
Data-driven and tool-supported elicitation of quality
requirements in agile companies

Marc Oriol1 & Silverio Martínez-Fernández1,2 & Woubshet Behutiye3 &

Carles Farré1 & Rafał Kozik5,6 & Pertti Seppänen3 & Anna Maria Vollmer2 &

Pilar Rodríguez3,4 & Xavier Franch1 & Sanja Aaramaa7 & Antonin Abhervé6,8 &

Michał Choraś5,6 & Jari Partanen9

Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Quality requirements (QRs) are a key artifact needed to ensure the quality and success of
a software system. Despite their importance, QRs rarely get the same degree of attention
as their functional counterpart in agile software development (ASD) projects. Moreover,
crucial information that can be obtained from software development repositories (e.g.,
JIRA, GitHub) is not fully exploited, or is even neglected, in QR elicitation activities. In
this work, we present a data-driven tooled approach for the semi-automatic generation
and documentation of QRs in the context of ASD. The approach is based on the
declaration of thresholds over quality-related issues, whose violation triggers user-defined
alerts. These alerts are used to browse a catalog of QR patterns that are presented to the
ASD team by means of a dashboard that implements several analysis techniques. Once
selected, the patterns generate the QRs, which are documented and stored in the product
backlog. The full approach is implemented via a configurable platform. Over the course
of 1 year, four companies differing in size and profile followed this approach and
deployed the platform in their premises to semi-automatically generate QRs in several
projects. We used standardized measurement instruments to elicit the perception of 22
practitioners regarding their use of the tool. The quantitative and qualitative analyses
yielded positive results; i.e., the practitioners’ perception with regard to the tool’s
understandability, reliability, usefulness, and relevance was positive. We conclude that
the results show potential for future adoption of data-driven elicitation of QRs in agile
companies and encourage other practitioners to use the presented tool and adopt it in their
companies.

Keywords Requirements engineering . Data-driven software engineering . Software quality .

Quality requirements . Non-functional requirements . Quality attributes . Agile software
development

https://doi.org/10.1007/s11219-020-09509-y

* Marc Oriol
moriol@essi.upc.edu

Extended author information available on the last page of the article

Software Quality Journal (2020) 28:931–963

Published online: 17 2020March

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-020-09509-y&domain=pdf
http://orcid.org/0000-0003-1928-7024
http://orcid.org/0000-0001-9928-133X
http://orcid.org/0000-0002-9015-9941
http://orcid.org/0000-0001-5814-3782
http://orcid.org/0000-0001-7122-3306
http://orcid.org/0000-0002-4289-2487
https://orcid.org/0000-0002-3563-8253
http://orcid.org/0000-0002-0618-6104
http://orcid.org/0000-0001-9733-8830
mailto:moriol@essi.upc.edu

1 Introduction

Quality management is known to be one of the critical success factors for software projects
(Abbas et al. 2010). There are many examples of software with poor quality (e.g., software
with critical bugs, security vulnerabilities, technical debt, low quality of service, poor code
quality) that have caused millions of euros of losses (Krasner 2018). A report conducted by the
software testing company Tricentis revealed that software failures caused more than $1.7
trillion in financial losses in 2017 (Tricentis 2018).

Therefore, to be successful, software development companies must understand and manage
software quality. Indeed, they should not only strive to avoid the aforementioned software
failures but even aim at progressive improvement (Behnamghader et al. 2017). For this reason,
many approaches have emerged aiming to improve quality in different phases of the software
development lifecycle (Groen et al. 2017; Lu and Liang 2017). In this regard, market studies
show a steady increase in the proportion of software development companies’ budgets being
spent on dealing with software quality (Capgemini 2015).

It is argued that an optimal approach to improving software quality should consider and
address such quality early from the requirements (Franch 2018). Quality requirements
(QRs)—also known as non-functional requirements1—are those artifacts that requirements
engineers use to state conditions on, and analyze the compliance of, software quality. A QR is
defined as “a requirement that pertains to a quality concern that is not covered by functional
requirements” (Pohl and Rupp 2015). QRs play an essential role in the success of software
systems, and neglecting or failing to satisfy QRs can lead to critical consequences (Franch
2018; Spinellis 2006).

Despite their importance, QRs have traditionally not received the same degree of attention
in the industry than their functional requirements counterpart (Wagner 2015). This is also true
in trending software development methodologies like agile software development (ASD), a
software development approach that has been widely adopted in the software industry
(Rodríguez et al. 2012). ASD advocates frequent releases and short development cycles to
deliver partial (but fully operational) software. However, such rapid delivery should not
compromise software quality.

To address this problem, in a previous work, we presented an explorative position paper
where we envisaged a conceptual framework named Q-Rapids to generate and document QRs
using a data-driven approach in the context of ASD (Franch et al. 2018a). The approach is
based on obtaining data from heterogeneous data sources (e.g., static code analysis tools as
Sonarqube and issue tracking systems as JIRA) (Martínez-Fernández et al. 2018b). On top of
this, the approach generates QRs if an issue is detected after computing the values of quality
metrics and project indicators. We then defined a software architecture, which was validated in
four use cases. The results of this validation were used to iterate on the conceptual framework
and architecture (Oriol et al. 2019a). In this article, we present an extension of this work with
the following new contributions:

1. An extended description of the implementation of the solution, including complete
implementation of all envisaged features (e.g., alert generation, QR patterns identification)

1 There are some disagreement and discussion about the terminology for these types of requirements (Glinz
2007). For simplicity, in this paper, we consider both terms as synonymous.

Software Quality Journal (2020) 28:931–963932

and technical improvements (e.g., integration with a dashboard). Hereafter, we will refer
to the implementation as tool-supported generation and documentation of QRs.

2. An empirical study for evaluating the functionalities for generating and documenting
software QRs in four companies. We focus on two points of view:

(a) the extent to which product owners, managers, and developers perceive the provided
tool-supported generation and documentation of QRs as understandable, complete,
useful, reliable, easy to use, and efficient.

(b) the characteristics of the tool-supported generation and documentation of QRs that
are perceived as needed by practitioners.

3. An open data package (Oriol et al. 2019b) making the assets produced in this study
accessible, including the source code and documentation of the tool’s components,
different models and artifacts containing the explicit knowledge required for the tool
(e.g., a QR pattern catalog), and the evaluation instruments (e.g., questionnaire).

The research was conducted in the context of the Q-Rapids H2020 project (Franch et al. 2019),
which enabled us to elicit real scenarios based on practitioners’ needs, use the tool-supported
generation and documentation of QRs in different company-provided scenarios, and evaluate it
based on users’ experiences and perceptions.

The remainder of this paper is organized as follows. Section 2 presents the background and
related work. Section 3 describes the research methodology we followed in our proposed
approach. Section 4 describes the QR generation and documentation process, whose validation
is presented in Section 5. Section 6 presents the implementation of the tool-supported
generation and documentation of QRs, and Section 7 an empirical evaluation of the imple-
mentation. Section 8 presents the threats to validity of both the validation of the QR generation
and documentation process and the empirical evaluation of the implementation. Finally,
Section 9 provides the conclusions and an outlook on future work.

2 Background and related work

The ASD process is mostly driven by functional requirements (Schön et al. 2017). For
example, in Scrum (Schwaber 2004), requirements are specified as user stories in a product
backlog and prioritized based on a customer perspective. This way of eliciting and managing
requirements tends to favor functional requirements over QRs (Schön et al. 2017; Rodríguez et
al. 2017). As a result, QRs are not properly documented and only managed tacitly (Bartsch
2011). Moreover, despite the numerous sources of information related to product quality that
ASD provides (e.g., continuous integration systems and user feedback) (Martínez-Fernández
2018b), there is a lack of methods to support continuous elicitation and management of QRs
throughout the whole software development lifecycle (Rodríguez et al. 2017).

On the other hand, traditional approaches for eliciting and managing QRs are usually
inadequate in the highly dynamic scenarios in which ASD is suitable. Traditional techniques
for eliciting QRs include structured and unstructured interviews, quality models, checklists,
and prioritization questionnaires (Zowghi and Coulin 2005). In this context, data-driven
requirements engineering (Maalej et al. 2016) is advocated as the proper way for eliciting QRs.

Some recent proposals in this direction aim at exploiting explicit end-user feedback data
(Groen et al. 2017; Kurtanovic and Maalej 2017; Lu and Liang 2017; Guzmán et al. 2016).

Software Quality Journal (2020) 28:931–963 933

However, explicit feedback requires user commitment and may be incomplete and/or biased.
Implicit feedback can be considered as an alternative/complementary data source for requirements
elicitation (Maalej et al. 2016). For instance, Liu et al. (2017) exploit implicit feedback but do not
aim at generating QRs; rather, their aim is to discover user preferences and usage patterns. Brill and
Knauss (2011) propose an approach for getting new requirements based on implicit feedback from
the users’ behavior and context, but their approach focuses on functional requirements for context-
adaptive systems. The SUPERSEDE data-driven approach (Franch et al. 2018b) combines both
explicit and implicit end-user feedback with other sources such as runtime monitors to detect and
address different kinds of issues (bugs, new features, QoS violations).

However, none of the aforementioned approaches exploits data gathered from software repos-
itories, project management tools, or code inspectors. Without these other relevant sources, QRs
related more directly to “internal” aspects like code quality or the software development process
itself can hardly be elicited.

To sum up, the novelty of this work is that it offers tool support for (a) generating QRs from
a configurable and expandable set of heterogeneous data sources (runtime monitors, code
inspectors,...) so that both external quality properties (e.g., availability, response time) and
internal ones (e.g., code maintainability, testability, ...) are fully addressed and (b) documenting
the QRs in the backlogs of agile teams. In addition, this work provides experiences made with
the use of this tool support in four agile companies.

3 Research methodology

To conduct our research, we followed the design science research methodology (DSRM)
(Peffers et al. 2007; Cronholm and Göbel 2015). DSRM is a methodology that provides
guidelines for researchers to conduct research in information systems based on the principles,
practices, and procedures required in design science. DSRM defines an iterative process model
that incorporates the following list of activities: identification of problem and motivation,
definition of the objectives of a solution, design and development, demonstration and evalu-
ation, and communication (see Fig. 1).

Below, we describe each of those activities and report how we addressed them in the
context of our research work.

& Problem identification and motivation: As reported in Section 1, quality management is a
critical success factor for software projects and QRs are an optimal artifact for ensuring
good software quality. However, they have not received the same degree of attention as
their functional requirements counterparts in the context of ASD.

Fig. 1 DSRM process model followed in this study

Software Quality Journal (2020) 28:931–963934

& Definition of objectives: Our research goal is to provide a framework to support the continuous
generation and documentation of QRs using a data-driven approach.

& Design and development: Following an iterative process, we conducted this activity in two
iterations. In the first iteration, we designed an architecture of the QR generation and
documentation process (see Section 4). In the second iteration, we implemented these
components and provided a tool-supported solution (see Section 6).

& Demonstration and evaluation: These activities demonstrate the use of the artifacts and measure
howwell these artifacts solve the stated problem. For this activity, we follow existing guidelines
in empirical software engineering (Wohlin et al. 2012). In the first iteration, we demonstrated
and evaluated the QR generation and documentation architecture (see Section 5), whereas in the
second iteration, we demonstrated and evaluated the tool support implementation (see
Section 7). The evaluation was conducted in the four companies of the Q-Rapids consortium
(Franch et al. 2019), which have different profiles (one large corporation, two large/medium
companies, and one SME) and produce different types of systems (e.g., frommodeling tools to
telecommunications software).

& Communication: This activity refers to communicating the research in scientific publications.

Industrial context This research methodology was applied in the context of pilot projects
from the four industry partners of the Q-Rapids project. These companies develop products
using agile software development (Scrum-like) in diverse application domains such as tele-
communications, security, military, transport, health, and public administration. All four
participated in the aforementioned activities of our research methodology.

Company 1’s products are used by its customers to develop critical systems in the military and
transportation domains. In this context, company 1 has committed to providing a quality guarantee
for the software it releases. To achieve this goal, company 1 expressed the need to evolve the quality
management processes applied to its software development cycle by getting new insights to support
the decision-making process in the context of rapid software development and to automate
management of QRs across the organization.

Company 2 is striving to enhance its software development by focusing on data analysis and
fast feedbackmethods for functional requirements and QRs. Such efforts aim at improving both
the product readiness and process performance, which are a very attractive application from the
company’s point of view.

Company 3 aims to make the quality of both their product development processes and the
products themselves more visible with the assistance of data-driven tool support for the

Fig. 2 Main logical process of QR generation and documentation: from quality alerts to elicited QRs in the agile
backlog

Software Quality Journal (2020) 28:931–963 935

generation and documentation of QRs. This is a key factor, considering the extensive portfolio
of products developed in multiple distributed project(s).

Company 4 aims at improving their agile software development process. The studied product is
an enterprise-class integrated software system for warehouse andmanufacturingmanagement. It is a
web application providing up-to-date information about clients, storage, shipment, picking, produc-
tion, and other business-related processes. It allows for monitoring and data analysis related to
running processes, evaluation of their effectiveness, and related transactions.

4 QR generation and documentation process

Q-Rapids is a quality-aware ASD framework in which QRs are elicited using a data-driven
approach (Franch et al. 2018a). Data from multiple data sources is gathered and evaluated by
means of a quality model. Then, when an issue is identified in the quality model, it should be
represented as a QR and considered during software development.

Figure 2 depicts the overall process with its different phases for generating and
documenting QRs in Q-Rapids. The QR generation process refers to the activities conducted
from the time an issue is identified until the QR is generated, whereas the QR documentation
process represents the activity where the generated QR is added to the organization’s backlog.

QR generation phases:

& Raising of quality alerts: As a first step, data from multiple and heterogeneous data sources
is gathered (e.g., from Jira, SonarQube, github, runtime monitors). The collected data feeds
a quality model that computes the quality of the software. The different elements of the
quality model represent characteristics of the software quality at different abstraction levels
(Martínez-Fernández et al. 2019). These elements of the quality model have customizable
thresholds which, if violated, automatically raise a quality alert.

& Identification of candidate QR patterns: When a quality alert is raised, candidate QR
patterns are identified. Those candidate QR patterns, after being instantiated to QRs and
implemented, will restore the value(s) of the element(s) of the quality model that raised the
alert. A key component used to identify such candidate QRs is the QR pattern catalog
(Renault et al. 2009). The QR pattern catalog consists of a set of QR patterns, which are
defined in terms of natural language sentences that include formal parameters (i.e., free
variables). The QR patterns are bound to quality model elements in the schema of the QR
patterns catalog. This binding is fundamental for matching the appropriate candidate QR
patterns with the raised quality alert.

& Analysis of candidate QR patterns: The candidate QR patterns are presented to the
decision-makers—product owners, project managers, or other members of the develop-
ment team—on a strategic dashboard. The decision-makers evaluate the candidate QR
patterns and instantiate them into particular QRs by setting the values of the formal
parameters of the QR pattern.

& Decision-making on candidate QRs: The strategic dashboard includes simulation tech-
niques for predicting the impact the QRs would have on the values of the different
elements of the quality model if such QRs were implemented. This way, decision-
makers can define the appropriate values for the candidate QRs and finally decide on
their acceptance. It is worth to mention that, since QRs are generated semi-automatically,
the understandability and other features perceived by decision-makers on these QRs could

Software Quality Journal (2020) 28:931–963936

differ from the features computed automatically (Caivano et al. 2018). For this reason,
decision-makers are responsible to decide upon the candidate QRs.

QR documentation phase:

& Documentation of QRs: In case a QR is accepted by the decision-maker, it is forwarded to
the backlog. The strategic dashboard provides the user with a link through which the
accepted QR is automatically transferred into the organization’s requirements backlog. The
strategic dashboard itself does not depend on any fixed backlog management technology
(e.g., Jira, Taiga, …) but rather utilizes the link mechanism to transfer the data content of
the accepted QR to the backlog. Establishing the link between the strategic dashboard and
the backlog is a task done in the Q-Rapids set-up actions.

We formalized the different steps and elements required by this requirements generation and
documentation process by means of a business process model and notation (BPMN) process
model (see Fig. 3). The process starts when a quality alert is triggered. The quality alert is then
notified to the decision-makers by sending the «artifact» quality alert. The decision-makers
evaluate the quality alert and request the QR patterns to resolve it. Q-Rapids obtains from the
«repository» QR patterns catalog those «artifact» QR patterns that are able to resolve the
quality alert. The decision-makers select and instantiate the QR pattern, generating the
«artifact» QR, which is finally stored in the «repository» Backlog.

In the following subsections, we will describe in detail how we designed these artifacts (i.e.,
quality alert, QR patterns, and QR) and repositories (i.e., QR patterns catalog and backlog).

Fig. 3 Main tasks and artifacts of QR generation and documentation: BPMN process model

Software Quality Journal (2020) 28:931–963 937

4.1 Quality alert artifact

In a previous work, we defined a quality model based on expert knowledge stemming from the
companies participating in the Q-Rapids consortium (Martínez-Fernández et al. 2018a). The
nodes of the quality model are of different types depending on the abstraction level: At the
highest level, there are project indicators (e.g., product quality), which are decomposed into
quality factors (e.g., code quality), which are in turn decomposed into quality metrics (e.g.,
duplicated lines of code).

Starting from this quality model, we defined customizable thresholds on each of the
different nodes in order to raise a quality alert if such a threshold is violated. We defined the
quality alert artifact in JSON with the following metadata:

& Element id: a unique identifier for the alert.
& Name: description of the alert.
& Type: identifies whether the alert is at the qualitymetric, quality factor, or project indicator level.
& Category: used to bind the alert with the QRs that can solve it. This information is obtained

from the node of the quality model that raised the alert and is defined at design time.
& Date: date on which the alert was raised.
& Status: identifies the state of the alert: new, viewed, or processed.

The process of raising a quality alert can be illustrated with the following example: A company
is using a quality model that includes several quality factors and metrics. One of these quality
factors is code quality, which has gone down until reaching the value 0.6 (all values in the
quality model are normalized from 0 to 1, where 0 is the worst case scenario and 1 is the best
case). In this case, the monitored value is below the threshold defined for this quality factor,
which was set to 0.75 (this threshold was defined by the company based on historical data
from similar projects and their experience with it). Due to this situation, a quality alert is raised
for code quality (see Fig. 4).

4.2 QR patterns catalog repository

To design and instantiate the QR patterns catalog, we used the PABRE framework (Renault
et al. 2009) and extended it to support the QR generation process. PABRE is a tooled
framework that facilitates reuse in requirements engineering by using requirement patterns.
PABRE provides the capability to define a repository with a list of QR patterns that, among
other features, can be classified according to a schema following the same tree-structured form
as the quality model.

This allows for a clear mapping between the categories of the quality alerts generated and
the QRs that can solve them. A generic catalog of QR patterns is available as part of the
supporting material of this paper (Oriol et al. 2019b).

Fig. 4 Example of quality alert in Q-Rapids

Software Quality Journal (2020) 28:931–963938

It is worth mentioning that such an approach makes it possible to have multiple QR patterns
for a given quality alert, or for a quality alert at the quality factor level to be resolved by the QR
patterns bounded to the quality metrics that decompose this quality factor.

For instance, referring to the previous example, PABRE can retrieve the QRs that are able
to resolve the alert of the code quality factor. In this case, the QR patterns are:
ComplexFilesReq (which aims to reduce the proportion of files with high cyclomatic com-
plexity), CommentedFilesReq (which aims to reduce the proportion of files with a high number
of commented lines of code), and DuplicationsReq (which aims to reduce the proportion of
files with a high number of duplicated lines of code). All these QR patterns are bound to the
quality metrics Complex files, Commented files, and Duplications, respectively, which are
quality metrics of the quality model that decomposes code quality.

4.3 QR patterns artifact

The internal structure of a QR pattern is also based on PABRE (Palomares et al. 2013) and has
been tailored to the specific needs of Q-Rapids. A requirement pattern includes several
metadata as described and specified by Franch et al. (2010). However, from the point of view
of the decision-makers, just the following information is visible:

& Goal: describes the objective or problem that the QR pattern aims to solve.
& Requirement form: the textual form of the QR pattern. In this textual form, one or more

formal parameters can be defined. The formal parameters are free variables that need to be
instantiated by the decision-makers to produce the QR.

& Description: a detailed description of the QR pattern.

An example of the QR pattern DuplicationsReq is depicted in Fig. 5.

4.4 QR artifact

A candidate QR is an instantiation of the QR pattern. In particular, it is the result produced by
the decision-maker after instantiating the formal parameter(s) of the QR pattern with actual
values that resolve the quality alert. To assist the decision-maker in this task, the Q-Rapids
platform provides simulation techniques that show the impact of the instantiated QR on the

Fig. 5 QR pattern—DuplicationsReq

Software Quality Journal (2020) 28:931–963 939

elements of the quality model. Such simulation techniques are based on Bayesian networks as
proposed in the VALUE framework (Mendes et al. 2018).

Continuing with the example described above, the decision-maker could instantiate the QR
patterns provided by Q-Rapids (i.e., ComplexFilesReq, CommentedFilesReq,
DuplicationsReq) with different values for their parameters and evaluate the impact that these
instantiations have on the quality model. During this simulation process, the decision-maker
can experiment with different alternatives and combinations in order to determine which QRs
to add. For instance, after checking different combinations, the decision-maker might choose
to instantiate DuplicationsReq, setting its value to 85% (leading to the QR “The proportion of
files without duplicated lines of code should be at least 85%”), and ComplexFilesReq, setting
its value to 70% (leading to the QR “The proportion of files with low cyclomatic complexity
should be at least 70%”) since, according to the results of the simulation, these two QRs
combined would improve the value of code quality to 0.7, which is above the defined
threshold, hence resolving the quality alert.

4.5 Backlog repository

In a previous study (W. Behutiye et al. 2017), we found that companies adopt different
practices and tools for documenting QRs. Hence, the Q-Rapids approach for integrating
generated QRs in a project’s requirements backlog considers various documentation
practices (e.g., hierarchy level, description, decisions on who documents the generated
QR) as well as multiple requirements management tools (e.g., JIRA, openProject). To
address this heterogeneity, Q-Rapids uses a generic service interface to link the QRs
generated in Q-Rapids to a project’s backlog. Such a service interface can have multiple
implementations to meet the needs of each requirements management tool and can be
tailored to the specific needs of a company. Hence the generated QRs can be added to
the project’s requirements backlog following the specific practices adopted by a
company.

5 Evaluation of QR generation and documentation process

In order to evaluate the artifacts and repositories of the above-defined process, we designed an
evaluation that involved the participation of the four Q-Rapids’ companies following a
structured workshop format.

5.1 Goal and design

The goal of the workshop was twofold: on the one hand, to validate the QR generation (i.e., the
process and its artifacts) and, on the other hand, to conduct an exploratory study of the QR
documentation process (i.e., the step that documents the QRs into the backlog). Thus, we
defined two research questions:

RQ1. Are the proposed artifacts Quality alert, QR pattern, QR, and QR patterns catalog
adequate, complete, and not overwhelming for decision-makers to generate and document
QRs?

RQ2. What important characteristics should the documentation of QRs have in order to
enable effective deployment of QRs into the organization’s backlog?

Software Quality Journal (2020) 28:931–963940

Theworkshopwas structured into two parts according to the two research questions defined above.
The first part addressed RQ1 and started with a short presentation by the researcher

describing the workflow and the structure and content of each of the artifacts and the
repository. Also, an illustrative example akin to the one presented in Section 4 was presented
by means of mock-ups. After the description of each artifact, the researcher asked the
following questions:

& Is the amount of information provided adequate?
& Is there any information missing?
& Is the amount of information provided overwhelming?

Questions were asked orally to motivate discussion among the companies’ representative
participants. For each question, the researcher codified the responses in a Boolean form
(yes/no), and in case the answer was negative (i.e., the amount of information was not
adequate, there was information missing or the amount of information was overwhelming),
the researcher made sure that participants described the particular issues they found. The
participants were also invited to provide feedback or comments at any time.

The second part of the workshop focused on RQ2 to explore the QR documentation practices of
the companies and identify important aspects for documenting the generated QRs in the projects’
requirements backlogs. In contrast to RQ1, RQ2 did not aim at measuring any quantitative metric
but rather obtaining open feedback from the participants. The researchers used findings from an
earlier studywith the companies regarding requirements documentation (W. Behutiye et al. 2017) to
initiate the discussion. We used requirements documentation templates based on the requirements
management tool applied in the projects (e.g., JIRA) to guide the discussion and asked the
participants to identify aspects they considered important while documenting QRs, with the aim
of obtaining lightweight and informative QR documentation.

5.2 Execution

As mentioned above, the workshops were conducted at the four companies of the consortium.
The members of the companies who participated in the workshops were involved in the
development process or the management of requirements for the software project used as a
pilot test and acted as representatives of their respective development teams. Each workshop
had between one and three members representing the company. Due to both the early stage of
the models and the limited number of participants, the analysis was qualitative in nature. Three
of the four workshops were conducted on the premises of the company, whereas the fourth one
was conducted online. The workshops were conducted between June 12, 2018, and September
7, 2018. Their duration ranged from 124 to 202 min. Details are summarized in Table 1.

Table 1 Summary of workshop execution

Company Company 1 Company 2 Company 3 Company 4

Country France Finland Finland Poland
Number of participants 2 2 3 1
Date of the workshop June 19, 2018 June 12, 2018 June 13, 2018 September 7, 2018
On premise/online On premise On premise On premise Online
Duration of workshop 124 min 196 min 190 min 202 min

Software Quality Journal (2020) 28:931–963 941

5.3 Data analysis

The research data was gathered in the workshops by recording the discussions. The recordings
were transcribed by a professional transcription company based in Finland to MS Word
documents.

The research data was analyzed by using a combination of thematic synthesis and narrative
synthesis (Cruzes and Dyba 2011; Cruzes et al. 2015). We opted for the combination of two
synthesis practices because, at a detailed level, the practices of the case companies were highly
company-specific.

The analysis was started by reading the Word documents and dividing the content into
sections relevant for QR generation and QR documentation. This first-level division was
necessary due to the fact that in the actual discussion, the interviewees sometimes commented
on both viewpoints in parallel.

The documentation-specific sections of the Word documents were transferred into MS
Excel tables, one for each case company; the sections were coded and the codes were grouped
into higher-order themes according to the thematic synthesis principles (Cruzes and Dyba
2011). Excel was selected as the tool for the analysis because it is easy to share within an
international network of researchers.

The themes identified in the four case companies were summarized and the consistency of
the summarized themes was checked by using the principles of narrative synthesis (Cruzes
et al. 2015).

5.4 Results

5.4.1 Results on QR generation (RQ1)

Quality alert artifact All case companies answered that the amount of information provided
in the alerts was complete and adequate (e.g., “to me it looks like the most important
information”), as well as not overwhelming (e.g., “it seems quite clear”). Most companies’
representatives also provided valuable feedback and ideas based on their needs in order to
improve this quality alert mechanism. All companies pointed out the need for top-down
traceability in order to have “a direct way to access the raw data” since “this does not point
to the, let’s say, guilty part of the software”. Apart from top-down traceability, most partici-
pants also required bottom-up traceability. That is, given a quality alert at a lower level (e.g., at
the quality metric level), they wanted to be able to visualize the values of the upper levels “to
know that these metrics go to this factor”, even though their values are not violated. Finally,
one company pointed out the importance of having easy-to-understand naming on the
elements to improve their learnability; otherwise, this “might lead to confusions”.

QR patterns artifact All companies answered that the amount of information provided in the
QR patterns was “not overwhelming” and they did not report any information missing.

Regarding the adequacy of the information, some companies’ representatives asked to make the
terminology of what is commonly understood as QRs more explicit; e.g., one participant requested
“something like stability or security or maintainability”. As another participant pointed out, the
presented QR patterns are “very low level”. To address this issue, one participant suggested that
“non-functional requirement-related keywords could be somehow highlighted in the text. So, that
would give a clearer understanding that this relates for example to performance issues”.

Software Quality Journal (2020) 28:931–963942

QR artifact The QR artifact is an instantiation of the QR pattern; therefore, the information
provided was also perceived as not overwhelming. In terms of adequacy, one company pointed
out the need to be able to customize the message when instantiating the QR pattern into a QR
in order to provide specific details. “I would like to be able to customise the message”. In terms
of completeness, one participant pointed out the need to see right away the “simulation, in
order to [see] what will be the result of the execution of these quality requirements”.

QR patterns catalog repository All companies considered the QR patterns catalog adequate,
complete, and not overwhelming. As valuable feedback, they pointed out the need to easily
“have the ability to add a new QR pattern” as they evolve the quality model. One company
went one step further in this direction and suggested adding the ability to extend the QR
patterns catalog on demand. That is, if there is no QR pattern that can resolve a particular
quality alert, there should be the possibility to extend the QR patterns catalog dynamically
(“one action button I’mmissing here is, when there is no QR [to solve an alert], so there should
be a button add one [QR pattern] to the catalogue”).

5.4.2 Results on QR documentation (RQ2)

The participants of the workshops raised documentation-related topics important for effective
deployment of the QRs generated by the Q-Rapids solution: (1) backwards traceability, (2)
information content and end-user value, (3) understandability of QRs, and (4) interfacing to the
processes and tools deployed in a company.

While the QRs presented were derived from quality issues aggregated from raw quality data
by the Q-Rapids quality model, the users of all involved companies highlighted backwards
traceability as a key aspect when planning corrective actions for an accepted and documented
QR. As one practitioner stated: “So basically if we violate in the development phase some-
thing, some quality requirements we already have, we should be able to trace back what
requirements we are violating”.

The companies had established, well-implemented processes and practices for ASD and
quality assurance, and several tools for gathering and reporting quality-related information
were in use. This places requirements on the documentation of QRs—the information content
of the QRs must be exact and must fit the processes and practices of the company. This topic
was taken up by all companies and is well highlighted in a discussion between the researchers
and a practitioner: “But a comment cannot be a mandatory field or is it, will it be used by Q-
Rapids?” - “It’s not mandatory though, it’s.” - “Yeah but okay, do you have a vision that how
quality requirements on Q-Rapids could benefit from this comment field information?”

The companies differed from each other in terms of the stability of the deployed processes
and tools they used. One had fairly stable processes and requirements repository tools, one was
in the middle of changing to a new tool, and one company was improving the processes and
tools in a continuous manner, resulting in a situation where several requirements repository
tools were in use in different parts of the organization. Such a situation generates challenges for
the automatic link for QRs between the Q-Rapids strategic dashboard and the requirements
repositories, meaning that there would not be any one-fits-all solution: “But then the question
is which backlog.” - “So you have different backlogs following that?” - “Yes...Should we then
cover all of, the basic question is that if we are thinking about this mapping and our next step in
Q-Rapids, should we select one of those and omit others?”

Software Quality Journal (2020) 28:931–963 943

6 Tool-supported generation and documentation of QRs

Based on the results of the previous evaluation, we were able to refine the artifacts and start the
implementation of the components that automate the QR generation and documentation
process.

The implemented components have been integrated with the Q-Rapids strategic dashboard,
which orchestrates the execution flow, offers decision-makers an easy-to-use user interface,
and provides additional functionalities, such as quality assessment or what-if analysis (López
et al. 2018). Figure 6 depicts the architecture of the implementation.

The modules implemented during this phase were the following:

& qr-alert: This module automates the process of evaluating the elements of the quality
model and raises an alert if a threshold is violated. To collect the data, qr-alert is connected
to ElasticSearch, which is a data sink containing all the data coming from multiple data
sources (e.g., GitHub, Jenkins, SonarQube, Jira,...). ElasticSearch stores not only the raw
data but also the aggregated metrics and factors of the defined quality model. Decision-
makers can specify the threshold for each of the nodes of the quality model and receive a
notification when a violation is triggered. The module can be triggered in a time-based
manner and can be configured in terms of running intervals during the day. Moreover, the
module allows the user to specify more complex activation rules (i.e., more complex than
simple threshold-based conditions) that will trigger a quality alert. Users can use any
timespan (e.g., range) or a specific date for executing the rule.

& qr-generation: This module automates the process of retrieving the candidate QR patterns
that resolve a qr-alert. The module connects to PABRE through its RESTful interface and

Fig. 6 Architecture of the tool-supported QR generation and documentation

Software Quality Journal (2020) 28:931–963944

identifies whether a quality alert can be resolved by a QR pattern. If so, it provides a list of
QR patterns that can resolve the quality alert to the qr-dashboard.

& qrapids-backlog-*: Each module of this type is used to store the generated QRs in the
backlog. The module defines a common RESTful interface that can have multiple
implementations, enabling Q-Rapids to connect to multiple backlogs. The RESTful
interface defines the method addToBacklog, which receives a QR as a parameter and
returns a tuple with the identifier and URL of this QR after including it in the backlog,
which enables traceability. At the current stage, there are two implemented services,
connecting to the OpenProject (qrapids-backlog-openproject) and to the Jira (qrapids-
backlog-jira) backlog, respectively.

The modules extended during this phase were the following:

& PABRE: implements the QR patterns catalog. It has been extended with the required
functionalities for retrieving, from the catalog, the requirement patterns bound to the
elements of the quality model that have raised an alert. Furthermore, it has been enhanced
with further functionalities, such as the ability to easily extend the catalog through import/
export functions as well as with methods to dynamically add, update, and delete existing
QR patterns in the catalog.

& qr-dashboard: implements a quality-aware strategic dashboard with multiple functionali-
ties, such as quality assessment, forecasting techniques, and what-if analysis (López et al.
2018). It has been extended to orchestrate the interaction between the alerts and the qr-
generation module. In this regard, the qr-dashboard is able to maintain traceability of the
whole process. Furthermore, candidate QRs obtained by qr-generation have been integrat-
ed with the what-if analysis functionality, providing the capability to show the impact that
adding a QR would have on the quality factors and project indicators of the quality model.
Figure 7 shows an example of the result of such a what-if analysis. As shown, the QR pattern is

Fig. 7 Screenshot of the what-if analysis feature with QRs

Software Quality Journal (2020) 28:931–963 945

displayed on the left side of the screen, with a slider for modifying the values of its variable(s) in
order to instantiate the QR pattern into a QR. The variable that instantiates a QR is bound to a
specific element of the quality model (in this case, a quality metric), and the values of the upper
layers of the quality model are recomputed. On the right side, the impact that such a QR would
have on the quality factors and project indicators is shown in radar and gauge charts.

The implementation and documentation of all components is available in GitHub. Table 2 lists
the GitHub repositories of each of them. The first column indicates the task of the tool-supported
generation and documentation of QRs (see Fig. 3). The second column indicates the implemented
component. The third column shows the repository where the tool is available in GitHub.

7 Evaluation of tool-supported QR generation and documentation

7.1 Goal and design

Regarding the aforementioned implementation of automating the QR generation and docu-
mentation process, we aimed at understanding the relevant information and system quality
aspects of tool-supported generation and documentation of QRs mainly from the perspective
of product owners, managers, and developers. Moreover, we aimed at identifying the key
aspects that such tools should have according to practitioners.

To measure and evaluate this practical focus of the tool-supported generation and docu-
mentation of QRs, we used key information quality (i.e., the quality of the data included in a
system to support users’ tasks) and system quality (i.e., the system’s functionalities and the
user experience to support users’ tasks) aspects (DeLone and McLean 2003). Such quality
aspects have been proven to be suitable for collecting useful insights to assess and guide the
further development and improvement of systems (Guzmán et al. 2017; McKinney et al. 2002;
Nelson et al. 2005). Specifically, in this study, we focused on the degree to which product
owners, managers, and developers perceive the tool-supported generation and documentation
of QRs as easy to use, understandable, complete, efficient, reliable, satisfying, and useful.
Thus, we defined the third research question:

RQ3. Information quality and system quality of the tool-supported generation and docu-
mentation of QRs—To what extent do product owners, managers, and developers perceive

Table 2 GitHub repositories of the components

Task Component Repository

Implemented components
Notify quality alert qr-alert https://github.com/q-rapids/qrapids-alert
Obtain QR patterns qr-generation https://github.com/q-rapids/qrapids-qr_generation
Store QR to backlog qrapids-backlog-* https://github.

com/q-rapids/qrapids-backlog-openproject
https://github.com/q-rapids/qrapids-backlog-jira

Extended components
«repository» QR patterns catalog PABRE https://github.com/OpenReqEU/requirement-patterns
Decision-makers’ tasks qr-dashboard https://github.com/q-rapids/qrapids-dashboard

Software Quality Journal (2020) 28:931–963946

https://github.com/q-rapids/qrapids-alert
https://github.com/q-rapids/qrapids-qr_generation
https://github.com/q-rapids/qrapids-backlog-openproject
https://github.com/q-rapids/qrapids-backlog-openproject
https://github.com/q-rapids/qrapids-backlog-jira
https://github.com/OpenReqEU/requirement-patterns
https://github.com/q-rapids/qrapids-dashboard

these functionalities as understandable, complete, useful, reliable, easy to use, efficient, and
satisfying?

We complemented this evaluation by gathering qualitative data from practitioners. Those
perceptions include the strengths of the tool-supported generation and documentation of QR as
well as improvements. The goal is to understand the key aspects from the perspective of
practitioners in order to answer our fourth research question:

RQ4. Relevant characteristics of tool-supported generation and documentation of QRs—
What are the key characteristics that practitioners require in tools supporting the generation
and documentation of QRs?

7.2 Execution

Procedure and instruments We performed the following activities with the participants:
They (1) received a live demo based on the installation of the tool-supported generation and
documentation of QRs in their real project; (2) performed a task independently trying out the
tool-supported generation and documentation of QRs and commented on this task; (3) filled
out a structured questionnaire on the information and system quality of the tool-supported
generation and documentation of QRs; (4) participated in a debriefing session about the key
aspects of the tool-supported generation and documentation of QRs, including strengths and
suggestions for improvement. After each step, the experimenters asked for feedback from the
participants and clarified any issues if necessary. Finally, once the functionalities had been
presented and evaluated, there was a semi-structured feedback session to further collect more
details on the key aspects, including strengths and suggestions for improvements.

We used reliable instruments for the different quality aspects to operationalize the appro-
priateness of the tool-supported generation and documentation of QRs based on the Likert
scales described in the literature. We used the information quality instruments
understandability and usefulness by McKinney et al. (2002) and right level of detail by
Goodhue and Thompson (1995). For the system quality aspects, we used the instruments
reliability by McKinney et al. (2002), perceived ease of use and perceived usefulness by
Venkatesh and Bala (2008), and efficiency by Xu and Ramesh (2008). Each Likert scale
includes up to four statements to be rated using a response scale from 1, strongly disagree to 5,
strongly agree and an additional “I don’t know” option. We instantiated the selected questions
according to the purpose and content of the tool-supported generation and documentation of
QRs. The instruments used during the evaluation (e.g., questionnaires given to participants to
gather data) are available online (Oriol et al. 2019b).

Population and sampling The target users of the tool-supported generation and documenta-
tion of QRs are mainly product owners, managers, and developers. We communicated the
target sample to the industry partners and they contacted and proposed a list of participants
based on their suitability. Then, we drew a convenient sampling (Daniel 2012) including
product owners, managers, and developers of the companies involved in the Q-Rapids project.
At the time of the evaluation, the participants were team members of the pilot project selected
in each company, who previously used the tool-supported generation and documentation of
QRs.

Execution Between July and October 2018, we deployed the tool-supported generation and
documentation of QRs in the four Q-Rapids companies. In parallel, we trained the

Software Quality Journal (2020) 28:931–963 947

experimenters and observers responsible for performing the evaluation at each company. After
collecting project data for the last 10 months in each company (since January 2018), we
evaluated the tool-supported generation and documentation of QRs following the procedures
described above between October and November 2018. We scheduled each evaluation session
for up to 3 h, taking into consideration the availability of the participants. One researcher acted
as the experimenter and at least one researcher acted as the observer.

7.3 Data analysis

The experimenter and the observer transcribed the participants’ answers (on the tasks, ques-
tionnaires, and cards from the open feedback sessions) and the observation notes into a
protocol consisting of three standardized Excel templates (one for each type of answers by
the participants). This served to keep the data analysis consistent among companies. Then we
carried out the quantitative and qualitative analyses.

We first carried out within-case analyses of the quantitative and qualitative data collected
for each company. Then we compared, related, and integrated the results among the companies
(cross-case analysis) (Miles and Huberman 1994). We report descriptive statistics including
sample size (N), median (Mdn), minimum (Min), maximum (Max), and modal value (Mode)
for the quantitative analysis. In addition, we performed a one-sample Wilcoxon signed ranks
test (Wilcoxon 1945), as it is suitable for testing with small samples whether the participants
rated the quality aspects more positively or more negatively, i.e., for checking whether or not
the answers are significantly lower or higher than a selected middle point, thus H0: Mdn(x) = 3
(the neutral point). In addition to our descriptive results, we report the standardized test statistic
(T*) and the significance levels (p) of the one-sample Wilcoxon signed ranks test. We used
IBM SPSS Statistics 19 (including IBM SPSS exact tests for analyzing small samples) and set
the confidence level of the test at 95% (i.e., α = 0.05).

Regarding the qualitative analysis, we used data-driven thematic analysis (Braun and Clark
2016) to analyze participants’ feedback on the tool-supported generation and documentation of
QRs. At least two researchers derived themes—i.e., explicitly mentioned suggestions of
improvement—inductively by coding and interpreting all observation protocols independent
of each other. Then, they compared their results and resolved any deviations. Moreover, we
performed several peer-review meetings including all experimenters, observers, and analysts to
review the interpretations of the elicited qualitative data. This served to keep the qualitative
analyses grounded on the collected evidence and ensured scientific rigor.

7.4 Results

In total, 22 persons participated in the evaluation of the tool-supported generation and
documentation of QRs. Among these participants were three product owners, seven project
managers, six managers (including quality and technical managers), three developers, and
three participants who did not check their role in the demographics questionnaire but who
belong to one of these categories. All participants had at least half a year of work experience in
their companies (Mdn = 10, Min = 0.5, Max = 32) and at least 3 months of work experience in
their current role (Mdn = 5, Min = 0.25, Max = 30).

The results are supported by the data collected during the structured questionnaires (mainly
quantitative data about different quality aspects of the tool and included features), and semi-

Software Quality Journal (2020) 28:931–963948

structured moderated sessions and observations (mainly qualitative data analyzed as strengths
and suggestions for improvement).

7.4.1 Information quality and system quality of the tool-supported generation
and documentation of QRs (RQ3)

Table 3 summarizes the results. For the information quality aspects, the questions focused on
the QR patterns and the corresponding catalog as part of the tool-supported generation and
documentation of QRs. Overall, almost all participants perceived the QR patterns as under-
standable (N = 22, Mdn = 4, Min = 2, Max = 5, Mode = 4, p = .000, T* = 3.824; see Table 3).
They also perceived them as complete in the sense that the provided information content is at
the right level of detail, even though some answers differ (Mdn = 4, p = .002). Moreover, the
majority of the participants considered the information within the QR patterns useful for their
work (Mdn = 4, p = .002).

With respect to system quality, the questions focused on the technical functionalities of the
tool-supported generation and documentation of QRs. The participants agreed that the gener-
ation of concrete QRs by the tool-supported generation and documentation of QRs based on
these QR patterns and the available data is reliable, as this result is also statistically significant
(Mdn = 4, p = .000). Their perceptions regarding the appropriateness of the tool-supported
generation and documentation of QRs for their project context were, on average, neutral, but
they had opposite opinions and the result is not statistically significant (Mdn = 3, p = .668). In
addition, the results of the perceived ease of use regarding the procedure of the tool-supported
generation and documentation of QRs, i.e., receiving an alert, inspecting the alert in the list of
alerts, clicking the QR button, and deciding what to do with the suggested QR (i.e., to integrate
it in the repository or not), are positive and statistically significant (Mdn = 4, p = .000). The
participants perceived the tool-supported generation and documentation of QR as efficient
(Mdn = 4, p = .001). In general, the participants agreed that the tool-supported generation and
documentation of QRs close the loop from data to QRs in a satisfying way (Mdn = 4, p = .000).

7.4.2 Key characteristics of tool-supported generation and documentation of QRs (RQ4)

During the evaluation, the participants also provided more feedback during the semi-structured
group feedback session and mentioned aspects that are important for the tool-supported
generation and documentation of QRs in their pilot projects. A table detailing those key
aspects is available at Oriol et al. (2019b).

In general, five participants from three use cases emphasized the usefulness and relevance
of the alert and QR functionalities because “[the tool] includes ‘closing the loop’ [between
collected data and QR and] making items actionable.” “Overall the alert/QR approach is
excellent” and “[the alerts functionality] will prevent from actively checking [the] tool.”
Furthermore, the data-driven approach enables early detection of issues and systematic QR
generation and documentation. Four participants from two use cases highlighted that aspect
and explained that for them, it is now easier to address a QR with information support due to
the data considered for the generation and documentation of this QR. Overall, the data-driven
approach enables “early detection of issues” and “better detection of quality issues which
arrives to the customer”. Another participant summarized: “[the] systematic way of creating
QR based on what we measure is good”. Besides this aspect, three participants from two use
cases also emphasized the traceability between the dashboard and the respective backlog, i.e.,

Software Quality Journal (2020) 28:931–963 949

Table 3 Quantitative analysis of the tool-supported generation and documentation of QRs

Participants’
perception regarding
…*

N Mdn Mode Min Max One-Sample Wilcoxon Signed
Ranks Test

p T*

Understandability 22 4 4 2 5 .000 3.834

Right level of detail 22 4 4 2 4 .002 3.153

Usefulness 21 4 4 2 5 .002 3.120

Appropriateness 16 3 4 2 4 .668 .428

Reliability 19 4 4 3 5 .000 3.535

Perceived usefulness 18 4 4 1 5 .018 2.368

Perceived ease of use 22 4 4 2,5 5 .000 4.296

Efficiency 22 4 4 2 5 .001 3.244

Satisfaction 21 4 4 3 4 .000 3.873

*Each quality aspect was measured using a valid and reliable Likert scale. Each item was rated using a 5-point
response scale from 1, strongly disagree to 5, strongly agree and included the option “I do not know”. One-
sample Wilcoxon signed ranks test: H0: Mdn(x) = 3 with 95% confidence level

Software Quality Journal (2020) 28:931–963950

“the link from the [Q-Rapids] dashboard to the respective backlog where the generated QR is
saved”. This “enables traceability and an easy access to the generated QR”. Furthermore, one
participant emphasized that the alerts and QRs are tailorable because it is possible to develop
and add new QRs based on new factors, metrics, etc.

In addition, the participants provided feedback to further increase the usefulness of the
implemented functionalities: Six participants across all use cases mentioned that QRs should
be simple and linked to concrete/actionable tasks. Currently, QRs are not meaningful in terms
of concrete actions to do for some participants. One person said: “[The] QR ‘decrease
complexity’ means basically nothing; it is not understandable for people. It should be more
precise how to do it (e.g., reduce LOC, use different patterns, etc.). [A] tool should help to
identify where to address the complexity. [...] [For example], tasks for Git needs to be more
specific, [e.g., a] list of specific files with a too high complexity would be fine.” QRs should
include precisely how they can be resolved and what their fit criteria are (e.g., “[The elicited]
QR is a good epic to Jira but developers need more detailed tickets for specific tasks”).
Therefore, QRs should be split into concrete actions, including upper and lower limits, the
components involved, and the cause of the issue. These improvements should enable the user
to select the best possible alternative (when QRs are generated). Five participants from three
use cases reported that the QR patterns catalog should be enhanced by improving correctness.
For instance, the participants recommended checking whether the calculations are correct or
whether the descriptions are complete because the text of “some [patterns] might be dis-
leading, e.g., test coverage [or] some needs further definition, e.g., critical error in errors at
runtime”. Furthermore, they proposed including only what is understood as a QR in the field of
software engineering, i.e., “common knowledge in the SE domain”. On the other hand, seven
participants from two use cases suggested providing information when adding or ignoring
QRs, i.e., “some more data probably needs to be input when filling in the QR.” New fields
could ask for information about the person who created the QR, the kind of issue (e.g.,
“error”), the definition of done, and the target release/date. Also, “sometimes one may want to
pinpoint/assign responsible component/team”. In addition, “when one ignores a proposed QR,
there should be a provision for that person to document why exactly that QR is being ignored”.
Further support for the user in terms of more guidelines and more explanations of the tool-
supported generation and documentation of QRs was suggested by two participants from two
use cases. In particular, guidelines for the usage of the alerts and the requirements patterns
were desired, for example, guidance on how to set proper values for thresholds and inclusion
of explanations of the logic underlying the generation and documentation of a QR. The
transparency of the tool-supported generation and documentation of QRs would be improved
based on such explanations.

8 Threats to validity

During the design of the evaluation of the QR generation and documentation process and its
tool support, we identified several threats to validity. Based on them, we emphasize below the
mitigation actions applied:

Construct validity During the evaluation of the QR generation and documentation process, in
order to minimize threats from construct validity that may arise due to misunderstanding of
concepts among researchers and participants of our study, the researchers moderating the

Software Quality Journal (2020) 28:931–963 951

workshops clarified concepts for the participants during the workshops and ensured that there
was a common understanding of the concepts that were discussed. Additionally, we used key
informant techniques to involve participants with varying roles and backgrounds in our study.
The selection proved positive, as it enabled us to collect relevant feedback from varying points
of view of the intended users of the artifact. For instance, we collected viewpoints from
product owners, project managers, and test leads.

In the evaluation of the tool-supported QR generation and documentation, we used
validated, reliable constructs (see Section 7.2) from the literature to correctly operationalize
the identified key information and system quality aspects. Complementarily, a later debriefing
session enabled us to further elaborate the practical relevance and perceptions of the users of
the tool for eliciting QRs. The use of quantitative and qualitative measures and observations
reduced mono-method bias. Furthermore, we aimed at creating a safe environment, encour-
aging the participants to highlight any negative aspects and make suggestions for the improve-
ment of the tool-supported QR generation and documentation.

External validity This entails the generalizability of the findings of a study to external
contexts. Regarding both evaluations, the generalizability of the findings is limited to the
context of the studied use cases. Still, our goal was to better understand practitioners’
perception. Because the companies involved in the study are from different domains, countries,
and size, we believe that the findings from our study can be extended to multiple companies
with an agile context, which can adopt the tasks and artifacts of the QR generation and
documentation presented in Fig. 3.

Internal validity In both evaluations, to mitigate threats from internal validity, more than one
researcher was involved during the data analysis steps to avoid any human error or possible
bias. However, we drew a convenient sample. Therefore, one limitation of our work that could
not be avoided is that we were not able to get a random sample of participants in the pilot
projects of the companies.

In addition, we defined an evaluation protocol in advance. We included, for instance, a
specific description of our planned procedure and the order for using the materials for the
evaluation of the tool-supported QR generation and documentation, i.e., a script of the
demonstrations to the participants, the tasks, the questionnaire, and an explanation with all
the steps that had to be performed by the experimenter and the observer. After all the involved
parties had agreed on the final version of the evaluation guidelines, we executed the evaluation
accordingly. This should mitigate the fact that we needed to split the work of conducting the
evaluation among different researchers and companies. Some of the researchers who conduct-
ed the evaluation were involved in developing the tool-supported QR generation and docu-
mentation. To minimize that bias, we made sure that in each session, at least two researchers
were present, one acting as the moderator/experimenter and one as an observer, to emphasize
that the participants could speak freely.

Conclusion validity This relates to the repeatability of the procedures followed in the study. In
our study, the data collection and analysis procedures, including the creation of instruments for
the implementation and execution, were documented in detail and carried out systematically.
Therefore, we applied these procedures and instruments to execute the evaluation and conduct
the analysis of the findings from all the use cases. During the analysis, we involved researchers
who had not been involved in the creation of the tool support for QR generation and

Software Quality Journal (2020) 28:931–963952

documentation. In this way, we mitigated risks such as using poorly designed instruments or
fishing for results during the analysis, which would have led to a subjective analysis.
Furthermore, we were aware that we would only get a small sample size (i.e., 22 participants)
and looked for appropriate statistical tests.

9 Conclusions and future work

In this paper, we presented a data-driven, tool-supported approach for semi-automatically
generating and documenting QRs in the context of ASD.

The approach is based on a quality model with project indicators, quality factors, and
quality metrics obtained from expert knowledge. All those elements of the quality model have
a customized threshold that, if violated, triggers a quality alert. Subsequently, the quality alert
triggers the selection of candidate QR patterns obtained from a catalog to resolve the issue.
Decision-makers can instantiate the QR patterns into concrete QRs and, by applying what-if
analyses, see the impact that this QR would have on the quality model. If the QR is selected,
the QR is stored in the product backlog.

Our proposed solution is part of the Q-Rapids framework, which aims at improving QR
management in an agile ecosystem. Over the course of 1 year, four companies differing in size
and profile followed the presented approach and deployed the tool to generate QRs in several
projects. We studied the perception of practitioners regarding the tool-supported generation
and documentation of QRs, i.e., their perception with regard to the tool’s understandability,
reliability, completeness, efficiency, usefulness, and satisfaction. The results of this evaluation
show that the participants perceived the tool-supported generation and documentation of QRs
as positive. For instance, getting alerts to ensure that the quality requirements are maintained
throughout the project lifecycle and the possibility to predict and simulate the quality was
perceived as a great feature highly valued by the participants. Furthermore, data-driven
decision-making reduces manual guess work. Finally, we also elicited key aspects of tools
supporting the generation and documentation of QRs.

The evaluations and experiences in four pilot projects in realistic agile contexts show evidence of
the feasibility of our proposal in the industry. Agile companies that have the required heterogeneous
data sources that can flexibly adapt to the QR generation and documentation process presented here
could benefit from having semi-automatically elicitedQRs directly in their backlogs.However, there
still remain challenges, such as customization of the QR patterns catalog, which should be aligned
with company-specific objectives, consideration of false positives with historical data, and more
importantly, the initial investment required to start using this type of tool in projects.

Future work will consider the aforementioned challenges regarding the tool-supported
generation and documentation of QRs in realistic agile contexts. Moreover, we plan to include
advanced functionalities in our tool, such as adding cost functions to estimate the effort to
implement QRs, adding mechanisms to estimate the severity of a QR, and using advanced
artificial intelligence techniques to predict the violation of thresholds in order to trigger quality
alerts of possible future issues in advance. Regarding this last functionality, the alerts would
enable decision-makers to generate QRs with enough time for their implementation before a
quality issue is noticeable or surpasses any threshold.

Funding information This work is a result of the Q-Rapids project, which has received funding from the
European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 732253.

Software Quality Journal (2020) 28:931–963 953

References

Abbas, N., Gravell, A. M., & Wills, G. B. (2010). The impact of organization, project and governance variables
on software quality and project success. In: Proceedings of the 2010 Agile Conference.

Bartsch, S. (2011). Practitioners’ perspectives on security in agile development. In: Proceedings of the 6th
International Conference on Availability, Reliability and Security (ARES).

Behnamghader, P., Alfayez, R., Srisopha, K., & Boehm, B. (2017). Towards better understanding of software
quality evolution through commit-impact analysis. In: Proceedings of IEEE International Conference on
Software Quality, Reliability and Security (QRS).

Behutiye, W. et al. (2017). Non-functional requirements documentation in agile software development: chal-
lenges and solution proposal. In: Proceedings of the 18th International Conference on Product-Focused
Software Process Improvement (PROFES).

Braun, V., & Clark, V. (2016). Using thematic analysis in psychology. Qualitative Research in Psychology
Journal, 3(2), 77–101.

Brill, O., & Knauss, E. (2011). Structured and unobtrusive observation of anonymous users and their context for
requirements elicitation. In: Proceedings of the IEEE 19th International Requirements Engineering
Conference (RE).

Caivano, D., et al. (2018). Artifact-based vs. human-perceived understandability and modifiability of refactored
business processes: an experiment. Journal of Systems and Software, (144), 143–164.

Capgemini. (2015). World quality report 2015–16. Technical report. http://www.capgemini.com/resources/world-
quality-report-2015-16/. Accessed 15 Nov 2019.

Cronholm S., & Göbel, H. (2015). Empirical grounding of design science research methodology. In: Donnellan
B., Helfert M., Kenneally J., VanderMeer D., Rothenberger M., & Winter R. (eds) New Horizons in Design
Science: Broadening the Research Agenda. DESRIST 2015. Lecture Notes in Computer Science, vol 9073.
Cham: Springer. https://doi.org/10.1007/978-3-319-18714-3_40.

Cruzes, D. S., & Dyba, T. (2011). Recommended steps for thematic synthesis in software engineering. In:
Proceedings of the 2011 International Symposium on Empirical Software Engineering and Measurement
(ESEM).

Cruzes, D. S., Dybå, T., Runeson, P., & Höst, M. (2015). Case studies synthesis: a thematic, cross-case, and
narrative synthesis worked example. Empirical Software Engineering, 20(6), 1634–1665.

Daniel, J. (2012). Sampling essential. In Practical guidelines for making sampling choices. Thousand Oaks:
SAGE Publications.

DeLone, W. H., & McLean, E. R. (2003). Information systems success revisited. In: Proceedings of the 35th
Hawaii International Conference on System Sciences (HICSS).

Franch, X. (2018). Why are ontologies and languages for software quality increasingly important?. In: SERC
Talks. http://sercuarc.org/event/serc-talks-why-are-ontologies-and-languages-for-software-quality-
increasingly-important. Accessed 15 Nov 2019.

Franch, X., Palomares, C., Quer, C., Renault, S., & De Lasser, F. (2010). A metamodel for software requirement
patterns. In: Proceedings of the International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ).

Franch, X., et al. (2018a). Data-driven elicitation, assessment and documentation of quality requirements in agile
software development. In: Proceedings of the International Conference on Advanced Information Systems
Engineering (CAiSE).

Franch, X., et al. (2018b). A situational approach for the definition and tailoring of a data-driven software
evolution method. In: Proceedings of the International Conference on Advanced Information Systems
Engineering (CAiSE).

Franch, X, López, L., Martínez-Fernández, S., Oriol, M., Rodríguez, P., & Trendowicz, A. (2019). Quality-aware
rapid software development project: the Q-rapids project. In: Proceedings of the International Conference on
Objects, Components, Models and Patterns (TOOLS).

Glinz, M. (2007). On non-functional requirements. In: Proceedings of the IEEE 15th International Requirements
Engineering Conference (RE).

Goodhue, D. L., & Thompson, R. L. (1995). Task technology fit and individual performance. MIS Quarterly,
19(2), 213–236.

Groen, E. C., et al. (2017). The hidden software product quality experts?: A study on how app users report quality
aspects in online reviews. In: Proceedings of the IEEE 25th International Requirements Engineering
conference (RE).

Guzmán, L., Alkadhi, R., & Seyff, N. (2016). A needle in a haystack: what do Twitter users say about software?
In: Proceedings of the IEEE 24th International Requirements Engineering conference (RE).

Software Quality Journal (2020) 28:931–963954

http://www.capgemini.com/resources/world-quality-report-2015-16/
http://www.capgemini.com/resources/world-quality-report-2015-16/
https://doi.org/10.1007/978-3-319-18714-3_40
http://sercuarc.org/event/serc-talks-why-are-ontologies-and-languages-for-software-quality-increasingly-important
http://sercuarc.org/event/serc-talks-why-are-ontologies-and-languages-for-software-quality-increasingly-important

Guzmán, L., Vollmer, A. M., Ciolkowski, M., & Gillmann, M. (2017). Formative evaluation of a tool for
managing software quality. In: Proceedings of the 11th International Symposium on Empirical Software
Engineering and Measurement (ESEM).

Krasner, H. (2018). The cost of poor quality software in the US: a 2018 report. Technical Report, CISQ
Consortium for IT Software Quality.

Kurtanovic, Z., & Maalej, W. (2017). Mining user rationale from software reviews. In: Proceedings of the IEEE
25th International Requirements Engineering conference (RE).

Liu, X., et al. (2017). Deriving user preferences of mobile apps from their management activities. ACM
Transactions on Information Systems, 35(4).

López, L., Martínez-Fernández, S., Gómez, C., Choraś, M., Kozik, R., Guzmán, L., Vollmer, A. M., Franch, X.,
& Jedlitschka, A. (2018). Q-rapids tool prototype: supporting decision-makers in managing quality in rapid
software development. In: Proceedings of the International Conference on Advanced Information Systems
Engineering (CAiSE).

Lu, M., & Liang, P. (2017). Automatic classification of non-functional requirements from augmented app user
reviews. In: Proceedings of the 21st International Conference on Evaluation and Assessment in Software
Engineering (EASE).

Maalej, W., Nayebi, M., Johann, T., & Ruhe, G. (2016). Toward data-driven requirements engineering. IEEE
Software, 33(1), 48–54.

Martínez-Fernández, S., Jedlitschka, A., Guzman, L., & Vollmer, A. M. (2018a). A quality model for actionable
analytics in rapid software development. In: Proceedings of the Euromicro Conference Series on Software
Engineering and Advanced Applications (SEAA).

Martínez-Fernández, S., Jovanovic, P., Franch, X., & Jedlitschka, A. (2018b). Towards automated data integra-
tion in software analytics. In: Proceedings of the 13th International Workshop on Real-Time Business
Intelligence and Analytics (BIRTE).

Martínez-Fernández, S., Vollmer, A. M., Jedlitschka, A., Franch, X., López, L., Ram, P., Rodríguez, P., Aaramaa,
S., Bagnato, A., Choras, M., & Partanen, J. (2019). Continuously assessing and improving software quality
with software analytics tools: a case study. IEEE Access, 7, 68219–68239.

McKinney, V., Yoon, K., & Zahedi, F. M. (2002). The measurement of web-customer satisfaction: an expectation
and disconfirmation approach. Information Systems Research, 13(3), 296–315.

Mendes, E., Rodriguez, P., Freitas, V., Baker, S., & Atoui, M. A. (2018). Towards improving decision making
and estimating the value of decisions in value-based software engineering: the VALUE framework. Software
Quality Journal, 26(2), 607–656.

Miles, M., & Huberman, M. (1994). Qualitative data analysis (2nd ed.). London: Sage Publications.
Nelson, R. R., Todd, P. A., & Wixom, B. H. (2005). Antecedents of information and system quality: an empirical

examinationwithin the context of data warehousing. Journal ofManagement Information Systems, 21(4), 199–235.
Oriol, M., et al. (2019a). Data-driven elicitation of quality requirements in agile companies. In: Proceedings of

International Conference on the Quality of Information and Communications Technology (QUATIC).
Oriol, M., et al. (2019b). Supporting material of data-driven elicitation of quality requirements: tool support and

experiences in agile companies. figshare. Online resource. https://doi.org/10.6084/m9.figshare.10308299.v2.
Palomares, C., Quer, C., & Franch, X. (2013). PABRE-Proj: applying patterns in requirements elicitation. In:

Proceedings of the IEEE 21st International Requirements Engineering conference (RE).
Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research methodology

for information systems research. Journal of Management Information Systems, 24(3), 45–78.
Pohl, K., & Rupp, C. (2015). Requirements engineering fundamentals. A study guide for the certified profes-

sional for requirements engineering exam (2nd ed.). San Rafael: Rocky Nook.
Renault, S., Méndez-Bonilla, Ó., Franch, O., & Quer, C. (2009). PABRE: pattern-based requirements elicitation.

In Proceedings of the 3rd International Conference on Research Challenges in Information Science (RCIS).
Rodríguez, P., Markkula, J., Oivo, M., & Turula, K. (2012). Survey on agile and lean usage in Finnish software

industry. In: Proceedings of the International Symposium on Empirical Software Engineering and
Measurement (ESEM).

Rodríguez, P., et al. (2017). Continuous deployment of software intensive products and services: a systematic
mapping study. Journal of Systems and Software, 123, 263–291.

Schön, E. M., Thomaschewski, J., & Escalona, M. J. (2017). Agile requirements engineering: a systematic
literature review. Computer Standards and Interfaces., 49, 79–91.

Schwaber, K. (2004). Agile project management with Scrum. Redmond: Microsoft Press.
Spinellis, D. (2006). Code quality: the open source perspective. Boston: Addison-Wesley.
Tricentis. (2018). Software fail watch: 5th Edn. White Paper. http://www.tricentis.com/resources/software-fail-

watch-5th-edition/. Accessed 15 Nov 2019.
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions.

Decision Sciences, 39(2), 273–315.

Software Quality Journal (2020) 28:931–963 955

https://doi.org/10.6084/m9.figshare.10308299.v2
https://doi.org/10.1007/978-3-319-18714-3_40
https://doi.org/10.1007/978-3-319-18714-3_40

Wagner, S. (2015). Software product quality control (2nd ed.). Berlin Heidelberg: Springer.
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83.
Wohlin, C., et al. (2012). Experimentation in software engineering. Berlin: Springer Science & Business Media.
Xu, P., & Ramesh, B. (2008). Impact of knowledge support on the performance of software process tailoring.

Journal of Management Information Systems, 25(3), 277–314.
Zowghi, D., & Coulin, C. (2005). Requirements elicitation: a survey of techniques, approaches, and tools. In

Engineering and Managing Software Requirements. Berlin, Heidelberg: Springer.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Marc Oriol received his PhD degree in Computing in 2015 from the Universitat Politècnica de Catalunya (UPC-
BarcelonaTech), Spain. He did a PostDoc in the University of Pisa, and he is currently a PostDoc researcher at
UPC-BarcelonaTech, in the Software and Services Engineering research group (GESSI). Since 2018, he is also a
lecturer at Universitat Oberta de Catalunya (UOC). His research interests include service-oriented computing,
non-functional requirements, quality of service, cloud computing, and monitoring. He has served as a member of
the Organizing Committee of WAS4FI 2015, ICSOC 2017 (Publication chair) and PROFES 2019. He partici-
pated as a PC member or reviewer of several international conferences (e.g., CAiSE, PROFES, RCIS) and
journals (e.g., Soft Practice and Experience, ESWA, IJGI, IJCIS, JSS).

Software Quality Journal (2020) 28:931–963956

Silverio Martínez-Fernández is an Assistant Professor at UPC-BarcelonaTech since January 2020. PhD, MSc
and BSc in Computing, UPC-BarcelonaTech. Researcher at the inSSIDE research group at the
UPCBarcelonaTech. He was a Post-Doctoral Fellow of the European Research Consortium for Informatics
and Mathematics (2016-2018) and operative project manager (2018-2019) in Fraunhofer IESE (Germany).
Researcher with more than 35 peer-reviewed publications and H-factor 11 (according to Google Scholar). His
interests include Empirical Software Engineering, Reference Architectures, Software Analytics, and Data-driven
Development, among others. In EU framework programmes, he acted as Evaluation WP leader in Q-Rapids
(H2020, RIA), and participated in DESIRA (H2020, RIA). He has participated in the organization of several
conferences and workshops: PROFES 2019 (PC Co-chair), CESI@ICSE 2018 (PC-co chair) and
QuASD@PROFES 2017-2018 (PC co-chair). He is Editorial Board Member of the SCI-indexed journal IET
Software (IEE). He has also been reviewer of multiple journals (e.g. IST, JSS, IJCIS) and PC member of
international conferences (e.g. ESEM, ICSME, ECSA, CIbSE). Contact him at smartinez@essi.upc.edu.

Woubshet Behutiye (M.Sc) is a doctoral student and researcher in the M3S research unit, at the faculty of
information technology and electrical engineering, University of Oulu. He received his MSc in Information
Processing Science from the University of Oulu in 2015. His research interests include agile software develop-
ment, continuous software engineering, requirements engineering, quality requirements, technical debt manage-
ment, and evidence-based software engineering. He has been actively involved in the H2020 Q-Rapids project,
“Quality aware rapid software development” work package as a researcher.

Software Quality Journal (2020) 28:931–963 957

Carles Farré is an associate professor in Software Engineering at the Universitat Politècnica de Catalunya (UPC-
BarcelonaTech). He received his PhD degree in Informatics from UPC in 2003. His current research interests
include service-oriented computing, Web APIs, non-functional requirements, release planning, and agile software
development. He is a member of the IJISMD editorial board. He has participated in the EU-funded projects
SUPERSEDE and Q-Rapids and in several Spanish-funded research projects (more information at https://www.
essi.upc.edu/~farre).

RafałKozik (Ph.D., D.Sc., Eng.) obtained his Doctor of Science (habilitation) degree in Computer Science from
West Pomeranian University of Technology in Szczecin in 2019. He is an assistant professor in the Department of
Telecommunications of UTP University of Science and Technology in Bydgoszcz. In 2013, he received his Ph.D.
in Telecommunications from the University of Science and Technology (UTP) in Bydgoszcz. Since 2009, he has
been involved in a number of international and national research projects related to cybersecurity, critical
infrastructures protection, software quality, and data privacy (e.g., FP7 INTERSECTION, FP7 INSPIRE, FP7
CAMINO, FP7 CIPRNet, SOPAS, SECOR, H2020 Q-Rapids). He is an author of over 70 reviewed scientific
publications.

Software Quality Journal (2020) 28:931–963958

https://www.essi.upc.edu/~farre
https://www.essi.upc.edu/~farre

Pertti Seppänen obtained his MSc degree in Electrical Engineering from the University of Oulu, Finland, in
1983 and his PhD degree in Information Processing Science from the University of Oulu, Finland, in 2018. After
receiving his MSc degree, he worked in different R&D management positions in the global ICT industry. Since
2014, he works at the University of Oulu. His research has focused on software startups and in the H2020 Q-
Rapids project on the quality-aware agile software processes. PhD Seppänen contributed as a PC member in the
ICSOB 2019 conference.

Anna Maria Vollmer received her M.Sc in Computer Science from the University of Kaiserslautern in 2016.
She is currently working as a researcher at the Fraunhofer Institute for Experimental Software Engineering IESE
in Germany. Her research interests include empirical software engineering, especially quality evaluations and
data-driven improvements. She is actively involved in the “Evaluation” Work Package in the H2020 Q-Rapids
project.

Software Quality Journal (2020) 28:931–963 959

Pilar Rodríguez received her PhD in Computer Science in 2013 (University of Oulu, Finland); M.Sc. in
Computer Science in 2008 (Technical University of Madrid, Spain); and B.Sc. in Computer Science in 2006
(Technical University of Madrid, Spain). She is an Assistant Professor in Technical University of Madrid, Spain.
She was a post-doctoral researcher at the Empirical Software Engineering in Software, Systems and Services
(M3S) research unit of the University of Oulu (Finland). Her research centers on agile and lean software
development, software quality, value-based decision-making, and human factors in software engineering. Dr.
Rodríguez’s research has been published in premier international software engineering journals and conferences.
She is a member of the Review Board of EMSE and has served as a reviewer for leading SE journals, like TSE,
EMSE, and IST. She has been a PC member of conferences such as ESEM and XP. Recently, she has been the
leader of Work Package 2 in the H2020 Q-Rapids project.

Xavier Franch is a professor in Software Engineering at the Universitat Politècnica de Catalunya (UPC-
BarcelonaTech). He received his PhD degree in Informatics from UPC in 1996. His research interest embraces
many fields in software engineering, including requirements engineering, empirical software engineering, open-
source software, and agile software development. He is a member of the IST, REJ, IJCIS, and Computing
editorial boards, Journal First chair of JSS, and Deputy Editor of IET Software. He served as a PC chair at RE’16,
ICSOC’14, CAiSE’12, and REFSQ’11, among others, and as GC for RE’08 and PROFES’19 (more information
at https://www.essi.upc.edu/~franch).

Software Quality Journal (2020) 28:931–963960

Sanja Aaramaa is a RF Platforms DU Operations Owner at Nokia Mobile Networks (MN). In this position, she
is responsible for planning and executing projects related to R&D tools and processes, IT, and cloud environ-
ments within RF Platforms. The objective of these projects is to ensure that MN level decisions on IT and tool
roadmaps, harmonization targets, and tool strategies are deployed in RF Platforms. She provides DU feedback
and tool-related requirements towards relevant MN level bodies and forums. She got her PhD in Information
Processing Science in 2017 and her M.Sc. in Mathematics in 2008 from the University of Oulu. She has
conducted empirical research since 2008 in several publicly funded (ITEA, Business Finland, H2020) research
projects in close collaboration with industries. Currently, she is the H2020 Q-Rapids Project Manager for Nokia.

Antonin Abhervé is a senior research engineer at Softeam R&Dwith more than 12 years of experience. After his
Master’s degree in Software Engineering at Paris’ 6th University, he worked in the domains of Model-Driven
Engineering, Enterprise Architecture, Business Processes, and Cloud Computing. He has been taking part at
Softeam in several French or EU research projects including Galaxy, REMICS, and MODAClouds. He worked
recently on problematic of migration of legacy application to Cloud Computing platforms using a model-driven
engineering methodology.

Software Quality Journal (2020) 28:931–963 961

Michał Choraś holds a professor position at the University of Science and Technology in Bydgoszcz (UTP),
where he is the head of the Teleinformatics Systems Division and the PATRAS Research Group. He has been
involved in many EU projects (e.g., SocialTruth, CIPRNet, Q-Rapids, INSPIRE). His research interests include
pattern recognition in several domains, e.g., cybersecurity, image processing, biometrics, and critical infrastruc-
tures protection. He is the author of over 200 reviewed scientific publications.

Jari Partanen obtained his M.Sc. degree in Industrial Management from the University of Oulu, Finland, in
1990. Currently, he is the Head of Quality and Environment at Bittium. Bittium (https://www.bittium.com) as a
company has undergone a transition towards a leaner and more agile way of working in the last few years and has
taken up the use of approaches like continuous integration towards continuous deployment, continuous and
transparent planning, as well as approaches like embedded DevOps practices. Jari Partanen has also contributed
some 20 scientific publications. Recently, he has also been acting as the Exploitation and Innovation Manager in
Q-Rapids H2020 project.

Software Quality Journal (2020) 28:931–963962

Affiliations

Marc Oriol1 & Silverio Martínez-Fernández1,2 & Woubshet Behutiye3
& Carles Farré1

&

Rafał Kozik5,6 & Pertti Seppänen3 & Anna Maria Vollmer2 & Pilar Rodríguez3,4 & Xavier
Franch1 & Sanja Aaramaa7 & Antonin Abhervé6,8 & Michał Choraś5,6 & Jari Partanen9

Silverio Martínez-Fernández
silverio.martinez@iese.fraunhofer.de; smartinez@essi.upc.edu

Woubshet Behutiye
woubshet.behutiye@oulu.fi

Carles Farré
farre@essi.upc.edu

Rafał Kozik
rkozik@itti.com.pl

Pertti Seppänen
pertti.seppanen@oulu.fi

Anna Maria Vollmer
anna-maria.vollmer@iese.fraunhofer.de

Pilar Rodríguez
pilar.rodriguez@oulu.fi; pilar.rodriguez@upm.es

Xavier Franch
franch@essi.upc.edu

Sanja Aaramaa
sanja.aaramaa@nokia.com

Antonin Abhervé
antonin.abherve@softeam.fr

Michał Choraś
mchoras@itti.com.pl

Jari Partanen
jari.partanen@bittium.com

1 Universitat Politècnica de Catalunya, Barcelona, Spain
2 Fraunhofer IESE, Kaiserslautern, Germany
3 University of Oulu, Oulu, Finland
4 Universidad Politécnica de Madrid, Madrid, Spain
5 ITTI Sp. z o.o, Poznań, Poland
6 University of Science and Technology, UTP, Bydgoszcz, Poland
7 NOKIA, Oulu, Finland
8 Softeam, Paris, France
9 Bittium Wireless Ltd., Oulu, Finland

Software Quality Journal (2020) 28:931–963 963

	Data-driven and tool-supported elicitation of quality requirements in agile companies
	Abstract
	Introduction
	Background and related work
	Research methodology
	QR generation and documentation process
	Quality alert artifact
	QR patterns catalog repository
	QR patterns artifact
	QR artifact
	Backlog repository

	Evaluation of QR generation and documentation process
	Goal and design
	Execution
	Data analysis
	Results
	Results on QR generation (RQ1)
	Results on QR documentation (RQ2)

	Tool-supported generation and documentation of QRs
	Evaluation of tool-supported QR generation and documentation
	Goal and design
	Execution
	Data analysis
	Results
	Information quality and system quality of the tool-supported generation and documentation of QRs (RQ3)
	Key characteristics of tool-supported generation and documentation of QRs (RQ4)

	Threats to validity
	Conclusions and future work
	References

