
Vol.:(0123456789)

https://doi.org/10.1007/s11219-021-09551-4

1 3

Scrum metaprocess: a process line approach for customizing
Scrum

Halimeh Agh1 · Raman Ramsin1

Accepted: 9 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Scrum is currently the most widely used agile methodology. However, it is regarded as
a framework rather than a concrete process. Unfortunately, the resources available on
Scrum do not explicitly define its variable parts and do not offer proper guidance on how
to resolve those variabilities. Process (re)configuration is thus left to Scrum Retrospec-
tive sessions; this can delay the vital decisions that can significantly improve the process
before problems arise. This paper aims to address the problems associated with configur-
ing/reconfiguring Scrum by identifying all the variabilities (variation points) in the Scrum
framework, along with the situations where a variation point can be resolved by one or
more specific variants. We propose a Software Process Line (SPrL) approach for achieving
this: we have represented the process variabilities of Scrum as a Scrum metaprocess, which
acts as the core process of a generic SPrL for Scrum. The situations in which each vari-
ation point of the metaprocess can be resolved by a specific variant have been identified.
The metaprocess has been implemented in the Medini-QVT tool, along with transforma-
tion rules that provide the means for automatic resolution of the variabilities. The validity
of the metaprocess has been evaluated through an industrial case study, the results of which
show that the metaprocess is applicable in real situations. Furthermore, the results indicate
that the processes instantiated from the metaprocess can improve the existing processes by
proposing specific practices for addressing their shortcomings.

Keywords Situational Method Engineering · Software Process Line · Scrum Framework ·
Situational Factor · Variability Resolution · Model Transformation

1 Introduction

Scrum (Schwaber & Sutherland, 2017) is not a concrete process: it is a process frame-
work that encourages practitioners to iteratively evaluate and refine the process based on
their own specific circumstances. Creating a specific Scrum process is a prerequisite for

 * Raman Ramsin
 ramsin@sharif.edu

 Halimeh Agh
 agh@ce.sharif.edu

1 Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

/ Published online: 7 April 2021

Software Quality Journal (2021) 29:337–379

http://orcid.org/0000-0003-1996-9906
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-021-09551-4&domain=pdf

1 3

benefiting from its advantages. Although Scrum incorporates a potentially effective activ-
ity for frequent process review and revision, the “Sprint Retrospective”, it is still preferable
that an initial, suitably concrete version of the Scrum process be created before the start of
every project. Failing to do so can result in unnecessary problems during the first sprints,
raising the risk of development until the process stabilizes. These problems can be avoided
if an initial version of the process is tailored based on the specific circumstances of the
organization and/or the project at hand. The need for this initial method/process tailoring
activity has been pointed out and/or addressed in several studies: situational engineering of
agile methods based on situational factors has been investigated in Karlsson and Ågerfalk
(2009) and Proba and Jung (2019); in Uikey and Suman (2016), a framework is proposed
for tailoring agile methods before the start of product development; in Cram (2019), a sur-
vey of six software development companies that use Scrum or XP is reported, which shows
that only one company uses agile methods in a “by the book” fashion, and the rest tailor
their methods prior to enactment in order to increase their practicality; and in Masood et al.
(2020), practitioners are encouraged to tailor Scrum roles, artefacts, and practices based on
variations that the authors have identified by investigating how Scrum is actually used in
practice.

Using a core process to show the variabilities of a set of software processes is a key
aspect of Software Process Lines (SPrLs) (de Carvalho et al., 2014b). A SPrL is a special-
ized Software Product Line (SPL) in the context of process definition. In SPrL Engineering
(SPrLE), the core process (also referred to as the common architecture and the reference
architecture) is usually built by specifying the common and variable parts of existing pro-
cesses; however, existing processes can have shortcomings and may therefore result in a
less-than-appropriate core process. This problem can be avoided if existing mature pro-
cesses, or process fragments extracted from reliable resources, are used for defining the
core process.

The main contribution of this paper is an instantiable core process for Scrum. We have
identified all the possible variabilities in the Scrum framework, as well as the situations
where a variation point can be resolved with a specific variant. The approach consists of
(1) a metaprocess to represent the variation points and their related variants; (2) for each
variation point, the situations in which it is resolved by a specific variant; and (3) a set of
transformation rules for automatic resolution of the variabilities based on the current pro-
ject situation. The identified variabilities are of different types and granularities, namely,
phase, activity, participant, input/output, strategy, practice, and technique. The proposed
metaprocess and transformations required for resolving the variabilities have been imple-
mented in the Medini QVT tool (Medini, QVT). In addition to industrial applications,
the results of this research can also be used by researchers in academia (as discussed in
Sect. 4). Researchers interested in software process engineering can use the metaprocess as
a core asset for proposing novel approaches in fields such as Situational Method Engineer-
ing (SME) (Henderson-Sellers et al., 2014) and Software Process Improvement (SPI) (Pino
et al., 2008).

The metaprocess has been validated through a case study. The results have shown that
the proposed metaprocess is applicable in real situations. Furthermore, the results indicate
that the processes instantiated from the metaprocess can improve the existing processes by
proposing specific practices for addressing their shortcomings.

The rest of this paper is structured as follows: Sect. 2 introduces the metaprocess
and its variabilities; Sect. 3 presents the best-fit situations for resolving the variabilities;
Sect. 4 describes the case study conducted for validating the proposed metaprocess; Sect. 5

338 Software Quality Journal (2021) 29:337–379

1 3

provides a brief survey of the related research; and Sect. 6 presents the concluding remarks
and proposes directions for furthering this research.

2 Scrum metaprocess: variabilities

The variation points of the metaprocess should be identified along with the variants that
can be used for resolving them. As mentioned in the Introduction section, variabilities are
of seven types: phase, activity, participant, input/output, strategy, practice, and technique.
In order to identify the different types of variabilities, we first need to identify the different
types of process elements; for this purpose, we have investigated SPEM 2.0 (Software and
System Process Engineering Metamodel) (OMG, 2008), since it is the de facto standard
for modeling software development processes. In SPEM 2.0, there are three types of ele-
ments in the Method Content package: role, work product, and task. Furthermore, SPEM
2.0 incorporates the notions of phase, activity, and guidance for defining the lifecycle of
a process. Therefore, variabilities in our work were initially classified as phase, activity,
participant (role), input/output (work product), and guidance. However, we have identified
three types of guidance in Scrum: strategy, practice, and technique; hence, “guidance” has
been divided into three types, bringing the total number of types to seven. Technique and
practice are often used interchangeably to specify a possible way (the how) for performing
a unit of work; in order to differentiate between these two terms in this paper, practice has
been used for referring to the agile practices recognized by the Agile Alliance, and every-
thing else has been called technique. There are also variabilities that cannot be attributed to
any of the above types; these variabilities have been grouped as “Other Variabilities”. Each
variation point is associated with zero or more variants and can be of three basic types:

○ An optional variation point is a process element whose selection is dependent on a
specific situation.

○ An alternative-XOR variation point is the choice between one of two or more associ-
ated variants.

○ An alternative-OR variation point is the selection (one or more) from two or more
associated variants.

Figure 1 shows an overview of the proposed metaprocess. As shown in this figure, the
Scrum metaprocess includes three classes of level-based variabilities: phase level, activity
level, and role level; the remaining variabilities have been classified under “Other variabili-
ties”. At the phase level, only one variation point has been identified: maintenance with
Kanban. At the activity level, all the potential variabilities of the eight activities defined in
the Scrum framework (Rubin, 2012) have been identified; each activity includes various
types of variabilities, including activity, participant, input/output, strategy, practice, and
technique. At the role level, variabilities on who can fulfill the responsibilities of the three
main roles defined in the Scrum framework (Rubin, 2012) have been specified; in addition,
auxiliary roles can be defined for special situations. The variation points and their related
variants are explained in the following sections. In order to identify the commonalities and
variabilities of the Scrum metaprocess, various resources have been studied (e.g., Cohn,
2005, 2010; Rubin, 2012). In the process of identifying the variabilities, if a process ele-
ment has been prescribed for all situations, then it has been categorized as a mandatory
process element. As an example, Sprint Execution should be performed in all situations;

339Software Quality Journal (2021) 29:337–379

1 3

therefore, it has been specified as a mandatory activity. However, there are process ele-
ments that are used in special situations; these process elements constitute the variable
parts of the proposed metaprocess. For example, Portfolio Planning is only justifiable for
organizations with multiple active, newly envisioned, or future products (Rubin, 2012);
therefore, it is not essential for all organizations. Hence, Portfolio Planning has been classi-
fied as an optional activity in the proposed metaprocess.

2.1 Phase‑level variabilities

The essential Scrum framework (Rubin, 2012) needs to be extended in order to be applica-
ble to industrial projects; therefore, the framework has been extended as shown in Fig. 2.
The graphical notation used in Fig. 2 is not a standard notation; however, it resembles the
UML activity diagram. As explained in Fig. 2, the rectangle with rounded corners shows
a mandatory phase/activity/task (akin to the action node in the UML activity diagram).
The directional connection shows the sequence (unidirectional control flow) between tasks,
and the connection without direction shows bidirectional control flows between tasks. The
circular arrow shows that the activities grouped as the Development phase are conducted
iteratively, so that after Sprint Retrospective, the next sprint starts with Sprint Planning.
Sprint-level activities have been grouped into the Development phase. Scrum prescribes
multilevel planning activities, including Portfolio Planning, Product Planning (Envision-
ing), Release Planning, Sprint Planning, and Daily Planning (Daily Scrum). The first three
plannings are ongoing activities; we have therefore grouped them into the mandatory Pro-
ject Management phase, with internal variation points that will be described further on.

Scrum does not include a phase specifically intended for maintenance purposes.
Maintenance is a highly interrupt-driven activity, and Scrum has been recognized as
unsuitable for this kind of work (Rubin, 2012). Several studies have shown that using
Scrum for maintenance can pose severe challenges; as an example, the sheer volume
of high-priority jobs emerging during maintenance can make the sprint backlog unre-
liable and prohibit the team(s) from meeting the sprint goal consistently (Heeager &
Rose, 2015; Ibrahim et al., 2019). The results of a case study reported in Ahmad et al.
(2016) point out that when Scrum is used for maintenance, the following negative
outcomes can be expected: (1) lack of work visibility, (2) fluctuating task priorities,
(3) over-commitment of sprints, (4) lack of communication and collaboration, and

Fig. 1 Overview of the proposed Scrum metaprocess

340 Software Quality Journal (2021) 29:337–379

1 3

(5) lack of work synchronization. It has also been shown that these challenges can be
suitably mitigated through Kanban (Ahmad et al., 2016; Pato et al., 2020; Seikola &
Loisa, 2011; Sjøberg et al., 2012). Therefore, a Maintenance with Kanban phase has
been added to the framework as an optional variation point. Using Kanban for main-
tenance purposes has been defined as an optional variation point; therefore, organiza-
tions can also use any other agile practice that they deem suitable for this purpose.
It should be noted that development and maintenance can be (and usually are) per-
formed in parallel, since a product being developed through an agile method is usu-
ally deployed into the operation environment in a gradual, release-by-release manner;
as development proceeds beyond the first release, and new features are targeted for
upcoming releases, parts of the system that have already been deployed are in active
use, for which maintenance requests are constantly received and addressed. Differ-
ences between Scrum and Kanban have been discussed in Kniberg and Skarin (2010);
we have used these discussions for determining the situations in which Kanban is
known to fare better than Scrum, and vice versa, as shown in Table 1.

2.2 Activity‑level variabilities

In this section, the different types of variabilities associated with each activity in the Scrum
framework will be explained, starting with high-level planning activities. The notation that
will be used throughout this paper for representing Scrum’s commonalities and variabili-
ties is shown in Fig. 3.

Fig. 2 Scrum Framework (adapted from (Rubin, 2012))

341Software Quality Journal (2021) 29:337–379

1 3

2.2.1 Portfolio planning/management

Portfolio planning is an ongoing activity that can occur before or after product planning,
and also at scheduled intervals for reviewing active products. Although this activity is
optional, it is essential for organizations with multiple active, newly envisioned, or future
products (Rubin, 2012). The process elements associated with this activity and their vari-
abilities are explained in Table 2, and shown in Fig. 4.

2.2.2 Product planning (envisioning)

Product planning is a mandatory activity that begins whenever there exists an idea for a
product that is consistent with the organization’s strategic plan. The duration of this activ-
ity depends on the product that should be envisioned (Rubin, 2012). The process elements
associated with this activity and their variabilities are explained in Table 3, and shown in
Fig. 5.

2.2.3 Release planning

Release planning is an ongoing activity that is initially conducted after product plan-
ning; revising the release plan is performed during sprint review, but it can also coincide
with sprint planning and/or sprint execution. There are two strategies for release plan-
ning: assigning specific features to specific iterations and not allocating work to specific

Table 1 Best-fit situations for using Scrum or Kanban (as alternatives)

Scrum Kanban

Best-fit situations - Changes in feature priorities are allowed,
but the permissible frequency is not as
high as in event-driven environments.

- A high degree of change in feature
priorities is allowed.

- Goal alterations are not allowed through-
out a sprint.

- Changes can be made at any time.

- Timeboxing should be observed as a rule
in delivering features.

- The product is delivered continuously.

Fig. 3 Notation used for representing Scrum’s commonalities and variabilities

342 Software Quality Journal (2021) 29:337–379

1 3

iterations. The first approach is time-consuming, but it can be beneficial when multiple
teams work on a single project. Combining these two approaches typically yields a better
solution (Cohn, 2005).

The duration of release planning depends on multiple factors such as product size,
release risk, the participants’ familiarity with the product, and the sprint length. While
much time is spent on this activity early in the project, its duration will decrease as the pro-
ject proceeds (Rubin, 2012). The process elements of this activity and their variabilities are
explained in Table 4 and shown in Fig. 6.

2.2.4 Grooming the product backlog

Grooming the backlog is initially performed during product planning and release plan-
ning for creating and refining the high-level backlog initially produced; however, it is
also performed continuously throughout the whole process. The process elements asso-
ciated with this activity and their variabilities are explained in Table 5 and shown in
Fig. 7.

Table 2 Process elements related to the portfolio planning activity

Variants Explanation

Inputs New-product data At least one of these inputs should be provided for starting
the activityIn-process data

Outputs Portfolio backlog ----
In-process products ----

Participants Internal stakeholders ----
Product owners of products ----
Senior architects These roles participate in the planning when there are

important technical constraints that should be considered
in the portfolio-planning decisions

Technical leads

Activities Scheduling There are three strategies (Rubin, 2012):
1) Optimizing for lifecycle profits (across the entire portfo-

lio): There are three alternative techniques: Shortest job
first, High delay cost first, and Weighted shortest job first
(Reinertsen, 2009; Rubin, 2012)

2) Calculating the cost of delay: There are two alternative
techniques: Leffingwell model (Leffingwell, 2010), and
General profile of the delay cost (Rubin, 2012)

3) Estimating for accuracy instead of precision: Relative
estimation is preferred, typically by using T-shirt sizes as
values

Managing inflows There are four strategies: Applying the economic filter,
Balancing arrival rate with departure rate, Embracing
emergent opportunities, and Planning for smaller and more
frequent releases (Rubin, 2012)

Managing outflows There are three strategies: Focusing on idle work instead of
idle workers, Establishing a WIP limit, and Waiting for a
complete team (Rubin, 2012)

Managing in-process
products

Marginal economics can be used as the basis for managing
active products

343Software Quality Journal (2021) 29:337–379

1 3

2.2.5 Sprint planning

Sprint planning is an iterative activity performed at the beginning of each sprint. For
each week in a sprint, sprint planning should take no longer than 2 hours (Rubin, 2012).
The process elements of this activity and their associated variabilities are explained in
Table 6 and shown in Fig. 8.

2.2.6 Sprint execution

Sprint execution is a mandatory activity conducted after sprint planning and before
sprint review. The majority of the time spent on a sprint is allocated to this activity; it
might take eight out of the 10 days during a 2-week-long sprint (Rubin, 2012). The pro-
cess elements of this activity and their associated variabilities are explained in Table 7
and shown in Fig. 9.

2.2.7 Sprint review

This meeting is held after sprint execution and usually before sprint retrospective. The
1-hour-per-sprint-week rule (Rubin, 2012) is usually used for determining the length of
the meeting. The process elements of this activity and their associated variabilities are
explained in Table 8 and shown in Fig. 10.

Fig. 4 Portfolio planning/management

344 Software Quality Journal (2021) 29:337–379

1 3

2.2.8 Sprint retrospective

This meeting usually occurs after the sprint review and before the next sprint. For
1-month sprints, this
activity takes at most 3 hours (Schwaber & Sutherland, 2017). The process ele-
ments of this activity and their associated variabilities are explained in Table 9
and shown in Fig. 11.

Table 3 Process elements related to the product planning (envisioning) activity

Variants Explanation

Inputs Initial idea ----
Planning horizon ----
Completion date ----
Budget/resources ----
Confidence thresh-

old

Outputs Product vision ----
Product backlog ----
Product roadmap Produced if the optional product roadmap definition activity is

performed
Other artifacts Outputs of optional activities (e.g., market research or competitive

analysis)
Participants Product owner ----

Scrum master These roles are optional in initial envisioning; however, they should
be included in any re-envisioning activityDevelopment team

Internal stakeholder One or more internal stakeholders usually collaborate with the prod-
uct owner

Other specialists Involved if optional tasks are performed (e.g., market research)
Activities Vision creation The techniques useful for describing customer needs and product

attributes are Personas and scenarios, use cases, and user stories
(Pichler, 2009). There are also different formats for the vision docu-
ment: elevator statement, product datasheet, product vision box,
user conference slides, press release, and magazine review (Rubin,
2012)

High-level product
backlog creation

PBIs are often written as user stories (Cohn, 2010; Rubin, 2012).
If the Scrum team is available during envisioning, the team and
stakeholders write the stories; otherwise, the product owner and a
few technical people interested in the product area write them. Prac-
tices commonly used for defining a PBI are INVEST (Independent,
Negotiable, Valuable, Estimable, Small, and Testable), and Defini-
tion of Ready (Rubin, 2012)

Product roadmap
definition

Not necessary if there is only a single small release. The strategy of
fixed periodic releases can be used, except in event-driven situations
(Rubin, 2012)

Other activities Optional activities for achieving the target confidence threshold
(Rubin, 2012); e.g., Market research, competitive analysis, and
creating a rough business model

345Software Quality Journal (2021) 29:337–379

1 3

2.3 Role‑level variabilities

While Scrum defines three main roles, there is a choice on who can fulfill their respon-
sibilities. In addition, auxiliary roles can be defined for specific situations. These vari-
abilities, shown in Fig. 12, are explained in the following sections.

2.3.1 Product owner

The variants for playing this role are as follows (Cohn, 2010; Diebold et al., 2015;
Rubin, 2012):

○ An analyst who has adequate knowledge of the target product, along with the com-
munication skills required.

○ A development team member with the necessary characteristics can act as both
the product owner and a development team member.
○ A project manager with the skills and (domain) knowledge required.

2.3.2 Scrum master

The possible variants for playing this role are as follows (Cohn, 2010; Rubin, 2012; Yi,
2011):

Fig. 5 Product planning (envisioning)

346 Software Quality Journal (2021) 29:337–379

1 3

○ A technical lead who helps the team implement its viewpoint, instead of dictating
his/her decisions.

○ Functional area managers or resource managers with the skills required.
○ A project manager can act as a Scrum master provided that he/she does not direct

the team or make decisions for it.
○ A development team member who has the necessary characteristics can act as

both the Scrum master and a development team member; however, if a Scrum mas-
ter has enough capacity, splitting her/his time among the teams can be a better solu-
tion.

Table 4 Process elements related to the release planning activity

Variants Explanation

Inputs Product vision ----
Product backlog ----
Velocity ----
Product roadmap Input to the release planning activity, if produced during product

planning
Outputs Release plan Includes MRFs (minimum releasable features), a rough estimation

of the features deliverable by the release deadline (fixed date) or
a rough delivery date for a given set of features (fixed scope), and
optionally a sprint map; the sprint map is the output of Sprint Map-
ping (an optional activity)

Participants Scrum team ----
Internal stakehold-

ers

Activities Reviewing con-
straints

There are different combinations of Scope, Date, and Budget (the
three important project constraints); however, the two most com-
monly used in Release Planning are: Fixed scope, and Fixed date.
The fixed-scope strategy is appropriate for situations where the
scope is more important than the time. The fixed-date strategy is
appropriate in situations where features can be prioritized and a set
of MRFs can be defined; this strategy is often more feasible (Cohn,
2010)

If the fixed-scope strategy is selected, a Product burndown chart and/
or a Product burnup chart can be used for communicating release
progress. If the fixed-date strategy is selected, the product burnup
chart can be used (Rubin, 2012). There are two types of product
burndown chart: Burndown line chart, and Burndown bar chart
(Cohn, 2005). A Parking-lot chart can also be used as a facilita-
tion tool, and a Gantt chart (Cohn, 2005) is useful for showing the
assignment of features to iterations

Reviewing MRFs ––
Grooming the prod-

uct backlog
Since Grooming is an ongoing activity that extends beyond release

planning, its process elements will be explained in a separate sec-
tion

Sprint mapping This activity is not essential for single-team projects

347Software Quality Journal (2021) 29:337–379

1 3

2.3.3 Development team

The size of a development team can be between 3 and 9 (Schwaber & Sutherland,
2017). There are various ways for organizing the structure of development teams
(Rubin, 2012), including:

○ Single Development Team: if there is one small product to be built, forming just
one cross-functional development team is typically enough.

○ Feature Teams: An organization should make every possible effort to structure
the teams as feature teams. These teams should be cross-functional, encompass-
ing all the skills necessary to develop the end-to-end functionality of each feature.
Code ownership is shared among team members, and they collectively maintain
code integrity.

○ Component Teams: Component teams are organized around layers or compo-
nents of a product (Palomino et al., 2016). The deliverables of multiple component
teams are integrated to make up a feature. Project teams are structured as compo-
nent teams when parts of the code are reused by multiple feature teams, or when
the organization/team is not yet able to adapt to the agile framework, or if sharing
specialists across multiple teams is too difficult (Cohn, 2010; Larman, 2008).

○ Coordinating multiple component teams with one feature team: To coordi-
nate multiple component teams, a feature team can be formed by selecting a repre-
sentative from each component team to determine whether a feature is done.

2.3.4 Auxiliary roles

In addition to the main roles defined in Scrum, it is likely that a Scrum organization will define
auxiliary roles as well, the two most common types of which are functional manager (resource

Fig. 6 Release planning

348 Software Quality Journal (2021) 29:337–379

1 3

manager) and project manager. The responsibilities of a project manager can be performed
by any of the three main Scrum roles; however, a separate project manager is assigned when
there is a large and complex development effort, or when Scrum is just applied to some parts
of a large project (Canty, 2015; Rubin, 2012).

2.4 Other variabilities

There are variabilities in the Scrum framework that cannot be categorized as phase level,
activity level, or role level; these variabilities are explained in the following sections.

2.4.1 Sprint length

The duration of sprints can vary from 1 week to 1 month (Schwaber & Sutherland, 2017);
however, it is recommended that sprint durations be consistent, at least in the same release
(Rubin, 2012; Schwaber & Sutherland, 2017). Sprint duration depends on several factors
(Cohn, 2005), including release duration, risk level, ease of getting feedback, and iteration
overhead.

Table 5 Process elements related to the grooming activity

Variants Explanation

Inputs Product backlog ----
Outputs Groomed product

backlog

Participants Scrum team ----
Activities Creating product

backlog items
(PBIs)

There are various practices and techniques for this purpose, includ-
ing:

1) Exploratory testing (Cohn, 2010)
2) User story writing workshop (Rubin, 2012): There are two alter-

native strategies, bottom-up and top-down; the use of Personas is
a beneficial practice

3) Story mapping (Rubin, 2012)
Refining PBIs Includes splitting, combining, and detailing the PBIs (Cohn, 2005)
Estimating PBIs Planning poker is a common practice for estimating PBI size (Cohn,

2010). Relative estimation is another practice, associated with
three techniques: Silent grouping (Power, 2011), Affinity estimat-
ing (Sterling, 2008), and Bulk estimation (Greening, 2012).
Silent grouping can complement planning poker in order to save
time; affinity estimating and bulk estimation are recommended
for larger numbers of PBIs. The two most common units for PBI
size are Story Point and Ideal Day; story point is the unit usually
preferred (Cohn, 2005)

Prioritizing PBIs There are four criteria for prioritizing PBIs: Value, Cost, Knowl-
edge, and Risk (Cohn, 2005). Due to the complexity of estimating
the financial return on a PBI, the desirability of PBIs for users is
considered as an alternative criterion; there are two techniques for
prioritization based on desirability: Kano analysis, and Relative
weighting (Cohn, 2005)

349Software Quality Journal (2021) 29:337–379

1 3

2.4.2 Documenting Non‑Functional Requirements (NFRs)

There are two ways for handling NFRs in Scrum: (1) writing NFRs as user stories and
adding them to the product backlog and (2) integrating NFRs into the Definition of
Done (DoD).

2.4.3 Number of product backlogs

One-product-one-product-backlog rule (Rubin, 2012) is usually used for determin-
ing the number of product backlogs. However, there are situations in which this rule is
impractical (Rubin, 2012), including:

○ If a large number of teams work independently on different areas of a large prod-
uct, creating hierarchal backlogs is preferred.

○ If there are multiple teams, each responsible for creating features consistent with
its skill sets, creating team-specific views of a shared backlog is preferred.

○ In some situations, there are multiple products, and therefore, multiple product
backlogs, but limitations have forced the organization to have a single team work-
ing on all backlogs. In such situations, the product owner should assemble a prior-
itized set of PBIs from the multiple backlogs for every sprint.

Fig. 7 Grooming the product backlog

350 Software Quality Journal (2021) 29:337–379

1 3

2.4.4 Coordination of multiple teams

According to Nexus (Schwaber, 2015), if there are three to nine Scrum teams working
on a single product backlog, the following process elements can be added to Scrum for
coordinating the teams:

○ Nexus sprint planning is conducted before sprint planning to determine the PBIs for
each team; three techniques can be used: establishing a common basis for estimates,
adding detail to user stories sooner, and look-ahead planning (Cohn, 2005).

○ Nexus sprint backlog is the output of Nexus sprint planning and includes the PBIs
selected by Scrum teams along with their dependencies.

○ Nexus integration team ensures the production of an integrated increment in every
sprint; this team consists of the product owner, a Scrum master, and one or more
Nexus integration team members.

○ Nexus daily Scrum is held before the daily Scrum activity; representatives from
Scrum development teams attend this meeting to identify integration issues. The issues
thus identified are fed to the daily Scrum in order to be addressed.

○ Nexus sprint review is performed by the teams in lieu of sprint reviews.
○ Nexus sprint retrospective includes the sprint retrospective activity performed by

each Scrum team, along with two additional activities: identifying shared problems

Table 6 Process elements related to the sprint planning activity

Variants Explanation

Inputs Product backlog ----
Team velocity ----
Team capabilities ----
Constraints ----
Initial sprint goal ----

Outputs Sprint goal ----
Sprint backlog ----

Participants Scrum team ----
Activities Determining capacity There are two units for measuring capacity: Story-Points/Ideal-

Days (the same units used for PBI size), and Effort-Hours
(the same unit used for measuring sprint backlog tasks). After
calculating the total capacity of a team, a buffer should also
be reserved; there are three types of buffers: Feature buffer,
Schedule buffer and Combined buffer (Cohn, 2005)

Selecting PBIs If a formal sprint goal is defined, PBIs are selected based on the
goal; otherwise, they are selected from the top of the backlog
up to the capacity of the team

Acquiring confidence There are two techniques for acquiring confidence: Using pre-
dicted velocity (Cohn, 2010), and creating the sprint backlog;
the latter is preferred due to its reliability. It is recommended
that the Definition of Done be used during this activity

Refining sprint goal ----
Finalizing commitment ----

351Software Quality Journal (2021) 29:337–379

1 3

before the sprint retrospective, and discussing any actions needed for addressing the
shared challenges after the sprint retrospective.

These process elements are added to the development phase of the Scrum framework, as
shown in Fig. 13. There are other techniques for multi-team coordination that do not pre-
scribe any specific range for the number of teams, including: Scrum of Scrums (Paasivaara
et al., 2012) and Release Train (Rubin, 2012); incorporating a feeding buffer into the plan
(Cohn, 2005) can be used as a sub-technique for the release train technique.

2.4.5 Estimation of velocity

There are three techniques for estimating velocity (Cohn, 2005), namely:

○ Using historical values is preferred when the team has had previous experience in
similar projects. There are two alternative techniques for estimating the velocity as
a range: adding/subtracting points to/from the average velocity, and identifying the
team’s best and worst velocities over the past few months.

○ Running iterations are used when there is no historical data. There are two
alternative techniques: Using the cone of uncertainty, and Using the range of
observed values; the second technique is only used when the team can run two or
more sprints before estimating the velocity.

○ Forecasting is used when it is not feasible to run sprints before estimating the
velocity. It is done either by intuition, or by using the velocities of other teams.

Fig. 8 Sprint planning

352 Software Quality Journal (2021) 29:337–379

1 3

3 Situations for resolving Scrum variabilities

The variabilities of the Scrum framework were explained in Sect. 2. In this section, we
will define the situations in which a variation point can be resolved by a specific variant.
In SME, situational factors are usually used for expressing the specific characteristics of
the project at hand and/or the organization’s needs. We will use combination of situational
factors for resolving the variabilities of the Scum metaprocess; however, we first need to
specify the situational factors that are relevant to agile methodologies. The specific situa-
tions for resolving the variabilities are then defined in Sect. 3.2.

3.1 Situational factors for agile methodologies

In Clarke and O’Connor (2012), a reference framework is proposed for the situational fac-
tors affecting the software development process; we have used this framework to identify
the situational factors that are relevant to agile methodologies and are useful for resolving

Table 7 Process elements related to the sprint execution activity

Variants Explanation

Inputs Sprint goal ----
Sprint backlog ----

Outputs Potentially shippable prod-
uct increment

Participants Scrum team ----
Activities Task planning ----

Flow management ----
Daily Scrum Although the maximum duration of this activity is 15 minutes,

it may need to be adjusted for larger teams. The “Three Ques-
tions” is a practice usually used in this activity; the parking-
lot chart can be used as a facilitation tool (McKenna, 2016).
All Scrum team members attend this meeting; other people
such as salespeople or developers from other projects can be
invited, but they are only there to listen. The task board is
frequently updated during this meeting

Task performance Five practices are commonly used for improving the Scrum
teams’ work during this activity (Cohn, 2010): Pair
Programming (Arisholm et al., 2007; Chong & Hurlbutt,
2007; O’Donnell & Richardson, 2008; Padberg & Muller,
2003), Refactoring (Ge et al., 2006; Tingling & Saeed,
2007), Test-Driven Development (Causevic et al., 2011),
Collective Ownership, and Continuous Integration
(Warden & Shore, 2007)

Communicating A combination of the task board and the sprint burndown
and/or burnup chart is commonly used for communicating
progress; a Cumulative Flow Diagram (CFD) can be used
for detailing a task/story. While the remaining effort is gen-
erally depicted in the sprint burndown chart in effort-hours,
the work in the sprint burnup chart can be represented
either in effort-hours or in story points

353Software Quality Journal (2021) 29:337–379

1 3

the variabilities identified in the proposed Scrum metaprocess. These situational factors
were then refined and completed based on other resources (Abad et al., 2012; Ally et al.,
2005; Campanelli & Parreiras, 2015; Clarke & O’Connor, 2012; Fitzgerald et al., 2006;

Fig. 9 Sprint execution

Table 8 Process elements of the sprint review activity

Variants Explanation

Inputs Sprint goal ----
Sprint backlog ----
Potentially ship-

pable product

Outputs Groomed product
backlog

Updated release
plan

Participants Scrum team ----
Internal stakehold-

ers

External stake-
holders

Attendance of external stakeholders is not required at every Sprint Review,
especially if the review involves internal discussions only

Other internal
teams

Other internal teams can attend the meeting to provide area-specific feedback
or to synchronize their own work with the Scrum team

Activities Summarizing The sprint goal is presented, along with the PBIs associated with the goal, and
a summary of the increment developed during the sprint

Demonstrating The increment developed during the current sprint is demonstrated
Discussing The current state of the product and the direction of the development are

discussed
Adapting Based on the results of the discussion, participants may decide to create new

PBIs, reprioritize the PBIs, or change/delete certain PBIs. This grooming
might affect the release plan: it is possible that one or more of the release-
plan variables (scope, date, and budget) be altered

354 Software Quality Journal (2021) 29:337–379

1 3

Gill & Henderson-Sellers, 2006; Hoda et al., 2010; Hodgetts, 2004; Jyothi & Rao, 2012;
Kruchten, 2013; Law & Charron, 2005; Lindvall et al., 2002; Rubin, 2012; Stankovic et al.,
2013). The finalized list of situational factors is shown in Table 10, along with the addi-
tional resources that were used for refining or extending the factors; some factors have been
redefined or combined in order to facilitate the resolution of variation points in the pro-
posed metaprocess. The third column in Table 10 depicts the range of possible values for
each situational factor; an explanation is also presented in the fourth column as a guideline
for assigning specific values to each situational factor.

3.2 Specific situations for resolving variabilities

The specific situations for resolving each and every variability indicated in the Scrum
metaprocess have been identified. However, for the sake of brevity, the best-fit situations
for resolving the variabilities of “Grooming the product backlog” and sprint-level activities
are presented herein, in Tables 11 and 12, respectively. The specific situations for resolv-
ing the remaining variabilities of the Scrum metaprocess are provided in Agh and Ramsin
(2019).

3.3 Transformation rules

The time spent on defining/refining the target methodology can be reduced through auto-
mation; model-driven methods have shown great promise in this regard (Aleixo et al.,
2010; Hurtado et al., 2013). Based on the situations identified for resolving the variabili-
ties of the metaprocess, transformations have been implemented in the Medini-QVT tool
to map each variation point to the appropriate variant(s). The metaprocess and situational
factors are fed to these transformations as input models, and the target methodology is pro-
duced as output. Situational factors are modeled by instantiating the Software Process Con-
text Metamodel (SPCM) (Hurtado et al., 2013) defined in the tool (Fig. 14).

Modeling the metaprocess is performed based on a metamodel defined for this pur-
pose, which is an extended version of SPEM 2.0 (OMG, 2008). Although various exten-
sions of SPEM 2.0 are already available, such as vSPEM (Martínez-Ruiz et al., 2011)

Fig. 10 Sprint review

355Software Quality Journal (2021) 29:337–379

1 3

and SmartySPEM (Junior et al., 2013), none of them support the multi-level variability
modeling that is used in the proposed metaprocess for modeling variabilities at differ-
ent levels, as shown in Sect. 2.2. The metamodel used for modeling the metaprocess is
shown in Fig. 15. Figure 16 shows an example of the models produced by instantiating
the metamodel. An example of the transformations implemented in Medini QVT is shown
in Fig. 17. The transformations implemented in the tool are provided in Agh and Ramsin
(2019), along with examples of applying them to the models. It should be noted that the
variability models shown throughout Sect. 2 are the results of instantiating the proposed
metamodel via Medini QVT. However, as shown in Fig. 16, the models created via this
tool have a tree-like structure with nested nodes; understanding such models is difficult
for the intended audience. Therefore, the models produced by the tool have been manually
converted into more legible diagrams using a special notation, which has been shown in
Fig. 3; the notation uses familiar elements from UML Activity Diagrams.

Table 9 Process elements of the sprint retrospective activity

Variants Explanation

Inputs Focus ----
Exercises ----
Objective data ----
Subjective data ----
Insight backlog Input to the activity if there are insights that have not been already

addressed
Outputs Improved actions ----

Improved camaraderie ----
Insight backlog Produced if there are insights that will not be addressed in the

upcoming sprint
Participants Development team ----

Facilitator This role is usually performed by the Scrum master; however,
any capable team member, or even an outside facilitator, can
perform this role

Product owner If there are safety problems making the development team
uncomfortable to speak freely in the product owner’s presence,
the product owner should not attend the meeting until the Scrum
master resolves the issue

Stakeholders/managers The Scrum team decides whether these roles should attend the
meeting

Activities Setting the atmosphere A set of ground rules should be established to help people safely
express their views on improving the process. The atmosphere
should be set so that everyone participates actively

Creating a shared
context

There are two common techniques for creating a shared context:
Event Timeline, and Emotions Seismograph

Identifying insights Brainstorming and the Insight Backlog are two techniques com-
monly used for identifying the insights

Determining actions Dot Voting is commonly used for prioritizing the insights; then,
the actions required for implementing high-priority insights are
determined, to be performed during the next sprint

Closing the retrospec-
tive

Certain tasks can be performed before ending the session, namely:
reviewing the actions, thanking the participants, and collecting
suggestions for improving the retrospective itself

356 Software Quality Journal (2021) 29:337–379

1 3

4 Case study

The validity of the proposed metaprocess has been assessed by conducting an industrial
case study. The case study was conducted based on the recommendations of Runeson et al.
(2012), as explained in the following sections.

Fig. 11 Sprint retrospective

Fig. 12 Role-level variabilities

357Software Quality Journal (2021) 29:337–379

1 3

4.1 Scope and objective

The study aims to investigate the effects of creating a specific process by using the pro-
posed metaprocess in a software development organization. The study specifically aims to
identify the applicability of the proposed approach in real situations as well as its effect on
improving the processes already being used in organizations.

4.2 Research questions

The objective was refined into the following set of research questions:

– RQ1. Can the proposed Scrum metaprocess be used for building specific processes in
real situations?

– RQ2. Can the specific processes produced from the proposed Scrum metaprocess
improve the processes currently used in the organization?

To answer these research questions, we sought a case where Scrum was the organiza-
tional software process. It was also essential that people with enough knowledge about the
processes being used in the organization had enough time to collaborate with us throughout
the execution of the case study.

4.3 Case context

The case study was conducted based on the recommendations of Runeson et al. (2012).
The study has been conducted in a medium-sized, Iranian software development company,
which we will call A (the real name has been made anonymous). Company A has about
400 employees, is made up of different units, and uses Scrum as its organizational software
process. The unit that was studied in this research develops banking software. To answer
the research questions, three projects were selected in this unit, as shown in Table 13.

Fig. 13 Development phase of Scrum extended with Nexus process elements

358 Software Quality Journal (2021) 29:337–379

1 3

Table 10 Situational factors relevant to agile methodologies

Factor clas-
sification

Situational factors Value Explanation

Personnel Number of teams Normal/high The number of development teams
Culture (a two-valued

factor) (Ally et al., 2005;
Clarke & O’Connor,
2012; Lindvall et al.,
2002)

Collaborative/
non-collabora-
tive–harmoni-
ous/disharmoni-
ous)

First value: the level of collaboration among
team members to achieve the team’s goal

Second value: the level of interpersonal
conflicts

Experience (a two-valued
factor) (Abad et al.,
2012; Campanelli &
Parreiras, 2015; Clarke
& O’Connor, 2012;
Fitzgerald et al., 2006)

Experienced/
inexperienced–
familiar/unfa-
miliar

First value: the level of developers’ business
knowledge. Second value: the level of
developers’ familiarity with the develop-
ment methodology

Cohesion (a two-valued
factor) (Abad et al., 2012;
Clarke & O’Connor,
2012; Kruchten, 2013;
Stankovic et al., 2013)

Low/normal–nor-
mal/high

First value: the percentage of team members
who have worked together in the past

Second value: the rate at which people leave
the team

Skill & knowledge (Abad
et al., 2012; Clarke &
O’Connor, 2012; Hoda
et al., 2010; Hodgetts,
2004; Stankovic et al.,
2013)

Inadequate/
adequate

The level of developers’ technical knowledge
and skill

Commitment (Clarke &
O’Connor, 2012; Stanko-
vic et al., 2013)

Inadequate/
adequate

The level of commitment to the project
among team members

Requirements Changeability (a two-valued
factor) (Campanelli &
Parreiras, 2015; Clarke &
O’Connor, 2012; Lindvall
et al., 2002)

Normal/high–nor-
mal/high

First value: the rate at which user and system
requirements are changed

Second value: the rate of scope creep

Standards (Clarke &
O’Connor, 2012)

Inadequate/
adequate

The general quality of user requirements

Application Degree of Risk (Fitzgerald
et al., 2006; Rubin, 2012)

Normal/high The level of project risks

Complexity (Ally et al.,
2005; Campanelli &
Parreiras, 2015; Fitzgerald
et al., 2006; Hodgetts,
2004; Rubin, 2012)

Normal/high The level of application complexity

Size (Abad et al., 2012;
Clarke & O’Connor,
2012; Gill & Henderson-
Sellers, 2006; Kruchten,
2013)

Normal/large The relative application size

Connectivity (Abad
et al., 2012; Clarke &
O’Connor, 2012)

Normal/high The level of system dependence on existing/
future systems

Reuse (Clarke & O’Connor,
2012; Jyothi & Rao, 2012)

Normal/high Extent of utilization of application compo-
nents in other projects

359Software Quality Journal (2021) 29:337–379

1 3

Table 10 (continued)

Factor clas-
sification

Situational factors Value Explanation

Deployment Profile (Clarke
& O’Connor, 2012;
Fitzgerald et al., 2006;
Kruchten, 2013)

Normal/high The number of different versions of the
application to be deployed, or the number
of applications to be deployed

Quality (Abad et al., 2012;
Ally et al., 2005; Clarke
& O’Connor, 2012;
Fitzgerald et al., 2006;
Hodgetts, 2004)

Normal/high The level of product quality required

Organization Maturity (Clarke &
O’Connor, 2012;
Kruchten, 2013;
Stankovic et al., 2013)

Inadequate/
adequate

The level of organization maturity

Management Commitment
& Expertise (a two-
valued factor) (Ally et al.,
2005; Campanelli &
Parreiras, 2015; Clarke
& O’Connor, 2012;
Stankovic et al., 2013)

(Inadequate/
adequate–inade-
quate/adequate)

First value: The level of management’s com-
mitment to the project

Second value: the level of management’s
knowledge and skill

Facilities (Clarke &
O’Connor, 2012;
Stankovic et al., 2013)

Inadequate/
adequate

The level of organization support for provid-
ing the facilities required, for example,
physical environment

Operation End-User Experience (Abad
et al., 2012; Campanelli &
Parreiras, 2015; Clarke &
O’Connor, 2012)

Inadequate/
adequate

The level of end-user familiarity with the
application type

Business Time to Market (Abad
et al., 2012; Clarke
& O’Connor, 2012;
Hodgetts, 2004; Law &
Charron, 2005)

Short/normal The period of time available for building the
first version of the shippable product

External Dependencies
(Clarke & O’Connor,
2012)

Normal/high The number of the parties involved in build-
ing the product (multi-site development)

Opportunities (Clarke &
O’Connor, 2012)

Normal/high The rate at which emergent opportunities
occur

Business Drivers (Abad
et al., 2012; Clarke &
O’Connor, 2012)

Financial consid-
erations/market-
ing activities/
minimizing
costs/maximiz-
ing customer
satisfaction

What is the crucial force behind the success-
ful development of a project (the range of
values for this factor can be extended)?

Magnitude of Potential Loss
(Abad et al., 2012; Clarke
& O’Connor, 2012)

Normal/high The effect of project failure on customer rela-
tions, financial health, competitive position,
organizational reputation, organizational
survival, or market share

360 Software Quality Journal (2021) 29:337–379

1 3

Table 11 Situations to resolve variabilities of “Grooming the product backlog”

Best-fit situations

Grooming
the product
backlog

Activity Creating PBIs Exploratory
testing (Shah
et al., 2014)

Personnel Experience = (Inexperienced,
Familiar) or Application Complex-
ity = High or Requirements Stand-
ards = Inadequate or End-user Experi-
ence = Inadequate

User story writ-
ing workshop

Requirements Standards = Inadequate or
Application Size = Large or Applica-
tion Complexity = High; Personnel
Culture = (Collaborative, Harmonious);
Organization Facilities = Adequate

Story mapping
(Rubin, 2012)

Degree of Risk = High or Time to
Market = Short or Personnel Experi-
ence = (Inexperienced, Familiar);
Organization Facilities = Adequate

Estimating PBIs Relative estima-
tion

Application Size = Large; Requirements
Standards = Inadequate; Deployment
Profile = High

Planning poker
(Mahnič &
Hovelja, 2012)

Application Size = Normal; Personnel
Culture = (Collaborative, Harmonious);
Personnel Skill & Knowledge = Ade-
quate

Story point
(Cohn, 2005)

Personnel Experience = (*, Familiar);
Personnel Cohesion = (Low, High)

Ideal day Personnel Experience = (*, Unfamiliar);
Personnel Cohesion = (Normal, Normal)

Prioritizing
PBIs (Cohn,
2005; Kaur &
Kumar, 2015)

Cost Business Drivers = Minimizing Costs

Value Business Drivers = Maximizing Customer
Satisfaction

Knowledge Personnel Experience = (Inexperienced,
Familiar) or Personnel Skill & Knowl-
edge = Inadequate

Risk (Reddaiah
et al., 2013)

Degree of Risk = High or Magnitude of
Potential Loss = High

Strategies &
practice

User story writ-
ing workshop

Personas Personnel Experience = (Inexperienced,
Familiar)

Top-down Personnel Experience = (Inexperienced,
Familiar) or Application Complex-
ity = High or Application Size = Large

Bottom-up Personnel Experience = (Experienced,
Familiar); Application Complex-
ity = Normal; Application Size = Normal

Relative estima-
tion

Affinity estimat-
ing (Sterling,
2008)

Application Size = Large

Bulk estimation
(Greening,
2012)

Application Size = Large; Time to Mar-
ket = Short

Silent grouping
(Power, 2011)

Application Size = Large; Personnel Cul-
ture = (Collaborative, Harmonious)

361Software Quality Journal (2021) 29:337–379

1 3

4.4 Study design

The study was exploratory and explanatory: it was exploratory in that it focused on con-
firming the benefits of the proposed metaprocess and finding new insights and ideas to
improve it; it was explanatory in that it provided an explanation of a situation where the
proposed metaprocess was applied as a new approach for creating specific processes.

The units of analysis were the software processes that were used in the different pro-
jects/units of the organization, the individual members at different positions in the organi-
zation, and the teams that these people were organized in. The studies focused on the expe-
riences gained during the time that the teams were applying specific practices defined in
the software process instantiated from the proposed metaprocess as compared to previous
experiences in the same organization without the use of the metaprocess.

4.4.1 Subjects

In the case selected, there was no documented information about the software process
used in the projects. Therefore, the subject sampling strategy was to hold interviews with
a sample of people involved in the projects who had enough information about the pro-
cess. In total, three people were interviewed who played “Project Manager” or “Product
Owner” roles. To ensure the confidentiality of data and information, all the participants
who attended the interviews were assured that the data would only be used for academic
and research purposes.

4.4.2 Research methods

The main source of information in this investigation was semi-structured interviews. Inter-
view instruments were constructed to focus on the areas of discussion. The instruments
were also adapted as the interviews progressed to gain further information about the pro-
cess used in the organization and the problems occurring during its execution. Three inter-
view sessions were held with each subject. The length of each interview was approximately
1 hour. The interview instruments are provided in Agh and Ramsin (2019). In addition to
the notes taken during the interviews, the interviews were also recorded in order to help
prepare transcripts for later analysis.

Best-fit situations

Planning poker
moderator

Scrum master Number of Teams = High; Application
Size = Large; Requirements Stand-
ards = Adequate

Product owner Number of Teams = Normal or Require-
ments Standards = Inadequate

Anyone else Application Size = Large; Number of
Teams = High

Value (Cohn,
2005)

Kano analysis Personnel Skill & Knowledge = Inad-
equate

Table 11 (continued)

362 Software Quality Journal (2021) 29:337–379

1 3

Table 12 Situations to resolve the variabilities of sprint-level activities

Best-fit situations

Sprint plan-
ning

Activity Determine
capacity

Relative weighting Personnel Skill & Knowledge = Adequate

Story point Personnel Experience = (*,Familiar); Per-
sonnel Cohesion = (Low, High)

Ideal day Personnel Experience = (*,Unfamiliar);
Personnel Cohesion = (Normal, Normal)

Effort-hours Personnel Cohesion = (Normal, Normal)

Feature buffer
(Cohn, 2005)

Time to Market = Short

Schedule buffer
(Cohn, 2005)

Degree of Risk = High or Application Com-
plexity = High; Magnitude of Potential
Loss = High

Combined buffer
(Cohn, 2005)

Time to Market = Short; Degree of
Risk = High or Application Complex-
ity = High; Magnitude of Potential
Loss = High

Select PBIs Selecting PBIs
based on the
sprint goal

Personnel Cohesion = (Low, High); Degree
of Risk = High

Selecting PBIs
from top of the
backlog

Personnel Cohesion = (Normal, Normal);
Requirements Standards = Adequate

Acquire Confi-
dence

Definition of Done Magnitude of Potential Loss = High or
Personnel Cohesion = (Low, High) or
Degree of Risk = High or Application
Quality = High

Using the pre-
dicted velocity
(Cohn, 2010)

Personnel Cohesion = (Normal, Normal);
Application Complexity = Normal; Per-
sonnel Skill & Knowledge = Adequate

Creating the sprint
backlog

Personnel Cohesion = (Low, High); Applica-
tion Complexity = High; Personnel Skill &
Knowledge = Inadequate

Sprint
Execution

Activity Daily Scrum
(Pauly et al.,
2015)

Other people Application Complexity = High or Degree
of Risk = High or Personnel Experi-
ence = (Inexperienced, Familiar) or Per-
sonnel Skill & Knowledge = Inadequate

Three questions Personnel Experience = (*,Unfamiliar)
or Time to Market = Short or Personnel
Culture = (Non-collaborative,*)

Parking lot chart
(McKenna,
2016)

Application Complexity = High or Degree
of Risk = High

Task per-
formance
(Cohn, 2010)

Pair programming
(Arisholm et al.,
2007; Chong &
Hurlbutt, 2007;
O’Donnell &
Richardson,
2008; Padberg &
Muller, 2003)

Application Quality = High or Personnel
Cohesion = (Low, High); Organization
Facilities = Adequate; Personnel Cul-
ture = (Collaborative, Harmonious)

363Software Quality Journal (2021) 29:337–379

1 3

Table 12 (continued)

Best-fit situations

TDD (Causevic
et al., 2011;
Savoine et al.,
2016)

Application Quality = High or Applica-
tion Complexity = High or Degree of
Risk = High or Requirements Stand-
ards = Inadequate; Personnel Skill &
Knowledge = Adequate

Refactoring (Ge
et al., 2006;
Hussain & Javed,
2015; Tingling &
Saeed, 2007)

Application Reuse = High or Application
Quality = High or Application Con-
nectivity = High or Personnel Cohe-
sion = (*,High)

Collective owner-
ship (Maruping
et al., 2009)

Personnel Cohesion = (*,High) or
Application Quality = High or Time
to Market = Short; Personnel Skill &
Knowledge = Adequate; Personnel Cul-
ture = (Collaborative, Harmonious)

Continuous inte-
gration (Warden
& Shore, 2007)

Deployment Profile = High or Time to
Market = Short or Degree of Risk = High;
Magnitude of Potential Loss = High or
Application Connectivity = High

Communicat-
ing

CFD (Power,
2014)

Requirements Changeability = (*,High);
Personnel Experience = (*,Unfamiliar)

Task board
(Hajratwala,
2012)

Personnel Skill & Knowledge = Inadequate
or Requirements Changeability = (High,*)

Burndown chart Requirements Changeability = (*,Normal)

Burnup chart Requirements Changeability = (*,High)

Practice Burndown
chart

Effort-hours Personnel Cohesion = (Normal, Normal)

Burnup chart Story point Personnel Experience = (*,Familiar); Per-
sonnel Cohesion = (Low, High)

Effort-hours Personnel Experience = (*,Unfamiliar);
Personnel Cohesion = (Normal, Normal)

Sprint
review

Role External stake-
holders

Business Opportunities = High or Degree of
Risk = High or Application Quality = High

Other internal
teams

External Dependencies = High or Applica-
tion Complexity = High

Sprint Ret-
rospective
(Erdoğan
et al.,
2018;
Jovanovic
et al.,
2015)

Role Other people Stakeholders Personnel Experience = (Inexperienced,
Familiar) or Business Opportuni-
ties = High

Managers Management Commitment & Exper-
tise = (Adequate, Adequate)

364 Software Quality Journal (2021) 29:337–379

1 3

4.4.3 Analysis

The audio recordings of the interviews were fully transcribed to identify problems in the
processes being used in the projects. In order to apply the process instantiated from the
metaprocess, a SPI (Software Process Improvement) roadmap was prepared to gradually
implement the proposed practices. Based on the SPI roadmap created, a subset of the pro-
posed practices, which was applicable during a 2-week sprint, was applied. At the end of
the sprint, team members provided their feedback using a questionnaire; the questionnaire
is provided in Agh and Ramsin (2019).

Table 12 (continued)

Best-fit situations

Product owner Personnel Culture = (Collaborative,
Harmonious); Requirements Changeabil-
ity = (High,*)

Facilitator Scrum master Number of Teams = Normal or External
Dependencies = Normal

Outside facilitator Application Complexity = High or Degree
of Risk = High or Personnel Experi-
ence = (*,Unfamiliar)

A capable team
member

Application Size = Large; Number of
Teams = High

Product Insight back-
log (Input)

Personnel Experience = (Inexperienced,*);
Application Size = Large or Application
Complexity = High

Insight back-
log (Output)

Personnel Experience = (Inexperienced,*);
Application Size = Large or Application
Complexity = High

Activity Create a shared
context

Event timeline Application Complexity = High or
Degree of Risk = High or Application
Size = Large; External Dependen-
cies = High

Emotions seismo-
graph

Management Commitment & Exper-
tise = (Adequate, Adequate); Personnel
Culture = (Collaborative, Harmonious)

Identify
insights

Brainstorming Personnel Culture = (Collaborative, Har-
monious); Management Commitment &
Expertise = (Adequate, Adequate)

Using the insight
backlog

Personnel Experience = (Inexperienced,*);
Application Size = Large or Application
Complexity = High

Determine
actions

Dot voting Personnel Culture = (Collaborative, Har-
monious)

Collect suggestions Personnel Culture = (Collaborative, Har-
monious); Management Commitment &
Expertise = (Adequate, Adequate)

Appreciate people Management Commitment & Exper-
tise = (Adequate, Adequate)

Review the committed actions Management Commitment & Exper-
tise = (Adequate, Adequate)

365Software Quality Journal (2021) 29:337–379

1 3

4.5 Study validity

The tactics used for reducing threats to validity are as follows:

– Theory triangulation: The viewpoints of the different roles involved were considered
throughout the case study (project manager and product owner) as well as in filling out
the questionnaire designed for collecting feedback about the proposed practices (project
manager, product owner, and development team).

– Developing and maintaining a detailed case study protocol: A case study protocol was defined
at the beginning of the study and was updated continuously throughout the study.

– Review of the designs, protocols, etc. by a peer researcher: The procedures selected for
data collection and analysis were reviewed by a highly effective person (the second author).

Fig. 14 Software Process Context Metamodel (SPCM) (Hurtado et al., 2013)

Fig. 15 Metamodel used for modeling the metaprocess

366 Software Quality Journal (2021) 29:337–379

1 3

– Review of the collected data and obtained results by case subjects: The results of each
interview session were reported back to the subjects via email and discussed in face-to-
face conversations, and misinterpretations were resolved.

Fig. 16 An excerpt of the Scrum metaprocess defined in the tool

367Software Quality Journal (2021) 29:337–379

1 3

4.6 Applying the metaprocess to the case study

In this section, the results of applying the metaprocess to the case study for constructing
project-specific processes are presented. The answers to the research questions RQ1 and
RQ2 are provided below.

4.6.1 RQ1‑Building specific processes for real situations via the metaprocess

To answer this question, situational factors were given specific values, as shown in
Table 14. The values were determined by considering the specifications of the projects
and the organization; moreover, the subjects’ knowledge and experience were used for
this purpose through the second interview session. These values contributed to resolv-
ing the variabilities defined in the metaprocess. The resulting instantiated processes
are too large to be reported herein; therefore, only the resolved “Grooming the product
backlog” activity for project A.2 will be shown. The corresponding activity currently
being used in project A.2 is shown in Fig. 18, and the instantiated process produced
by resolving the variabilities is shown in Fig. 19. The complete set of existing and
produced processes for the three projects is provided in (Agh & Ramsin, 2019). The
subjects agreed that the produced processes were suitable for their projects and could
potentially solve their problems; a list of the problem–solution pairs is provided in
(Agh & Ramsin, 2019).

It should be noted that satisfying RQ1 is not a trivial task. An immature metap-
rocess can easily fail to satisfy this requirement. Two hypothetical cases in which a
metaprocess would not be considered as applicable to real situations are provided
below:

Fig. 17 Example of transformations implemented in Medini-QVT

Table 13 Projects selected in
case A

Project selected Number of devel-
opment teams
involved

A.1 Internet Banking Software 3
A.2 Improving the Capabilities of

Smart Cards
1

A.3 Internet Store 1

368 Software Quality Journal (2021) 29:337–379

1 3

– If executing the transformations might result in processes that are not complete or
syntactically correct; for example, if the dependencies among process elements
were not correctly and completely identified in the metaprocess, then the produced
process would have been useless.

– If executing the transformations might not result in a specific process since most of
the variabilities remain unresolved based on the values of situational factors. This
indicates that the set of situational factors, the range of values defined for each fac-
tor, or the situations defined for resolving the variabilities should be refined.

Table 14 Values of situational factors in case A

Factor classifica-
tion

Situational factors A.1 A.2 A.3

Personnel Number of teams Normal Normal Normal
Culture (Collaborative,

Harmonious)
(Collaborative,

Harmonious)
(Collaborative,

Disharmonious)
Experience (Experienced,

Unfamiliar)
(Inexperienced,

Familiar)
(Experienced,

Familiar)
Cohesion (Normal, Normal) (Normal, Normal) (Normal, Normal)
Skill & knowledge Adequate Inadequate Inadequate
Commitment Adequate Adequate Adequate

Requirements Changeability (High, High) (High, Normal) (High, Normal)
Standards Inadequate Adequate Inadequate

Application Degree of risk High High High
Complexity High Normal High
Size Large Normal Large
Connectivity High Normal Normal
Reuse Normal Normal Normal
Deployment profile Normal High Normal
Quality High High High

Organization Maturity Adequate Adequate Adequate
Management

Commitment &
expertise

(Adequate, Ade-
quate)

(Adequate,
Adequate)

(Adequate,
Adequate)

Facilities Inadequate Adequate Inadequate
Operation End-user experience Inadequate Adequate Inadequate
Business Time to market Normal Short Normal

External dependen-
cies

High High Normal

Opportunities High High High
Business drivers Maximizing cus-

tomer satisfac-
tion

Financial considera-
tions

Minimizing costs,
Maximizing cus-
tomer satisfaction

Magnitude of poten-
tial loss

High Normal High

369Software Quality Journal (2021) 29:337–379

1 3

4.6.2 RQ2‑Improvement of existing processes

To answer this question, we enquired the subjects about the feasibility of applying certain
parts of the proposed processes in their upcoming sprints. The subject involved in project
A.2 agreed to apply the following improvements: using the “story point” unit for estimat-
ing PBIs and the “effort hour” unit for estimating tasks, specifying a range of velocities for
the development team, using the “planning poker” technique for estimating PBIs, specify-
ing “definition of ready” criteria, conducting “competitive analysis”, appointing the Scrum
master as the facilitator for “sprint review” meetings, defining guidelines for presenting the
demo in “sprint review” meetings, and separating “sprint review” and “sprint planning”
sessions. Other subjects did not have enough time in their upcoming sprints for applying
the proposed practices.

We designed a questionnaire for obtaining feedback on the impact of the practices applied in
project A.2; this questionnaire is presented in Appendix A. The questionnaire was designed in
two parts: in the first part, we designed specific questions for gathering details of the practitioners;

Fig. 18 “Grooming the product backlog” as currently used in project A.2

Fig. 19 Proposed “Grooming the product backlog” activity for project A.2

370 Software Quality Journal (2021) 29:337–379

1 3

in the second part, the respondents were asked to give their opinions on whether the practices
applied had resulted in improvements to the process used in project A.2. This questionnaire was
filled out by the subject and development team members. The Likert response scale used in the
questionnaire was as follows: strongly agree, agree, neutral, disagree, strongly disagree, and not
sure. After applying the practices, we scheduled a meeting for gathering feedback from the sub-
ject and team members using the predesigned questionnaire. The duration of the meeting was
30 minutes. At the start of the meeting, we spent 10 minutes to explain the questionnaire. Sub-
jects were then given 20 minutes to fill out the questionnaire. Figure 20 shows a summary of the
responses given to these questions (provided by six respondents); as seen in this figure, almost all
the respondents agreed that all the practices applied in project A.2 had had a positive effect on
improving its process.

In addition to the questions about the practices applied, we also designed questionnaires for
identifying the potential effects of some of the proposed practices on improving the processes
currently used in projects A.1 and A.3. The questionnaires are provided in (Agh & Ramsin,
2019). Analyzing the responses (provided by eight respondents) to these questions indicated that
the percentage of positive responses to the proposed practices was above 50%.

4.7 Discussion

The results of the case study confirm that the metaprocess is applicable to real situations
(RQ1), as effective processes were custom-built for three running projects. The results of
applying some of the improvements proposed show that the shortcomings of current pro-
cesses can indeed be mitigated by the practices defined in the metaprocess (RQ2).

The proposed metaprocess provides significant advantages for practitioners who use
Scrum for software development, and also for researchers of software process (re)engineer-
ing. Practitioners can use it at the start of a project to define an initial instance of Scrum, and
also at retrospective meetings to refine/improve it. Identification of the variabilities, along

Fig. 20 Summary of responses in project A.2

371Software Quality Journal (2021) 29:337–379

1 3

with specific situations for their resolution, has been performed using existing resources on
Scrum and agile methods (Padberg & Muller, 2003; Cohn, 2005; Ge et al., 2006; McDaid,
2006; Warden & Shore, 2007; Tingling & Saeed, 2007; Arisholm et al., 2007; Chong &
Hurlbutt, 2007; O’Donnell & Richardson, 2008; Sterling, 2008; Maruping et al., 2009;
Pichler, 2009; Cohn, 2010; Leffingwell, 2010; Causevic et al. 2011; Power, 2011; Rubin,
2012; Mahnič & Hovelja, 2012; Hajratwala, 2012; Greening, 2012; Heikkilä, 2013; Red-
daiah et al., 2013; Shah et al., 2014; Power, 2014; Pauly et al., 2015; Jovanovic et al., 2015;
Hussain & Javed, 2015; Stettina, 2015; McKenna, 2016; Savoine et al., 2016; Erdoğan et al.,
2018). However, it is usually required that the situations defined for resolving the varia-
bilities be adjusted based on the tailoring experience in the organization. Furthermore, the
set of variants and situations defined for resolving the variabilities can be enhanced over
time based on newly published works that report on the experiences of practitioners in using
Scrum in different situations. In other words, the proposed metaprocess provides a good
starting point for creating an initial instance of Scrum by using a systematic approach, but
the metaprocess should be enhanced over time based on the experience gained from its use,
and also based on the best practices shared by the agile community.

SME approaches have emerged to address the need for constructing software processes
according to specific project/organizational situations (Henderson-Sellers et al., 2014). System-
atic application of these approaches can help practitioners increase the quality of their software
processes. Identifying the fixed and variable parts of an agile process, such as Scrum, and pre-
senting them as a metaprocess provides a big-picture view of that process. There are three promi-
nent, high-level SME approaches that can benefit from such a view, namely paradigm-based,
assembly-based, and extension-based (Henderson-Sellers et al., 2014; Ralyté et al., 2003): if
these SME approaches are fused into Scrum, method engineers can assist the practitioners in
building or improving the target methodology by instantiating or adapting the metaprocess (par-
adigm-based SME), or by combining the different parts of the metaprocess with reusable parts
retrieved from a repository (assembly-based SME), or by using the metaprocess as an extension
framework to extend incomplete processes (extension-based SME). Research efforts in the fields
of SME, SPI (Pino et al., 2008), and SPrLE (de Carvalho et al., 2014b) can benefit from the
results of this research by abstracting, extending or reusing them to produce similar methods for
different contexts.

4.7.1 Threats to validity

There are several threats to the validity of this study, including:

○ Internal validity: One potential threat to internal validity is misinterpretations in the
conversations made during interviews; to mitigate this threat, in addition to the notes
taken during the interviews, voice recordings were produced, to later be transcribed
as part of analysis. The results of each interview session were also reported back to
the subjects via email and discussed in face-to-face conversations (Member check-
ing). Subject fatigue was the other threat to internal validity, which was handled in
our study by holding the interviews in multiple one-hour sessions.

○ Construct validity: A potential threat to construct validity is subject selection. Ran-
dom subject selection was not possible in our study since we needed subjects with
adequate knowledge on the processes being used in the organization. However, the
viewpoints of the different roles involved were considered throughout the case study
as well as in the questionnaire designed for obtaining feedback on the proposed prac-

372 Software Quality Journal (2021) 29:337–379

1 3

tices (Theory triangulation). Furthermore, a case study protocol was defined at the
beginning of the study and was updated continuously afterwards (Audit trail).

○ Conclusion validity: The reliability of the study results is one potential threat to con-
clusion validity. The techniques used to mitigate this risk are as follows: Review-
ing the procedures selected for data collection and analysis by an expert (the second
author), member checking, and theory triangulation.

○ External validity: Threats to external validity are a serious issue in case studies. To
mitigate this risk, we applied the approach on a real case. However, further evalua-
tions are required to generalize the findings of this study. In particular, further indus-
trial case studies should be performed to confirm that using the metaprocess in differ-
ent situations can indeed result in the production of effective processes. Conducting
such real case studies can help validate the variants defined in the metaprocess and the
specific situations for resolving them, and can also enhance the metaprocess based on
the experience gained.

5 Related research

The potential application scope of SPrLs is expanding (Golpayegani et al., 2013; Simmonds et al.,
2015), but little has been done to provide SPrLs for prominent methodologies. In Ruiz and Hur-
tado (2012), a SPrL approach is presented for systematically adapting the Unified Process (UP);
this work focuses on identifying the variabilities of the “Implementation” discipline of UP at the
task level. In Ruiz and Hurtado (2012), the authors conclude that although defining SPrLs needs
more effort than defining a unique process, the effort needed for defining specific processes is
considerably reduced by using a SPrL. In de Carvalho et al. (2014a), a SPrL is proposed for inte-
grating Scrum and CMMI; this work is limited to identifying the variabilities related to Project
Planning and Project Monitoring and Control, without any attention to the relevant situations. In
de Carvalho et al. (2014a), the authors conclude that the use of support tools for automating the
various stages of process adaptation (e.g. automatic adaptation of the process according to the
specifications of the project at hand) is considerably useful for adoption of SPrLs in real situations.

In contrast to the research works on providing SPrLs for prominent methodologies that lack
adequate rigor and fail to provide enough detail on the variabilities and their resolution, we
have identified a vast set of variabilities in the Scrum framework and have determined the situ-
ations where a variability can be resolved with specific variants. Furthermore, a certain level of
automation has been provided in resolving the variabilities via transformations implemented in
Medini-QVT.

6 Conclusion and future work

Software development methodologies are parameterized entities. However, their parameters
(consisting of variabilities and applicable variants) are prohibitively numerous, even for agile
methodologies. This research was conducted to address a clear and present challenge: the param-
eters of a software process cannot be set effectively unless all the variabilities, variants, relevant
development situations, and their interrelationships, are properly identified. Scrum was targeted
because of its importance as the most popular agile process, and also because of its framework
nature and rich set of variants: since it is presented as a high-level framework, its parameterized
nature has been deliberately accentuated, and over more than two decades, a myriad of variants

373Software Quality Journal (2021) 29:337–379

1 3

(activities, roles, and products) have been developed or adapted for use in Scrum. The metap-
rocess that we propose has been complemented with situational factors that express the different
situations that may arise in agile contexts, as well as the variants that resolve each variability in
each situation. This provides the knowledge required for applying the methodology to the benefit
of Scrum team(s) and stakeholders. Moreover, the proposed approach is of potential research
value in SME, SPI and SPrLE.

The proposed metaprocess has been assessed by conducting an industrial case study; the
results of which confirm the applicability of the metaprocess in real situations to produce specific
Scrum processes. Furthermore, the produced processes can improve existing processes by pro-
posing best practices for addressing their shortcomings.

This research can be furthered in several directions, including: enriching the set of variants by
reusing the activities, roles and products used in other agile/non-agile methodologies, refining
the situations defined for resolving the variabilities by conducting further case studies, and identi-
fying other factors affecting agile processes.

Appendix: Questionnaire designed for obtaining feedback
on the practices applied

The questionnaire was designed in two parts, described in Sect. 7.1 and Sect. 7.2,
respectively.

 Part one

This part focused on gathering practitioner details. The specific questions designed for this
purpose are shown in Table 15.

Table 15 Questions on practitioner details

Practitioner detail

Full name (optional)

Job title/position
Telephone No. (optional)
Email address
How many years of industrial experience do you have in your field? ☐ Less than 1 year

☐ 1–2 years
☐ 3–5 years
☐ 6–10 years
☐ More than 10 years

How many software development projects have you been involved in? ☐ 1–2
☐ 3–4
☐ 5–7
☐ 8–10
☐ Above 10

Have you ever taken part in a project in which it was necessary to adapt/tailor the
process/methodology prior to or during application?

☐ Yes
☐ No

If your previous answer was Yes, please rate the grade of tailoring/adaptation
applied to the methodology/process

☐ High degree
☐ Moderate degree
☐ Small degree

374 Software Quality Journal (2021) 29:337–379

1 3

 Part two

In this part, participants were asked to state their opinion on whether each of the prac-
tices listed in Table 16 would result in improving the process being used in their project.

References

Abad, Z. S. H., Alipour, A., & Ramsin, R. (2012). Enhancing tool support for situational engineering of
agile methodologies in Eclipse. In R. Lee (Ed.), Software Engineering Research, Management and
Applications (pp. 141–152).

Agh, H., & Ramsin, R. (2019). Scrum Metaprocess: A Process Line Approach for Customizing Scrum-
Appendices. Mendeley Data. https:// doi. org/ 10. 17632/ f5dbb sj3p6.1

Ahmad, M. O., Kuvaja, P., Oivo, M., & Markkula, J. (2016). Transition of software maintenance teams
from Scrum to Kanban. Proc. Hawaii International Conference on System Sciences, 5427–5436.

Aleixo, F.A., Freire, M.A., dos Santos, W.C., & Kulesza, U. (2010). Automating the variability manage-
ment, customization and deployment of software processes: A model-driven approach. Proc. Inter-
national Conference on Enterprise Information Systems, 372–387.

Ally, M., Darroch, F., & Toleman, M., et al. (2005). A framework for understanding the factors influenc-
ing pair programming success. In H. Baumeister (Ed.), Extreme Programming and Agile Processes
in Software Engineering (pp. 82–91).

Arisholm, E., Gallis, H., Dyba, T., & Sjoberg, D. I. (2007). Evaluating pair programming with respect to
system complexity and programmer expertise. IEEE Transactions on Software Engineering, 33(2),
65–86.

Campanelli, A. S., & Parreiras, F. S. (2015). Agile methods tailoring–A systematic literature review.
Journal of Systems and Software, 110, 85–100.

Canty, D. (2015). Agile for project managers. Auerbach Publications.
Causevic, A., Sundmark, D., & Punnekkat, S. (2011). Factors limiting industrial adoption of test driven

development: A systematic review. Proc. IEEE International Conference on Software Testing, Veri-
fication and Validation, 337–346.

Chong, J., & Hurlbutt, T. (2007). The social dynamics of pair programming. Proc. International Conference
on Software Engineering, 354–363.

Table 16 Questions designed for obtaining feedback on the practices applied

Strongly
agree

Agree Neutral Disagree Strongly
disagree

Not sure

Specifying the “Definition of Ready”
criteria

☐ ☐ ☐ ☐ ☐ ☐

Using the story-point unit for estimat-
ing PBIs and the effort-hours unit for
estimating tasks

☐ ☐ ☐ ☐ ☐ ☐

Specifying a range of velocities for the
development team

☐ ☐ ☐ ☐ ☐ ☐

Using the “Planning Poker” technique for
estimating PBIs

☐ ☐ ☐ ☐ ☐ ☐

Conducting competitive analysis ☐ ☐ ☐ ☐ ☐ ☐
Appointing the Scrum master as the facili-

tator for sprint review meetings
☐ ☐ ☐ ☐ ☐ ☐

Defining guidelines for presenting the
demo in sprint review meetings

☐ ☐ ☐ ☐ ☐ ☐

Separating sprint review and sprint plan-
ning sessions

☐ ☐ ☐ ☐ ☐ ☐

375Software Quality Journal (2021) 29:337–379

https://doi.org/10.17632/f5dbbsj3p6.1

1 3

Clarke, P., & O’Connor, R. V. (2012). The situational factors that affect the software development pro-
cess: Towards a comprehensive reference framework. Information and Software Technology, 54(5),
433–447.

Cohn, M. (2005). Agile estimating and planning. Pearson Education.
Cohn, M. (2010). Succeeding with agile: Software development using Scrum. Pearson Education.
Cram, W. A. (2019). Agile development in practice: Lessons from the trenches. Information Systems Man-

agement, 36(1), 2–14.
de Carvalho, D.D., Chagas, L.F., & Reis, C.A.L. (2014a). Definition of software process lines for integra-

tion of Scrum and CMMI. Proc. XL Latin American Computing Conference, 1–12.
de Carvalho, D. D., Chagas, L. F., Lima, A. M., & Reis, C. A. L., et al. (2014b). Software process lines: A

systematic literature review. In A. Mitasiunas (Ed.), Software Process Improvement and Capability
Determination (pp. 118–130).

Diebold, P., Ostberg, J.P., Wagner, S., & Zendler, U. (2015). What do practitioners vary in using Scrum?
Proc. International Conference on Agile Software Development, 40–51.

Erdoğan, O., Pekkaya, M. E., & Gök, H. (2018). More effective Sprint Retrospective with statistical analy-
sis. Journal of Software: Evolution and Process, 30(5), e1933.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customizing agile methods to software practices at Intel
Shannon. European Journal of Information Systems, 15(2), 200–213.

Ge, X., Paige, R.F., Polack, F.A., Chivers, H., & Brooke, P.J. (2006). Agile development of secure web
applications. Proc. International Conference on Web engineering, 305–312.

Gill, A.Q., & Henderson-Sellers, B. (2006). Measuring agility and adoptability of agile methods: A
4-dimensional analytical tool. Proc. IADIS International Conference on Applied Computing, 503–507.

Golpayegani, F., Azadbakht, K., & Ramsin, R. (2013). Towards process lines for agent-oriented require-
ments engineering. Proc. International Conference on Computer as a Tool, 550–557.

Greening, D. (2012). Bulk Estimation. https:// senex rex. com/ bulk- estim ation/ Accessed 16 November 2019.
Hajratwala, N. (2012). Task board evolution. Proc. International Agile Conference, 111–116.
Heeager, L. T., & Rose, J. (2015). Optimising agile development practices for the maintenance operation:

Nine heuristics. Empirical Software Engineering, 20(6), 1762–1784.
Heikkilä, V.T., Paasivaara, M., Lassenius, C., & Engblom, C. (2013). Continuous Release Planning in a

large-scale Scrum development organization at Eriksson. Proc. International Conference on Agile
Software Development, 195–209.

Henderson-Sellers, B., Ralyté, J., Agerfalk, P. J., & Rossi, M. (2014). Situational method engineering.
Springer.

Hoda, R., Kruchten, P., Noble, J., & Marshall, S. (2010). Agility in context. Proc. ACM International Con-
ference on Object Oriented Programming, Systems, Languages and Applications, 74–88.

Hodgetts, P. (2004). Refactoring the development process: Experiences with the incremental adoption of
agile practices. Proc. IEEE Agile Development Conference, 106–113.

Hurtado, J. A., Bastarrica, M. C., Ochoa, S. F., & Simmonds, J. (2013). MDE software process lines in
small companies. Journal of Systems and Software, 86(5), 1153–1171.

Hussain, R. G., & Javed, A. (2015). Qualitative approach for estimating the influence of refactoring and
Scrum in Software Development. International Journal of Engineering Research and General Science,
3(2), 28–36.

Ibrahim, K. S. K., Yahaya, J., Mansor, Z., & Deraman, A. (2019). The Emergence of agile Maintenance:
A preliminary study. Proc. International Conference on Electrical Engineering and Informatics,
146–151.

Jovanovic, M., Mesquida, A.L., & Mas, A. (2015). Process improvement with retrospective gaming in agile
software development. Proc. European Conference on Software Process Improvement, 287–294.

Junior, E. A. O., Pazin, M. G., Gimenes, I. M., Kulesza, U., & Aleixo, F. A., et al. (2013). SMartySPEM: A
SPEM-Based Approach for Variability Management in Software Process Lines. In J. Heidrich (Ed.),
Product-Focused Software Process Improvement (pp. 169–183).

Jyothi, V. E., & Rao, K. N. (2012). Effective implementation of agile practices: In coordination with lean
Kanban. International Journal on Computer Science and Engineering, 4(1), 87–91.

Karlsson, F., & Ågerfalk, P. (2009). Exploring agile values in method configuration. European Journal of
Information Systems, 18(4), 300–316.

Kaur, C., & Kumar, V. (2015). Product backlog prioritization in Scrum: A review. International Journal of
Modern Computer Science, 3(2), 21–24.

Kniberg, H., & Skarin, M. (2010). Kanban and Scrum - Making the most of both. Lulu.com.
Kruchten, P. (2013). Contextualizing agile software development. Journal of Software: Evolution and Process,

25(4), 351–361.

376 Software Quality Journal (2021) 29:337–379

https://senexrex.com/bulk-estimation/

1 3

Larman, C. (2008). Scaling lean & agile development: Thinking and organizational tools for large-scale Scrum.
Pearson Education.

Law, A., & Charron, R. (2005). Effects of agile practices on social factors. Proc. International Workshop on
Human and Social Factors of Software Engineering, 1–5.

Leffingwell, D. (2010). Agile software requirements: Lean requirements practices for teams, programs, and the
enterprise. Addison-Wesley Professional.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., et al. (2002). Empirical findings in agile
methods. Proc. International Conference on extreme programming and agile methods, 197–207.

Mahnič, V., & Hovelja, T. (2012). On using planning poker for estimating user stories. Journal of Systems and
Software, 85(9), 2086–2095.

Martínez-Ruiz, T., García, F., Piattini, M., & Munch, J. (2011). Modelling software process variability: An
empirical study. IET Software, 5, 172–187.

Maruping, L. M., Zhang, X., & Venkatesh, V. (2009). Role of collective ownership and coding standards in
coordinating expertise in software project teams. European Journal of Information Systems, 18(4),
355–371.

Masood, Z., Hoda, R., & Blincoe, K. (2020). Real World Scrum A Grounded Theory of Variations in Prac-
tice. IEEE Transactions on Software Engineering, 1–13.

McDaid, K., Greer, D., Keenan, F., Prior, P., Coleman, G., & Taylor, P.S. (2006). Managing Uncertainty in
Agile Release Planning. Proc. International Conference on Software Engineering and Knowledge Engi-
neering, 138–143.

McKenna, D. (2016). The Art of Scrum: How Scrum Masters Bind Dev Teams and Unleash Agility. Apress.
Medini QVT: IKV + + technologies home. http:// proje cts. ikv. de/ qvt Accessed 16 November 2019.
O’Donnell, M.J., & Richardson, I. (2008). Problems encountered when implementing agile methods in a very

small company. In R.V. O’Connor et al. (Eds.), Software Process Improvement, 13–24.
OMG: Software & Systems Process Engineering Metamodel Specification Version 2.0. (2008). https:// www.

omg. org/ spec/ SPEM/ About- SPEM/ Accessed 16 November 2019.
Paasivaara, M., Lassenius, C., & Heikkilä, V.T. (2012). Inter-team coordination in large-scale globally distrib-

uted Scrum: Do Scrum-of-Scrums really work? Proc. ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, 235–238.

Padberg, F., & Muller, M.M. (2003). Analyzing the cost and benefit of pair programming. Proc. IEEE Interna-
tional Symposium on Software Metrics, 166–177.

Palomino, M., Dávila, A., Melendez, K. & Pessoa, M. (2016). Agile practices adoption in CMMI organizations:
A systematic literature review. Proc. International Conference on Software Process Improvement, 57–67.

Pato, R. H., Granada, D., Vara, J. M., & Marcos, E. (2020). Lean Kanban in an industrial context: A success
story. Proc. ACM/IEEE International Conference on Software Engineering, 282–283.

Pauly, D., Michalik, B., & Basten, D. (2015). Do daily Scrums have to take place each day? A case study of cus-
tomized Scrum principles at an e-commerce company. Proc. Hawaii International Conference on System
Sciences, 5074–5083.

Pichler, R. (2009). The Product Vision. Available online at https:// www. scrum allia nce. org/ commu nity/ artic les/
2009/ janua ry/ the- produ ct- vision

Pino, F. J., García, F., & Piattini, M. (2008). Software process improvement in small and medium software
enterprises: A systematic review. Software Quality Journal, 16(2), 237–261.

Power, K. (2011). Using silent grouping to size user stories. Proc. International Conference on Agile Software
Development, 60–72.

Power, K. (2014). Metrics for Understanding Flow. Proc. International Conference on Agile Software Develop-
ment, 1–8.

Proba, D., & Jung, R. (2019). Defining Situational Characteristics for Situational Agile Method Engineering,
Defining Situational Characteristics for Situational Agile Method Engineering. Proc. Americas Confer-
ence on Information Systems, 1–10.

Ralyté, J., Deneckère, R., & Rolland, C. (2003). Towards a generic model for situational method engineering.
Proc. International Conference on Advanced Information Systems Engineering, 95–110.

Reddaiah, B., Ravi, S. P., & Movva, L. S. (2013). Risk management board for effective risk management in
Scrum. International Journal of Computer Applications, 65(12), 16–23.

Reinertsen G.D. (2009). Types of Processes. Available online at http:// www. netob jecti ves. com/ blogs/ Types- of-
Proce sses

Rubin, K.S. (2012). Essential Scrum: A practical guide to the most popular agile process. Addison-Wesley.
Ruiz, P.H., & Hurtado, J.A. (2012). A software process line based on the Unified Process. Proc. Colombian

Computing Congress, 1–6.
Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case study research in software engineering: Guide-

lines and examples. John Wiley & Sons.

377Software Quality Journal (2021) 29:337–379

http://projects.ikv.de/qvt
https://www.omg.org/spec/SPEM/About-SPEM/
https://www.omg.org/spec/SPEM/About-SPEM/
https://www.scrumalliance.org/community/articles/2009/january/the-product-vision
https://www.scrumalliance.org/community/articles/2009/january/the-product-vision
http://www.netobjectives.com/blogs/Types-of-Processes
http://www.netobjectives.com/blogs/Types-of-Processes

1 3

Savoine, M.M., Rocha, V.F., Bezerra, C.A.C., de Araújo, A.M.C., & Matias, J.K.M. (2016). A Synchronous
Agile Framework Proposal Combining Scrum and TDD. Proc. International Conference on Software
Engineering Advances, 337–341.

Schwaber, K. (2015). The NexusTM Guide. https:// www. scrum. org/ resou rces/ nexus- guide Accessed 16
November 2019.

Schwaber, K., & Sutherland, J. (2017). Scrum Guide. https:// www. scrum. org/ resou rces/ scrum- guide Accessed
16 November 2019.

Seikola, M., & Loisa, H. M. (2011). Kanban implementation in a telecom product maintenance. Proc. EURO-
MICRO Conference on Software Engineering and Advanced Applications, 321–329.

Shah, S. M. A., Torchiano, M., Vetro, A., & Morisio, M. (2014). Exploratory testing as a source of technical
debt. IT Professional, 16(3), 44–51.

Simmonds, J., Perovich, D., Bastarrica, M. C., & Silvestre, L. (2015). A megamodel for Software Process Line
modeling and evolution. Proc. ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems, 406–415.

Sjøberg, D. I., Johnsen, A., & Solberg, J. (2012). Quantifying the effect of using Kanban versus Scrum: A case
study. IEEE software, 29(5), 47–53.

Stankovic, D., Nikolic, V., Djordjevic, M., & Cao, D. B. (2013). A survey study of critical success factors
in agile software projects in former Yugoslavia IT companies. Journal of Systems and Software, 86(6),
1663–1678.

Sterling, C. (2008). Affinity Estimating: A How-To. http:// www. getti ngagi le. com/ 2008/ 07/ 04/ affin ity- estim ating-
a- how- to/ Accessed 16 November 2019.

Stettina, C. J., & Hörz, J. (2015). Agile portfolio management: An empirical perspective on the practice in use.
International Journal of Project Management, 33(1), 140–152.

Tingling, P., & Saeed, A. (2007). Extreme Programming in Action: A Longitudinal Case Study. In J. A. Jacko
(Ed.), Human-Computer Interaction (pp. 242–251).

Uikey, N., & Suman, U. (2016). Tailoring for agile methodologies: A framework for sustaining quality and pro-
ductivity. International Journal of Business Information Systems, 23(4), 432–455.

Warden, S., & Shore, J. (2007). The art of agile development. O’Reilly.
Yi, L. (2011). Manager as Scrum Master. Proc. International Agile Conference, 151–153.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Halimeh Agh is a PhD candidate at Sharif University of Technology, working on Software Process Line
Engineering (SPrLE). She received her MSc degree in Computer Engineering (Software) from Sharif Uni-
versity of Technology in 2013. Her research interests include situational method engineering, model-driven
development, and software processes.

378 Software Quality Journal (2021) 29:337–379

https://www.scrum.org/resources/nexus-guide
https://www.scrum.org/resources/scrum-guide
http://www.gettingagile.com/2008/07/04/affinity-estimating-a-how-to/
http://www.gettingagile.com/2008/07/04/affinity-estimating-a-how-to/

1 3

Raman Ramsin is an Assistant Professor at the Department of Computer Engineering, Sharif Univer-
sity of Technology. He received his PhD in Computer Science from the University of York, UK, in 2006.
His research focuses on model-driven engineering, situational method engineering, and agile software
development.

379Software Quality Journal (2021) 29:337–379

	Scrum metaprocess: a process line approach for customizing Scrum
	Abstract
	1 Introduction
	2 Scrum metaprocess: variabilities
	2.1 Phase-level variabilities
	2.2 Activity-level variabilities
	2.2.1 Portfolio planningmanagement
	2.2.2 Product planning (envisioning)
	2.2.3 Release planning
	2.2.4 Grooming the product backlog
	2.2.5 Sprint planning
	2.2.6 Sprint execution
	2.2.7 Sprint review
	2.2.8 Sprint retrospective

	2.3 Role-level variabilities
	2.3.1 Product owner
	2.3.2 Scrum master
	2.3.3 Development team
	2.3.4 Auxiliary roles

	2.4 Other variabilities
	2.4.1 Sprint length
	2.4.2 Documenting Non-Functional Requirements (NFRs)
	2.4.3 Number of product backlogs
	2.4.4 Coordination of multiple teams
	2.4.5 Estimation of velocity

	3 Situations for resolving Scrum variabilities
	3.1 Situational factors for agile methodologies
	3.2 Specific situations for resolving variabilities
	3.3 Transformation rules

	4 Case study
	4.1 Scope and objective
	4.2 Research questions
	4.3 Case context
	4.4 Study design
	4.4.1 Subjects
	4.4.2 Research methods
	4.4.3 Analysis

	4.5 Study validity
	4.6 Applying the metaprocess to the case study
	4.6.1 RQ1-Building specific processes for real situations via the metaprocess
	4.6.2 RQ2-Improvement of existing processes

	4.7 Discussion
	4.7.1 Threats to validity

	5 Related research
	6 Conclusion and future work
	References

