivity analysis. Finally, “Sect. 6” draws the main conclusions
of GAs compared to other techniques such as the model-based testing and the black-box
testing that are widely used in the automotive sector.

2 Methods

This section describes in detail the method used in this study.

2.1 Simulink models

The SMs are composed of multiple complex Simulink® models and subsystems. Figure 1
shows an example of the internal structure of the SM linked to the NOx heating probes
installed in vehicles. When the initial conditions are reached (key on, the engine rpm more
than 650 rpm and the vehicle speed higher than a threshold), the engine ECU software
checks whether the dew point is reached. This point is the temperature to which air must
be cooled to become saturated with water vapour. Afterwards, the NOx probes start to heat
until reaching the required temperature to measure NOx ppm present in the exhaust gas

Fig. 1 Example of model and activation conditions

691Software Quality Journal (2022) 30:687–728

1 3

pipe. In this study, all models were transformed into models based on nodes (Fx) which
represent different low-level system states3 and relations between them (Fig. 2). These rela-
tions are established using transitions that are composed of two factors: costs and condi-
tions. The costs are the effort needed to change states and the conditions come from the
Simulink® models (Fig. 2). It is important to remark that only under certain values of the
inputs of the SMs it is possible to change states. When designing test-cases, it must be
determined which parts of the Simulink® model should be validated by using the HIL
simulation or prototype vehicles, and how the inputs are tuned. “Section 2.2” describes in-
detail how GAs work to do this.

2.2 How GAs work together

As described earlier, a complex Simulink® model is transformed into a functional model
(Fig. 2). Each transition to go from one state to another has a cost set, as described later in
“Sect. 2.2.1”. In addition to this, it is only possible to change states under certain condi-
tions specified in the Simulink® models (Fig. 2), i.e. when the input variables of the SM
under validation reach specific values. Consequently, the problem to be solved is to find
values for the inputs of the SM under validation to find the optimal path4 of the functional
model that minimises the time needed to validate an SM when using the HIL simulation.5
Figure 3 depicts the whole process.

• Phase 1. A first GA, called GA2, generates populations that consist of values for the
inputs of the SM under validation, i.e. vectors, as shown in Fig. 3.

• Phase 2. A second GA, called GA1, generates populations for each vector based on
functional states, but they must start always in F1 (initial state) and end in Fn (the final

Fig. 2 Example of model and activation conditions

4 The optimal path is a part of the model (Fig. 2) that is composed of functional states. These states meet
the conditions to change states and the path has the lowest cost.
5 The reader can find a beta version of the code used in this research. See Appendix.

3 Low system states are functional states at low level. Consequently, the functional state cannot be detected
by the driver.

692 Software Quality Journal (2022) 30:687–728

1 3

state). The aim of this GA1 is to find the paths with the lowest cost by considering the
vectors provided by GA2. As stated earlier, only under certain values of the inputs of
the SM is it possible to change states (Figs. 2 and 3).

• Phase 3. The optimal path for each vector provided by GA2 is found by using mutation
and crossover operators, as described in the next sections. Only under certain values of
the SM is it possible to go from one state to another one, as shown in Fig. 3 (phase 3).

• Phase 4. When GA1 finds the optimal path for each vector (if possible), it will return
the cost and the states covered for the optimal paths.

• Phase 5. Only the vectors with the lowest cost will be retained by GA2, and they will be
used to generate more populations by employing mutation and crossover operators, as
described in the next sections. Consequently, GA2 becomes an optimiser of the input of
the SM under validation by using the optimised paths provided by GA1.

Therefore, GA1 aims to minimise the cost for specific values of the inputs of the SM
under test, and GA2 tries to find the values for the inputs of the SMs that minimise the cost
of the model shown in phase 3 (Fig. 3). This implementation could have been done using
one GA, but the authors decided to implement 2 GAs: one of them works with values for
the inputs of the SM and the other one operates functional states.

2.2.1 GA1: path finder

When GA1 receives a vector, it starts to look for the optimal path. To do this, this GA must
consider the cost of going from one state to another. This cost is set as follows. Several key
factors must be considered when deciding the most adequate means to validate the soft-
ware such as the ones shown in Table 1 (Banish, 2007; Haghighatkhah et al., 2017).

All factors shown in Table 1 are assessed when going through the states of the models
to define the optimal means to validate the SM under validation. Consequently, the values

Fig. 3 How GAs work together

693Software Quality Journal (2022) 30:687–728

1 3

obtained are put into the model based on states (Fig. 2). This process is composed of two
phases:

• Phase 1. A multidisciplinary team assesses these factors aiming at determining the cost
of each path by using the process depicted in Fig. 4. As a result, a model with the
whole cost set for each transition is obtained (Fig. 2).

• Phase 2. This GA chooses the most adequate means to validate the SM by assessing the
cost function given by Eq. (1):

where Fi is the cost of reaching the Fi state and
∑i=n

i=1
Fi is the cost linked to all transi-

tions of a specific path. When the HIL is chosen, the fitness function is always lower
than 150. Otherwise, prototype vehicles are employed as, in this case, the fitness func-
tion reaches 150 or more. This value was chosen as follows. As shown in Table 2, when

(1)Fitness function =

∑i=n

i=1
Fi

Table 1 Factors considered to assess the fitness function

Factor Description

Tuning activities Some SMs must be tuned before their validation such as combustion/injection
SMs. In this case, the engine software can apply different cartographies to
inject the optimal amount of diesel or gasoline. If one of them is not tuned,
the engine may stall. Consequently, a dataset which guarantees a minimum
functionality of the SM under validation must be available

Time needed to go from one
state to another one

An estimate of the time needed to validate an SM when using a vehicle or
an HIL model is made. There are two possibilities — either to perform the
simulation by using an HIL model or a vehicle. The former implies that
the HIL model must be robust. The latter implies that a vehicle should be
used. Some use-cases are difficult to reach when using prototype vehicles.
Test-engineers’ experience is essential to assess properly this factor

Dependency on ECUs When validating a certain SM by using a vehicle, all ECUs must be updated
aiming at assuring that all frames are properly transmitted and received,
among other factors. Otherwise, the validation process such as the adaptive
cruise control SM cannot be performed. In this case, at least the ADAS,
ESP and engine ECU must be properly updated and tuned

Risk level The automotive safety integrity level (ASIL) is a system which classifies the
potential risks in a vehicle when it is operated using the ISO 26262. For
this purpose, it uses three parameters such as exposure, controllability and
severity with the aim of establishing a score. By using this score, a series
of automotive safety integrity levels are established. Regarding the engine
ECU, the software must guarantee the passengers’ and vehicle’s safety in a
dangerous situation. Depending on the ASIL values (A, B, C, D), the level
of risk will be different

Feedback from other projects It is common that several engine projects take place at the same time.
Consequently, feedback from other projects is of paramount importance.
Therefore, when a bug is found in a specific engine software version, it is
immediately communicated to other project teams so that they can check if
there is a bug in some other engine software. Meanwhile, client complaints
are also considered in such a way that if a project receives a client complaint,
it is immediately transmitted to other projects, which could galvanise all the
necessary actions

694 Software Quality Journal (2022) 30:687–728

1 3

using the HIL simulation, the fitness function score ranges between 70 and 80 based on
Eq. (1). When using prototype vehicles, the maximum and minimum values of the fit-
ness function must be greater than 80. Otherwise, if the fitness function is 64 for exam-
ple, it would be impossible to know which the optimal means to use during the valida-
tion are. Therefore, F14 should be higher than 53. In this study, F14 was 150 just in case
new states should be added in the future. Like this, if the fitness function value is lower
than 80, HIL simulations must be performed. If the fitness function value is higher than
80, prototype vehicles must be used.

Each path is composed of different states. The paths which contain state F16 more fre-
quently are considered as the optimal ones to be validated by using an HIL simulation.

Fig. 4 Factors indicated in Eq. (1)

Table 2 Maximum and minimum values of the fitness function

HIL Prototype vehicles

State Fitness function
value. Max value

State Fitness function
value. Min value

State Fitness function
value. Max value

State Fitness function
value. Min value

F1 1 F1 1 F1 1 F1 1
F3 4 F3 4 F3 4 F3 4
F4 8 F5 9 F4 8 F5 9
F5 13 F8 17 F5 13 F8 17
F6 19 F9 26 F6 19 F10 27
F8 27 F13 39 F8 27 F14 27 + F14

F9 36 F15 54 F10 37
F13 49 F16 70 F11 48
F15 64 F12 60
F16 80 F14 60 + F14

695Software Quality Journal (2022) 30:687–728

1 3

Otherwise, they should be validated by using prototype vehicles. The test-engineer can
collect important information when analysing the states covered once the optimal path
is assessed, such as dependency on other ECUs, feedback from other projects, etc.

To generate new populations, the previous populations with the lowest costs are cho-
sen. Afterwards, the mutation and crossover operations are applied as follows:

• Crossover. The process of how GA1 determines the optimal path is depicted in Fig. 5.
When a vector is received, several possible paths are generated, and the costs are
assessed. The paths with the lowest cost are chosen. The crossover process consists of
chosen paths two by two as parents with a common node, and a new possible path is

Fig. 5 Crossover operation

Fig. 6 Mutation operator

696 Software Quality Journal (2022) 30:687–728

1 3

established. To do this, part of the path belonging to one of the parents from F1 to the
common node is retained. The path belonging to the other parent from the common
point to the final state (F7 in this example) is retained.

• Mutation. Once an optimal path is chosen, in some cases a mutation6 is applied. As
shown in Fig. 6, a path is a vector composed of functional states; it always contains F1
(initial state) and F8 (final state). Given a path, for example [F1, F3, F5, F8], a randomly
chosen part of the vector is retained: [F1, F3]. Then, taking F3, the neighbours are estab-
lished and one of them is randomly chosen if the values of the vector X allow this state
to be reached (Figs. 2 and 3). Following this process, a new path is obtained. In some
cases, there will be no solution. Therefore, the path will be discarded.

2.2.2 GA2: optimising the vector

GA2 optimises vectors in order to minimise the cost by using the cost values returned by
GA1 (Fig. 3). When GA2 gets the cost and path for each vector, the vectors with the low-
est cost are chosen. Then, the crossover and mutation operators are applied. As shown in
Fig. 7, there are two crossover operators. Based on two parents (two vectors that contain
the inputs of the SM under validation), crossover operator 1 randomly chooses the value
of one of the parents and operator 2 calculates the average of both parents (Fig. 7, phase
1 and phase 2). When the new vector is obtained, in certain cases the mutation operator
is applied. This operation consists of adding an aleatory value that ranges from 0 to d to a
component of the final vector Y. This value d depends on the range of the inputs of the SM
under validation.

Fig. 7 Crossover and mutation operators for GA2

6 The number of vectors that will be mutated depends on the need. In this research, the authors have chosen
30% of the vectors to be mutated with good empirical results.

697Software Quality Journal (2022) 30:687–728

1 3

2.3 HIL simulations

Once the GAs are parametrized and a model is built as shown in Fig. 2, the HIL simula-
tion can be conducted. In addition to the cost value, the actions to be conducted on the
HIL model for each transition must be coded (Fig. 8) as the software variables have to
reach the values specified in the test-case. Several ways can be used to set the conditions
to pass from one state to another one. The first entails writing the equations directly in the
code, which is limited to simple SMs as fairly complex and highly complex SMs involve
many equations. The second option is to call the Simulink® model by using the test-case
inputs to make the Simulink® model return the expected output values. In this study, the
Simulink® models were transformed into dynamic-linked libraries (dlls) by following the
steps described in the official Matlab® documentation. Figure 8 depicts the usage of dlls.
They are necessary to conduct the validation process to find bugs due to SM interactions as
it will be shown in “Sects. 3 and 4”.

2.4 Network and software and hardware integration

This proposal validates the network and hardware and software integration by using the
dlls as shown in Fig. 8. Once the software is coded, the software outputs must be equal or
very close to the values provided by the Simulink® models despite the SM interactions.
This point is checked by using the dlls that allow comparing the HIL results when running
a test-case with the outputs provided by dlls. The same explanation can be used for vehi-
cles as the data acquisition can be injected into the Simulink® models, and both results can
be compared.

Regarding the network, it is tested when using prototype vehicles in real conditions. Not
all SMs implemented in the software exchange information with other ECUs. All these
aspects are considered in Fig. 4 where the reader can find state F10 which assesses if the
SM under validation has an impact on the network. If an SM must be validated and pro-
totype vehicles with all ECUs properly updated are not available (specially at the begin-
ning of the project), HIL simulations are used considering that the frames are simulated by
using a model (this situation has also been considered in Fig. 4).

Fig. 8 HIL simulation process

698 Software Quality Journal (2022) 30:687–728

1 3

2.5 Traditional techniques

The following techniques were used in this research.

(a) Cause-effect technique
 One of the most used techniques in the automotive sector is the black-box technique

(Conrad et al., 2005). The main idea behind this technique is to test software as a
black box. In other words, the internal structure of the SM is not considered by the
test-engineer who is focused on the software behaviour. That is why this technique is
also known as behavioural testing. When designing the test to be run, test engineers
design test-cases and decide which means could be used according to their experience
(Conrad et al., 2005; Garousi & Mäntylä, 2016; Kasoju et al., 2013). The cause-effect
is a black-box technique widely employed in the automotive sector for several reasons
(easy to automate, among others). This technique is based on considering a series of
conditions linked to inputs of the SM under validation; the test-engineer must check if
the software runs as expected. To do this, the test-engineer performs a series of actions
by using the means employed for validation (prototype vehicles or the HIL simulation)
and, finally, verify the software behaviour. This behaviour is validated and assessed by
using the outputs of the SM under validation. The means used to validate this behaviour
are chosen by considering the test-engineers’ experience when using this technique.

(b) Model-based testing

It is a software testing technique consisting of deriving test-cases from a functional
model which describes the functional aspects and requirements of the SM under validation.
Due to this model, it is easier to assess the functional coverage as the number of functional
states covered when validating an SM is known. When implementing it, all functional
states and the transition from one state to another are indicated. In this research, Matelo®
software was used to generate the functional model of SMs (Matelo® Software, 2018).
This software allows implementing a model easily. Regarding the activation of each transi-
tion, the conditions are set. In this study, each transition calls a Simulink® model to check
the next state to be activated. Matelo® allows generating test-cases by assigning values to
all the variables used in a transition in such a way that it tries to cover all possible transi-
tions and paths. Finally, each state can be a model, as is the case in this research, making
the models extremely complex. Figure 9 sums up the aforementioned process. A test-case
is generated and by using calls to Simulink® models, Matelo® determines which part of
the model will be covered (Fig. 9 in orange). Many test-cases are generated to cover the
whole model and to increase functional and code coverage.

2.6 Equipment

The following means were used in this research:

1. An engine ECU software and hardware designed by the company subjected to this
research.

2. The HIL bench used to conduct this research belongs to the German manufacturer
dSpace®, model dSpace® Simulator Full-size (dSpace Supplier, 2019a).

3. Regarding the HIL model which serves as the driver’s interface, the ControlDesk®, version
5.1 from dSpace® manufacturer (dSpace Supplier, 2019b) was employed. By using this

699Software Quality Journal (2022) 30:687–728

1 3

software, it is possible to carry out all necessary data exchange between the HIL bench
and the engine ECU. All the data frames sent and received by the engine ECU through
the vehicle networks can be modelled.

4. Throughout this research, measurements of different software variables stored in the
engine ECU memory were made. Software that allows reading memory locations such
as version 7.1.9 of INCA® was used (ETAS supplier, 2019). As a result, the necessary
data acquisition could be made for each test-case run.

5. Python v. 3.7, Matlab® and Simulink® version 2015.
6. Matelo® software was used for the model-based testing technique.

Although ETAS® and dSpace® means were used, any manufacturer could have been
chosen.

2.7 Experimental settings

The characteristics of SMs have an impact on three factors: the time needed to validate the
software, the means used to run test-cases and the number of test-cases to be run consid-
ering the planning of the engine software development. According to the test-engineers’
experience and the technical documentation used for coding the software, the SMs were
classified as simple, fairly complex and highly complex SMs (Table 3).

Table 4 shows the way of generating test-cases. All techniques used the software and
system requirements traced in DOORs, feedback from other projects7 and the Simulink®

Fig. 9 Example of NOx activation model based on Matelo®

7 Feedback from other projects means bugs found in a project which could impact another project.

700 Software Quality Journal (2022) 30:687–728

1 3

Ta
bl

e
3

 T
yp

es
 o

f S
M

s

Ty
pe

 o
f S

M
C

ha
ra

ct
er

ist
ic

s
Ex

am
pl

e
of

 S
M

s
Va

lid
at

io
n

re
qu

ire
m

en
ts

.
Im

pa
ct

 o
n

va
lid

at
io

n
tim

e
Im

pa
ct

 o
n

m
ea

ns
N

um
be

r o
f

te
st-

ca
se

s r
un

Re
as

on
 to

 c
ho

os
e

th
is

 n
um

be
r

of
 te

st-
ca

se
s

Si
m

pl
e

oA
 re

du
ce

d
nu

m
be

r o
f i

np
ut

an

d
ou

tp
ut

 v
ar

ia
bl

es
 p

re
se

nt

in
 th

e
SM

 a
nd

 a
 sm

al
l n

um
be

r
of

 c
al

cu
la

tio
ns

 to
 b

e
do

ne
.

Fu
rth

er
m

or
e,

 th
ey

 a
re

 n
ot

co

m
pl

ex
oH

ig
h

ac
cu

ra
cy

 n
ee

de
d

fo
r

ca
lc

ul
at

io
ns

 in
 so

m
e

ca
se

s
oE

as
y

to
 id

en
tif

y
th

e
m

ai
n

fu
nc

tio
na

l c
ha

ra
ct

er
ist

ic
s o

f
th

e
SM

. T
he

y
ar

e
al

so
 e

as
y

to

te
st

by
 u

sin
g

an
 H

IL
 b

en
ch

Te
m

pe
ra

tu
re

 e
sti

m
at

or
s

B
ra

ke
 p

ed
al

 m
on

ito
rin

g
N

ot
 ti

m
e

co
ns

um
in

g.
 S

om
e

m
an

ip
ul

at
io

ns
 a

re
 re

qu
ire

d
on

th

e
H

IL
 m

od
el

 to
 m

ak
e

th
e

en
gi

ne
 E

C
U

 re
ac

h
th

e
de

si
re

d
op

er
at

in
g

po
in

t
Ex

am
pl

e:
 W

he
n

th
e

fa
ct

th

at
 th

e
ac

ce
le

ra
to

r p
ed

al

is
 b

lo
ck

ed
 is

 d
et

ec
te

d,
 th

e
en

gi
ne

 E
C

U
 so

ftw
ar

e
m

us
t

ch
ec

k
a

fe
w

 p
ar

am
et

er
s s

uc
h

as
 th

e
br

ea
k

an
d

ac
ce

le
ra

to
r

pe
da

l s
ta

te
s a

nd
 th

e
ve

hi
cl

e
sp

ee
d

Th
es

e t
yp

es
 o

f S
M

s c
an

 b
e

va
lid

ate
d

on
 H

IL
 si

m
ul

ato
rs

as

 w
ell

 as
 o

n
pr

ot
ot

yp
e

ve
hi

cle
s.

H
ow

ev
er

, s
om

e
tes

ts
ar

e b
ett

er
 ru

n
in

 v
eh

i-
cle

s t
ha

n
th

ro
ug

h
an

 H
IL

sim

ul
ati

on

25
0

C
on

si
de

rin
g

it
is

 e
as

y
to

 re
ac

h
a

sp
ec

ifi
c

fu
nc

tio
na

l s
ta

te
,

al
m

os
t a

ll
te

st-
ca

se
s c

an
 b

e
va

lid
at

ed
Th

e
nu

m
be

r o
f u

se
-c

as
es

 is

lo
w

 d
ue

 to
 S

M
 c

om
pl

ex
ity

.
C

on
se

qu
en

tly
, t

he
 n

um
be

r
of

 te
st-

ca
se

s c
ho

se
n

fo
r t

hi
s

re
se

ar
ch

 is
 lo

w
 c

om
pa

re
d

to

fa
irl

y
co

m
pl

ex
 S

M
s

Fa
irl

y
co

m
-

pl
ex

oH
ig

h
nu

m
be

r o
f i

np
ut

 a
nd

ou

tp
ut

 v
ar

ia
bl

es
 p

re
se

nt
 in

th

e
SM

oM
od

er
ate

 n
um

be
r o

f c
alc

ul
ati

on
s

to
 b

e p
er

fo
rm

ed
 an

d
m

od
er

ate

ac
cu

ra
cy

 n
ee

de
d

fo
r c

al
cu

lat
io

ns
oD

iffi
cu

lt
to

 id
en

tif
y

th
e

m
ai

n
fu

nc
tio

na
l c

ha
ra

ct
er

ist
ic

s o
f

th
e

SM

To
rq

ue
 e

ng
in

e
lim

ita
-

tio
n

ow
in

g
to

 th
e

te
m

pe
ra

tu
re

 o
f a

n
en

gi
ne

 c
om

po
ne

nt

Th
ey

 ca
n

be
 ti

m
e-

co
ns

um
in

g
de

pe
nd

in
g

on
 ch

oo
sin

g
th

e
m

os
t a

de
qu

at
e m

ea
ns

 to

va
lid

at
e t

he
 S

M
s a

s w
el

l a
s t

he

te
st-

en
gi

ne
er

’s
ex

pe
rie

nc
e

SM
s r

eq
ui

re
 m

or
e m

an
ip

ul
at

io
ns

to

 m
ak

e t
he

 en
gi

ne
 E

CU
 re

ac
h

th
e d

es
ire

d
op

er
at

in
g

po
in

t
Ex

am
pl

e:
 F

or
 in

st
an

ce
, S

M
s

re
la

te
d

to
 th

e
po

st-
tre

at
m

en
t

of
 e

xh
au

st
ga

se
s r

eq
ui

re
 th

at

th
e

 N
O

x p
ro

be
s a

re
 h

ea
te

d
be

fo
re

 ru
nn

in
g

w
ha

te
ve

r
te

st-
ca

se
s.

Th
is

 ta
sk

 c
an

 la
st

be
tw

ee
n

3
an

d
7

m
in

G
en

er
al

ly
, t

he
se

 ty
pe

s o
f

SM
s c

an
 b

e
va

lid
at

ed
 o

n
H

IL
 si

m
ul

at
or

s a
s w

el
l

as
 o

n
pr

ot
ot

yp
e

ve
hi

cl
es

.
H

ow
ev

er
, s

om
e

sp
ec

ifi
c

us
e-

ca
se

s m
us

t b
e

va
lid

at
ed

by

 u
sin

g
ve

hi
cl

es

12
50

Fa
irl

y
co

m
pl

ex
 S

M
s a

re
 w

id
ely

us

ed
 in

 th
e e

ng
in

e s
of

tw
ar

e.

Th
at

 is
 w

hy
 a

sig
ni

fic
an

t
nu

m
be

r o
f t

es
t-c

as
es

 w
er

e
ch

os
en

701Software Quality Journal (2022) 30:687–728

1 3

Ta
bl

e
3

 (c
on

tin
ue

d)

Ty
pe

 o
f S

M
C

ha
ra

ct
er

ist
ic

s
Ex

am
pl

e
of

 S
M

s
Va

lid
at

io
n

re
qu

ire
m

en
ts

.
Im

pa
ct

 o
n

va
lid

at
io

n
tim

e
Im

pa
ct

 o
n

m
ea

ns
N

um
be

r o
f

te
st-

ca
se

s r
un

Re
as

on
 to

 c
ho

os
e

th
is

 n
um

be
r

of
 te

st-
ca

se
s

H
ig

hl
y

co
m

-
pl

ex
oH

ig
h

nu
m

be
r o

f i
np

ut
 a

nd

ou
tp

ut
 v

ar
ia

bl
es

 a
nd

 n
um

be
r

of
 c

al
cu

la
tio

ns
oC

al
cu

la
tio

n
no

t n
ec

es
sa

ril
y

co
m

pl
ex

oH
ig

h
nu

m
be

r o
f f

un
ct

io
na

l
ca

lc
ul

at
io

ns
 a

nd
 m

od
er

at
e/

lo
w

 c
al

cu
la

tio
n

ac
cu

ra
cy

Th
e

SM
 in

 c
ha

rg
e

of

co
nt

ro
lli

ng
 th

e
oi

l
ra

te
 d

ilu
te

d
in

to

di
es

el

Ti
m

e
co

ns
um

in
g.

 R
un

ni
ng

 a

te
st-

ca
se

 in
vo

lv
es

 a
 lo

t o
f

m
an

ip
ul

at
io

ns
 o

f t
he

 H
IL

si

m
ul

at
or

 a
s w

el
l a

s t
im

e
to

re

ac
h

th
e

in
iti

al
 c

on
di

tio
ns

Ex
am

pl
e:

 T
he

 S
M

 in
 c

ha
rg

e
of

as

se
ss

in
g

th
e

am
ou

nt
 o

f d
ie

se
l

di
lu

te
d

in
 th

e
oi

l d
ue

 to
 d

ie
se

l
pa

rti
cu

la
te

 fi
lte

r r
eq

ui
re

s t
ha

t
th

e
dr

iv
er

 c
ov

er
s b

et
w

ee
n

10
,0

00
 a

nd
 2

0,
00

0
km

 fo
r

ea
ch

 fu
nc

tio
na

l s
ta

te

To
 re

du
ce

 th
e

tim
e

ne
ed

ed

to
 v

al
id

at
e

th
e

SM
, t

he

te
st-

ca
se

s a
re

 a
ut

om
at

ed

by
 u

si
ng

 P
yt

ho
n

sc
rip

ts

th
ro

ug
h

H
IL

 si
m

ul
at

io
ns

10
0

A
s r

ea
ch

in
g

th
e fi

na
l c

on
di

tio
ns

is

tim
e c

on
su

m
in

g,
 a

lo
w

er

nu
m

be
r o

f t
es

t-c
as

es
 w

as

ch
os

en
 fo

r t
he

se
 S

M
s t

o
m

ee
t

th
e p

la
nn

in
g

co
ns

tra
in

ts

702 Software Quality Journal (2022) 30:687–728

1 3

Ta
bl

e
4

 T
es

t-c
as

es
 ru

n
in

 th
is

 re
se

ar
ch

Te
ch

ni
qu

e
In

pu
ts

 u
se

d
fo

r i
m

pl
em

en
tin

g
te

st-
ca

se
s

So
ftw

ar
e

us
ed

W
ay

 o
f i

m
pl

em
en

tin
g

te
st-

ca
se

s
M

od
el

 u
se

d

C
au

se
-e

ffe
ct

 te
ch

ni
qu

e
1.

 F
ee

db
ac

k
fro

m
 o

th
er

 p
ro

je
ct

s
2.

 S
of

tw
ar

e
re

qu
ire

m
en

ts
3.

 S
ys

te
m

 re
qu

ire
m

en
ts

4.
 S

im
ul

in
k®

 sp
ec

ifi
ca

tio
ns

D
O

O
R

s
C

or
po

ra
te

 d
at

ab
as

e
to

 tr
ac

e
bu

gs
Ex

ce
l®

 fi
le

 w
hi

ch
 c

on
ta

in
s a

ll
in

fo
rm

at
io

n
ne

ed
ed

 (i
ni

tia
l c

on
di

tio
ns

, a
ct

io
ns

 to
 b

e
do

ne
, e

tc
.)

M
an

ua
lly

, b
y

in
te

rp
re

tin
g:

a)
th

e
so

ftw
ar

e
an

d
sy

ste
m

 re
qu

ire
m

en
ts

b)
th

e
in

fo
rm

at
io

n
of

 b
ug

s t
ra

ce
d

in
 th

e
co

rp
or

at
e

da
ta

ba
se

N
on

e

M
od

el
-b

as
ed

 te
sti

ng
1.

 F
ee

db
ac

k
fro

m
 o

th
er

 p
ro

je
ct

s
2.

 S
of

tw
ar

e
re

qu
ire

m
en

ts
3.

 S
ys

te
m

 re
qu

ire
m

en
ts

4.
 S

im
ul

in
k®

 sp
ec

ifi
ca

tio
ns

M
at

el
o®

D
O

O
R

s
C

or
po

ra
te

 d
at

ab
as

e
to

 tr
ac

e
bu

gs

A
ut

om
at

ic
al

ly
 d

on
e

by
 M

at
el

o®
 b

y
co

ve
r-

in
g

th
e

m
od

el
 b

ui
lt

by
 th

e
te

st-
en

gi
ne

er
Fu

nc
tio

na
l m

od
el

G
en

et
ic

 a
lg

or
ith

m
s

1.
 F

ee
db

ac
k

fro
m

 o
th

er
 p

ro
je

ct
s

2.
 S

of
tw

ar
e

re
qu

ire
m

en
ts

3.
 S

ys
te

m
 re

qu
ire

m
en

ts
4.

 S
im

ul
in

k®
 sp

ec
ifi

ca
tio

ns

Ps
eu

do
ra

nd
om

 v
al

ue
s g

en
er

at
ed

 b
y

Py
th

on

w
he

n
co

di
ng

 G
A

s
A

ut
om

at
ic

al
ly

 d
on

e
by

 g
en

et
ic

 a
lg

or
ith

m
s

Lo
w

 le
ve

l m
od

el

703Software Quality Journal (2022) 30:687–728

1 3

specifications as inputs. By analysing all these input data, the test-engineers build models
when using GAs and model-based testing. Finally, test-cases are implemented automati-
cally or manually. As described later, the test-engineers’ skills have a significant impact on
the time needed to implement test-cases and to obtain a productivity gain.

3 Results

This section compares the performance among GAs and traditional techniques by using the
KPIs indicated in Table 5.

3.1 Code coverage

During HIL simulations, a bug is detected if the difference between the HIL results and the
outputs provided by the Simulink® models does not obey Eq. (2).

where HILj is the value for the output j of the SM under validation after having run a test-
case by using an HIL simulation, and Simulinkj is the value for the output j of the SM under
validation after having run a test-case by using the Simulink® model.

The coverage is assessed by using Eq. (3) which relates to the number of Simulink®
blocks tested versus the total number of blocks presented in the specifications of the SM
under validation.

Table 6 shows the number of blocks present in the SMs validated in this research, which
is used to assess the code coverage (Table 7).

As the cause-effect technique does not use models, the code coverage is lower than the
one obtained when using the model-based testing and GAs. Building a model in which
each state is a Simulink® block allows testing the same functional state by following

(2)
∑j=m

j=1
|HILj − Simulinkj| ≈ 0

(3)

Code coverage =
number of SimulinkⓇ blocks tested

number of SimulinkⓇ blocks present in the SM under validation
× 100

Table 5 KPIs employed in this research

KPI Description

Code coverage It determines the number of Simulink® blocks successfully validated when
running test-cases divided by the total number of Simulink® blocks
considered

Functional coverage It determines the number of functional states successfully tested when run-
ning test-cases divided by the total number of functional states considered

Validation software time It describes the time needed to implement, run and validate an SM when
running test-cases

Productivity gain The time gain obtained when using a specific software validation technique
Bugs found and their types Number of bugs and types found when using a specific software validation

technique
Bugs found by other clients Number of bugs found by other users of the engine ECU software such as

ESP and ADAS validation staff

704 Software Quality Journal (2022) 30:687–728

1 3

different branches of the Simulink® model (Fig. 10). Contrary to GAs, model-based test-
ing does not allow tuning the inputs of the SM with the aim of choosing the best means
(i.e. an HIL simulation or vehicles) to validate an SM. In addition, this technique needs to
define test-cases as inputs and expected outputs. In case of a problem with the automation
process due to SM interactions, the expected outputs could be no longer valid as described
in “Sect. 3.3”. This problem is solved by GAs and dlls. Regarding GAs, the code cover-
age is the addition of the code coverage when using HIL simulation and prototype vehi-
cles. GAs perform better as they can cover more Simulink® blocks provided that the right
means are used. This topic is discussed in depth in “Sect. 4”.

Code coverage should at least be 90% to meet standards. The validation process of an
engine ECU is the combination of the software validation performed by the validation team
(topic considered in this research), the tuning activities and the driving tests which consist
of making 6 vehicles cover 20,000 km each, to test the software in real conditions. The total
code and functional coverage are assessed considering these three activities. No technique can
reach 100% coverage due to several reasons such as project planning constraints. As proved
later, validating by choosing the wrong means increases the validation time.

3.2 Functional coverage

Table 8 shows the functional states linked to the Simulink® blocks present in the chosen SM.
The number of functional states can be lower than the number of Simulink® blocks as some
outputs of the SM can be activated by using several paths without any impacts on the func-
tional state of the vehicle (Fig. 10).

Table 9 shows the results obtained for each technique. These results are logical as the
higher the code coverage is, the higher the functional coverage is. The standard percentage of
validation (90%) is reached because of tuning, validation and test-driving activities.

3.3 Automation

For several reasons, the automation process is difficult to be performed when it comes to
engine ECU software due to SM interactions. Firstly, reaching the values for inputs of the
SM under validation is difficult as the complexity of the SM increases. Secondly, if inputs
do not reach the expected values, the values of the outputs of the SMs under validation will
be no longer valid (Fig. 11).

Test-cases can be fully automated, partially automated or can be run manually. In this
research, GAs were run by using the tester-in-the-loop and fully automated options. The
success rate of reaching the values indicated in the test-case is shown in Fig. 12. The impor-
tance of choosing the best technique to automate the process is discussed in “Sect. 4”.

Table 6 Number of total
Simulink® blocks

Type of SM Number of
Simulink®
blocks

Simple 80
Fairly complex 350
Highly complex 530

705Software Quality Journal (2022) 30:687–728

1 3

Ta
bl

e
7

 C
od

e
co

ve
ra

ge
 o

bt
ai

ne
d

w
he

n
va

lid
at

in
g

th
e

15
 S

M
s

Te
ch

ni
qu

e
Si

m
pl

e
SM

Fa
irl

y
co

m
pl

ex
 S

M
H

ig
hl

y
co

m
pl

ex
 S

M

N
um

be
r o

f S
im

ul
in

k®

bl
oc

ks
C

od
e

co
ve

ra
ge

(%

)
N

um
be

r o
f S

im
ul

in
k®

bl

oc
ks

C
od

e
co

ve
ra

ge

(%
)

N
um

be
r o

f S
im

ul
in

k®

bl
oc

ks
C

od
e

co
ve

ra
ge

(%

)

C
au

se
-e

ffe
ct

63
78

.7
26

5
75

.7
38

0
71

.7
M

od
el

-b
as

ed
 te

sti
ng

68
85

28
5

81
.4

41
0

77
.3

G
A

s w
he

n
us

in
g

an
 H

IL
 si

m
ul

at
io

n
58

92
.5

23
5

88
.5

41
2

78
.7

G
A

s w
he

n
us

in
g

pr
ot

ot
yp

e
ve

hi
cl

es
16

75
5

706 Software Quality Journal (2022) 30:687–728

1 3

3.4 Time for implementation

Table 10 shows the time measured in this study with the aim of assessing the productivity
gain of each technique. All data shown in this table were conducted empirically by using
the test-engineer sample indicated in “Sect. 5”.

(a) GAs
 GAs coded in this study use low state models which require time to be implemented

(time for coding/updating, design and validating models). This time included: build-
ing the model and coding necessary conditions by going from one state to another.
Then, the automation code to control the HIL model is created (Python script for the
automation process per SM). Finally, the test-cases are run. Table 11 shows the results
obtained for GAs.

(b) Cause-effect technique

In this case, test-engineers must check and understand the specifications in depth as they
have to transform the Simulink® models into a test-case (Time for designing test-cases).
Afterwards, the Python scripts are coded to automate the process. Before the approval of
the validation procedure for a specific SM, the test-engineer who wrote the test-cases has
to check whether initial conditions, expected results and the calibration used are coherent.
The validation procedure of SMs cannot be delivered to the testing team without this verifi-
cation. Table 12 shows the results obtained for the cause-effect technique.

(c) Model-based testing

In this case, test-engineers must create a functional model by using the Simulink® spec-
ifications (Time for coding, design and validate models). Afterwards, the python scripts are

Fig. 10 Example of different
ways of activating an output

Table 8 Number of total
functional requirements

Type of SM Number of requirements Number of
Simulink®
blocks

Simple 75 80
Fairly complex 400 350
Highly complex 510 530

707Software Quality Journal (2022) 30:687–728

1 3

coded to automate the process. Table 13 shows the results obtained for the model-based
testing. The time needed to code, design and validate models is lower in this case than with
GAs. The main explanation is that low level models are used in GAs whereas in the model-
based testing technique, functional models are implemented. As a result, low level models
require more states and more time to be implemented.

Table 14 shows the total time needed for validating 15 SMs when using HIL simula-
tions and vehicles. GAs performed better than other techniques since GAs determine what
the best means to be used for each SM are. The result is that the average time for running
test-cases is lower. Table 15 depicts the gain of GAs over other techniques. A comparison
among all these techniques is drawn in “Sect. 4”.

3.5 Bugs

3.5.1 Types of bugs

Generally, all techniques detect the same types of bugs linked to Simulink® blocks. Some
examples of Simulink® blocks where a bug was found are shown in Table 16 and Fig. 13.
Some types of bugs linked to multiple calculations such as temperature or gas speed esti-
mators can only be detected when using HIL simulations combined with dlls. Figure 14

Table 9 Functional coverage obtained for each research

Technique Simple SM Fairly complex SM Highly complex SM

Number of
requirements
tested

Functional
coverage
(%)

Number of
requirements
tested

Functional
coverage
(%)

Number of
requirements
tested

Functional
coverage
(%)

Cause-effect 60 80 302 75.5 357 70
Model-based

testing
65 86.6 330 82.5 385 75.4

GAs 69 92 346 86.5 400 78.4

120

Speed

5

Gear shift

+

+

125

Threshold

<= 1
Add

Relational
Operator

Display

Test case generated

121

Speed

5

+

+

125

Threshold

<=
Add

Relational
Operator

Automation results

Gear shift

0

Display

Fig. 11 Potential error when a test-case is automated

708 Software Quality Journal (2022) 30:687–728

1 3

depicts the obtained result for a software variable output of an SM when running the
software by using an HIL simulation (in red) and its expected value (in blue). The error
between the red and blue lines represents an inaccuracy regarding the calculation of the gas
speed in the exhaust pipe, which impacts the amount of urea injected to treat NOx. Since
this bug does not imply the presence of a functional bug unless it causes a malfunction
detected by the driver, it is not detected by using the cause-effect technique or the model-
based testing. Only GAs combined with Simulink® model can detect it.

3.5.2 Number of bugs

The results are shown in Fig. 15. GAs overperform the rest of the techniques used in this paper
because Simulink® blocks are used. Regarding the model-based testing, the fact of using
models ensures better results than the cause-effect technique. Finally, the cause-effect tech-
nique performs least efficiently as no model is used. The result is that it is extremely difficult
to establish both the code and functional coverage.

0 10 20 30 40 50 60 70 80 90 100

Simple SMs

Fairly complex SMs

Highly complex SMs

GAs combined with tester-in-the-loop GAs fully automated

Fig. 12 Success rate when automating the HIL simulation

Table 10 Factors considered to assess the productivity gain

Factors Description

Time needed to design test-cases Simulink® specifications and the process of how SMs
operate must be understood to implement test-cases

Time necessary to implement the scripts and
functional models

The automation process needs the implementation of
Python scripts. In addition, some techniques require
such models as GAs and the model-based testing

Time elapsed to run the test-cases The time needed to run test-cases is different depending
on the technique used as well as the type of SM under
validation

Time needed to carry out the validation process Time needed to check whether the software runs as
expected after having conducted the test-case

709Software Quality Journal (2022) 30:687–728

1 3

Ta
bl

e
11

Ti

m
e

ne
ed

ed
 to

 u
se

 G
A

s f
or

 v
al

id
at

in
g

SM
s

Si
m

pl
e

SM
s

Fa
irl

y
co

m
pl

ex
 S

M
s

H
ig

hl
y

co
m

pl
ex

SM

s

Ti
m

e
fo

r d
es

ig
ni

ng
 a

nd
 c

od
in

g/
up

da
tin

g
(h

)
Ti

m
e

fo
r c

od
in

g,
 d

es
ig

n
an

d
va

lid
at

in
g

m
od

el
s p

er
 S

M
 (h

)
13

61
93

Py
th

on
 sc

rip
t f

or
 th

e
au

to
m

at
io

n
pr

oc
es

s p
er

 S
M

4
10

15
To

ta
l t

im
e

fo
r d

es
ig

ni
ng

 a
nd

 c
od

in
g

(h
) p

er
 S

M
17

71
10

8
To

ta
l t

im
e

fo
r d

es
ig

ni
ng

 a
nd

 c
od

in
g

(h
) f

or
 5

 S
M

s
85

35
5

54
0

Te
st-

ca
se

 e
xe

cu
tio

n
(h

)
Ti

m
e

fo
r e

xe
cu

tin
g

an
 a

ut
om

at
ed

 te
st-

ca
se

 (h
)

3.
17

51
2.

17
14

1
Va

lid
at

io
n

tim
e

(h
)

Ti
m

e
fo

r v
al

id
at

in
g

0.
00

08
0.

02
67

0.
08

To
ta

l t
im

e
(h

)
To

ta
l t

im
e

w
he

n
us

in
g

G
A

s(
h)

88
.1

7
86

7.
2

68
1.

08

710 Software Quality Journal (2022) 30:687–728

1 3

Ta
bl

e
12

Ti

m
e

ne
ed

ed
 to

 u
se

 th
e

ca
us

e-
eff

ec
t t

ec
hn

iq
ue

Si
m

pl
e

SM
s

Fa
irl

y
co

m
pl

ex
 S

M
s

H
ig

hl
y

co
m

pl
ex

SM

s

Ti
m

e
fo

r d
es

ig
ni

ng
 a

nd
 c

od
in

g
(h

)
Ti

m
e

fo
r d

es
ig

ni
ng

 te
st-

ca
se

s (
h)

 p
er

 S
M

8
40

60
Ti

m
e

fo
r v

al
id

at
in

g
th

e
te

st-
ca

se
s d

es
ig

n
(h

) p
er

 S
M

2
8

15
Py

th
on

 sc
rip

t f
or

 th
e

au
to

m
at

io
n

pr
oc

es
s (

h)
 p

er
 S

M
8

16
35

To
ta

l t
im

e
fo

r d
es

ig
ni

ng
 a

nd
 c

od
in

g
(h

) p
er

 S
M

18
64

11
0

To
ta

l t
im

e
fo

r d
es

ig
ni

ng
 a

nd
 c

od
in

g
(h

) f
or

 5
 S

M
s

90
32

0
55

0
Te

st-
ca

se
 e

xe
cu

tio
n

(h
)

Ti
m

e
fo

r e
xe

cu
tin

g
(h

)
3.

17
63

8.
75

14
8.

5
Va

lid
at

io
n

tim
e

(h
)

Ti
m

e
fo

r v
al

id
at

in
g

(h
)

0.
00

02
8

0.
00

34
7

0.
00

04
4

To
ta

l t
im

e
(h

)
To

ta
l t

im
e

w
he

n
us

in
g

th
e

ca
us

e-
eff

ec
t t

ec
hn

iq
ue

93
.1

7
95

8.
75

69
8.

5

711Software Quality Journal (2022) 30:687–728

1 3

Ta
bl

e
13

Ti

m
e

ne
ed

ed
 to

 u
se

 th
e

m
od

el
-b

as
ed

 te
sti

ng

Si
m

pl
e S

M
s

Fa
irl

y
co

m
pl

ex
 S

M
s

H
ig

hl
y

co
m

pl
ex

SM

s

Ti
m

e
fo

r d
es

ig
ni

ng
 a

nd
 c

od
in

g
(h

)
Ti

m
e

fo
r c

od
in

g,
 d

es
ig

ni
ng

 a
nd

 v
al

id
at

in
g

m
od

el
s p

er
 S

M
 (h

)
12

55
75

Py
th

on
 sc

rip
t f

or
 th

e
au

to
m

at
io

n
pr

oc
es

s (
h)

 p
er

 S
M

6
16

35
To

ta
l t

im
e

fo
r d

es
ig

ni
ng

 a
nd

 c
od

in
g

(h
) f

or
 5

 S
M

s
18

71
11

0
To

ta
l t

im
e

fo
r d

es
ig

ni
ng

 a
nd

 c
od

in
g

(h
) f

or
 5

 S
M

s
90

35
5

55
0

Te
st-

ca
se

 e
xe

cu
tio

n
(h

)
Ti

m
e

fo
r e

xe
cu

tin
g

an
 a

ut
om

at
ed

 te
st-

ca
se

 (h
)

3.
5

64
1.

08
14

7
Va

lid
at

io
n

tim
e

(h
)

Ti
m

e
fo

r v
al

id
at

in
g

(h
)

0.
00

02
8

0.
00

34
7

0.
00

04
4

To
ta

l t
im

e
(h

)
To

ta
l t

im
e

w
he

n
us

in
g

th
e

m
od

el
-b

as
ed

 te
sti

ng
93

.5
99

6.
09

69
7

712 Software Quality Journal (2022) 30:687–728

1 3

3.5.3 Bugs found by other clients

Generally, bugs that not found are linked to fairly complex SMs. As detailed in the next sec-
tion, it is difficult to test all possible combinations of variables considering all the possible
values they can reach (see “Sect. 4.1”). All techniques offer good performance when validat-
ing highly complex and simple SMs (Fig. 16). The only occasion when a bug was not found
while validating simple SMs was linked to a use-case that was not tested as the cause-effect
technique does not employ models.

4 Discussion

4.1 Test‑case formulation

Several challenges must be considered when designing test-cases.

(a) The engine ECU software consists of SMs composed of an important number of inputs
and outputs which are usually analogical. Consequently, their values range between
specific intervals. When running test-cases, it is difficult to reach values contained in
the variable range. For example, a variable representing the soot present in the diesel
particulate filter can take a value of 40 g.

Table 14 Total time needed to validate SMs

Number of
test-cases

Time (h) Total time (h)

HIL Vehicle HIL Vehicle

GAs Simple SMs 38 10 88.2 0.50 88.7
Fairly complex SMs 878 350 867.2 87.50 954.7
Highly complex SMs 94 3 681.1 3 684.1

Model-based testing Simple SMs 42 8 93.5 0.67 94.2
Fairly complex SMs 1099 151 996.1 88.08 1084.2
Highly complex SMs 98 2 697.0 3 700.0

Cause-effect technique Simple SMs 38 12 93.2 0.5 93.7
Fairly complex SMs 1095 155 958.8 90.42 1049.2
Highly complex SMs 99 1 698.5 2 700.5

Table 15 Productivity gain of
GAs vs other techniques

Simple SMs Fairly complex
SMs

Highly
complex
SMs

GAs vs the
model-based
testing

5.8% 11.9% 2.3%

GAs vs the cause-
effect technique

5.3% 5.4% 2.3%

713Software Quality Journal (2022) 30:687–728

1 3

(b) Considering the number of variables of SMs and their ranges, it is not possible to gen-
erate and run all test-cases which could cover the whole combination of the spectrum.
In some occasions, a test can fail when a variable takes a value close to its upper limit,
but if values are not close to this value, the test-case can provide the expected results.
Therefore, the functional model must be covered with different test-cases which take
different combinations, at least during the validation process.

(c) Constraints must be considered to avoid generating uncoherent test-cases (for example
speed = 100 km/h and first gear engaged).

(d) When running a test-case by using the automation processes, it is not possible to obtain
the exact values indicated in the test-case due to SM interactions. Thus, the expected
outputs specified in the test-case may no longer be valid. Therefore, the traditional
formulation of test-cases based on input and expected output values cannot be used in
simulations. Dlls allow solving this technical issue as depicted in Fig. 8. As a result, it
is always possible to assess Eq. (2) as dlls can provide the output values for the input
ones reached during the HIL simulation. Therefore, GAs can check if the software runs
as expected by comparing the HIL results and the Simulink® models results.

Table 16 Types of bugs found

software.

This block works as a typical RS flip-flop. As in a falling edge block, when it comes to average and

complex SMs, it is difficult to reach the conditions when the S-input could be activated in certain cases

(for example, when validating exhaust gas treatment systems or oil adaptive maintenance functions).

This block provides a Boolean type TRUE when a falling edge is detected. Otherwise, it remains FALSE.

In this case, when it comes to average and complex SMs, it is difficult to reach the conditions to generate

a falling edge in certain cases (for example, when validating exhaust gas treatment systems).

Matlab® native comparator block. It has problems in all its versions (greater than, greater than or equal to,

less than, less than or equal to). In engine ECU software, on many occasions the value of a certain

physical magnitude (e.g., motor revolutions, vehicle speed) is compared with a calibration threshold.

This block allows choosing between two possible paths depending on B value (which is a Boolean

variable). When B is TRUE, the output of this block provides A value. Otherwise, the value of C is

provided. In many cases, A and C are also Boolean variables and they allow running different strategies to

control a function or subfunction of the engine ECU software. During this research, many activations of

the wrong strategy were detected as the value of B was not assessed properly due to calculation or coding

errors in previous Simulink® blocks.

This block sets the output to TRUE while the input In remains TRUE for a certain calibratable time.

Otherwise, the output is FALSE. As found in this research, when it comes to fairly and highly complex

SMs, it is more difficult to succeed by making the input In remain stable, than in simple SMs

Interpolator block. In this case, depending on the input values presented in the Simulink® block, an output

value is provided by applying an algorithm or an interpolation method. In this case, the bugs found were

mainly linked to software performance8 or coding errors as the interpolation was not coded or tuned

properly. Consequently, the output provided by this block was wrong.

The Saturation block produces an output signal that is the value of the input signal bounded to the upper

and lower saturation values. The upper and lower limits are specified by the parameters Upper limit and

Lower limit. This block is vital for limiting the value of an output variable. When running test-cases, the

test engineer verifies whether the limits have been set properly or not. Due to this bug the consequences

are diverse: calculation errors, activation of the wrong strategy to control a function of the engine ECU

software, etc. The main root cause is a calibration issue that can be fixed quickly without releasing new

714 Software Quality Journal (2022) 30:687–728

1 3

4.2 Test‑cases automation

Python scripts for automating the process must keep the inputs of the SM in a specific
range. Otherwise, the expected output of the test-case may be no longer valid (Fig. 11).
Regarding fairly complex SMs, as the number of variables present in SMs is high, it is rec-
ommended to use the tester-in-the-loop. Highly complex SMs have many functional states
linked to the number of km covered (for example oil dilution rate). Consequently, reaching
a functional state is not difficult and test-cases can be fully automated.

GAs allow testing most of the SMs present in the engine ECU software except for:

(a) Estimators. There are SMs responsible for predicting temperature and other magnitude
trends of certain components, which involve many calculations. The easiest way to test
these SMs is to perform data acquisition by using prototype vehicles and then, inject-

Fig. 13 Types of bugs found

Fig. 14 Bug not detected unless GAs are used

715Software Quality Journal (2022) 30:687–728

1 3

ing the obtained data file into the Simulink® model. The difference between the data
acquisition and the Simulink® outputs is expected to be close to zero.

(b) Networks. The most important network in cars is the Controller Area Network (CAN).
In these cases, the testers have to verify if frames are transmitted and received prop-
erly, how the engine ECU reacts when receiving an invalid value or an absent frame,
etc. This statement can be applied to other types of networks. It is easier to validate
networks by using the HIL simulations than using prototype vehicles.

(c) SMs which are not modelled by using Simulink®. Dlls must be used if GAs are applied.
Not all SMs of the engine ECU software have a specification based on the Simulink®
models. Consequently, GAs cannot be applied to any SM. However, only 7% of the
SMs did not have Simulink® models.

Certain highly complex SMs need to cover many kilometres to reach the specific operat-
ing point indicated in the test-case. When validating the software, GAs cannot be used, as
the number of generated populations is not compatible with the project planning. In these

0

2

4

6

8

10

12

14

Model-based testing Cause-effect technique GAs

N
u

m
b

er
 o

f
b

u
g

s

Simple SMs Fairly complex SMs Highly complex SMs

Fig. 15 Number of bugs found by using each technique

0

1

2

3

4

5

Simple SMs Fairly complex SMs Highly complex SMs

N
u

m
b

er
 o

f
b

u
g

s

Model-based testing Cause-effect technique GAs

Fig. 16 Bugs not detected

716 Software Quality Journal (2022) 30:687–728

1 3

cases, the cause-effect technique is recommended to reduce the validation time. However,
these SMs can be validated by using GAs if the calibration dataset is modified in the same
way as it is done in this study.

4.3 Means used to validate

Using the most adequate means to validate is an essential topic as:

(a) The difficulty to reach an operation point depends on the means used to validate. It is
easier to use test failures on a probe by using the HIL model than a prototype vehicle.
If the wrong means is chosen, many attempts will be required to run the test-case
properly.

(b) The chances to find more bugs than by using other techniques are increased as the
validation time is reduced. Consequently, test-engineers have time to run more test-
cases than other techniques. Thus, the code and functional coverage are increased. In
addition, implementing a model by using the model-based testing and GAs reduces
redundancies in test-cases.

(c) The productivity gain obtained due to GAs has an important impact on software quality.
As shown in Fig. 17, if software version A is validated with some delay (weeks 17 and
18), after the specifications for software B are sent to the supplier (week 16) in charge
of coding the software, the software version B is delivered with bugs found in weeks
17 and 18, which may be blocking points. Therefore, the software version B could be
not usable.

(d) The test-engineers establish the best means according to their experience when using
the model-based testing and the black-box technique. Regarding GAs, a multidiscipli-
nary team sets the cost of the functional model.

4.4 Means optimisation

Choosing the adequate means to validate the software and the increase in productivity
contribute to a better establishment of the number of vehicles and HIL simulators needed.
Consequently, the cost of the projects can be reduced.

Fig. 17 Delays in software validation and impacts on software quality

717Software Quality Journal (2022) 30:687–728

1 3

4.5 Limitations of this proposal

Even if this research was focused on the engine ECU, this proposal can be applied to any
ECU whose specifications are based on Simulink® models. When using these models,
some parts of them should be validated by using HIL simulations while others by using
prototype vehicles as it is in the case of the engine ECU. Therefore, GAs can be used to
generate test-cases (the values for the inputs of the SM, the expected values and dlls) and to
choose the most adequate means.

4.6 Future research

Future research should be focused on detecting faults in the performance of software. In
some occasions, the software is coded properly but the software may not run as expected
from a functional point of view, as the design team has not considered this use-case.

5 Validity of this research

5.1 Threats to validity

Several internal and external threats have been considered to conduct the threats to validity
analysis. Table 17 shows the predictors (variables to be controlled) and their influence on the
response variables (productivity gain, documentation quality, test-cases quality and bugs).8

Considering that one of the most important factors to be analysed is the number of bugs found
when using GAs, it is vital to verify how these variables impact that. The authors have considered
the staff’s experience in the engine ECU as a key factor impacting quality. Consequently, 2 SMs
of each type were validated by using test-procedures done by staff with 5 years of experience in
the service and with less than 2 years. The results (Table 18) demonstrate that the choice of the
best use-cases to test the software requirements is linked to the staff’s experience. In addition, test-
ability also includes the means used to run a test-case and that is where this research is focused on.
Sometimes a bug is not found when using HIL simulation; however, it is when using vehicles. The
consequence of having less experience is the wrong assessment of factors shown in Table 1.

Regarding external threats, it must be checked if the results can be generalised and
applied to a larger group. To assure this, a time implementation validity study was con-
ducted to validate the time obtained in “Sect. 3.4” (“Sect. 5.2”).

5.2 Sensitivity analysis

The time needed for designing and coding test-cases for each technique, considering the
staff’s Python skills, is essential when analysing the results obtained. As shown in Table 19,
the staff was divided into three groups according to their Python skills. It is vital to analyse
the impact of knowledge of the engine ECU and Python skills on productivity. The staff

8 Considering the complexity of this case-study, the number of variables used as predictors must be lim-
ited. Otherwise, it would be extremely complex to draw conclusions.

718 Software Quality Journal (2022) 30:687–728

1 3

Ta
bl

e
17

Fa

ct
or

s c
on

si
de

re
d

Id
Fa

ct
or

D
es

cr
ip

tio
n

1
Sa

m
pl

e
us

ed
Th

is
 st

ud
y

w
as

 c
on

du
ct

ed
 in

 th
e

so
ftw

ar
e

va
lid

at
io

n
se

rv
ic

e
of

 o
ne

 o
f t

he
 m

os
t i

m
po

rta
nt

 m
an

uf
ac

tu
re

rs
 in

Eu

ro
pe

. T
he

 st
aff

 u
se

d
in

 th
is

 re
se

ar
ch

 is
 c

om
po

se
d

of
 4

0
pe

op
le

: 1
9

en
gi

ne
er

s a
nd

 2
1

te
ch

ni
ci

an
s.

Ea
ch

pe

rs
on

 m
ay

 h
av

e
di

ffe
re

nt
 sk

ill
s,

bu
t t

hi
s f

ac
t w

as
 c

on
si

de
re

d
in

 th
e

se
ns

iti
vi

ty
 a

na
ly

si
s i

n
“S

ec
t.

5.
2”

2
Py

th
on

 sk
ill

s
Th

e
m

or
e

th
e

va
lid

at
io

n
de

pa
rtm

en
t m

as
te

rs
 P

yt
ho

n,
 th

e
hi

gh
er

 th
e

pr
od

uc
tiv

ity
 g

ai
n

is
. T

he
 m

or
e

ex
te

ns
iv

e
kn

ow
le

dg
e

of
 a

n
en

gi
ne

 o
pe

ra
tio

n
th

e
st

aff
 c

an
 a

cq
ui

re
, t

he
 le

ss
 ti

m
e

th
ey

 re
qu

ire
 to

 w
rit

e
th

e
te

sts
. T

he

in
flu

en
ce

 o
f a

ll
th

es
e

as
pe

ct
s w

as
 a

na
ly

se
d

in
 th

e
se

ns
iti

vi
ty

 a
na

ly
si

s (
“S

ec
t.

5.
2”

)
3

SM
 u

se
d

Th
e

SM
s p

re
se

nt
 in

 th
e

en
gi

ne
 E

C
U

 so
ftw

ar
e

ha
ve

 a
 d

iff
er

en
t l

ev
el

 o
f c

om
pl

ex
ity

. T
he

 c
on

cl
us

io
ns

 d
iff

er

de
pe

nd
in

g
on

 th
e

SM
 u

nd
er

 v
al

id
at

io
n.

 T
he

 a
ut

ho
rs

 h
av

e
di

vi
de

d
th

e
SM

s i
nt

o
th

re
e

gr
ou

ps
 to

 a
ss

es
s t

he

pr
od

uc
tiv

ity
 g

ai
n

pr
op

er
ly

4
U

nr
el

ia
bi

lit
y

of
 m

ea
su

re
s

A
ll

m
ea

su
re

s w
er

e
ta

ke
n

in
 th

e
sa

m
e

co
nd

iti
on

s b
y

us
in

g
a

pr
oc

ed
ur

e.
 In

 a
dd

iti
on

, a
ll

fu
nc

tio
na

l m
od

el
s

us
ed

 h
av

e
be

en
 v

al
id

at
ed

 b
ef

or
e

us
in

g
th

em
. O

th
er

w
is

e,
 th

e
co

nc
lu

si
on

s c
ou

ld
 b

e
w

ro
ng

5
St

aff
’s

 e
xp

er
ie

nc
e

in
 th

e
en

gi
ne

 E
C

U

so
ftw

ar
e

Th
e

m
em

be
rs

 o
f t

he
 st

aff
 o

f a
 v

al
id

at
io

n
se

rv
ic

e
m

ay
 c

ha
ng

e
th

ei
r p

os
iti

on
s i

n
th

e
co

m
pa

ny
. A

s a
 re

su
lt,

th

e
de

pa
rtm

en
t m

ay
 h

av
e

m
or

e
sp

ec
ia

lis
ed

 p
eo

pl
e

at
 a

 sp
ec

ifi
c

m
om

en
t a

nd
 v

ic
e

ve
rs

a
on

 o
th

er
 o

cc
a-

si
on

s.
Th

is
 re

se
ar

ch
 w

as
 p

er
fo

rm
ed

 c
on

si
de

rin
g

di
ffe

re
nt

 sc
en

ar
io

s d
ep

en
di

ng
 o

n
th

e
st

aff
’s

 e
xp

er
ie

nc
e

(“
Se

ct
. 5

.2
”)

719Software Quality Journal (2022) 30:687–728

1 3

Ta
bl

e
18

B

ug
s f

ou
nd

 d
ep

en
di

ng
 o

n
th

e
st

aff
’s

 e
xp

er
ie

nc
e

SM
\te

ch
ni

qu
e

M
od

el
-b

as
ed

 te
sti

ng
C

au
se

-e
ffe

ct
G

A
s

Ex
pe

rie
nc

e >
 5

ye
ar

s
Ex

pe
rie

nc
e <

 2
ye

ar
s

Ex
pe

rie
nc

e >
 5

ye
ar

s
Ex

pe
rie

nc
e <

 2
ye

ar
s

Ex
pe

rie
nc

e >
 5

ye
ar

s
Ex

pe
rie

nc
e <

 2
ye

ar
s

Pe
da

l a
cc

el
er

at
or

 b
lo

ck
ed

1
1

1
1

1
1

C
ru

is
e

co
nt

ro
l

2
1

2
1

5
2

Sa
fe

ty
 (t

or
qu

e
co

nt
ro

l)
2

0
1

0
2

0

720 Software Quality Journal (2022) 30:687–728

1 3

Table 19 Staff’s training in Python

Group Experience in coding Python
scripts

Experience in engine ECU Number of
members

Expert level More than 2 years 5 years 5
Average level Between 1 and 2 years 2 years 7
Low level Less than 1 year Less than 1 year 3

0

150

300

450

600

750

Low level Average level Expert level

T
im

e
(h

o
u

rs
)

Staff's level of Python

Simple SMs Fairly complex SMs Highly complex

Fig. 18 Time for designing and coding vs staff’s Python skills for GAs

0

200

400

600

800

Low level Average level Expert level

T
im

e
(h

o
u

rs
)

Staff's level of Python

Simple SMs Fairly complex SMs Highly complex

Fig. 19 Time for designing and coding vs staff’s Python skills for the cause-effect technique

721Software Quality Journal (2022) 30:687–728

1 3

of the validation service of the company subjected to this research has been classified as
expert, average and low level, based on their experience in Python and in the engine ECU.

Figures 18, 19 and 20 show the time needed for designing test-cases and for coding Python
scripts. In this research, all activities described in “Sect. 4” were performed by each group
(expert, average and low level) to assess the performance difference between these groups.

6 Conclusions

Engine ECU software is one of the most complex software systems which is in charge of control-
ling the engine as well as other systems such as exhaust after-treatment systems. Among
the main issues that test engineers can face is how to choose the best means to validate
(hardware-in-the-loop simulations or prototype vehicles) as well as design test-cases which
are representative enough.

This research uses two GAs to establish the best means to validate SMs and to generate
test-cases in which the expected outputs are no longer needed due to the usage of Simulink®
models to develop the engine ECU software with the aim of improving code and functional
coverage, software bugs, test-case automation capacity and productivity. The obtained results
were compared with the ones obtained by using traditional techniques such as the model-
based testing or cause-effect ones.

The results obtained in this research show that GAs can find similar results for sim-
ple SMs and highly complex ones. However, when it comes to fairly complex ones, i.e.
the ones that are more present in the engine ECU software, GAs perform better than the
other techniques as at least 7 more bugs were found. The GAs performed better in terms
of functional and code coverage. With respect to functional coverage, GAs improved up to
11% in fairly complex SMs and 8.4% in highly complex SMs, when using the cause-effect
technique. The GAs improved up to 4% in fairly complex SMs and 3% in highly com-
plex SMs in the model-based testing technique. In terms of code coverage, GAs improved
up to 12.8% and 7% for fairly complex and highly complex SMs, respectively, under the

0

150

300

450

600

750

Low level Average level Expert level

T
im

e
(h

o
u

rs
)

Staff's level of Python

Simple SMs Fairly complex SMs Highly complex

Fig. 20 Time for designing and coding vs staff’s Python skills for the model-based testing

722 Software Quality Journal (2022) 30:687–728

1 3

cause-effect technique; and up to 7.1% and 1.4% for fairly complex and highly complex
SMs, respectively, with model-based testing.

Another advantage of using GAs is that they can detect all types of bugs due to the
usage of Simulink® models, contrary to other techniques such as the model-based testing
and the cause-effect technique.

The implementation time is compatible with an engine project planning as shown in this
research.

Appendix

For confidentiality reasons, only a beta version can be provided. It can be downloaded in
the following link:

https:// github. com/ pedro ai1980/ ga. git
The version provided by the authors tries to solve the problem shown in Fig. 21.

The reader could reuse it with some changes such as adding automation scripts to each

Fig. 21 Problem to be solved by using the code provided by the authors

723Software Quality Journal (2022) 30:687–728

https://github.com/pedroai1980/ga.git

1 3

transition between states. Adding calls to Simulink® models to assess conditions to go
from one state to another one.

The code is composed of the following files:

 i. utils.py. This file defines the functions necessary to assess conditions for going from
one state to another one. The reader can replace and add the functions they want or
they can even add calls to Simulink® models.

 ii. main_v2.py. This file runs the code to solve the problem.
 iii. g2_func.py and genetic_funcs.py contain the code of the two genetic algorithms nec-

essary to solve the problem.

References

Abadeh, M. N. (2020). Performance-driven software development: An incremental refinement approach for
high-quality requirement engineering. Requirements Engineering, 25, 95–113.

Ågren, S. M., Knauss, E., Heldal, R., Pelliccione, P., Malmqvist, G., & Bodén, J. (2019). The impact of
requirements on systems development speed: A multiple-case study in automotive. Requirements Engi-
neering, 24, 315–340.

ASPICE. (2020) ISO - ISO/IEC 33001:2015 - Information technology — Process assessment — Concepts
and terminology. Accessed 30 January 2020.

Banish, G. (2007). Engine management: Advanced tuning. Minnesota: Cartech.
Chunduri, A. (2016). http:// www. diva- portal. org/ smash/ get/ diva2: 945731/ FULLT EXT02. Accessed 3 February 2020.
Conrad, M., Fey, I., & Sadeghipour, S. (2005). systematic model-based testing of embedded automotive

software. Electronic Notes in Theoretical Computer Science, 1111, 13–26.
Delius, G. W. (2004). Orthogonal Arrays (Taguchi Designs). University of York. https:// www. york. ac. uk/

depts/ maths/ tables/ ortho gonal. htm. Accessed 29 December 2021.
Dos Santos, J., Martins, L. E. G., de Santiago Junior, V. A., Povoa, L. V., & dos Santos, L. B. R. (2019).

Software requirements testing approaches: A systematic literature review. Requirements Engineering.
https:// doi. org/ 10. 1007/ s00766- 019- 00325-w

dSpace. (2018). https:// www. dspace. com/ en/ inc/ home. cfm. Accessed 29 December 2021.
dSpace Supplier. (2019a). https:// www. dSpace. com/ en/ inc/ home/ produ cts/ hw/ simul ator_ hardw are/ dSpace_

simul ator_ full_ size. cfm. Accessed 10 December 2019.
dSpace Supplier. (2019b). https:// www. dSpace. com/ en/ inc/ home/ produ cts/ sw/ exper iment andvi suali zation/

contr oldesk. cfm. Accessed 10 December 2019.
El-Rewini, Z., Sadatsharan, K., Flor, D., Siby, S., Plathottam, J., & Ranganathana, P. (2019) Cybersecurity

challenges in vehicular communications. Vehicular Communications, 23, 100214
Esfandyari, S., & Rafe, V. (2018). A tuned version of genetic algorithm for efficient test suite generation in

interactive t-way testing strategy. Information and Software Technology, 94, 165–185.
ETAS supplier. (2019). https:// www. etas. com/ en/ produ cts/ inca_ softw are_ produ cts. php. Accessed 9 March 2020.
Feldhütter, A., Segler, C., & Bengler, K. (2018). Does shifting between conditionally and partially auto-

mated driving lead to a loss of mode awareness? In N. Stanton (Ed.), Advances in human aspects of
transportation. AHFE 2017. Advances in Intelligent Systems and Computing, 597, 730–741.

Gajjar, M. J. (2017). Mobile sensors and context-aware computing. Morgan Kaufmann Publishers.
Garousi, V., Felderer, M., & Kilicaslan, F. N. (2018). A survey on software testability. Cornell University.

https:// arxiv. org/ abs/ 1801. 02201. Accessed 17 January 2020.
Garousi, V., & Mäntylä, M. V. (2016). A systematic literature review of literature reviews in software test-

ing. Information and Software Technology, 80, 195–216.
Haghighatkhah, A., Banijamali, A., Pekka Pakanen, O., Oivo, M., & Kuvaja, P. (2017). Automotive software engi-

neering: A systematic mapping study. Journal of Systems and Software, 128, 25–55.
Hooshyar, H., Mahmood, F., Vanfretti, L., & Baudette, M. (2015). Specification, implementation, and

hardware-in-the-loop real-time simulation of an active distribution grid. Sustainable Energy, Grids
and Networks, 3, 36–51.

724 Software Quality Journal (2022) 30:687–728

http://www.diva-portal.org/smash/get/diva2:945731/FULLTEXT02
https://www.york.ac.uk/depts/maths/tables/orthogonal.htm
https://www.york.ac.uk/depts/maths/tables/orthogonal.htm
https://doi.org/10.1007/s00766-019-00325-w
https://www.dspace.com/en/inc/home.cfm
https://www.dSpace.com/en/inc/home/products/hw/simulator_hardware/dSpace_simulator_full_size.cfm
https://www.dSpace.com/en/inc/home/products/hw/simulator_hardware/dSpace_simulator_full_size.cfm
https://www.dSpace.com/en/inc/home/products/sw/experimentandvisualization/controldesk.cfm
https://www.dSpace.com/en/inc/home/products/sw/experimentandvisualization/controldesk.cfm
https://www.etas.com/en/products/inca_software_products.php
https://arxiv.org/abs/1801.02201

1 3

Huang, W.L., Wang, K. Ly, Y., & Zhu, F. (2016). Autonomous vehicles testing methods review. In IEEE
19th international conference on intelligent transportation systems (ITSC) (pp. 163–168).

ISO. (2019). Cybersecurity standard. https:// www. iso. org/ stand ard/ 70939. html. Accessed 20 September 2020.
ISO. (2020). Autonomous driving safety standard. https:// www. iso. org/ stand ard/ 70918. html. Accessed 20

September 2020.
Kasoju, A., Petersen, K., & Mäntylä, M. V. (2013). Analyzing an automotive testing process with evidence-based

software engineering. Information and Software Technology, 55(7), 1237–1259.
Kim, Y., Lee, D., Baek, J., & Kim, M. (2020). MAESTRO: Automated test generation framework for high

test coverage and reduced human effort in automotive industry. Information and Software Technology,
123, 106221.

Koegel, M., & Wolf, M. (2018). Auto update – Safe and secure over-the-air (SOTA) software update for
advanced driving assistance systems. Springer.

Köhl, S., Lemp, D., & Plöger, M. (2003). ECU network testing by hardware-in-the-loop simulation. ATZ
Worldwide, 105(10), 10–12.

Krûguer, M., Straube, S., Middendorf, A., Hahn, D., Dobs, T., & Lang, K. D. (2016). Requirements for the
application of ECUs in e-mobility originally qualified for gasoline cars. Microelectronics Reliability,
64, 140–144.

Linderman, U., Maurer, M., & Braun, T. (2009). Structural complexity management. Springer.
Lockledge, J. C., & Salustri, F. A. (2010). Defining the engine design process. Journal of Engineering

Design, 10, 109–124. https:// doi. org/ 10. 1080/ 09544 82992 61344
Martin, H., Ma, Z. , Schmittner, C., Winkler, B., & Kreiner, C. (2020). Combined automotive safety and

security pattern engineering approach. Reliability Engineering & System Safety, 198, Article 106773.
Matelo® Software. (2018). https:// www. all4t ec. com/. Accessed 7 February 2020.
McAfee. (2016). https:// www. mcafee. com/ enter prise/ en- us/ assets/ white- papers/ wp- autom otive- secur ity. pdf.

Accessed 7 September 2020.
Meloa, S. M., Carver, J. C., Souza, P. S. L., & Souza, S. R. S. (2019). Empirical research on concurrent

software testing: A systematic mapping study. Information and Software Technology, 105, 226–251.
Möller, D., & Haas, R. (2019). Guide to automotive connectivity and cybersecurity. Wiesbaden: Springer
Morris, D., Madzudzo, G., & Garcia-Pereza, A. (2020). Cybersecurity threats in the auto industry: Tensions in the

knowledge environment. Technical Forcasting and Social Change, 157, 120102.
National Instrument. (2019). https:// www. ni. com/ fr- fr/ innov ations/ white- papers/ 17/ what- is- hardw are- in-

the- loop-. html. Accessed 3 March 2020.
Ortega-Cabezas, P. M., Colmenar-Santos, A., Borge-Diez, D., & Blanes-Peiró, J. J. (2019a). Application

of rule-based expert systems and dynamic-link libraries to enhance hardware-in-the-loop simulation
results. The Journal of Software, 14(6), 265–292.

Ortega‐Cabezas, P. M., Colmenar‐Santos, A., Borge‐Diez, D., & Blanes‐Peiró, J. J. (2019b). Application of
rule‐based expert systems in hardware‐in‐the‐loop simulation case study: Software and performance
validation of an engine electronic control unit. Journal of Software: Evolution and Process. https:// doi.
org/ 10. 1002/ smr. 2223

Petrenko, A., Nguena-Timo, T., & Ramesh, S. (2015). Model-based testing of automotive software:
Some challenges and solutions. 52nd Congress ACM/IEEE Design Automation Conference.

Placho, T., Schmittner, C., Bonitz, A., & Wana, O. (2020). Management of automotive software updates.
Microprocessors and Microsystems, 78, 103257.

Plummer, A. R. (2006). Model-in-the-loop testing, proceedings of the institution of mechanical engi-
neers part I. Journal of Systems and Control Engineering, 220(3), 183–199.

Raffaëlli, L., Vallée, F., Fayolle, G., Armines, A., de Souza, P., Rouah, X., Pfeiffer, M., Géronimi, S.,
Pétrot, F., & Ahiad, S. (2016). Embedded Real Time Software and Systems Conference.

Raikwar, S., Jijyabhau, L. W., Arun Kumar, S., & Sreenivasulu Rao, M. (2019). Hardware-in-the-loop
test automation of embedded systems for agricultural tractors. Measurement, 133, 271–280.

Rajan, A., & Wahl, T. (2013). CESAR - Cost-efficient methods and processes for safety-relevant embed-
ded systems. Springer.

Riedmaier, S., Ponn, T., Ludwig, B., Shick, F., & Diermeyer, F. (2020). Survey on scenario-based safety
assessment of automated vehicles. IEEE Access, 8, 87456–87477.

Roychoudhury, A. (2009). Embedded systems and software validation. Morgan Kaufmann Publishers.
Sharma, C., Sabharwal, S., & Sibal, R. (2013). A survey on software testing techniques using genetic

algorithm. IJCSI International Journal of Computer Science Issues, 20(1), 381–387.
Sharma, A., Patani, R., & Aggarwal, A. (2016). Software testing using genetic algorithms. International

Journal of Computer Science & Engineering Survey (IJCSES), 7(2), 21–33.
Sopan-Barhate, S. (2015). Effective test strategy for testing automotive software. International Congress

of Electronic Instrumentation and Control.

725Software Quality Journal (2022) 30:687–728

https://www.iso.org/standard/70939.html
https://www.iso.org/standard/70918.html
https://doi.org/10.1080/095448299261344
https://www.all4tec.com/
https://www.mcafee.com/enterprise/en-us/assets/white-papers/wp-automotive-security.pdf
https://www.ni.com/fr-fr/innovations/white-papers/17/what-is-hardware-in-the-loop-.html
https://www.ni.com/fr-fr/innovations/white-papers/17/what-is-hardware-in-the-loop-.html
https://doi.org/10.1002/smr.2223
https://doi.org/10.1002/smr.2223

1 3

Sun, W., Cai, X., & Meng, Q. (2016). Testing flight software on the ground: Introducing the hardware-
in-the-loop simulation method to the alpha magnetic spectrometer on the International Space Sta-
tion. Nuclear Instruments and Methods in Physics Research Section a: Accelerators, Spectrometers,
Detectors and Associated Equipment, 815, 83–90.

Tatar, M., & Mauss, J. (2014). Systematic test and validation of complex embedded systems. Embedded
Real Time Software and Systems.

Utesch, F., Brandies, A., Pekezou, P., Schiessl, F., & Schiessl, F. (2020). Towards behaviour based testing to
understand the black box of autonomous cars. European Transport Research Review, 12, 48.

Vandi, G., Nicolò, C., Corti, E., Mancini, G., Moro, D., Ponti, F., & Ravaglioli, V. (2014). Development of a soft-
ware in the loop environment for automotive powertrain system. Energy Procedia, 45, 789–798.

Vector. (2019). https:// www. vector. com/ int/ en/ know- how/ techn ologi es/ safety- secur ity/ autom otive- cyber secur ity/
c2941. Accessed 10 September 2020.

Vivas, J. L., Agudo, I., & Lopez, J. (2011). A methodology for security assurance-driven system devel-
opment. Requirements Engineering, 16, 55–73.

Walia, G. S., & Carver, J. C. (2009). A systematic literature review to identify and classify software require-
ment errors. Information and Software Technology, 51(7), 1087–1109.

Wang, C., & Winner, H. (2019). Overcoming challenges of validation automated driving and identifica-
tion of critical scenarios. Proceeding IEEE Intelligent Transportation Systems Conference (ITSC),
2639–2644.

Yi, L., He, H., & Peng, J. (2016). Hardware-in-loop simulation for the energy management system devel-
opment of a plug-in hybrid electric bus. Energy Procedia, 88, 950–956.

Zhan, Y., & Clark, J. A. (2008). A search-based framework for automatic testing of MATLAB/Simulink
models. Journal of Systems and Software, 81(2), 262–285.

Zhou, J., Zhang, Z., Xie, P., & Wang, J. (2015). A test data generation approach for automotive software.
IEEE International Conference on Software Quality, Reliability and Security.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Pedro‑Miguel Ortega‑Cabezas has a degree in Industrial Engineering
and a Master in Electrical, Electronic and Control Engineering from
UNED (Spanish University for Distance Education). Nowadays, he is
doing his PhD in Industrial Engineering at UNED.

His field of specialization is focused on powertrains and the
validation of the engine control unit software. He has participated
in several engine design projects launched by such market leaders
as PSA Peugeot Citroën and Renault in their design centers located
in France. More specifically, his research is focused on how to use
artificial intelligence when validating embedded software such as
the engine control unit one.

726 Software Quality Journal (2022) 30:687–728

https://www.vector.com/int/en/know-how/technologies/safety-security/automotive-cybersecurity/#c2941
https://www.vector.com/int/en/know-how/technologies/safety-security/automotive-cybersecurity/#c2941

1 3

Antonio Colmenar‑Santos has a PhD in Industrial Engineering and a
Master of Science in Industrial Engineering, with a specialization in
Electronics and Automation Engineering awarded both by The School
of Industrial Engineering at National Distance Education University
(UNED); and a Bachelor of Science in Electrical Engineering, with a
specialization in Electronic Instrumentation, Regulation and Control
and Industrial Automation awarded by The School of Industrial Engi-
neering at the University of Valladolid.

He has been part of the Spanish section of the International
Solar Energy Society (ISES) and of the Association for the
Advancement of Computing in Education (AACE), working in
different projects related to renewable energies and multimedia
systems applied to teaching. He has been a coordinator of both
virtualization and telematic Services at ETSII-UNED, as well as
deputy head teacher (administration) and Head of the Department
of Electrical, Electronics and Control Engineering at UNED.

David Borge‑Diez has a doctoral degree and a master in industrial tech-
nologies research from UNED (Spanish University for Distance Educa-
tion) and a bachelor’s degree in industrial engineering with majors in
energetic engineering from the University of Valladolid, Spain. He is a
specialist engineer in energy efficiency, energy economics and alterna-
tive energy sources and works as a Professor in the Department of Elec-
trical, Control and Automation Engineering in the University of León,
Spain. He has been Associated Professor in the University of León
and worked for energy companies in both public and private projects,
including international R&D programs.

Jorge Juan Blanes‑Peiró received an engineering degree from the
“Universidad Politécnica de Valencia” (Spain) in 1990. In 1995 he
obtained Ph. D. degrees from the “Université Pierre et Marie Curie”
(Paris VI-France) and from the “Universidad Politécnica de Valencia”
(Spain). Currently he is Researcher and Teacher of the “Universidad
de León” (Spain) and Head of the Mining Engineering School of this
University.

727Software Quality Journal (2022) 30:687–728

1 3

Jorge Higuera‑Pérez graduated in environmental sciences and agri-
cultural engineer specializing in mechanics, his twenty years of pro-
fessional experience in the automotive sector has been gained both in
companies manufacturing automobiles such as PSA GROUP or com-
panies manufacturing automotive components such as HUTCHIN-
SON. During all this time he was able to perform different functions
such as manufacturing quality and being a project manager.

Eric Alcaide Physics and Medicine undergraduate student. His main
research interests include application computational methods to differ-
ent areas such as engineering, biology and chemistry.

728 Software Quality Journal (2022) 30:687–728

	Experience report on the application of genetic algorithms to reduce costs of the software validation process in the automotive sector during an engine control unit project
	Abstract
	1 Introduction
	1.1 Background
	1.2 Related works

	2 Methods
	2.1 Simulink models
	2.2 How GAs work together
	2.2.1 GA1: path finder
	2.2.2 GA2: optimising the vector

	2.3 HIL simulations
	2.4 Network and software and hardware integration
	2.5 Traditional techniques
	2.6 Equipment
	2.7 Experimental settings

	3 Results
	3.1 Code coverage
	3.2 Functional coverage
	3.3 Automation
	3.4 Time for implementation
	3.5 Bugs
	3.5.1 Types of bugs
	3.5.2 Number of bugs
	3.5.3 Bugs found by other clients

	4 Discussion
	4.1 Test-case formulation
	4.2 Test-cases automation
	4.3 Means used to validate
	4.4 Means optimisation
	4.5 Limitations of this proposal
	4.6 Future research

	5 Validity of this research
	5.1 Threats to validity
	5.2 Sensitivity analysis

	6 Conclusions
	References

