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Abstract
It is already common to compute quantitative metrics of requirements to assess their
quality. However, the risk is to build assessment methods and tools that are both arbitrary
and rigid in the parameterization and combination of metrics. Specifically, we show that a
linear combination of metrics is insufficient to adequately compute a global measure of
quality. In this work, we propose to develop a flexible method to assess and improve the
quality of requirements that can be adapted to different contexts, projects, organizations,
and quality standards, with a high degree of automation. The domain experts contribute
with an initial set of requirements that they have classified according to their quality, and
we extract their quality metrics. We then use machine learning techniques to emulate the
implicit expert’s quality function. We provide also a procedure to suggest improvements
in bad requirements. We compare the obtained rule-based classifiers with different
machine learning algorithms, obtaining measurements of effectiveness around 85%. We
show as well the appearance of the generated rules and how to interpret them. The
method is tailorable to different contexts, different styles to write requirements, and
different demands in quality. The whole process of inferring and applying the quality
rules adapted to each organization is highly automated.
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1 Introduction: requirements quality

Requirements engineering is a “systematic process of developing requirements through an
iterative co-operative process of analyzing the problem, documenting the resulting observa-
tions in a variety of representation formats, and checking the accuracy of the understanding
gained” (Loucopoulos and Karakostas 1985). Requirements engineers are the professional
specialists who elicit and write the requirements, and as such, they are often called also
‘authors of requirements’ or even ‘requirements authors’ (INCOSE 2012; Terzakis and
Gregory 2016; Gregory and Terzakis 2017). Organizations developing software for critical
sectors like aerospace, automotive, and medical systems need to apply process requirements
coming from different sources: industrial standards, customer-provided requirements, and
procedures from internal quality management systems (Eito-Brun and Amescua 2017). As it
has been often pointed out (Brooks 1987; The Standish Group 2015; IEEE Computer Society
2014), most of the defects in the delivered software originate in a deficient requirements
analysis, and they are generally the most difficult and costly to repair (Fanmuy et al. 2011).
That is why it is of major importance to provide this field with engineering discipline,
particularly by means of quality controls since the very beginning of the process. If we do
not demand that the requirements meet certain quality criteria, then it will be more difficult to
search for quality in later development phases.

Since the very beginning of quality measurement in requirements engineering (Wilson et al.
1997), researchers have found that the need of communication among all stakeholders requires
that the privileged form to express requirements is natural language, as opposed to formal
languages that are more or less inaccessible, mainly to clients. Therefore, the use of linguistic
techniques and tools may perform a crucial role in providing support for requirements analysis
(Mich et al. 2004) and, in particular, in order to obtain quality metrics. Besides, the large
quantity of requirements in many projects, as well as the different roles involved in their
specification (users or clients, analysts, designers, developers, testers, etc.), recommends the
use of guides (Hooks 1993; Magee and Tripp 1997; Rosenberg and Linda 2001; Alexander
and Stevens 2002; Turk 2006; Bøegh 2008 ) and standards (ESA 1995; IEEE 1998; ISO/IEC
2007; INCOSE 2012) to achieve high quality from the start.

In order to obtain quality metrics, we must first define what we understand as good or bad
quality of a requirement or set of requirements. In a previous work, we have distinguished
between qualitative desirable properties of requirements, dependent on subjective judgment,
and quantitative measurable indicators, based on objective characteristics of requirements
(Génova et al. 2013). We synthesized the different lists of desirable properties that can be
found in the literature in three hierarchical levels:

& First level: validability, verifiability, and modifiability.
& Second level: completeness, consistency, understandability, unambiguity, traceability, and

abstraction; or, more synthetically, CCC (completeness, consistency, correctness).
& Third level: precision and atomicity.

These properties depend on subjective judgment, which does not mean that they are arbitrary,
but that they are not easy to quantify. Therefore, we need to define a series of measurable
indicators that are related with the qualitative properties we wish to evaluate. For example, we
can use as an indicator the size of a requirement, measured by the number of words in its
description: the size indicator affects the desirable properties of the requirement, particularly
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atomicity, and all the others through atomicity. Equally, we can measure the number of
imperative verbal forms, the number of domain terms, the number of ambiguous expressions,
and so on. In this work, we consider only metrics related to correctness of individual
requirements, leaving global properties of the set (i.e., consistency and completeness) for
future research.

Summing up, we can compute a set of quantitative metrics of textual requirements, and
through them, we can assess the quality of requirements. However, the risk of this approach is
to build assessment methods and tools that are both arbitrary in the parameterization of metrics
and rigid in the combination of metrics to evaluate the different properties. This is why we
propose in this work to develop a flexible assessment method that can be adapted to different
contexts, with a high degree of automation. The method consists basically in the emulation of
the experts’ judgment on quality through artificial intelligence techniques: first, obtain the
expert’s implicit quality function through machine learning, and, second, apply this function to
automatically assess the quality of textual requirements.

Our approach to emulate the experts’ judgment, as explained later in detail, is based on
well-known machine learning techniques: we have a computer tool learn from a previous
human-made classification of requirements according to their quality. Therefore, our work’s
intent is not to improve machine learning techniques, but rather to devise a novel application to
the field of requirements quality assessment.

The rest of the paper is structured as follows. Section 2 reviews the related work on
automatic measurement and improvement of requirements quality. Section 3 describes the
research process we have followed for designing our solution approach. Section 4 justifies the
need for the flexible assessment of requirements quality in different contexts, where the
experts’ judgment on quality is the best starting point to satisfy the needs and peculiarities
of each project and organization. Section 5 shows that the regions of good and bad quality in
the hyperspace of requirements metrics is not adequately modeled through a linear combina-
tion of metrics, but rather demand a more refined computation that could be solved with a
versatile combination of rectangular hyper regions. Section 6 explains those well-known
machine learning techniques that constitute the fundamentals of our method to build an
automatic rule-based classifier that solves the problem of computing the concrete intervals
for each metric and the combination of intervals of different metrics. Section 7 describes the
initial data set from which a concrete set of rules has been generated, as well as the experiments
performed to validate the rules, together with their results in effectiveness and efficiency.
Section 8 analyzes the appearance of the obtained rule-based classifiers, and how to interpret
the rules. Section 9 complements the flexible assessment of quality with a procedure to suggest
improvements in the requirements that are classified with bad quality, providing a mathemat-
ical formulation of the resulting optimization problem, and application examples. Sections 10
and 11 discuss the potential weaknesses of our work, as well as the alleged generalizability of
our approach. Finally, Sect. 12 summarizes our main contributions and the opportunities we
envision for future research.

2 Related work

The literature on the definition of requirements quality is extensive. A recent systematic
literature review on quality criteria for requirements can be found in Heck and Zaidman
(2018), where the authors summarize 28 different quality criteria for agile requirements
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specifications and compare them with those from traditional requirements engineering. Our
work is based on our own previous systematization of quality criteria in three hierarchical
levels of qualitative desirable properties (see the Introduction) and 18 quantitative measurable
indicators (metrics) shortly described in Appendix Table 3. See an extensive description of
both criteria and metrics in Génova et al. (2013) and Parra et al. (2015). This hierarchical
arrangement has been the ground for the implementation of the Requirements Quality Ana-
lyzer (RQA) (Reuse Company 2016), which is the tool we use to extract the requirements
metrics that feed, first, the learning algorithms, and second, the automatic rule-based classifier
that assess the quality of new requirements.

Recent research on automation in requirements quality (still without artificial intelli-
gence techniques) has progressed in different directions. Some works have been focused
on the detection of ambiguities, inconsistencies, and conflicts (Chantree 2006; Popescu
et al. 2008; Kiyavitskaya et al. 2008; De Sousa et al. 2010; Wang et al. 2013; Sardinha
et al. 2013; Ali et al. 2013; Aceituna et al. 2014). Other works have developed
algorithmic methods to measure the quality of more structured requirements in the shape
of user stories (Lucassen et al. 2016). There have been also projects aimed at the
classification of requirements by topic, in order to assist reviewers in the evaluation of
consistency and completeness of requirements (Ko et al. 2007; Ott 2013). The detection
of forward references to not yet defined terms has also been used as a measure of both
individual quality of single requirements and global quality of requirements documents
(Siahaan and Umami 2011). Similar use of textual patterns, even if not directly focused
on quality, has been applied to the classification of functional and non-functional
requirements (Cleland-Huang et al. 2006; Cleland-Huang et al. 2007; Hussain et al.
2008). Other studies have developed quantitative methods to evaluate the quality of
requirements, with the goal of obtaining a prioritization of requirements that demand
improvement (Fabbrini et al. 2001; Bucchiarone et al. 2005; Berry et al. 2006; Kasser
et al. 2006; Otero et al. 2010; Génova et al. 2013; Thakurta 2013; Thitisathienkul and
Prompoon 2015 ). In general, however, all these methods are not tailorable to different
contexts (see Sect. 4) or they are limited in the way they combine the different metrics
(see Sect. 5); therefore, we think our method is really novel in this respect.

Artificial intelligence techniques, and specifically machine learning algorithms to emulate
human judgment, have not been so extensively applied in this field. With a similar goal, but
purporting the use of different techniques, there was a proposal (without implementation) to
use neural networks and case-based reasoning to improve the quality of requirements (Jani and
Islam 2012). More akin to our research is the application of machine learning techniques to
build a classifier that detects ambiguities in textual requirements (Hussain et al. 2007), a very
good work that, to our knowledge, has had however no direct continuation; moreover, their
focus was only on the ambiguous expression of requirements, while ours considers many more
aspects of quality, such as the use of domain vocabulary, the size of requirements, the structure
of sentences, and so on. The assurance of testability in non-functional requirements (Rashwan
2015) is another particular concern of requirements quality that has been targeted with machine
learning techniques (in this case, employing support vector machines).

Other works have applied machine learning to detect software defects under the influential
Orthogonal Defect Classification (ODC) framework, developed initially at IBM for software
defect classification and analysis (Huang et al. 2015); this work is indeed related to the quality
of software, but not of textual requirements. Less related to quality, but still using machine
learning, is a research aimed at the identification and annotation of requirements in user-
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generated content (Dollmann and Geierhos 2016). Unsupervised pattern-based machine learn-
ing has also been used to determine requirements clusters for optimal definition of software
development sprints in the context of agile software development (Belsis et al. 2014).

Search-Based Software Engineering (Harman and Jones 2001; Harman et al. 2012) is very
apt for the application of metaheuristic search techniques, such as genetic algorithms, simu-
lated annealing, and machine learning, among others. It has been successfully applied to solve,
for example, the Multi-Objective Next Release Problem (MONRP) (Zhang et al. 2007), which
is a good example of a Feature Subset Selection search problem.

3 Research methodology

As it is well known, in the last decades of the twentieth century, a growing conviction
consolidated: the scientific method developed for studying and analyzing natural phenomena
was not apt to understand the design and construction of human artifacts, i.e., the products of
engineering and technology (Génova et al. 2012). The required method to produce an artifact
should not start with the observation of phenomena, but rather with the identification of a need,
followed by artifact construction and evaluation (Hevner et al. 2004). This emerging field of
construction-oriented research was called design science, the scientific study of design, and it
was based on two assumptions: first, the design of artifacts can be a sophisticated task that
contributes to the development of scientific knowledge; second, the scientific design of
artifacts requires a specific research method (Frank 2006).

According to these guidelines, we succinctly describe now the research methodology we
have followed in this work, with references to the sections of the paper where we deal more in-
depth each aspect of the methodology. We also enumerate some basic assumptions in our
research.

Identification of a need: problem statement and explicitation of goals Problem: the
perceived quality of requirements is not universal, but highly subjective and context-depen-
dent. The demanded quality is not the same in large projects as in small ones, in safety-critical
transportation or medical systems as in sheer news-displaying systems. Therefore, measuring
quality based on universal rules is not enough; it should be based, instead, on the experts’
interpretation of demanded quality in each different context, taking into account the needs and
peculiarities of each project and organization.

However, since the involvement of domain experts is very costly and, at the same time, the
automatic measurement of quality has demonstrated its partial success, we propose in this
project the following Goal: to develop a tool to automatically emulate the experts’ judgment
on requirements quality and automatically provide recommendations to improve it. In order to
achieve a quality assessment that is really tailored to a particular context, the emulation is
performed based on previous expert quality judgments in that same context and organization.

The problem and the goals are described more in-depth in Sects. 4 and 5.

Artifact construction The constructive part of this project produces two different artifacts:
first, an automatic classifier of requirements according to their perceived level of quality (see
Sects. 6, 7, and 8); second, an automatic recommender of modifications to improve the quality
of a requirement that has been judged deficient (see Sect. 9). A high-level description of the
construction process is also contained in Sect. 4.
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The automatic classifier operates on objective metrics obtained from the requirements.
Each metric constitutes a dimension in a multidimensional hyperspace of metrics, where
regions of good and bad quality can be identified (see Sect. 5), i.e., certain combination of
metrics values that can be associated with a given quality level. The classifier consists in a
quality function that discriminates those regions by computing different combinations of
metrics that correspond to each region.

Instead of defining an a priori quality function (e.g., based on universal definitions of
quality), the procedure employs artificial intelligence techniques (machine learning) to learn
and emulate the experts’ quality judgment and build a quality function that is tailored to the
particular context of application (see Sect. 6). This requires a previous training data set of
requirements, extracted from a particular domain with its particular level of demanded quality,
which the experts have manually classified according to their perceived quality.

The automatic recommender operates on the same objective metrics obtained from the
requirements, and it applies search-based software engineering principles to find a list of
modifications, sorted according to the required effort to achieve them, so that the user can
choose one that entails a real improvement and the defective requirement, once amended, can
satisfy the quality function that emulates expert judgment (and presumably also the experts
themselves).

Artifact evaluation The automatic classifier has been evaluated through stratified 10-fold
cross validation, which is a standard procedure in the field of machine learning. Specif-
ically, the effectiveness of the classification is measured as its accuracy, which is a
standard performance metric consisting in the percentage of agreement between the
experts’ classification and the automatic classifier, i.e., the ratio of true positives plus
true negatives to all existing training instances. The initial data set we have used in our
experiments is a corpus of 1035 textual software requirements from the domain of
aerospace industry, together with their quality classification, provided by experts of the
INCOSE’s Requirements Working Group. The classifier obtained reaches more than 85%
in accuracy, which qualifies it as reasonably good in order to provide useful advice to
requirements authors. When the training set is imbalanced, other metrics such as preci-
sion, recall, and F-measure are more meaningful than accuracy; therefore, even if our
data set is very well balanced, we define all these metrics (see Sect. 6) and provide their
results for a more complete picture (see Sect. 7).

The automatic recommender, in contrast, has not undergone a full-blown evaluation of its
effectiveness. However, we consider that it is useful to present the recommender as a
complement to the classifier, since it offers concrete suggestions to achieve the desired quality
for defective requirements (see Sects. 8 and 9).

Basic assumptions We think it is useful to enumerate some basic assumptions in our research.
Checking that they are realistic assumptions strengthens our position (some may look too
evident to some readers, but not to others):

& Requirements are written in natural language.
& Requirements are stored in electronic format, in individualized units.
& The text of the requirements is electronically processable.
& Requirements should adhere to recognized style guides and standards; departing from this

rule is considered a defect.
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& Requirements must use the domain vocabulary; departing from this rule is considered a
defect.

& There exists a definition for the domain vocabulary, in the form of an ontology.
& There exists a tool (in our case, RQA, but it could be a different one) by means of which

we can extract a certain number N of objective requirements metrics, so that each
requirement can be represented as a vector in an N-dimensional hyper-space.

& Points representing requirements with similar quality will be closely situated in this
hyperspace, forming more or less compact clusters or regions in the cloud of requirements;
these groupings form the basis for the extraction of patterns of good or bad quality.

4 Motivation: flexible assessment of requirements quality

Measuring and classifying is the first step towards automation. As we have stated in a previous
work, we can measure certain objective metrics on textual requirements, and through them, we
can obtain the desired evaluation of requirements quality (Génova et al. 2013). However, the
perceived quality of requirements is not universal, but highly subjective and context-depen-
dent. For example, if we consider the typical distinctions between user requirements and
software requirements (ESA 1995), it is clear that they demand different writing styles: user
requirements, which are client-oriented, must be perfectly understandable to stakeholders and
solution-independent; software requirements, instead, may be allowed to mention terms that,
from a user’s viewpoint, are too close to design. Therefore, performing automatic measures
based on fixed policies is not enough.

One of the most decisive factors for a good assessment of requirements quality must be the
involvement of domain experts, since their personal (subjective) evaluation is strongly linked
to the needs and peculiarities of the project and the organization. Today, the most widely used
techniques for the analysis of requirements that automatically compute quality metrics do not
take into account the experts’ interpretation of quality and quality levels of requirements in
each different context, but rather rely on general rules of quality. Besides, these techniques are
not tailorable, they are not flexible and adaptable to different projects and organizations; they
are, therefore, rather limited.

In this work, we present a method for the evaluation of the quality of requirements in an
automatic way, according to the quality rules and criteria employed, more or less implicitly, by
the domain experts in the organization, without need of a previous and explicit definition of
those criteria, which besides could be a very costly task. The objective of this method is to
emulate the experts’ judgment on the quality of new requirements that are entered in the
system. In order to achieve this goal, the experts must contribute with an initial set of
requirements that they have previously classified according to their quality, and that they have
chosen as appropriate for establishing the demanded standard quality (this implies that the
initial set must include requirements classified in all quality levels; in other words, including
only good requirements is not enough). For each of the requirements in the given set, we
extract metrics that quantify the various dimensions of quality already presented in previous
works (Génova et al. 2013; Parra et al. 2015).

We then use machine learning techniques (namely rule inference) to emulate the implicit
expert’s quality function, i.e., the value ranges for the metrics, as well as the way the metrics
are combined, to yield the interpretation of requirements quality by the domain expert. The
result will be a computable formula made of simple arithmetic and logical operations. The
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advantage of using a combination of rules, in contrast to neural networks and other techniques
(Major and Mangano 1995), is that, even if the complete formula need not be simple, each
component rule is easily interpretable by the experts and other users, so that the rule can be
edited if necessary.

Obviously, the expert does not apply a computable formula to judge on the quality of
requirements. Moreover, the expert’s judgment can be based on metrics that are different from
those we use, or not based on metrics at all. However, we assume (this is our working
hypothesis) that we can learn and emulate, at least to a certain degree, the expert’s ‘educated
taste for quality’ (Génova and González 2016) with our method. We do not expect machine
learning will be apt to tell us what ‘Quality’ is, which metrics are adequate and representative
of requirements quality, or how to measure them. But we do think that, once those metrics
have been proposed and defined, machine learning can help us to tell whether and how they
are related to the expert’s judgment, and what computable formula has the best fit.

More formally, our hypothesis is that an automatic rule-based classifier obtained through
machine learning algorithms, fed with training data extracted from a particular domain and a
particular level of demanded quality, can emulate the expert’s judgment on requirements
quality, with a level of effectiveness enough to provide useful advice to requirements authors.
The details of the hypothesis are explained in Sect. 6, and the experimental results that support
our hypothesis (more than 85% in percentage of agreement) are presented in Sect. 7. See also
the discussion about the goodness of these results in Sect. 10.

This method has the advantage of being tailorable to different situations, different domains,
different styles to write requirements, and different demands in quality. In order to achieve this,
we need a tool that computes quality metrics on textual requirements, and the initial set of
requirements previously classified by the expert, so that we can feed the learning algorithms.
Of course, the method requires a significant investment in order to obtain and tune the quality
metrics tool and to obtain a sufficiently large set of labeled requirements pertaining to the
domain, so that machine learning algorithms can be assured to produce useful and trustworthy
automatic classifiers.

The main contribution of our work, then, is a method to build a classifier that, using
conventional machine learning techniques, learns from the information provided by the expert
of that particular organization, and that adapts itself to best emulate the expert’s judgment;
above all, the method generates human-readable rules from the expert’s tacit knowledge,
which can be reworked and improved. Besides, we can provide automatic suggestions to
improve the requirements, by computing the quality rules that could be satisfied to change a
requirement from bad to good. We think the method will be useful in medium/large projects
and organizations; small organizations, in contrast, will not benefit from it, since the payoff is
probably not worth the necessary investment.

The stakeholders that will directly benefit from the method are requirements authors, who
will have a new tool at hand to achieve, with less effort, their own goal of improving
requirements quality; their supervisors and the clients of the system are also indirect stake-
holders that will benefit from any improvement in the quality of requirements. Requirements
authors will have a tool to automatically assess the quality of the requirements they are writing,
based on expert judgment adapted to the concrete working context; the tool will also provide
concrete recommendations to improve the quality of requirements that are found to be
deficient.

For the demonstration of the reliability of the proposed method, we examine a set of
requirements provided by the INCOSE (International Council on Systems Engineering). This
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set of requirements is protected by confidentiality, but we provide a table (Moreno et al. 2016)
with the metrics we extracted with the RQA tool, Requirements Quality Analyzer (Reuse
Company 2016), together with the classification given by the experts, without disclosing the
text of the requirements themselves. In this case, the classification of quality is binary (good,
bad), not because we demanded it to be so, but because it was what the experts provided. In
any case, the method is independent of the number of quality levels: it will yield as many
levels as they are present in the initial set.

5 The problem: quality functions in the hyperspace of metrics

Since the quality of requirements is multi-facetted, that is, it consists of different properties that
are not directly correlated to each other (e.g., completeness, consistency, correctness), then
measuring and improving quality by combining different metrics becomes a multi-objective
problem that usually cannot be solved with the simplest methods (i.e., linear combinations of
metrics).

Suppose we classify requirements by their quality based on a single variable or metric, for
example the ‘number of domain terms’ (NDT) used in the requirement. We can then formulate
a simple rule to transform the metric into a quality level (Génova et al. 2013), such as “if
NDT = 0 then bad, else good”. The rule can be easily refined to account for more quality levels
(bad, dubious, good), using more intervals in the value of the metric, such as “if NDT ≤ 0 then
bad, else if NDT > 4 then dubious, else good” (see Fig. 1). For simplicity, since the argument is
easily generalizable to whatever number of quality levels, we will assume in the rest of the
paper that the number of quality levels is only two (bad, good), while the number of metric
intervals is open: “if NDT ≤ 0 then bad, else if NDT > 4 then bad, else good”.

Now, suppose we want to combine two different metrics to assign a quality level, such as
NDT and ‘size in words’ (SW). We can represent both variables on the X-Yplane, where each
point is a requirement and the color is the quality level. The simplest way to discriminate
quality within the cloud of points is by a linear combination of the variables, i.e., the traditional
method of weighted average of metrics: “if (a*NDT+ b*SW) ≤ L, then bad, else good”, where
a, b, and L are convenient values. When the cloud of points is naturally split in two regions of
quality separated by a straight line, the values of a, b, and L can be easily obtained with simple
mathematical methods (see Fig. 2). The method generalizes to any number of dimensions
(metrics) that define a hyperspace of requirements split in two regions by a hyperplane.

However, this simplicity is not usually the case when the variables present a more complex
relationship with quality that can be very difficult to estimate a priori (see Fig. 3). In these
situations, a more convenient, yet simple way to combine the metrics is by means of a
rectangular region: quality is good inside the region, otherwise it is bad. Note that the region
could be open in one or more sides: “if NDT between [1, 4] and SW between [10, –] then

Good

Quality Dubious

Bad

0 1 5

NDT
Fig. 1 A simple rule to transform a metric such as the number of domain terms (NDT) into a quality level
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good, else bad”. The method is also rather simple and generalizes to hyper-rectangular regions
in the hyperspace of requirements.

The most usual case in the combination of metrics, however, is not at all so simple, and the
cloud of points is not easily discriminated by a single (hyper-) rectangle. In this situations, we
can still generalize the procedure to a combination of regions that can be better adjusted to the
cloud of points (see Fig. 4), such as: “if NDT between [1, 3] and SW between [10, 30] then
good, else if NDT between [4, 7] and SW between [20, –] then good, else bad”. Note that the
regions could be overlapping (requiring that they do not overlap could produce a worse
adjustment of the rule, or a more complex rule with more rectangles).

Summing up, the discrimination of regions by means of hyperplanes (Fig. 2) is generally very
inadequate, and the use of simple rectangular regions (Fig. 3) is still insufficient. Instead, a
combination of rectangular regions (Fig. 4) is a versatile method when the different metrics
employed present complex relationships manifested in the clustering of points. The higher the

Fig. 2 Combination of two arbitrary metrics using a straight line to discriminate quality in the simplest case
(white: good quality, black: bad quality)

Fig. 3 Combination of two metrics using a single (open) rectangle to discriminate between good (white) and bad
(black) quality
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number of regions, the better the adjustment of the discriminating rule to the data set. However,
computing the concrete intervals for each metric, i.e., the sizes of hyper-regions, becomes a difficult
problem. This is where machine learning techniques prove particularly useful to generate the rules.

6 Method: machine learning techniques

The discrimination of requirements quality is achieved in this project by an automatic classifier that
has been trained by means of machine learning in order to identify those hyper-regions of similar
quality that have been explained in the previous section. Machine learning is a well-known subfield
of computer science that evolved from the study of pattern recognition and computational learning
theory in artificial intelligence; therefore, we provide only a brief explanation. Machine learning
explores the construction and study of algorithms that can learn from data, by building a model from
example inputs in order to make data-driven predictions or decisions, rather than following strictly
static program instructions [Bishop 2006]. On the other hand, Search-Based Software Engineering is
an approach of software engineering in which search-based optimization is applied to software
engineering (Harman and Jones 2001); machine learning, then, is one of the techniques that can be
used to perform search-based software engineering.

Machine learning techniques can be supervised or unsupervised (Russell and Norvig 2003;
Weiss and Indurkhya 1998):

& Supervised learning: the algorithm is presented with example inputs and their desired
outputs, and the goal is to learn a general function that maps inputs to outputs.

& Unsupervised learning: the inputs to the learning algorithm are given no output labels,
leaving the algorithm on its own to find a structure or pattern in its input.

More specifically, supervised learning is the task of inferring a function from labeled training
data, where each input is described by a vector of common attributes (see Fig. 5). The training
data consist of a set of training examples, each example consisting of an input object (in our
case, the vector of quality metrics obtained from each textual requirement) and a desired output

Fig. 4 Combination of two metrics using a combination of rectangular regions to discriminate between good
(white) and bad (black) quality
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value (in our case, the requirement’s quality as judged by the expert). A supervised learning
algorithm analyzes the training data and infers a generalized function, which can be used for
classifying new inputs. The effectiveness of the automatic classifier obtained is then measured
against the testing set, which has been previously segregated from the initial data, so that
training and testing are performed with different data sets.

The effectiveness (or performance) of the classification can be measured in different ways,
each standard measurement having different properties. Let DS be the absolute number of
instances in the data set; TP the number of ‘true positives’, TN the number of ‘true negatives’,
FP the number of ‘false positives’, and FN the number of ‘false negatives’. Obviously, DS=
TP+ TN+FP+ FN. Then:

& Accuracy A= (TP + TN)/DS is the ratio of true positive classifications plus true negative
classifications to all existing instances, i.e., the percentage of agreement between the
automatic classifier and the experts’ input classification.

& Precision for positives Pp = TP/(TP+ FP) is the ratio of true positive classifications to all
positive classifications, i.e., the percentage of positive instances correctly classified as
positive. Respectively, precision for negatives is Pn = TN/(TN+FN).

& Recall for positives Rp = TP/(TP+ FN) is the ratio of true positive classifications to all
relevant instances, i.e., the percentage of relevant instances correctly classified as positive.
Respectively, recall for negatives is Rn = TN/(TN+ FP).

& F-measure for positives Fp = 2/(1/Pp + 1/Rp) is the harmonic mean of precision and recall
for positives, and F-measure for negatives is Fn = 2/(1/Pn + 1/Rn).

Accuracy is the most intuitive measurement, but it is also the weakest one when the data set is
imbalanced (a naïve classifier giving always the answer ‘true’ would be perfectly useless, even
if it would have a 99% accuracy in a data set with 99% positives and 1% negatives). Precision
is better against false positives, and recall is better against false negatives (respectively,
precision and recall for negatives). F-measure considers both at the same time. In the next
section, we give the results of all these measurements.

In terms of search-based software engineering, the optimization problem consists in finding
a function of the quality metrics (a piecewise function defined by a set of rules), such that it
minimizes the distance with the experts’ quality evaluation over the set of all requirements.
This can receive the following mathematical formulation:

& Let R be a set of textual requirements, R = {r1,…, rn}.
& Let C be the quality classifications over the set of requirements, C = {c1,…, cn}, such that

ci ∈ {0, 1} is the quality provided by the experts to requirement ri, where 0 represents bad
quality and 1 represents good quality.

& Let M be a set of correctness metrics applied to requirements, M = {m1,…,mk}, such that
mj : R→ℝ (1 ≤ j ≤ k).

Fig. 5 Format of the training instances used as input to the learning algorithm. Testing instances have the same
format
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Goal: Find a function f :ℝk→ {0, 1} such that it minimizes

∑
n

i¼1
j f m1 rið Þ;…;mk rið Þð Þ−cij

Among various machine learning techniques, rule induction (or rule inference) is a kind of
supervised learning that process input training data and produce a set of IF-THEN rules used to
classify the new examples (Clark and Niblett 1989; Hong et al. 1986). Two main strategies are
commonly used:

& Produce a decision tree and then extract its rules.
& Generate the rules covering all the examples in a given class; exclude the covered

examples and proceed with the next given class, until all classes are covered.

The first strategy is implemented in the C4.5 system (Quinlan 1993), which extends the
previous ID3 (Quinlan 1986). Other algorithms such as PRISM (Cendrowska 1987) are
based only on covering, while PART (Frank and Witten 1998) combines both strategies.

These strategies present the following advantages to minimize the impact of unintentional
errors in the expert’s classification of the quality of requirements used as training examples:

& Robustness against noise due to errors, omissions or insufficient data.
& Identification of irrelevant attributes.
& Detection of absent attributes or knowledge gaps.
& Extraction of expressive and easy to understand rules.
& Possibility to interpret or modify the produced rules with aid of expert knowledge, or even

to incorporate new rules inferred by the experts themselves (Major and Mangano 1995).

In order to improve the effectiveness of the individual classifiers obtained by means of rule
induction, ensemble methods construct a set of classifiers instead of a single one, and then
classify new instances by taking a vote of their decisions (it can be a weighted vote, the mode
of the votes, etc.) (Dietterich 1997). The technique has two main variants:

& Homogeneous classifiers are generated with the same learning algorithm (Dietterich
2000). The main methods are Bagging (Breiman 1996) and Boosting (Schapire 1990).

& Heterogeneous classifiers, instead, are generated with different learning algorithms. The
most used method is stacking (stacked generalization) (Wolpert 1992).

We performed experiments using the C4.5 and the PART algorithms, as well as these two
algorithms enhanced through homogeneous classifiers (bagging and boosting). We explain the
experiments in detail in the next section.

Summing up, the whole process consists of two main stages: rule inference and rule
application. The inference stage can be summarized in the following steps (see Fig. 6):

1. Obtain the initial set of textual requirements.
2. Classify requirements according to their quality, as judged by human experts.
3. Extract quality metrics by means of an automated tool, in our case the RQA tool.
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4. Build the training and testing data for the supervised machine learning algorithm, com-
bining the two previous outputs: each requirement is represented as a vector of quality
metrics and human-judged quality level (see Fig. 5).

5. Launch the rule inference learning algorithm (in our case, run in the Weka tool) to obtain
as output the automatic classifier, i.e., the function made of rules that maps requirements
to quality levels, thus emulating the human experts; this step includes a standard validation
of the classifier through testing data, providing the different effectiveness metrics men-
tioned before (accuracy, precision, recall, and F-measure).

Oncewe have built a validated rule-based classifier, we can use it as input in the application stage
to automatically classify new requirements as the emulated human experts would do (see Fig. 7):

6. Obtain a new set of textual requirements and extract their quality metrics.
7. Classify the requirements using both the definition of the automatic rule-based classifier

and the new requirements metrics as input to the Weka tool.

Note that the classification of requirements is now automatic, which is the whole point of this
research. But this classification is performed according to rules that have been extracted from
training examples provided by experts. If the training examples were different, the automatic
classification would be different too. This is what makes the whole process tailorable to different
contexts, different styles to write requirements, and different demands in quality, without need that
the experts explicitly formulate their quality rules, and saving the effort required to do that. There is
no gold quality standard, no universal rules that can be applied in every context.

7 Description of the experiments and results in effectiveness
and efficiency

The initial data set we have used in our experiments is a corpus of 1035 textual software
requirements from the domain of aerospace industry, together with their quality classification,
provided by experts of the INCOSE’s Requirements Working Group. These are experienced

Fig. 6 Inference stage: obtaining the expert’s implicit quality function through machine learning
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requirements engineers and researchers, both from academy and industry, whose purpose is to
advance the state of the practices, education, and theory of requirements engineering and its
relationship to other systems engineering functions (INCOSE 2012). The requirements were
originally classified by these experts in two well-balanced levels: 545 requirements with good
quality and 490 with bad quality.

Next, we automatically extracted quality metrics from the requirements with the
RQA tool (Reuse Company 2016), using its standard out-of-the-box configuration. The
set of 18 quality metrics used in this project has been extensively described and
justified in Génova et al. (2013) and Parra et al. (2015), so we give only a short
description in Appendix Table 3. As we mentioned before, the text of the requirements
is confidential; therefore, we provide a table (Moreno et al. 2016) only with the
extracted metrics and the original quality classification.

Based on this data set, we launched the six different learning algorithms (C4.5 and PART, in
three variants each) to build the corresponding automatic classifiers. In order to estimate their
effectiveness, we performed, as it is usual, a stratified 10-fold cross validation (Kohavi 1995).
This means that the whole sample is randomly partitioned into 10 equal sized subsamples
(folds) with the same proportion of good and bad requirements. Each fold is then used as a
testing set, with the remaining 9-folds used as training set. The cross validation process is
repeated 10 times, so that 10 different testing classifiers are obtained, with each of the 10
subsamples used exactly once as validation data. This standard method has the advantage that
all instances are used for both training and testing, and each instance is used for validation
exactly once. In other words, for each learning algorithm, a final classifier is obtained with
training based on the whole data set, and its effectiveness is estimated through the average
effectiveness of the 10 testing classifiers obtained with the 10-fold cross validation method.

The experiments (generation of classifiers and estimation of effectiveness) were imple-
mented in the popular Weka suite (Witten and Frank 2000), version 3.6.12, keeping its
standard default parameter configuration. We show in Table 1 the results obtained in the
effectiveness of the classification of both C4.5 and PART, as well as the enhanced versions of
these two algorithms by means of the bagging and boosting techniques. As we have mentioned
before, we give four different metrics of effectiveness (defined in the previous section):
accuracy, precision, recall, and F-measure, respectively, for positives (i.e., instances classified
as good) and for negatives (classified as bad).

As it can be observed, PART is generally better than C4.5, boosting is better than bagging,
and bagging is better than the base algorithms without ensemble enhancement. Boosting C4.5
is finally the most effective algorithm in our experiments, peaking to 88% in the F-measure
that combines precision and recall.

Fig. 7 Application stage: emulating the expert’s judgment with the generated rule-based classifier
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Regarding the efficiency of the algorithms, Table 2 shows the time required by the
rule learning process with the generation algorithms using the Weka suite. The algo-
rithms have been executed on a computer with Windows 10 operative system on top of
an Intel microprocessor Core i7-4770 to 3.40 GHz and a RAM capacity of 16 GB.
These values are interesting because of the necessity to regenerate the classifiers in new
contexts (new projects, new quality constraints on the requirements, new computed
values of the metrics, etc.). It can be noted that the enhancement by means of bagging
and boosting requires more time than the base algorithms C4.5 and PART alone, as it
would be expected. In any case, the differences are not so relevant, since the regener-
ation of the rules will not be a frequent task. In fact, these generation times can be
considered practically negligible, but it is important that we know that.

8 Analysis of the obtained rule-based classifiers

The output of the learning algorithms has the appearance shown in Figs. 8 and 9. C4.5
produces a decision tree, where branches express conditions, and leaves represent final
decisions. In this example, the first leaf tells that the requirement is classified as bad if it
contains no design sentences and no domain verbs. This rule classifies 166 instances as bad, of
which 4 instances have been wrongly classified, according to the original classification
provided by the experts (i.e., the rule gives its precision in classifying instances; in this case,
the first leaf has a precision of (166–4)/166 = 0.976). If that leaf is not reached, the evaluation
proceeds down the decision tree. The classifier generated with our data produce a tree with 71
leaves (35 resulting good, 36 resulting bad).

On the other hand, PART produces a decision list made of rules with precedence. The first
rule in the example tells that the requirement is classified as bad if it contains no design
sentences, no domain verbs, and no connectors. Again, this rule classifies 142 instances as bad,
of which 1 instance has been wrongly classified. If the rule is not satisfied, the evaluation
proceeds with the next rule. The classifier generated with our data produce a list of 54 rules (27
resulting good, 27 resulting bad).

Table 1 Effectiveness of the classifiers obtained with each algorithm, estimated through 10-fold cross validation
(average accuracy, precision, recall, and F-measure, respectively, for positives on the left and negatives on the
right)

Algorithm C4.5 PART Bagging
C4.5

Bagging
PART

Boosting
C4.5

Boosting
PART

Average Accuracy 82.51 85.31 85.12 86.18 87.25 86.57
Average Precision 83.2 81.7 85.7 84.9 85.2 85.0 86.8 85.5 86.9 87.6 86.8 86.3
Average recall 83.7 81.2 86.6 83.9 86.8 83.3 87.0 85.3 89.2 85.1 87.9 85.1
Average F-measure 83.4 81.5 86.1 84.4 86.0 84.1 86.9 85.4 88.0 86.3 87.3 85.7

Table 2 Efficiency of generation: time in seconds reported by Weka to generate the classifiers with the different
learning algorithms

Algorithm C4.5 PART Bagging C4.5 Bagging PART Boosting C4.5 Boosting PART

Generation time (s) 0.17 0.09 0.28 0.84 0.32 0.90
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Reaching a leaf in the first case (decision tree) or satisfying a rule in the second case
(decision list) means the requirement, as represented by its metrics vector, has been enclosed
within a region of defined quality (good or bad) in the hyperspace of requirements (see Sect.
5). When the application of the rules proceeds on, the rule that is finally satisfied, and the
definition of the corresponding hyper-region, is more and more complex, due to the prece-
dence of the previous rules. For example, the satisfaction of the second rule in Fig. 9 implies
certain intervals of values not only for the metrics Design_sentences, Flow_sentences and
Text_length_(words), but also for Domain_verbs and Connectors in the first rule.

As we have mentioned above (see Sect. 6), one of the advantages of rule induction
algorithms is that they are able to discard irrelevant attributes, i.e., metrics that in fact are
not necessary to emulate the experts’ judgment. In our case, the finally obtained classifiers do
not use the metrics Rationale_sentences, i.e., they use only 17 from the 18 metrics computed
by the RQA tool in this project.

Now, one of the most interesting and practical aspects of the obtained rule-based classifiers
is that, for a given requirement that has been classified as bad, we can find the list of rules that
can be satisfied to improve the requirement. In other words, we can offer a list of recommen-
dations to modify a bad requirement so that it becomes good. We explain the mathematical
details of this problem in the next section.

9 Getting recommendations to improve requirements

Similarly to the problem of finding a function that emulates the experts’ quality classification
of requirements, we can formulate the optimization problem of finding a least-effort

Design_sentences <= 0 
|   Domain_verbs <= 0: Bad (166/4) 
|   Domain_verbs > 0 
|   |   Flow_sentences <= 0 
|   |   |   Domain_verbs <= 1: Bad (91/6) 
|   |   |   Domain_verbs > 1 
|   |   |   |   Readability <= 7: Good (7/0) 
|   |   |   |   Readability > 7 
|   |   |   |   |   Conditional_mode <= 0 
|   |   |   |   |   |   Domain_verbs <= 2: Bad (37/2) 
|   |   |   |   |   |   Domain_verbs > 2 
|   |   |   |   |   |   |   Readability <= 10: Good (3/0) 
|   |   |   |   |   |   |   Readability > 10: Bad (6/1) 
|   |   |   |   |   Conditional_mode > 0: Good (3/0) 
|   |   Flow_sentences > 0: Good (8/0) 
… 
… 

Fig. 8 Appearance of the first lines of the output of the C4.5 rule learning algorithm

Design_sentences <= 0 AND 
Domain_verbs <= 0 AND 
Connectors <= 0: Bad (142/1) 

Design_sentences <= 0 AND 
Flow_sentences <= 0 AND 
Text_length_(words) > 30: Bad (56/0) 
… 
… 

Fig. 9 Appearance of the first lines of the output of the PART rule learning algorithm
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modification of a requirement that changes its class from bad to good. The best modification is
the one that most improves the quality of the requirement, not necessarily the least costly.
However, in the context of a binary classification, any change of class (from bad to good)
implies the same increment of quality. Our approach, then, is to provide the requirements
author with a list of suggested modifications, sorted according to the required effort to achieve
them, so that the user can choose one that entails a real improvement and at the same time is
relatively easy to achieve.

In terms of search-based software engineering, the mathematical formulation is as follows:

& Let C be an automatic rule-based binary classifier that decides on the quality of a
requirement. The decision is taken on a set of N numerical attributes of the requirement,
previously computed with a quality analyzer tool, in our case RQA.

& Let R be a requirement that has been classified by C with bad quality.
& Let Mi, i∈{1..N}, be the values of the metrics obtained for R, based on which C has

classified R as bad. R can be represented also as the vector (M1, M2, …, MN).
& Let Pj, j∈{1..L}, be the antecedents of the positive rules in C, i.e., those rules that classify a

requirement as good. Then, we have, ∀j∈{1..L}, ¬Pj(R), or equivalently ¬Pj(M1, M2, …,
MN). In other words, all antecedents of positive rules, when applied to the vector of metrics
of a bad requirement, classify it as bad.

Suppose now we want to rewrite R into R′, so that R′ is evaluated as good; that is, R′ is such
that it satisfies the antecedent of some positive rule: ∃j∈{1..L}, Pj(R′), or equivalently
∃j∈{1..L}, Pj(M′1, M′2, …, M′N).

Besides, we want to minimize the effort to obtain R′. Suppose there is a fixed cost to modify
the value of a metric, and a cost dependent on the magnitude of the modification. Let
Fi∈ ℝ+∪{0}, i∈{1..N}, be the estimated fixed cost to modify the value of Mi; and let
Ki∈ℝ+∪{0}, i∈{1..N}, be the estimated cost to increase or decrease by an amount of 1 the
value of Mi.

Then the cost to modify R so that Mi becomes M′i is Fi +Ki·|Mi-M′i|. We want to minimize
the function Σn

i = 1 Fi +Ki·|Mi-M′i|.

Goal: Find a modification R′ of R so that

∃ j∈ 1::Lf g;P j M 01;M 02;…;M 0Nð Þ
and with a minimum modification cost

∑
n

1≤ i≤n∧Mi≠M 0
i

Fi þ Ki � j Mi−M 0
ij

Note that, in the preceding formula, we add the fixed cost Fi only when the modification of the
requirement affects the i-th metric, i.e., when Mi ≠M′i. The formulation could also be gener-
alized to consider that the cost to increase the value of a given metric is different from the cost
to decrease it (for example, adding a domain term could be more costly than deleting one).

We have implemented an algorithm that solves this optimization problem in the case of
C4.5 generated rules, with heuristic values for the Fi and Ki coefficients. The algorithm
provides not only the absolute least-effort modification (R′), but a list of suggestions sorted
according to their cost (R′, R″, R″′…), so that the user can consider other relevant factors
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beyond cost to accept a suggestion. For example, we can use the precision and the number of
classified instances for each rule generated by the learning algorithm (see the explanation of
the decision tree in Fig. 8) as another useful criterion to choose among the proposed list of
modifications (a rule that classifies many instances with higher precision is better related to
quality). Next, we show an example application of the algorithm, with only the least-effort
modification for simplicity.

Example: Let us take the following requirement that has been classified as bad by the C4.5
classifier obtained in Sect. 7:

Typically the interface componentmust be able to handle at least one fast connection with
the service component and one connection with the predefined data base component.

This requirement has the following non-null metrics:

We find that a least-effort modification can be achieved to satisfy the following rule,
extracted from the decision tree:

The requirement satisfies all the values in the rule, safe for domain concepts, which
according to the rule should be strictly greater than 3 (remember that this rule has sense only
within the context of all rules, i.e., as defining a hyper region among other hyper regions in the
hyperspace of metrics). Therefore, the rule can be satisfied by the requirement with the
modification of a single metric, by adding three domain concepts. Then, we can provide the
following recommendation: “increase the number of domain concepts by 3”, so that the
modified requirement could become:

Typically the interface module must be able to handle at least one fast connection with
the service module and one connection with the predefined data base module.

We have replaced ‘interface component’, ‘service component’, and ‘data base component’ by
their corresponding domain concepts in the ontology: ‘interface module’, ‘service module’,
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and ‘data base module’. In fact, we could change the ontology instead of the requirement to
make the fit. Once the requirement has been modified, we must extract the new metrics and
check that its quality level is acceptable, as it is the case in this example.

Obviously, it is not simply a question of adding domain terms to satisfy the rule and
deceive the tool; but it could happen that the requirements engineer could have
inadvertently used wrong terms instead of the approved ones (‘interface component’
instead of ‘interface module’, say) and the tool can help discover those mistakes. Of
course, the engineer should not blindly follow the recommendations of the tool. Since
our algorithm produces a list of recommendations ordered by the effort required, if the
first recommendation is not appropriate from a professional viewpoint, the engineer can
take the next one, and so on. Similarly, in a general authoring context, a writing
assistant (such as modern word processors offer) can tell some of the sentences in a
text are too long: the recommendation can be responsibly followed or not, but the tool
is giving useful advice anyway.

Note that the two ambiguous sentences detected (‘typically’, ‘fast’) need not be removed in
order to satisfy this rule. What does this mean? We can interpret it as follows: the automatic
rule-based classifier has learned from the expert that the lack of domain concepts is a severe
defect, while the presence of ambiguous sentences is tolerable; then, the original version of this
requirement is easier to amend by adding domain concepts than by removing ambiguous
sentences (because the latter change would not be enough). Of course, a different expert could
have put more emphasis on ambiguity-related defects, and that would have been reflected in a
different machine-learning generated classifier. The point is, we do not intend to provide an
‘absolute’ quality assessment, but to emulate with flexibility the particular judgment of a given
expert in a given context.

10 Potential risks and threats to validity

As it happens with every machine learning process, the effectiveness of the output assessment
algorithm is highly dependent on its inputs. First, the selection of metrics, the reliability of the
metrics computing tool, and its configuration. In this case, we refer to our previous works
(Génova et al. 2013; Parra et al. 2015) where the metrics have been justified and the industrial
acceptance of the RQA tool (Reuse Company 2016) has been demonstrated.

Second, the initial classification by the experts (the set of training and testing
instances) is also of capital importance. If the initial data set is wrong, the automatic
classification of requirements by their quality will be useless. This factor is completely
out of our control. However, its importance is relative: what we demonstrate is that we
can emulate the experts’ judgment on the basis of (a) their personal (subjective) quality
assessment and (b) objective, measurable attributes of the requirements; if the learned
rules are “wrong”, it is the experts’ fault, not ours. The better the original classification,
the better the automatic classification. This apparent weakness is in fact one of the
strongest points in our method, since it allows us to build a flexible, context-dependent
evaluation tool. For example, the vocabulary in software requirements might accept
terms that are closer to the solution, in contrast to user requirements that would tag
them as unacceptable design terms.

The experts themselves might be inconsistent in their quality assessment. For example, we
have detected a disagreement of 10–20% among different experts working in the domain of
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photographic image quality (Robledano et al. 2016). Even the same expert might give different
evaluations in successive rounds on the same set of requirements. We consider this is a natural
phenomenon, since the experts are not machines that behave always the same: they are people
that are influenced by their experience (they are ‘experts’) and that can change their behavior
accordingly as their experience increases (Génova et al. 2012). In fact, reaching more than
85% in effectiveness qualifies our method as reasonably good. Remember this effectiveness
has been estimated, as it is usual in machine learning, through four different metrics (accuracy,
precision, recall, and F-measure) with the 10-fold cross validation method. This means that the
rule-based classifier can pretty well emulate the experts’ judgment, even if the experts do not
use explicit rules to assess quality. The automatic assessment has still false positives and false
negatives (around 15%), but it undoubtedly provides a fruitful ground to suggest
improvements.

It could also happen that requirements with similar metrics receive different classification
by the experts. This means that those metrics have not sufficient discriminatory power;
therefore, their weight will be automatically minimized by the learning process. In this sense,
rule induction algorithms are particularly robust.

One of the limitations of our method is that it is focused only on individual
properties (correctness). If the experts had classified the requirements also according
to global properties (completeness, consistency), then the learned rules could not
adequately emulate their classification, which would be reflected in a lower effective-
ness, as measured by the learning process itself. Extending the method to consider also
global properties of requirements is a promising research field that we intend to
undertake in future works.

The use of an algorithm to suggest improvements has two obvious risks. First, a change in
the requirement text that improves the desired metric can have a bad influence in a different
metric, so that the result is still not good, or even worse than before, leading to a new
improvement cycle that perhaps could be avoided; this encourages us to find a better algorithm
that accounts for both the present requirement and its modified version.

The second risk has a more psychological flavor; it is a phenomenon we can call ‘the
bureaucrat engineer’ (Génova and González 2016), an inherent risk of every automatic quality
control mechanism. A bureaucrat engineer is one that is satisfied with following the rules,
instead of searching for genuine quality. It is the reverse side of a policeman mechanism of
penalties in quality management, as opposed to the counselor’s view (James 1999; Génova
et al. 2013). Given a suggestion to improve a requirement, it is probably easy to add or remove
some words without scruples such that the modified requirement complies with the rule, even
if it becomes nonsense. Nonetheless, we think this does not deprive our proposed method of
utility, when it is used as a recommendation system by responsible engineers. We want to
emphasize that the method provides not only a single least-effort modification, but a list of
suggestions from which the user can follow one that entails a real improvement.

11 Generalizability of the method

In this section, we discuss the generalizability of our approach, along the lines
presented in Wieringa and Daneva (2015). These authors emphasize the value of
middle-range theories, i.e., theories whose generalizations, in contrast to the theories
of basic science, do not have universal scope, but which nevertheless give sufficient
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understanding of a sufficiently large class of cases. The concept of middle-range theory
was originally developed for the social sciences (Merton 1968), but is also very well
applicable to the engineering sciences (Wieringa 2014).

According to their categorization of strategies to generalize software engineering theories
(Wieringa and Daneva 2015), our approach falls in the category of lab-to-field strategies, i.e.,
artifacts that are first developed under idealized laboratory conditions and are then scaled up to
operate under uncontrolled field conditions. Besides, our research presents aspects of both
sample-based and case-based generalization strategies, as we show below.

The machine learning procedure of finding patterns of quality metrics in a sample of
requirements, and using them to predict quality in new samples, is clearly a kind of
statistical learning, which is one of the sub-categories of sample-based generalization
strategies identified in Wieringa and Daneva (2015). On the other hand, we have used a
sample of requirements that originate in a single, even if very reliable, source (experts
of the INCOSE’s Requirements Working Group); we argue that the good results
obtained (the ability of our tool to emulate the experts’ judgment) can be similarly
expected if the procedure is applied to another source of requirements; we are then
exercising case-based generalization, which, as the authors explain, is acceptable when
it is shown that there exists a reasonable similarity in the underlying mechanisms (what
they call “architectural similarity” (Ghaisas et al. 2013; Wieringa and Daneva 2015). In
this case, the underlying mechanism is the relationship between measurable indicators
of quality in textual requirements and the perceived level of quality by experts, which
we have explained in-depth in previous works (Génova et al. 2013).

We can also point to the following factors of independence that contribute to the general-
izability of the approach:

& Language independence. Even if our experiments have been performed with requirements
written in English, the method is essentially language-independent, as long as the tool used
to extract quality metrics can account for different languages (in our case, the RQA tool
provides support for eight different languages: English, French, German, Japanese, Span-
ish, Swedish, Italian, and Dutch). It is true that the natural-language processing techniques
necessary to compute requirements quality metrics have been developed mainly for
English, and to a lesser extent for other common languages. The method we have
developed depends on the existence of a tool that computes quality metrics, but the
method as such does not depend on any particular language or tool.

& Domain independence. Quality metrics are domain independent, safe for the last two items
‘domain concepts’ and ‘domain verbs’ (see Appendix Table 3). These two metrics
certainly depend on the configuration of the auxiliary RQA tool, which must have been
provided a suitable ontology of domain terms. However, as long as the ontology has been
properly defined, the machine learning procedure to emulate expert quality assessment is,
as such, independent of the concrete domain.

& Size independence. According to our experiments, the learning algorithms work well with
a training set of at least 500 randomly chosen requirements, i.e., the effectiveness reached
(accuracy, precision, recall, and F-measure) is very close (less than 1% difference) to the
values obtained with the whole data set of 1035 requirements. On the other side, once the
classifier has been obtained from similar projects with enough requirements from both
classes, the approach is independent of the size of the new project to be evaluated. We have
argued before (see Sect. 4) that the method will be most beneficial for medium/large
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projects and organizations; but this does not mean that the method will not work in small
projects, only that the benefit-cost ratio will probably be not so attractive.

& Quality levels independence. The classifier obtained through machine learning techniques
is independent of the number of quality levels present in the training data set: it will yield
as many levels as they are initially present. Our classifier is binary (two levels, good and
bad) because that was what the experts provided.

& Quality demanded independence. The method to obtain a classifier is independent of the
degree of quality demanded in the organization. In fact, what the method achieves is an
automatic emulation of the experts’ interpretation of quality according to the concrete
needs and demands of quality in their particular context, projects and organizations.

These factors of independence are the ground for the alleged tailorablity of the method to
different situations, different domains, different styles to write requirements, and different
demands in quality.

12 Conclusions and implications

Even if the usages of machine learning techniques to emulate human judgment have been
numerous in very different contexts, there are scarce references in the literature, to our
knowledge, that describe their application for quality assessment in the field of requirements
engineering; that is why we consider our research manifests a high degree of novelty.

Our main contribution in this work has been the development of a method for the
flexible evaluation of requirements in an automatic way. We have built an automatic
rule-based classifier that emulates the experts’ judgment on the quality of requirements
and is made of human-readable rules extracted from the expert’s tacit knowledge, which
can be reworked and improved. The rule generation algorithms take as input an initial
set of requirements classified by the experts according to the needs and peculiarities of
each project and organization, as well as the quality metrics of those requirements
computed with the RQA tool. The generated rules are then applied to automatically
assess the quality of new textual requirements, with a high level of agreement between
the experts’ classification and the automatic classifier (more than 85% in accuracy,
precision, recall, and F-measure), which is more than enough to provide useful advice
to requirements authors.

The experts do not need to make explicit the quality criteria they apply in their assessment
of requirements, and the metrics could be computed with a different tool. Therefore, the
method is tailorable to different contexts, different styles to write requirements, and different
demands in quality, with a high degree of automation. The method is highly general because its
results change according to its inputs. The whole process generates a rule-based classifier that
emulates the experts’ judgment on the quality of requirements (the experts’ implicit quality
function). These set of quality rules, generated by machine learning, depend both on the set of
initial requirements and on the experts’ classification of those requirements in several quality
levels. Therefore, a different set of classified requirements (i.e., the training data), will produce
a different automatic classifier, better adapted to the particular context reflected in the
vocabulary of the requirements, and to the particular demands in quality that can be inferred
from the experts’ classification. In other words, the method builds a classifier that learns from
the information provided by the experts, and adapts itself to best emulate them.
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Moreover, we can provide a list of automatic recommendations to modify the
requirements that have been classified with the lowest quality level, so that they
satisfy the obtained quality rules that emulate the experts’ judgment. In this way, we
are able to point out not only those requirements that need improvement, but also to
suggest concrete modifications to achieve the demanded quality; from this list of
suggestions, the user can choose one that entails a real improvement and at the same
time is relatively easy to achieve.

The method is still experimental and has been developed to form an integral part of the
Requirements Quality Suite by the Reuse Company (Reuse Company 2016), together with the
Requirements Quality Analyzer (RQA) and the Requirements Authoring Tool (RAT). The
suite follows a knowledge-centric approach to the requirements definition process, with the
application of ontologies and linguistic tools to the analysis and improvement of the quality of
specifications. The Requirements Quality Suite has been successfully employed in industry, in
companies such as Alstom, as described in Gallego et al. (2016) and Chalé-Góngora et al.
(2017). The suite is having a high impact in the domain of Systems Engineering, as reflected in
the series of INCOSE (International Council on Systems Engineering) conferences (see for
example Dick et al. (2017)).

The adoption of the method and tool will have some implications for practitioners.
First of all, the alleged improvement in quality and flexibility in its assessment, with
the economic benefits associated. But, also, requirements authors will have to adapt
their working environment, and themselves, to account for the new writing assistant
and take advantage of it. This adaptation positively entails, too, that engineers will
learn to write requirements in the way the organization wants while they are doing the
actual job (learning on the job (Marsick and Volpe 1999)). On the negative side, we
have already mentioned a possible drift towards the “bureaucratization” of their work
(the uncritical submission to a mechanical quality assessment); however, we think the
analogy with today-common general-purpose writing assistants allows us not to be
pessimistic in this regard. In the end, the best improvement in writing skills will be
obtained with a combination of smart tools together with mentoring of requirements
authors in basic techniques (Terzakis and Gregory 2016; Gregory and Terzakis 2017).

From a more theoretical viewpoint, this research provides empirical evidence that a non-
linear combination of metrics, i.e., the function made of rules obtained through machine
learning, provides a better fit to expert judgment than the traditional weighted average of
metrics; and it provides empirical evidence, too, that subjective quality (evaluated by experts)
can be emulated based on the measurement of objective, low-level features. It is not so obvious
that this could be so; a possible “architectural explanation” (Wieringa and Daneva 2015) is that
the writer who cares about low level details also cares about high level features of require-
ments; but this is not more than a conjecture that may well deserve more research.
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