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Abstract
Heterogeneous cross-project defect prediction (HCPDP) is aimed at building a defect pre-
diction model for the target project by reusing datasets from source projects, where the 
source project datasets and target project dataset have different features. Most existing 
HCPDP methods only remove redundant or unrelated features without exploring the under-
lying features of cross-project datasets. Additionally, when the transfer learning method is 
used in HCPDP, these methods ignore the negative effect of transfer learning. In this paper, 
we propose a novel HCPDP method called multi-source heterogeneous cross-project defect 
prediction (MHCPDP). To reduce the gap between the target datasets and the source data-
sets, MHCPDP uses the autoencoder to extract the intermediate features from the original 
datasets instead of simply removing redundant and unrelated features and adopts a modi-
fied autoencoder algorithm to make instance selection for eliminating irrelevant instances 
from the source domain datasets. Furthermore, by incorporating multiple source projects to 
increase the number of source datasets, MHCPDP develops a multi-source transfer learn-
ing algorithm to reduce the impact of negative transfers and upgrade the performance of 
the classifier. We comprehensively evaluate MHCPDP on five open source datasets; our 
experimental results show that MHCPDP not only has significant improvement in two 
performance metrics but also overcomes the shortcomings of the conventional HCPDP 
methods.
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1 Introduction

The software is a collection of large datasets with thousands or millions of lines of code. 
How to ensure software quality has become a key issue. Bugs inevitably exist in software 
projects, even though experienced developers using powerful development platforms 
develop these projects (Xiaoting et al., 2020).

Within-project defect prediction (WPDP) (Lee et al., 2011; Menzies et al., 2007b; Nam 
et al., 2015) first constructs classification models based on a sufficient amount of histori-
cal labeled software entities from a project and then uses the models to predict the defect 
labels of new entities within the same project (Xu et al., 2018). However, in some situa-
tions where we do not have enough datasets with labeled defect information, WPDP does 
not necessarily work well.

In order to solve this problem, many researchers continue to explore open source soft-
ware, and then, they share datasets such as NASA (Menzies et  al.,  2007a), Relink (Wu 
et al., 2011), Promise (Jureczko & Madeyski, 2010), and AEEEM (D’Ambros et al., 2010). 
This makes cross-project defect prediction (CPDP) possible. CPDP (He et al., 2012; Ma 
et al., 2012; Rahman et al., 2012; Turhan et al., 2009) is the study of how to transfer knowl-
edge related to the target project from the source project (Hosseini et al., 2019). This topic 
has attracted a lot of attention lately in the literature.

However, most existing CPDP methods are based on the assumption that both source 
and target projects have the identical features or share similar features. Unfortunately, it is 
not always feasible when source and target projects have little or no shared features (Turhan 
et al., 2008), because different projects may be developed with distinct programming lan-
guages and the features may be collected at different levels of granularity using various 
tools. Jing et al. (Hosseini et al., 2019) has showed that NASA and Relink, as well as Soft-
lab and Relink, have few common metrics, and there are no common metrics between the 
remaining datasets. In this case, the effect obtained by CPDP can be limited. Therefore, the 
heterogeneous cross-project software defect prediction (HCPDP) method was proposed.

The main challenge of HCPDP is how to narrow the difference between two different 
feature spaces of source projects and target projects. Besides, the relationship between 
source projects and target projects influences the effectiveness of transfer learning. 
Resource utilization that is not related to the target may degrade the performance of the 
classifier and result in a negative transfer. One strategy to reduce negative transfer is to 
increase the number of sources.

In this paper, we propose a novel multi-source heterogeneous cross-project defect pre-
diction (MHCPDP) method. To narrow the gap between source datasets and target data-
sets, MHCPDP uses an autoencoder to extract the intermediate features from the original 
datasets instead of simply removing redundant and unrelated features and adopts a modi-
fied autoencoder algorithm to make instance selection for eliminating irrelevant instances 
from the source datasets.

Furthermore, to reduce the impact of negative transfer in transfer learning, MHCPDP 
incorporates multiple source projects to solve the problem of insufficient source projects 
and defines a multi-source transfer-learning algorithm to reduce the impact of negative 
transfer.

To evaluate our approach, we conducted large-scale experiments on five public datasets. 
This paper mainly focuses on answering the following three research questions.
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1 Is MHCPDP better than the existing HCPDP methods?
2 How does MHCPDP compare to unsupervised learning?
3 What is the result of MHCPDP when compared with WPDP?

This paper makes the following main contributions:

1 We propose the MHCPDP method for HCPDP. MHCPDP adopts the autoencoder and a 
modified autoencoder algorithm for dimensionality reduction and instance selection to 
reduce the feature space gap between the source project and target project. Furthermore, 
we develop a multisource transfer-learning algorithm to address the negative transfer 
effects of transfer learning in HCPDP, and overcome the shortcoming of insufficient 
source projects.

2 We have comprehensively evaluated MHCPDP by using two widely used performance 
indicators. The results show that MHCPDP not only is comparable with the performance 
of two of the most advanced HCPDP but also overcomes the shortcomings of the con-
ventional HCPDP methods.

3 We have conducted extensive experiments on our method. The results show that 
MHCPDP has the advantages and competitiveness when it compares with the WPDP 
scheme and the state-of-the-art unsupervised learning method.

The rest of the paper is organized as follows. Section  2 introduces the related work. 
After presenting our method MHCPDP in Sect.  3, we detail the experimental setup in 
Sect. 4. Section 5 shows experimental results and statistical test. Section 6 discusses the 
parameter sensitivity to MHCPDP, the effectiveness of MHCPDP, and the impact of differ-
ent classifiers on our method, followed by threats to validity in Sect. 7. Finally, Sect. 8 con-
cludes our work.

2  Related work

2.1  Cross‑project defect prediction method

Cross-project defect prediction is to build a defect prediction model for the target project 
with existing project datasets. In order to make the model effect and accurate, scholars have 
carried out a series of researches on this.

Briand et al., (2002) were the first to study CPDP where they proposed a new use of 
exploratory analysis techniques (namely, multivariate adaptive regression splines) to estab-
lish this failure propensity model. The results show that models built on one system can 
accurately classify classes within another system based on fault propensity.

Zimmermann et  al. (2009) conducted a series of large-scale studies on cross-project 
defect prediction models. For 12 real-world applications, they ran 622 cross-project fore-
casts. The results show that cross-project prediction is a serious challenge, that is, using 
only models from the same field or projects with the same process does not lead to accurate 
predictions.

Nam et  al. (2015) proposed that the performance of cross-project defect prediction is 
generally poor, mainly due to the difference in feature distribution between the source 
project and the target project. In the paper, they apply a state-of-the-art transfer learning 
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method—TCA (Pan et al., 2011) to make the distribution of features in source and target 
projects similar. In addition, they extended a TCA to propose a new transfer defect learning 
method TCA + . They also conducted experiments on eight open source projects, and the 
results showed that TCA + significantly improved cross-project forecasting performance.

However, all these studies assume that the target and source project data share some 
common features. Therefore, if the cross-project data have heterogeneous feature sets (i.e., 
HCPDP scenario), these methods are a failure.

2.2  Heterogeneous cross‑project defect prediction method

Nam et al. (2013) propose a heterogeneous defect prediction (HDP) method that matches 
different metrics in different projects. Experiments show that their proposed HDP model is 
feasible and has achieved good results. In addition, they also studied the lower bounds of 
the source and target dataset sizes for effective transfer learning in defect prediction. Based 
on their empirical and mathematical studies, it is possible to display only 50 instances of 
the category dataset, sufficient to construct defect predictions and apply HDP.

Jing et  al. (2015) propose a method for using a unified metric representation (UMR) 
source project and target project. UMR includes three types of metrics, that is, the source 
project and the target project are in common, the source project is unique, and the target 
project is unique. Then a typical correlation analysis (CCA) (Knapp, 1978) was introduced 
into the method. Their approach is clearly superior to the latest cooperating CPDP method, 
and it achieves comparable predictive performance.

Besides, Li et  al. propose a series of solutions for HCPDP, for example, a novel 
two-stage ensemble learning (TSEL) approach to HDP (Li et  al.,  2019), a new cost-
sensitive transfer kernel canonical correlation analysis (CTKCCA) approach for HDP 
(Li et  al.,  2017a), a multi-source selection based manifold discriminant alignment 
(MSMDA) approach (Li et al., 2017b), and an empirical study on heterogeneous defect 
prediction approaches (Chen et al., 2020).

In a word, the prediction performance of HCPDP model is greatly affected by its con-
struction method. Most of the studies have constructed multiple models with different mod-
eling techniques and have made great progress in their comparative performance. The main 
differences between our approach and existing HCPDP methods are as follows. Firstly, our 
method adopts the autoencoder and a modified autoencoder algorithm for dimensionality 
reduction and instance selection to reduce the feature space gap between the source project 
and target project. Secondly, our method uses multiple heterogeneous source projects to 
make up insufficient source datasets, and we propose a multi-source transfer-learning algo-
rithm to address the negative transfer effects of transfer learning.

2.3  Transfer learning

With the increasing popularity of machine learning applications in recent years, existing 
supervised learning tends to require a large amount of annotated data. However, labeling 
data is a cumbersome task that requires a lot of work, human resources, and financial 
resources. So transfer learning (Fu-Zhen & Ping, 2015; Pan & Yang, 2010) that requires 
less data annotation has received attention.

A common assumption of traditional machine learning algorithms is that the probabil-
ity distributions of training datasets and test datasets are the same. Under this assumption, 
when presenting a set of new datasets with different distributions, we need to collect and 
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label new training samples to learn new classifiers. However, if we use the useful informa-
tion in the existing labeled dataset to train the classifier, we can save time. Transfer learn-
ing is to apply the knowledge or model learned in a certain domain task to different but 
related domains. However, when the probability distributions between the source domain 
and target domain vary greatly, it may lead to serious negative transfer. How to solve the 
impact of negative transfer in HCPDP is a main motivation of this paper.

3  Method

3.1  Framework

As shown in Fig. 1, the framework of MHCPDP consists of five steps: data collection, data 
pre-processing, feature processing and instance selection, multi-source transfer learning, 
and defect prediction.

Step 1. Data collection: The first step of the framework is data collection. In this paper, 
we collect the datasets that come from five public datasets, i.e., AEEEM, MORPH, NASA, 
Relink, and SOFTLAB.

Step 2. Data pre-processing: The second step is data pre-processing. After the data col-
lection, it is necessary to pre-process datasets because they may have several irregular data. 
The pre-processing step in this paper includes oversampling and datasets standardization. 
For over-sampling, we adopt smote method, and z-score for dataset standardization.

Step 3. Feature representation and instance selection: The third step is feature repre-
sentation and instance selection. In this step, we firstly adopt the autoencoder to obtain 

Fig. 1  Framework of MHCPDP
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the intermediate features of source datasets. Then, we design a modified autoencoder for 
instance selection to narrow the gap between the source datasets and the target dataset. The 
implementary procedure of instance selection is described in Sect. 3.3.

Step 4. Multi-source transfer learning: The fourth step is data pre-processing. The pro-
ject (i.e., target project) that is needed to perform defect prediction may not have enough 
labeled defect for training the classification model, while other projects (i.e., source pro-
jects) may have a large amount of label data. Transfer learning can capture useful informa-
tion from the source project as additional training data for the target project’s prediction. 
In this step, we propose a multi-source transfer learning algorithm to solve the negative 
transfer and further narrow the gap between the source datasets and the target datasets. 
The implementary procedure of the multi-source transfer learning algorithm is presented 
in Sect. 3.4.

Step 5. Defect prediction: The fifth step is defect prediction. Machine learning classifi-
ers are used to build the defects prediction model in this step. To compare the performance 
of different classifiers, four machine learning classifiers are used, including decision tree, 
Naive Bayes, logistic regression, and random forest. The evaluation metrics used in this 
paper are AUC and g-measure.

3.2  Problem definition

Let the target data matrix be T = [t1,t2,… tm] , where ti = [ti1, ti2,… , tip]
T ∈ Rp ; m and 

p represent the number of target project entities and features, respectively. Tij is the 
jth features of ith target entity. Similarly, let the source project data matrix be S = [s1
,s2,… sn] , where  si = [si1, si2,… , siq]

T ∈ Rp ; n and q represent the number of source 
entities and features, respectively. A task � is made of a label space  � = [+1,−1] , 
and a boolean function  F ∶ x → y . sij indicates the jth feature of the ith target 
entity.  vS = [vs1, vs2,… , vsn]

T ,vsi ∈ {0,1} , and vsi represents the ith instance in the 
source project. When vsi=1, the instance is selected; otherwise, it is not selected. In 
addition, the fe(.) is encoding functions and the fd(.) is decoding function.

3.3  Feature processing and instance selection

3.3.1  Feature processing

Inspired by the work from GE Hinton and RR Salakhutdinov (Hinton & Salakhutdinov, 
2006), MHCPDP performs the feature processing based on an autoencoder instead of sim-
ply removing redundant and unrelated features. We use autoencoder to mine potential fea-
tures and the connections between features.

The autoencoder is an unsupervised neural network model, which contains two pro-
cesses of encoding and decoding. The encoding process can learn the implicit features of 
the input data. The decoding process is to reconstruct the original input data by using the 
learned new features. Through such processing, the intermediate features can be consid-
ered as feature extraction of the original data and are advanced features with robustness.

By training, we make the output x′ close to the input xi ∈ Rn . When we add some restric-
tions to the autoencoder neural network, such as limiting the number of hidden neurons, we 
can find some interesting structures from the input data. For example, the data dimension 
we input is n = 64, and there are 25 hidden neurons in the hidden layer L2.
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Since there are only 25 hidden neurons, we force the autoencoder neural network to learn 
the compressed representation of the input data. In other words, it must be reconstructed a 
64-dimensional input value from the 25-dimensional hidden neuron activation degree vector 
a(2) ∈ R25 . If some specific structures are hidden in the input data, for example, some input 
features are related to each other, and then, this algorithm can well find the correlation of the 
input data. After the network is trained, a(2) ∈ R25 of layer L2 corresponding to each input xi is 
equivalent to the reduced-dimensional data.

In this paper, the autoencoder is used for feature extraction, and the number of features in 
the five public datasets after extraction is same.

3.3.2  Instance selection

After dimensionality reduction, we modified the autoencoder algorithm for instance selection. 
This idea comes from distant domain transfer learning (Tan et al., 2017). The goal is to narrow 
the gap between the source and target datasets.

The specific steps of Algorithm 1 as follows:
Step 1: We take the source dataset, the target dataset, and the number of iterations as input 

data.
Step 2: Initializing the parameters, Vs = 1 of the source domain dataset means instances in 

the source domain dataset are selected.
Step 3: Iterate N times and update Vs by adjusting the parameters of the autoencoder to 

minimize the loss function.
Step 4: Finally, remove the source domain Vs = 0 and a subset of the source datasets as 

output data.
The loss function is as follows:

yi is label of xi.l(.) is loss function. fc(.) is a classification function to output classification 
probabilities.

The original autoencoder reconstructs the output through input. Through the original input, 
we found the instance with a large difference between the source datasets and the target data-
sets and marked it as zero. When finally outputting, these instances do not output no longer. 
The final output instances are a subset of the source datasets, and the gap between this subset 
and the target datasets is small. After we have dealt with the source datasets, we reconstruct 
the datasets. Then, use multi-transfer learning for modeling.

3.4  Multi‑source transfer learning

Transferring learning has been widely used since it was introduced into software defect pre-
diction, but the effects of negative transfer have been rarely mentioned. We use Algorithm 2 to 
solve this problem and further narrow the gap between the source datasets and the target 
datasets.
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411Software Quality Journal (2021) 29:405–430



1 3

Source projects that have little to do with the target project in transfer learning may reduce 
the performance of the classifier and cause negative transfer. An effective way to solve the 
negative transfer is to use multiple sources for transfer learning (Yao & Doretto, 2010). In 
research, single-source transfer learning is often used, and the resulting negative transfer is 
inevitable. This paper introduces multi-source transfer learning to solve the impact of negative 
transfer in HCPDP.

Algorithm 2 is a multi-source transfer learning algorithm. Our inspiration comes from Yi 
Yao’s multi-source transfer learning. In the multi-source transfer learning algorithm, we take the 
filtered subset of S1,… SN , target dataset T, and the maximum number of iterations M as input. 
We take the target classifier function Ft ∶ x → y as output. Learning the task � for the target 
domain T, in traditional machine learning, from the given source datasets according to certain 
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criteria, amounts to estimating a classifier function Ft ∶ x → y . By adjusting parameters, it can 
reduce data that is different from the target dataset, thereby limiting the effects of negative trans-
fers. We use this algorithm to solve the impact of negative transfer in HCPDP, narrow the gap 
between the source data domain and the target data domain, and increase the number of sources.

4  Empirical setup

4.1  Benchmark datasets

We selected five public datasets as the benchmark datasets, namely AEEEM, MORPH, 
NASA, Relink, and SOFTLAB. These five datasets are widely used for defect prediction 
(D’Ambros et al., 2012; Herzig et al., 2013a; Herzig et al., 2013b; Jing et al., 2015; Nam 
et al., 2013;  Nam et al., 2015; Tantithamthavorn et al., 2015; Xu et al., 2016; Pingclasai, 
xxxx). Table 1 reports the detailed information of the items in the five datasets, including 
the name of the items (dataset), the number of features (metrics), the number of entities 
(entities), and the number of defective entities (Buggy).

Table 1  Statistic of benchmark 
datasets

Group Datasets Entities Buggy Metrics

AEEEM EQ 324 129 61
JDT 997 206 61
LC 691 64 61
ML 1862 245 61
PDE 1292 209 61

Relink Apache 194 98 26
Safe 56 22 26
Zxing 399 118 26

MORPH ant-1.3 125 20 20
arc 234 27 20
camel1.0 339 13 20
poi-1.5 237 141 20
Redktor 176 27 20
skarbonka 45 9 20
tomcat 858 77 20
xerces1.2 440 71 20

NASA cm1 344 42 37
mw1 264 27 37
pc1 759 61 37
pc3 1125 140 37
pc4 1399 178 37
kc3 200 36 39

SOFTLAB ar1 121 9 29
ar3 63 8 29
ar4 107 20 29
ar5 36 8 29
ar6 101 15 29
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These datasets may share some of the same features and certainly differ from each other. 
NASA and SOFTLAB contain proprietary datasets from NASA and a Turkish software 
company, respectively (Turhan et al., 2009). D’Ambros et al. (2010) collected the AEEEM 
dataset. Features in the AEEEM dataset include changing indicators, source code indica-
tors, entropy of source code indicators, and drain of source code indicators (Appendix). Wu 
et al. (2011) collected the Relink dataset, and the items they analyzed were Apache HTTP 
Server, Safe, and Zxing. The dataset considers 26 metrics, all of which focus on code com-
plexity. The MORPH group contains defect datasets of several open source projects used 
in the study about the dataset privacy issue for defect prediction (Peters & Menzies, 2012).

4.2  Performance Indicators

In this paper, we chose two commonly used metrics as indicators to measure the perfor-
mance of our experiment.

4.2.1  AUC 

Area under ROC curve (AUC) (Jiang et al., 2009) is the area under the ROC curve (Fawcett,  
2006). The full name of the ROC curve  is the receiver’s working characteristic curve. 
AUC is an evaluation index to measure the pros and cons of a two-class model, which indi-
cates the probability that the predicted positive example is ranked in front of the negative 
example. The calculation of this indicator has nothing to do with the threshold setting. The 
value ranges from 0 to 1. The higher the value, the better the model’s performance.

4.2.2  G‑measure

There is a contradiction between the precision (It can also be called the probability of false 
alarm.) and the recall rate (It can also be called the probability of detection.). In these occa-
sions, g-measure can be used to effectively balance the two indicators. The calculation for-
mula is as follows:

Among them, pf is the probability of false alarm, which refers to the proportion of all 
non-defective modules that are predicted to be defective. In addition, pd is the probabil-
ity of detection. It returns the proportion of all defective modules that are predicted to be 
defective. G-measure is the harmonic mean of pd and (1-pf).

4.3  Prediction model

In this work, we train a decision tree model with the mapped source project dataset and 
then apply it to the mapped target project datasets. The decision tree model is widely used 
for software defect prediction.

(2)g −measure =
2 × pd × (1 − pf)

(pd + (1 − pf))
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4.4  Experimental design

At the beginning of the experiment, some parameters need to be set. The parameters will 
be adjusted with multiple experiments. Finally, a relatively optimal parameter is selected 
as the final parameter setting. The initial values of the parameters are shown in the figure 
below.

Following the steps of MHCPDP that are presented in Sect. 3.1, we carry out the exper-
iments. To alleviate the bias, we run MHCPDP 30 times and report the average indicator 
values. For the parameter values, we empirically set x = 100 (EPOCHS: it is defined as 
a single training iteration of all batches in the forward and backward propagation.) and 
y = 128(BATCH_SIZE: it is number of samples selected for one training.) as the basic set-
ting through extensive experiments in autoencoder. The number of iterations is an impor-
tant parameter in transfer learning. We set the number of iterations to 50. We will discuss 
the impact of different parameter settings on the discussion in Sect. 5.

5  Experimental results and statistical test

5.1  Experimental results

Common classification methods are logistic regression (Hosmer et al., 2013), random for-
est, Bayesian network, and decision tree. Whether there is a difference in these classifica-
tion methods in software defect prediction is also a significant problem. Lessmann et al. 
have explored this problem in the early days. They did experiments on the NASA data-
sets, and they compare the research performance of 22 different classification methods. 
The results showed that the difference is not significant (Ghotra et al., 2015). Later, other 
scholars did the corresponding research and got the same answer. However, Ghotra et al. 
(Lessmann et al., 2008) did get a different answer. We discussed the impact of the classi-
fier on our experiments in Sect. 5. We choose the decision tree classifier as our classifier to 
experiment.

Next, we will start with the following three questions and compare the performance of 
our model with AUC value and g-measure value (in 5-A, 5-B, and 5-C).

A. RQ1. How does MHCPDP compare to existing HCPDP methods?

1) Motivation
  When we make software defect prediction, we often encounter situations where 

the dataset is insufficient or the existing dataset is different from the target dataset. 
Although many methods have studied this, there are still some shortcomings in 
these methods. We compared our approach to two top-level heterogeneous defect 
prediction methods (CCA + and HDP methods), hoping to achieve better results 
while overcoming their shortcomings.

2) Methods
  We choose AUC and g-measure to measure our experiments and comparative 

experiments. To simulate HCPDP scenario, we select the source project and the 
target project from different datasets. We selected 16 datasets as the target dataset. 
Since neither CCA + nor HDP involves any randomness, we only run it once and 
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record the results. The former is the representative method of HCPDP. Please note 
that all ranges of the two indicators used in this work are between 0 and 1. For the 
CCA + method, when it is applied to some cross-project pairs, and the elements 
in the mapped target project data are all zero, we treat this situation as a failure. 
For the HDP method, when the matching scores of all feature pairs are below the 
threshold, we will not be able to select any features. In this case, we will also treat 
them as failures, and we will not do much research on failed experiments.

  Table 2 shows the comparison between our method and the HDP method, as well 
as the CCA + method when selecting the AUC values and g-measure values.

3) Results
  We selected sixteen datasets in AEEEM, NASA, MORPH and Relink, and Softlab 

as target datasets.
  Firstly, according to Table 3, we see that our method is superior to HDP by com-

paring the AUC values. Our AUC values are all above 0.6, and some projects even 
reach 0.875. The average value of AUC is also above 0.712, while the HDP mean is 
only 0.700, which is slightly lower than our method. It can be seen that HDP does 

Table 2  Hyper-parameter settings

Hyper-parameters Values Explanation

ENCODING_DIM_INPUT Dimensions of the original dataset
ENCODING_DIM_OUTPUT 10 Dimension after dimensionality reduction
EPOCHS 50 It is defined as a single training iteration of all 

batches in the forward and backward propagation
BATCH_SIZE 258 It is the number of samples selected for one training

Table 3  Comparison of AUC 
values and g-measure values 
between MHCPDP, HDP, and 
CCA + methods

Target AUC G-measure

HDP CCA + MHCPDP HDP CCA + MHCPDP

EQ 0.776 0.738 0.718 0.616 0.673 0.630
ML 0.692 0.575 0.676 0.582 0.558 0.624
JDT 0.767 0.648 0.663 0.654 0.632 0.571
PDE 0.692 0.604 0.609 0.633 0.691 0.564
Apache 0.720 0.0.707 0.756 0.586 0.625 0.628
safe 0.837 0.762 0.0.812 0.672 0.721 0.708
zxing 0.650 0.611 0.700 0.546 0.557 0.528
arc 0.701 0.704 0.674 0.603 0.603 0.646
poi-1.5 0.706 0.612 0.781 0.604 0.604 0.786
Redktor 0.528 0.609 0.875 0.571 0.595 0.753
tomcat 0.737 0.617 0.640 0.681 0.585 0.631
xerces-1.2 0.497 0.530 0.747 0.464 0.447 0.552
pc1 0.754 0.716 0.737 0.642 0.641 0.586
pc4 0.681 0.678 0.714 0.635 0.626 0.612
cm1 0.720 0.661 0.604 0.593 0.604 0.524
mw1 0.745 0.697 0.687 0.656 0.661 0.701
average 0.700 0.654 0.712 0.609 0.608 0.622
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not perform well in some datasets, such as xerces-1.2, whose AUC value is only 
0.497 which is lower than the random guess. The results of our method are better, 
and AUC values are above 0.6. The AUC values of many projects are around 0.7, 
and the overall average is higher than HDP. Although the test results are not ideal 
on some projects, they are generally better than HDP.

  Secondly, when comparing AUC values with CCA + method, our method achieves 
better performance. The CCA + method relies heavily on many features common 
between the source project and the target project. The source datasets we selected 
during the comparative experiment and our target datasets have many common 
features, so the experimental results are better. However, even if the CCA + method 
selects a large number of datasets between the source project and the target project, 
its AUC value is not very high: the average value is only 0.654, and the AUC value 
of the ML and xerces-1.2 items is about 0.5, and the highest AUC value is 0.716. 
The AUC value of most projects is above 0.6, and only a few of them reach 0.7 or 
more.

  Thirdly, when comparing g-measure values, the mean of our method is higher 
than the CCA + and HDP methods. The maximum value and the minimum value 
are better than the first two methods. Most of them change from 0.6 to 0.65; only a 
few are slightly lower than 0.6, which is better than the former two as a whole.

  Lastly, when we do experiments, there are not as many constraints as the first 
two methods, and the experiment success rate is higher than the first two methods. 
CCA + works better when the source and target projects have features that are more 
common. When there are only a few or no common features, the experimental 
results do not perform well. The HDP method must consider the consistency of the 
defect propensity of the source project and the target project when experimenting, 
but often, we do not know this propensity. In contrast, our method achieved better 
results than they did when we overcome the shortcomings of the two.

  In summary, our method overcomes some shortcomings of HDP method and 
CCA + method in addition to achieving comparable performance with HDP.

B. RQ2. What is the result of MHCPDP compared with unsupervised learning?

1) Motivation
  Due to insufficient source datasets, unsupervised learning methods are used to 

solve CPDP problems. However, there are also some shortcomings in unsupervised 
defect prediction. Firstly, in software defect prediction, many unsupervised methods 
require manual labeling, and the cost of manual labeling is too high. Secondly, unsu-
pervised learning methods generally solve problems by cluster analysis, but cluster 
analysis methods also have certain defects. When doing software defect prediction, 
cluster analysis methods are based on the assumption that the value of the metric 
element of the defective module has a higher value than the metric element of the 
non-defective module. However, we encountered the problem may not be met, and 
the effectiveness of the unsupervised method may not be guaranteed.

  Therefore, HCPDP research is still essential. Next, we compare our method with 
excellent unsupervised methods.
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2) Methods
  The unsupervised learning method CLAML proposed by Nam and Kim et al. It 

is an automatic method to serve the process of expert annotation in unsupervised 
learning methods (Nam & Kim, 2015). Their method is the leader in unsupervised 
learning methods in the field of software defect prediction. One of the best ways, we 
use AUC values and g-measure values to evaluate the performance of the CLAML 
model and the MHCPDP model.

3) Results
  From Table 4, we can see that our method is better than UDP when comparing 

AUC values and g-measure values.
  Firstly, as far as AUC is concerned, our MHCPDP has a higher value than the 

UDP method in the prediction of 12 target datasets, and the overall mean value is 
much higher than the UDP method. The minimum value is much higher than the 
UDP method.

  Secondly, as far as g-measure is concerned, our MHCPDP has a higher value than 
the UDP method in the prediction of 11 target datasets, and the overall mean value 
is much higher than the UDP method. The minimum value is much higher than the 
UDP method.

  Although there is no heterogeneous problem with unsupervised learning methods, 
still many other problems still affect the accuracy of the SDP model. Therefore, it is 
not feasible to solve heterogeneous defect prediction only by unsupervised learning 
methods. Although our method has its drawbacks, the effect is much better than the 
UDP method. We will continue to improve it in the future and hope to get a better 
model.

Table 4  Comparison of AUC values and g-measure between MHCPDP, UDP, and WPDP methods

Target AUC G-measure

WPDP UDP MHCPDP WPDP UDP MHCPDP

EQ 0.801 0.737 0.718 0.670 0.563 0.630
ML 0.710 0.630 0.676 0.630 0.588 0.624
JDT 0.817 0.733 0.663 0.741 0.636 0.571
PDE 0.731 0.646 0.609 0.615 0.610 0.564
Apache 0.757 0.0.754 0.756 0.634 0.582 0.628
safe 0.829 0.773 0.0.812 0.577 0.645 0.708
zxing 0.626 0.664 0.700 0.511 0.514 0.528
arc 0.726 0.615 0.674 0.600 0.591 0.646
poi-1.5 0.717 0.720 0.781 0.650 0.532 0.786
Redktor 0.719 0.489 0.875 0.600 0.580 0.753
tomcat 0.814 0.725 0.640 0.677 0.740 0.631
xerces-1.2 0.504 0.456 0.747 0.510 0.405 0.552
pc1 0.814 0.693 0.737 0.636 0.612 0.586
pc4 0.850 0.681 0.714 0.712 0.610 0.612
cm1 0.741 0.675 0.604 0.595 0.586 0.524
mw1 0.726 0.680 0.687 0.651 0.645 0.701
average 0.743 0.667 0.712 0.626 0.590 0.622
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C. RQ3. What is the result of MHCPDP compared with WPDP? 

1)  Motivation
  In the WPDP scheme, some labeled entities in the target project are used to train 

the prediction model, and the generated model is used to predict the class labels of 
other entities. Previous studies have shown that if there is enough labeled training 
data available, the performance of WPDP will be improved (Lessmann et al., 2008). 
However, we often encounter the problem of insufficient datasets, that is, we may 
not have enough data to train the target datasets. Therefore, we often use CPDP to 
predict software defects, but compared with WPDP, the performance of the previous 
CPDP method is usually not good enough. Therefore, we are interested in whether 
our method HDA has better or comparable results than WPDP in terms of two 
performance indicators.

2) Methods
  For WPDP, we randomly select 50% entities in the target datasets as the training 

datasets and the remaining entities as the test datasets. Since the random selection 
process for the training datasets and test datasets may affect the prediction perfor-
mance, we repeat the process 30 times to obtain the average indicator values.

  Then, we also select the AUC value and g-measure for performance evaluation. 
For the parameter settings of these classifiers, we follow the previous studies (Xu 
et al., 2018).

3) Results
  Firstly, the AUC value of our method has nine datasets with AUC values above 

0.7 and seven at 0.6 or higher. The AUC value of WPDP has fourteen datasets with 
AUC values above 0.7, one at 0.6 or above, and one at around 0.5.

  Secondly, as far as g-measure is concerned, our MHCPDP has a higher value than 
the WPDP method in the prediction of seven target datasets, and the overall mean 
value is close to the WPDP method. The minimum value is much higher than the 
WPDP method.

  WPDP is based on the same dataset to achieve such an effect, and our dataset is 
based on heterogeneous conditions; the source datasets of the two are very different.

  In summary, compared with WPDP methods, our method still has performance 
comparable with WPDP when implementing heterogeneous defect prediction.

5.2  Statistical test

To statistically analyze the performance values in Tables 3 and 4, we perform the non-par-
ametric Friedman test with the Nemenyi’s post hoc test (Demsar, 2006) at significant level 
0.05 over the datasets, because the results of the Friedman test show that the p values on all 
two indicators are all less than 0.05. The Friedman test evaluates whether there exist statis-
tically significant differences among the average ranks of different methods. Since Fried-
man test is based on performance ranks of the methods, rather than actual performance 
values, therefore it makes no assumptions on the distribution of performance values and is 
less susceptible to outliers (Xu et al., 2018).

Use Friedman test to determine whether these algorithms have the same performance. If 
they are same, their average ordinal values should be equal. Suppose k algorithms on N 
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datasets, let ri denote the average order value of the ith algorithm. In order to simplify the 
discussion, we do not consider the halving value for the time being, then ri obeys the nor-
mal distribution and its mean and variance are k+1

2
  and (k2 − 1)∕12 ; variable 

is�x2 =
k−1

k
×

12N

k2−1

∑k

i=1

�
ri −

k+1

3

�2

=
12N

k(k+1)
(
∑k

i=1
ri
2 −

k(k+1)2

4
) ; when both k and N are 

large, it obeys the x2 distribution with k − 1 degrees of freedom.
If the hypothesis that “all algorithms have the same performance” is rejected, it 

means that the performance of the algorithms is significantly different. At this time, a 
“post hoc test” is needed to further distinguish the algorithms. The commonly used 
algorithm is Nemenyi’s post hoc test. Nemenyi’s post hoc test calculates the critical 
range of average ordinal difference that is CD = q

�

√
k(k+1)

6N
.

Table 5 shows the commonly used q
�
 values when α = 0.05 and 0.1.

If the difference between the average sequence values of the two algorithms exceeds 
the critical value range CD, the assumption that “the performance of the two algorithms 
is same” is rejected with the corresponding confidence.

As we can see from Fig. 2, the horizontal axis is the average order, and the vertical 
axis is each algorithm. Each algorithm uses points to represent the average order, and 
the horizontal line segment with the point as the center represents the size of the critical 
value range. If the horizontal lines of the two algorithms overlap, it means that there is 
no significant difference between the two algorithms. According to Friedman test with 
the Nemenyi’s post hoc test, we sorted the order value for each method and calculated 
the average order value.

Figure 2 shows the comparison of MHCPDP against HDP, CCA + , UDP, and WPDP 
with Friedman test and Nemenyi’s post hoc test on the AUC values and g-measure val-
ues. Firstly, when HDP, CCA + , and MHCPDP are compared, in terms of AUC values, 
HDP has no significant difference compared with MHCPDP, while MHCPDP has a sig-
nificant difference compared with CCA + , and in terms of g-measure values, MHCPDP, 
HDP, and CCA + have no significant differences. Secondly, when WPDP, UDP, and 
MHCPDP are compared, in terms of AUC values and g-measure values, MHCPDP has 
no significant difference compared with WPDP, while MHCPDP has a significant differ-
ence compared with UDP.

We have known that our method is significantly different from these baseline meth-
ods, but how big the difference is depends on the effect size test.

The effect size refers to the difference caused by factors, and it is an index to meas-
ure the size of the treatment effect. Unlike the significance test, these indicators are not 
affected by the sample size. It represents the size of the difference between the overall 
mean under different treatments and can be compared between different studies. Mean 
difference, variance analysis explanation ratio, and regression analysis explanation ratio 
need to be described by effect size. The effect size is not affected by the sample size. 
When the sample size is significant, it is necessary to report the size of the effect. We 

Table 5  The commonly used q
�
 values when α = 0.05 and 0.1

� Number of algorithms K

2 3 4 5 6 7 8 9 10

0.05 1.960 2.344 2.569 2.728 2.850 2.949 3.031 3.102 3.164
0.1 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920
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choose Cohen’s d values. The greater the Cohen’s d value, the greater the difference. 
The calculation formula of the Cohen’s d is as follows:

Cohen’s d = M1−M2√
SD2

1
−SD2

2

2

where M1 and M2 are the average values of two sets of comparative experiments.  SD1 
and  SD2 are the standard deviations of two sets of comparative experiments. The results 
are shown in Table 6 below:

Fig. 2  Comparison of MHCPDP against HDP, CCA + , UDP, and WPDP with Friedman test and Neme-
nyi’s post hoc test on the AUC values and g-measure values

Table 6  The values of Cohen’s d MHCPD vs. baselines Cohen’s d

G-measure AUC 

MHCPDP vs. WPDP 0.060 0.300
MHCPDP vs. UDP 0.460 0.578
MHCPDP vs. HDP 0.217 0.156
MHCPDP vs. CCA + 0.223 0.877
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From the above point of view, our method MHCPDP and HDP are both effective 
methods to conduct defect prediction on heterogeneous datasets. To sum up, our method 
MHCPDP achieves competitive results compared with CCA + and HDP on most data-
sets in terms of the two indicators.

6  Discussion

6.1  How much time does it take for the MHCPDP methods and CCA + methods?

In addition to comparing the effectiveness of our method in the experiment, we also evalu-
ated the efficiency of the method. Because our method and CCA + method involve multi-
ple projects as source datasets, we specially selected the CCA + method as the reference 
object. The time we compare is the time of instance selection in MHCPDP and the time of 
obtaining the mapped project data in CCA + .

Our method involves the time-consuming extraction of the example selection process 
of the autoencoder. We have specially experimented with this, and the time that spent the 
experiment is kept at about lower level. The time spent by CCA + is to obtain the mapped 
project data, so we select several items to measure the time spent on CCA + . As shown by 
Fig. 3, the time spent by CCA + is about a few minutes. When the source project is a large-
scale dataset, the time may be longer, which is very inconvenient for the actual operation, 
but our method can adapt well to large-scale datasets.

6.2  How different classifiers affect the performance of MHCPDP?

In MHCPDP, we choose the decision tree (DT) classifier as the basic prediction model. 
In order to explore the impact of different classifiers on the performance of MHCPDP, we 
choose three classifiers that are Naive Bayes (NB), logistic regression (LR), and random 

Fig. 3  The time (s) for MHCPDP 
and CCA + 
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forest (RF) and compare the AUC value and g-measure value of these classifiers. Figures 4 
and 5 depict the results of our experiments.

We can see that several classifiers have achieved good results in terms of AUC value, 
but the overall performance of decision tree is better. On the g-measure value, random for-
est and decision tree perform are better, and the performance of Naive Bayes and logistic 
regression are relatively poor.

Figure  6 shows the performance comparison of DT against RF, LR, and NB with 
Friedman test and Nemenyi’s post hoc test on the AUC values and g-measure values. 
By comparing g-measure and AUC values of DT, RF, LR, and NB in Fig. 6, DT has 
less overlap with the other three classifiers, and the average order value of DT is less 
than other three classifiers, it indicates that DT has a significant difference, and DT is 
better than the other three classifiers.

Fig. 4  The impact of different classifiers on AUC values
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6.3  How does the parameter affect the performance of MHCPDP?

From Figs. 7 and 8, we can find that the parameters have a certain influence on our experi-
ment. How to adjust the parameters is that our method shows better performance is our 
future research topic.

Fig. 5  The impact of different classifiers on g-measure values

Fig. 6  Comparison of DT against RF, LR, and NB with Friedman test and Nemenyi’s post hoc test on the 
AUC values and g-measure values
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6.3.1  How does the parameter x affect the performance of MHCPDP?

The parameter x is defined as a single training iteration of all batches in the forward and 
backward propagation. We select x = 40 in our experiment. Here, we evaluate the influence 
of different x values on the experimental results by selecting x = 50 for comparison. The 
blue in the figure represents the x value selected by our experiment.

6.3.2  How does the parameter y affect the performance of MHCPDP?

The parameter y is the number of samples selected for one training. We select y = 128 in 
our experiment. Here, we evaluate the influence of different y values on the experimental 
results by selecting y = 150 for comparison. The blue in the figure represents the y value 
selected by our experiment.

Overall, the adjustment of the parameters has a certain impact on our method. We 
decided to choose the optimal parameters as our work focus to continue research.

Fig. 7  The effect of x on g-measure values and AUC values

Fig. 8  The effect of y on g-measure values and AUC values
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7  Threats to validity

In this section, we discuss some of the threats to the validity of our work.

7.1  Threats to construct validity

The construction validity is based on the selection of performance indicators. In this 
paper, we selected two commonly used indicators, g-measure and AUC. These perfor-
mance indicators make our method very good with existing excellent. The comparison 
of the methods is very helpful for us to evaluate the performance of our method.

7.2  Threats to internal validity

The internal threat is mainly related to the implementation of the method and the 
parameter setting. The baseline method we selected may have some differences due to 
the unknown author’s parameter settings and some specific information.

However, we reduce this threat by adjusting the parameter settings to choose the opti-
mal combination of parameters.

7.3  Threats to external validity

External threats are primarily the application of our approach to real-world applications. 
We reduce this threat by selecting five publicly available datasets.

8  Conclusion

This is a challenge for heterogeneous cross-project software defect prediction due to 
the low correlation between features selected between different datasets. In the face of 
this challenge, we have proposed our own method MHCPDP. First, we analyzed many 
previous studies and found that many methods simply delete redundant features and do 
not mind the deeper meaning behind the data to filter the features. We choose to use the 
autoencoder to mind the data deeper.

Secondly, we modified the autoencoder algorithm for instance selection, which can 
narrow the gap between the source project and the target projects. Thirdly, we introduce 
multi-source transfer learning algorithm into heterogeneous software defect prediction, 
which not only solves the impact of negative transfer on transfer learning but also can 
carry out multi-source learning. Multiple source project datasets can solve the prob-
lem of insufficient training datasets. This idea also comes from transfer learning. In the 
future, we will continue to explore more ideas in transfer learning and apply them to 
software defect prediction in order to develop more and better methods. To confirm the 
effectiveness of our approach, we conducted a number of experiments and compared 
them with some of the top methods in the UDP, WPDP, and HDP directions. The exper-
imental results show that our method has achieved better results.
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Although our approach has achieved good results, there are still some unresolved 
issues. For example, class imbalance is also a very important topic in software defect 
prediction; we simply adopted the smote method. In addition to the class imbalance 
problem, we have not considered the noise problem in the dataset. We will continue to 
study these experimental results in the future.

Appendix

We provide the datasets and the source code of the proposed approach that are used to con-
duct this study at https:// github. com/ SE- CQU/ sdp.

Funding This work was supported in part by National Key Research and Development Project under grant 
2019YFB1706101 and in part by the Science-Technology Foundation of Chongqing, China, under grant 
cstc2019jscx-mbdx0083.
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