
RETORCH: an approach for resource-aware
orchestration of end-to-end test cases

Cristian Augusto1 & Jesús Morán1 & Antonia Bertolino2 & Claudio de la Riva1 &

Javier Tuya1

Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Continuous integration practice mandates to continuously introduce incremental changes
into code, but doing so may introduce new faults too. These faults could be detected
automatically through regression testing, but this practice becomes prohibitive as the cost
of executing the tests grows. This problem is preponderant in end-to-end testing where
the whole system is requested for test execution. However, some of these test cases could
be executed with fewer resources (e.g., memory, web services, computation, Cloud
instances, among others), by deploying only the subsystems needed by each test. This
paper is focused on the optimization of the resources employed in end-to-end testing by
means of a resource-aware test orchestration technique in the context of continuous
integration practices in the Cloud. The RETORCH approach proposes a novel way to
identify the resources required by end-to-end test cases and to use this information to
group together those tests requiring equivalent resources. Besides, the approach proposes
to deploy the grouped tests in isolated and elastic environments, so that their execution
can be scheduled in parallel on several machines. RETORCH is exemplified with a real-
world application, and its performance evaluation shows promising savings in terms of
resource usage and time.

Keywords Software testing . Continuous integration . Continuous testing . Testing in the Cloud .

End-to-end testing . Test orchestration

1 Introduction

Continuous integration practices are based on incremental changes in the code to improve
quality or add new functionalities (Meyer 2014). However, while introducing new features in
the code, new faults can be introduced as well. Detection of these failures early in the code
may reduce between 25 and 40% the amount of time and cost in fixing them compared to fix

https://doi.org/10.1007/s11219-020-09505-2

* Cristian Augusto
augustocristian@uniovi.es

Extended author information available on the last page of the article

Software Quality Journal (2020) 28:1147–1171

Published online: 2 2020March

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-020-09505-2&domain=pdf
http://orcid.org/0000-0001-6140-1375
https://orcid.org/0000-0002-7544-3901
https://orcid.org/0000-0001-8749-1356
https://orcid.org/0000-0001-5592-9683
https://orcid.org/0000-0002-1091-934X
mailto:augustocristian@uniovi.es

them in production (Shull et al. 2002). To ensure that the modifications and the new code do
not endanger the existing functionality, regression testing (Yoo and Harman 2012) is standard
practice. In modern agile processes, though, in which new versions of software are continu-
ously and frequently delivered within very short cycles, regression testing may face many
challenges as the efficient execution of the test cases, the reliability improvement of the tested
system, or the reduction of time between different releases.

One emerging practice to shorten the validation of newly released versions is continuous
testing (Fitzgerald and Stol 2017). Continuous testing consists of automating the test cases and
re-executing them before any new release in the source code repository. However, a well-
known problem is that as the number of tests increases, re-executing all of them at each change
may not be possible due to the extent of resources that should be employed, such as the
computational execution cost, the time required, or the number of instances needed. As a
solution to partially address this problem, many test minimization and prioritization techniques
(Yoo and Harman 2012) have been proposed, to identify a minimal subset of test cases or
optimize their order of execution, respectively. The objective of these techniques is to look for
a trade-off between the probability of discovering the faults potentially added with modifica-
tions and the resources employed for regression testing. The prioritization techniques permute
the execution order of the test cases aimed to firstly execute the most relevant test cases, but the
whole execution of the test suite remains expensive unless the tester decides to execute only a
subset of the more relevant test cases through a minimization technique. The latter techniques
reduce the execution time by not re-executing all test cases, but they neither optimize the
resources of the test executed nor alleviate the thoroughly use of resources in the whole test
suite.

One of the testing levels that requires a large amount of physical-logical-computational
resources is end-to-end testing (from now onward referred to as E2E). E2E testing includes the
interaction between system components, from the user interaction with the system to low-level
layers like databases. The execution of the E2E test cases requires large amounts of resources
due to the high execution time, the cost of replicating resources, or the setup of the system,
among others. Therefore, the application of techniques such as prioritization minimization or
reduction may not be effective enough for cost reduction in E2E testing.

During the execution of E2E test cases, the resources are usually oversubscribed because
the test cases tend to deploy more resources than they need for execution. For example,
suppose a user interface test case that requires a web and database server, but the setup of this
test case deploys the whole system including an email server. As a consequence, the test case
oversubscribes resources because the deployment of the whole system also includes an email
server that this test will not use.

A proper setup of the whole system is relevant not only to optimize the resources deployed
during E2E testing but also to decrease the execution time. Thus, if this setup requires a large
amount of time compared with that employed in test execution, parallelizing the test cases in
separate instances without a proper strategy would not solve the problem: for the test cases that
share the usage of heavy resources, parallelization would be inefficient, and the best solution
would be to setup the test environment once and execute them in a sequential way. Therefore,
to optimize the cost of E2E testing, the detection of the dependencies between the test cases
and the resources is a crucial aspect which may achieve cost savings (Herzig et al. 2015).

Moving testing to the Cloud (Bertolino et al. 2019) is commonly acknowledged as a
solution to reduce the cost of testing, especially to exploit the potential of unlimited resources
and scalability delivered on demand. One open-source platform to support Cloud testing and

Software Quality Journal (2020) 28:1147–11711148

simplify the E2E testing process has been developed within the European Project ElasTest
(Bertolino et al. 2018). The solution avoids several testing dependence problems by providing
dependency isolation through the containerized execution of the tests. This is done through the
TJobs that are the tests together with the Docker containerized system under test (SUT)
customized to provide not only the production environment but also utilities to execute,
monitor, and collect testing information.

Containerization has provided new advantages in the virtualization field, reducing the
amount of both resources and time required to deploy a service in an isolated environment.
The SUT instantiation can take advantage of the containerization in order to be deployed
several times in the same machine, avoiding common problems like dependencies. However,
in the current version, the ElasTest containerized execution presents the problem that it needs
the instantiation of the resources required for each container causing oversubscribing (under
usage) of those resources.

Our proposal is intended to reduce the number of resources used in the containerized
execution of the test during E2E testing, and it may be integrated into the ElasTest platform to
support resource-aware Cloud testing orchestration: we call the approach RETORCH (Re-
source-aware E2E Test ORCHestration). RETORCH aims at decreasing the execution time
and optimizing the resources used in E2E testing through the identification of the resources
used during testing and groups the tests based on the resources they need to avoid unnecessary
redeployments and running of the identified test groups in parallel to reduce the execution
time.

This article extends an earlier work (Augusto et al. 2019) by introducing a number of new
concepts that are useful to identify the resources used by the test cases, a complete reorgani-
zation and extension of the state-of-the-art, and the application and evaluation of the approach
on an ElasTest demonstrator. More precisely, this article includes the following contributions:

1. Definition of the RETORCH framework to perform the E2E resource identification, the
test grouping, and scheduling.

2. An illustrative application scenario of RETORCH usage.
3. An evaluation of the RETORCH approach in a real-world application.

The remainder of the article is organized as follows. The related work is described in Section 2.
The orchestration approach proposed in this article is defined in Section 3. Section 4 describes
a working example related to a teaching online service (FullTeaching application using the
OpenVidu Streaming Engine). Section 5 contains the evaluation of the approach proposed
using a real-world application, and Section 6 describes the future implementation of the
approach. Finally, the conclusions and future work are in Section 7.

2 Related work

An inspiring work to RETORCH is the Multi-Objective Regression Test Optimization ap-
proach (Harman 2011). In his work, Harman discussed several cost- and value-based objec-
tives for testing, supporting the point of view that testing optimization should be performed by
considering a combination of the several different types of resources needed. Our work is also
focused on the same problem and proposes a specific solution for the case of end to end
testing, considering a number of resources and the time spent during the testing. This section

Software Quality Journal (2020) 28:1147–1171 1149

discusses different lines of orthogonal works that are related to RETORCH: (1) the reduction,
prioritization and minimization techniques, (2) test dependency detection, (3) the resource
optimization techniques, and finally (4) the orchestration approaches.

2.1 Test reduction, prioritization, and minimization techniques

Despite the recent advances in both efficiency and effective usage of resources during the
testing, there are several open challenges (Bertolino 2007) to be addressed when
performing test prioritization, selection, and minimization. Test reduction, prioritization,
and minimization have been widely discussed in the literature. Yoo and Harman (Yoo
and Harman 2012) have surveyed some works about minimization, prioritization, and
selection, comparing the results of these techniques in terms of failure detection effec-
tiveness and discussing open problems and future directions of them. Several authors
have studied approaches to optimize these techniques considering both cost and rate of
fault detection (Engström et al. 2008; Rothermel et al. 2002; Wong et al. 1998). These
techniques are also used in big companies like Google (Memon et al. 2017) that executes
a subset of the test cases according to both the failure rate and the historical number of
modifications. Another line of research combines these approaches with other tech-
niques, such as machine learning (Lachmann et al. 2017), prioritizing the test cases
according to the requirements coverage, execution cost, and the historical number of
failures detected by the test cases (Yoo and Harman 2012).

Our proposal has some aspects in common with the arrangement of the test cases of
prioritization techniques (Yoo and Harman 2012).

2.2 Test dependency detection

During the test prioritization, one relevant issue to consider is the test dependencies.
Some authors have proposed techniques and tools to detect these dependencies between
test cases. Bell et al. (2015) provide a tool to detect dependencies (Electrictest) and
compare it with other state-of-the-art tool achieving similar fault detection rate but with
lower slowdown. The Electrictest tool was evolved by Gambi et al. (2018) and tested
empirically achieving good results: they discover several dependencies previously known
and also another one never discovered by the previous tests and tools. Gyori et al. (2015)
have introduced the concept of the test pollution problem and present a technique (called
POLDET) which was implemented into a tool that detects in execution time the “pol-
luting” tests.

Our article proposes a framework to optimize the resources of the test executions avoiding
unnecessary system redeployments by grouping those test cases that have no dependencies
between them. The test dependencies play a key role to discover the relationships between the
test cases and their resources. Our approach is intended to introduce a dependence detection
mechanism to improve the test efficiency though the aggrupation of those test cases that they
do not interfere with their execution.

2.3 Test resource optimization

The optimization of the test resources has been widely covered in the literature. Several works
attempt to choose between different objectives as optimize the time, cost, or a mix of both

Software Quality Journal (2020) 28:1147–11711150

(Gambi et al. 2017) or optimize the resources in testing at the same time that they comply with
time constraints (Liu et al. 2017). Other authors (Chakraborty and Shah 2011) have focused on
the cost optimization, via different processes that partition, group, and redistribute the test
cases in order to parallelize them. This aggrupation or partition of test cases is also present in
clustering techniques applied to the test optimization problem (Yu et al. 2009), on which the
resources are linked with the test cases in order to discover the underlying dependencies and
execute them.

Unlike the previous works, our article proposes to optimize the resources not only focused
on time or cost but also on other resources used during the testing based on both the test
dependencies and resource usage. García et al. (2018) also propose to orchestrate the test cases
through a proper selection and sequencing based on the outcome of test execution (verdict-
driven) or on the produced output (data-driven).

In the field of Cloud services, several approaches have been proposed to face similar issues
related to resource optimization. The Microsoft CloudBuild (Esfahani et al. 2016) faces
dependences issues extracting dependency graphs and deriving the dependencies on them
automatically. Based on these dependency analyses, Microsoft CloudBuild optimizes the
testing execution through the deployment and execution of only the test cases that change
the code. We propose a future line of work that aims at a similar automated detection of the test
resources into the containers.

2.4 Orchestration

Depending on the field, the term orchestration has different meaning and usage. In general,
orchestration is a jargon term that refers to the action of coordinating and scheduling several
components improving their execution. In network field, Giotis et al. (2015) propose to
orchestrate the network functions virtualization (NFV) with the goal of managing a policy-
based traffic engineering. In the Cloud field, there are a number of orchestration systems, as for
example, Kubernetes (Burns et al. 2016), Borg (Burns et al. 2016), Swarm (Docker Inc. 2019),
Fuxi (Zhang et al. 2014), and System Center–Orchestrator (Microsoft n.d.). These previous
orchestration systems are focused on Cloud following different architecture like TOSCA
(Cloudify and Kubernetes) (Draft 2014).

The orchestration in Cloud is performed via an orchestrator (e.g., Docker Compose
(Docker Inc. 2017)) that monitors and deploys the Jobs focused on optimizing the usage
of the instances (Casalicchio 2017) or providing a determined QoS (Singh and Chana
2015).

Closely related to Cloud services, Fog and Edge computing also address several new open
challenges related to resource optimization (Velasquez et al. 2018). These challenges are
usually addressed via different architectures that present an orchestrator acting as both allocator
and scheduler of the resources available (De Brito et al. 2017; Velasquez et al. 2017). Several
of these works were analyzed according to the resource scheduling, allocation, sharing, or
optimization by Toczé et al. (Toczé and Nadjm-Tehrani 2018) proposing a taxonomy of
resource management in the Edge.

These works propose orchestration techniques to optimize the resources according to their
specific domain. Instead, our approach aims to optimize the resources employed in the
execution of the E2E testing, thus decreasing the execution time while achieving savings in
the usage of resources.

Software Quality Journal (2020) 28:1147–1171 1151

3 RETORCH overview

The RETORCH framework aims at optimizing the cost/usage of resources orchestrating the
E2E test cases in different machines based on the resources needed to execute each test.
Figure 1 depicts the core concept of the orchestration starting from the E2E test cases to their
execution in several machines/instances grouping those tests that use homogeneous resources
in order to optimize both resources and execution time.

As the first step, resources used by each test case are identified to detect which test
cases require the same resources (resource identification). According to the resources
identified, some tests can be executed together while others cannot because of incom-
patibilities in their allocated resources or in the way in which these tests access the
resources. Then, those test cases that can be executed together are grouped to arrange
their execution and reuse their resources to optimize their cost (grouping). These groups
of tests are called TGroups. Test cases that belong to different TGroups can be executed
independently because the resources they employ are different. Finally, each TGroup
may be split and allocated in several instances (scheduling) to optimize both the cost/
usage of resources and the test execution time. The test cases of these TGroups are split
into several disjoint subsets, which are smaller than the previous TGroups, which are
called TJobs. Each TJob contains not only the code of a subset of test cases but also the
environment with the dependencies isolated in a container that allows easy deployment
of the test cases in a Cloud instance.

In the following subsections, the above key concepts are detailed. Subsection 3.1 details the
resources and their attributes. These resources can be characterized according to their category
(Subsection 3.1.1), the static attributes (Subsection 3.1.2), and the dynamic attributes that
change during test execution (Subsection 3.1.3). Finally, the processes that orchestrate the E2E
test cases are defined in Subsection 3.2.

Fig. 1 Key concepts of RETORCH

Software Quality Journal (2020) 28:1147–11711152

3.1 Main concepts of RETORCH

The core of RETORCH is based on four main concepts defined below: the resources required
by the test cases, the groups of these test cases that can reuse the same resources (TGroups),
the disjoint subsets of these TGroups in which each subset can be allocated independently in
parallel to decrease the execution time (TJobs), and an environment to isolate the dependen-
cies to allow the scheduling in elastic Cloud instances.

& Resources are physical, logical, and/or computational entities required by the execution of
one or more test cases. Examples of resources are databases with their tables, web servers,
mobile phones, and services such as a payment gateway or a pool of containers provided
by a Cloud carrier.

& TGroup (Test Group) is a set of test cases that use homogeneous resources and can be
deployed together in the same environment. For example, a TGroup can contain the test
cases that query the same database with the same initial load and without modifying the
information. These test cases can use the same database setup in the same instance. In
contrast, if two test cases modify the database causing side effects like flakiness or other
issues related to dependencies, then these two test cases must be on different TGroups and
therefore deployed in different environments. Each TGroup settles the environments
needed by the test execution in the whole system or also considering scaffolding and test
harness through the mocks, stubs, or other simulators that can alleviate the cost of
resources that are not mainly needed for the tests of the TGroup. The test cases of the
TGroup can be also divided to not only optimize the cost/usage of resources but also the
execution time through a distributed scheduling.

& TJob (Test Job) is a subset of a TGroup containing several test cases inside a Docker
container that also deploys the environment composed by the system under test isolating
the dependencies and customized to provide utilities to execute, monitor, and collect
testing information. The TGroup are split into several TJobs which are scheduled into
different Cloud instances to reduce the execution time due to the parallel execution. Each
TJob contains a subset of test cases that also reuse the same resources to optimize the
resource usage avoiding unneeded redeployments of the environment.

& Environment is the set of resources requested and which they interact with a test case
during testing. Examples of environments are a web application composed by a web server
and a database or several mobile phones required to test an android application.

The following subsections define the categories of the resources (Subsection 3.1.1), their static
attributes (Section 3.1.2), and the attributes relative to the usage of the resources during E2E
testing (Subsection 3.1.3).

3.1.1 Resource categories

Resources are classified according to three different categories described below:

1) Physical: The tangible resources that are used during E2E testing. For example, the
smartphones used to test a mobile application, the router that allows us to configure
a virtual network into a system test, or other peripherals like printers and sensors,
among others.

Software Quality Journal (2020) 28:1147–1171 1153

2) Logical: The non-tangible resources used during E2E testing that are provided in the
traditional way. For example, a web server on which the application under test is
deployed, the operative system on which the test is performed, or one flight emulator
that simulates a plane in air traffic management (ATM).

3) Computational: The logical resources that are provided or consumed as a service. This
category consists of those resources served on-demand in Cloud models like IAAS
(infrastructure as a service), PAAS (platform as a service), or SAAS (software as a
service), on which the computation, software, network, or storage may be provided as
needed by the tester.

3.1.2 Static attributes

Regardless of the category, the resources are also characterized according to certain static
attributes. These static attributes do not change during the E2E execution and provide
additional information about the resource and how it can be used during the testing. We
consider the following static attributes:

& Elasticity: A resource is elastic when it can be instantiated and made available for the test
cases on the fly (e.g., a database running in a container, a software simulator). Conversely,
a resource is not elastic when only a fixed maximum number of instances are available
(e.g., a sensor, a camera, a hardware emulator).

& Hierarchy/partitioning: A resource may contain sub-resources or partitions that are also
resources (e.g., a database may be partitioned into several tables or sets of tables). These
sub-resources and partitions characterize the resources.

& Sharing: Shared resources may be used simultaneously by more than one test case without
interfering into the test result.

& Replaceable: One resource is replaceable if may be interchangeable by a new instance (or
another equivalent resource) with no penalty for a given test case. For example, one service
that only provides tokens is replaceable if we can replace it by a simple mock that also
provides continuously the same token for all requests in a similar way than the original
resource.

& Life cycle: All resources have a life cycle composed of different phases like the setup of
resource, test execution using the resource, and disposal of the resource. In the setup
phase, the resources are deployed and initialized according to the test data (e.g., initial
load of the database or configuration data). Once the resources are ready, the test cases
use them during the test execution. Finally, after the test execution has finished, the
resources are disposed and released, making them available for other test cases into a
disposal phase.

For example, suppose the E2E testing of an air traffic management (ATM). When testing the
operations that an air traffic controller makes to manage their assigned flights, we need a
resource that is the control working position (CWP), which is itself a complex non-elastic
physical system. The CWP may become a shared resource if we partition the flight area (a
logical resource) into hierarchical clusters of sectors, provided that each test case will manage
only flights belonging to a cluster. Moreover, when testing a transfer of flights between
controllers will need two CWP, either exclusive or shared. The CWP is a not replaceable

Software Quality Journal (2020) 28:1147–11711154

resource because it is a highly coupled-complex system that makes even more complicated to
deploy partially its functionalities or change it by a mock. This resource also has his own life
cycle, with a setup (prepare all the CWP and flight plans), a test phase, and finally a release and
disposal.

3.1.3 Access mode and dynamic attributes

The resources can also be characterized according to their usage during the E2E testing
considering how each test case accesses the resource (access mode) and how the resource
changes due to the test execution.

Each test case uses the resources through different operations characterized by two prop-
erties: safety and idempotency. Safe operations are those whose execution does not modify the
resource, for example, a SELECT or a JOIN operation in a database query because it does not
change the information of the database and does not introduce dependencies between test
cases. Idempotent operations are those that can be performed several times consecutively
producing the same result.

Different test cases may have different usage patterns when using the same resource. Each
pair of test case and resource is associated according to an access mode that determines if the
operations performed during the test execution modify the resource or not and how. The access
modes are enumerated below:

& Read-only: The test case performs both safe and idempotent operations allowing
other test cases to read the resource at the same time (e.g., a test case that queries the
master tables of a database without any change allows that other test cases query the
same resource).

& Read-write: The test case performs operations that are neither safe nor idempotent. Then,
other test cases may not use this resource simultaneously to avoid unexpected erroneous
executions (e.g,. all half-duplex communication channel, on which two devices can emit or
receive, but not at the same time in the same channel).

& Write-only: The test case performs operations that are neither safe nor idempotent similar
to those “read-write” but allows that more than one test case update the resource simul-
taneously, restricting reads to only assertions that check the expected results (e.g., a
centralized log system that acts as a sink for several test cases provided that, if we need
to check the logs, there is a mechanism that allows identifying the logs produced by each
test case).

& Dynamic: The test case performs operations that are safe but not idempotent. The resource
is partitioned on the fly allowing that each test case creates and accesses each partition
independently from other test cases (e.g., when testing several test cases that issue orders,
more than one test can place an order at the same time, but in dynamic access, each test
case must only use the orders that it has created).

& No access: this access mode is banally safe because the operations of the test case do not
make use of the resource (e.g., when using a simple mock that does not require any
resource).

The previous characterization provides insights about how the E2E tests use the resources.
During the test execution, other attributes may change dynamically due to the usage of the
resource. These attributes are called dynamic and are the following:

Software Quality Journal (2020) 28:1147–1171 1155

& Allocated: Location of each resource must be known to make possible their identification
(e.g., the environment over where is deployed). Allocation is crucial when an effective use
and measure of the resource performance during testing is considered.

& Measurable: Each resource must have indicators to allow measuring how many of them
are deployed and their performance (e.g., RAM, processor usage or heartbeat latency
received by a sensor network).

& Elasticity cost: The elasticity cost measures the expenses incurred during the resource life
cycle. This cost may be a combination of money, time, processing power, memory, and
energy, among others.

& Traceability: Each resource must be always traceable, allowing to know its state at every
time of the test execution according to the life cycle (e.g., ready, running, disposing of, or
testing over it).

& Test instance: The resources and test cases must be deployed in an instance that isolates the
dependencies and avoids wrong executions/accesses with a properly setup.

& Availability: According to the number of instances available, resources are classified into
renewable and nonrenewable. Resources are renewable if can be re-instantiated without
any kind of limitations. On the other hand, a resource is nonrenewable when only may be
instantiated a fixed amount of times.

& Granularity: Each resource has its own granularity depending on how the scope is focused
over it and its underlying sub-resources. For example, one mobile phone that is used as a
physical device for the testing may be considered with more granularity as a set of sub-
resources (camera, microphone, screens, among others).

For example, in the previous scenario (ATM), the flight plans in an air traffic simulator are
usually shared and renewable resources, because they are created on the fly as needed when
the test is performed. On the other hand, the operation logs that are kept for legal requirements
are a write-only resource because they do not use it for anything other than saving the different
usage traceback.

3.2 Processes

RETORCH has three different processes, namely, resource identification, grouping, and
scheduling. The resource identification provides insights about the resources required by the
test cases and their dependencies. Next, the grouping is performed to group together those test
cases that can be executed together to reuse resources. Finally, the scheduling optimizes the
execution of the test cases providing a parallel schedule that reduces the test execution time.
These processes are represented in Fig. 2 and described below:

Resource identification This process identifies the resources that each test case needs to be
executed properly. To determine how the test case uses the resource, each association of a

Fig. 2 Scheme of the main RETORCH processes

Software Quality Journal (2020) 28:1147–11711156

resource and test case is labeled with an access mode and the attributes (Subsection 3.1). With
all this information, the test cases are characterized obtaining all the resources and their
attributes, which will be the basis for grouping and scheduling the test cases.

Grouping This process aims at optimizing the usage of resources through an aggrupation of
those test cases that can reuse the same resources to avoid unneeded redeployments. The test
cases are arranged together into TGroups (Subsection 3.1) based on the compatibility of the
attributes of the resources employed by these tests. The result of this grouping is a set of test
cases together with all scaffolding required for the execution. The main goal of the grouping
process is to avoid the oversubscription of the resources when one test case requests more
resources than needed. For example, if two tests perform an operation with a safe access mode,
they can be grouped together. However, if two test cases perform a non-safe operation on the
same resource, they are candidate to be placed in the same or separate groups depending on the
access mode.

Scheduling Although the grouping process achieves some optimization on resource usage,
the whole test process may be further optimized by ordering and splitting the TGroups into a
TJobs (Subsection 3.1). For instance, TJobs may be distributed in parallel to achieve better use
of the test infrastructure and reduce the execution time. Not all schedules are aimed to
minimize both execution time and the resource usage (one possible objective may be to
maximize the usage of several instances, minimizing the idle time or another possible objective
may be minimizing the execution time using more resources).

4 Working example

To illustrate RETORCH, we present an example of its application on a real-world open-source
application called FullTeaching (Pérez 2017). FullTeaching is an educational platform that
provides many features for organizing the teaching material, courses, and structuring classes; it
provides also means for interacting with students, e.g., calendars, dashboards, and forums.

Resource identification The FullTeaching system is a resource that can be partitioned in
hierarchical way by several sub-resources, including the OpenVidu videoconference server
(University R. J. C. 2017), the Kurento media server (Technologies 2014), and the MySQL
DBMS (Oracle 2019). In particular, for online teaching, FullTeaching includes features
enabling real-time video conferencing that are supported by OpenVidu via W3C Web-RTC
(Uberti and Thatcher 2018) open-source API. For testing the E2E functionality, the testers
should consider the underlying infrastructure and the usage of resources, especially for the
most expensive one (OpenVidu).

Deploying one instance of the OpenVidu resource per each test case that requires this
resource is too expensive due to heavy resources for storage and graphical processing evolved
in the video streaming. Despite we can group test cases to reuse the OpenVidu deployments,
the OpenVidu resource is replaceable because it can be changed by simple mock in some test
cases. For example, the test cases that only use the OpenVidu resource to acknowledge the
connection, they do not need the full OpenVidu resource and can replace it by mock resource
to be more efficient. Considering that theOpenVidu resource can be replaced based on how the

Software Quality Journal (2020) 28:1147–1171 1157

test cases use this resource, we identify the following three replacements of the OpenVidu
resource with different elasticity costs:

1. Light OpenVidu resource: This resource is a mock that just provides a random number as
session-id, whenever any client requires it. Precisely, this resource has a no-access mode
meaning that the requests from the test do not access the real OpenVidu resource, but a
mock resource. This resource may be used by the test cases that only require the session-id
from OpenVidu.

2. Medium OpenVidu resource: This resource is a simple implementation of the real
OpenVidu resource, but with only basic functionalities and without any storage to record
the session. This resource will be employed by the test cases that only need to check
functionalities without storage like online chats between users or the navigation in the
classroom menu.

3. Heavy OpenVidu resource: This resource provides all the functionalities of OpenVidu
besides several video lessons recorded. This will be used in those test cases that require
these video streaming recording functions or require all the functionality of the engine for
their execution.

Once identified the previous three resources, we proceed to arrange all the test cases available
depending on their resource usage requirements. Test cases assigned to a Light OpenVidu are
the cheapest in term of elasticity cost: they can be available for testing on the fly and can be
shared between multiple tests. The life cycle of this resource differs that it does not require
additional setup or disposal, getting an improvement in terms of cost.

Test cases assigned to a Medium OpenVidu resource require the deployment of a simple
container that consumes a small number of resources in terms of elasticity cost, and it allows
sharing between multiple tests (although with some performance penalty). In this case, the
setup/dispose life cycle phases are more expensive than the Light OpenVidu resource, so the
aggrupation of the test cases (grouping) can reduce the usage of resources sharing this setup
between several tests. Test on this resource has a read-write access mode.

Last, test cases assigned to the HeavyOpenVidu resource should be executed in a sequential
way because they access to the resource in a read-write mode and the high elasticity cost that
does not allow the deployment of more than one instance. This resource has this type of access
mode because the test cases use the resource to create and modify videos at the same time. As a
consequence, the test cases that use the Heavy OpenVidu resource should be executed
sequentially to avoid issues due the concurrent access/modification of the same videos.

Grouping Once the resources are identified and characterized, we proceed to group these test
cases into TGroups considering the test dependencies with the resources used. Figure 3.
depicts the mapping between test cases and the groups (TGroup) that they belong to. The test
cases that use the Light OpenVidu resource are represented in blue color, the test cases that use
the Medium OpenVidu resource in red color, and the test cases that use the Heavy OpenVidu
resource in black color.

Let us suppose that we have nine test cases and determine three TGroups as indicated
below:

TGroup 1 (Light OpenVidu): test cases 1, 5, 8, and 9
TGroup 2 (Medium OpenVidu): test cases 2, 6, and 7
TGroup 3 (Heavy OpenVidu): test cases 3 and 4

Software Quality Journal (2020) 28:1147–11711158

The previous aggrupations can improve resource usage deploying minimal resources
and avoiding unnecessary redeployments. For example, the TGroup 1 instead to deploy
the OpenVidu resource just deploys a mock resource (Light OpenVidu resource) that is
more efficient in terms of resource usage. However, there are test cases that require the
OpenVidu resource like test cases 3 and 4, and they deploy this whole resource (Heavy
OpenVidu resource), but they can be executed in the same group (TGroup 3) to deploy
the resource one time and reuse again avoiding a new unneeded redeployment.

Scheduling Once the grouping is done, we divide the TGroups into TJobs to schedule
them and optimize both objectives: the resource usage and execution time. Figure 4
represents four different schedules. The TJobs derived from TGroup 1 are represented in
blue (Light), the TJobs of TGroup 2 in red (Medium), and the TJobs of TGroup 3 in
black (Heavy):

4. Figure 4a only creates one TJob from each TGroup. In this schedule, the TJobs are
executed in parallel over three instances, but the test cases of the same TJobs are
executed sequentially. This schedule provides a baseline, giving the worst execution
time, but using the minimal number of instances required to keep the TGroups
isolated. All TGroups are deployed in separate instances sharing the same setup
between them.

5. Figure 4b also creates one TJob from each TGroup. However, the test cases of the TJob 1
are deployed in parallel over the same instance because they use the Light OpenVidu
resource that allows the parallel execution of the test cases at the same time. As
consequence of the parallel execution of the test cases of TJob 1, the schedule reduces
the execution time in comparison with the previous one that executes them sequentially
(Fig. 4a). Each test case of the TJob 1 employs individually more execution time than by
executing them sequentially due to the overload caused by the concurrent access. None-
theless, in this case, it is not relevant because the critical execution time corresponds with
the TJob 2 execution (TGroup 2).

6. Figure 4c as the opposite of TGroup 1, the execution time cannot be reduced executing the
test cases of the TGroup 2 in parallel inside of the same instance because they cannot

Fig. 3 Resource identification and grouping

Software Quality Journal (2020) 28:1147–1171 1159

access concurrently to the same instance of the MediumOpenVidu resource. However, the
test cases can use this resource in parallel if it is deployed in several instances. Therefore
the schedule of the Fig. 4c creates three TJobs from the TGroup 2 that are deployed in a
parallel way in three instances. This schedule reduces the execution time, and the critical
execution time corresponds with the TJob 3 execution (TGroup 3). However, the test
cases of the TGroup 3 cannot be executed in parallel at the same time neither in the same
instance nor in several instances because they use the Heavy OpenVidu resource that has
high elasticity cost. This schedule reduces the execution time but increases the use of
resources because employs five instances.

7. Figure 4d instead to create three TJobs from TGroup 2, it creates only two TJobs to reduce
the number of instances. This schedule maintains the same execution time than the
schedule of Fig. 4c but also reduces the resources employed avoiding the deployment
of one more instance: the schedule of Fig. 4c deploys five instances (three Medium
OpenVidu resources), whereas the schedule of Fig. 4d only four instances (two Medium
OpenVidu resources).

As shown in this working example, there are several features and constraints considered
during the optimization of the test scheduling based on resource usage through test orchestra-
tion. The critical step is the proper identification of which resources are needed by the test
cases and their dependencies.

Fig. 4 Different proposed TJob Scheduling

Software Quality Journal (2020) 28:1147–11711160

5 Evaluation

In order to assess whether RETORCH improves the execution time and saves resources during
E2E testing, we perform an empirical evaluation of the application described before. To
evaluate how the resources and time may be optimized via a better distribution, we attempt
to answer the following research questions:

RQ1: Does RETORCH yield an efficient execution of the E2E tests in terms of time?
RQ2: How do the schedules proposed by RETORCH affect to the use of other resources?

Test suite We tested the FullTeaching application with a test suite composed of 20 test cases
available in different git repositories (ElasTest Developers Team 2017, 2018) of the ElasTest/
FullTeaching community. These test cases employ JUnit and Selenium Web driver to emulate
the user interactions checking the main functionalities of the application: classrooms, file
uploading, and comment creation, among others.

Setup In order to evaluate RETORCH, the test cases are executed using up to 5 HyperV
virtualized instances of Ubuntu Server 18 LTS into a Ryzen 8-core, 32 gigabytes of RAM, and
solid-state drive computer. To analyze the efficiency of the test schedules provided by
RETORCH, we measure the execution time and different memory indicators from the system
monitor: physical memory required by each instance and total physical memory required.

Resource identification In the FullTeaching system, we identify three different resources as
indicated in Section 4: OpenVidu videoconference server (University R. J. C. 2017), the
Kurentomedia server (Technologies 2014), and theMySQL DBMS. According to the resource
identification detailed in Section 4, the OpenVidu resource can be replaced by another three
resources depending on how the test cases use the resource: Light OpenVidu resource (mock),
Medium OpenVidu resource (implementation with basic functionalities), and Heavy OpenVidu
resource (full OpenVidu functionalities). When it is possible, it is preferable to execute the test
cases in the Light OpenVidu resource to save resources in comparison with both Medium and
Heavy OpenVidu resources, and also because the last two resources have more elasticity cost.
All the resources are allocated into a Cloud server by means of a Docker orchestrator (Docker
compose) that also deploys the aggrupation of test cases according to the schedules proposed
by RETORCH.

Grouping The test cases are grouped into TGroups based on the resources identified. As we
detailed in Section 4, we create three TGroups based on the functionality of the test cases and
their usage of the OpenVidu videoconference system. The TGroup 1 is composed of the test
cases that only need a session-id from the OpenVidu; then these test cases can use the Light
OpenVidu resource (mock). The TGroup 2 is composed by the test cases that need OpenVidu
functionality without storage, and then they can use the Medium OpenVidu resource. Finally,
the TGroup 3 is composed of the test cases that require the full functionality of the OpenVidu
including the storage, then they can use the Heavy OpenVidu resource.

All of the test cases of the TGroup 1 use the Light OpenVidu resource with read-only access
because they only request a session-id, so they should be executed sequentially/parallelized
either in one instance or in several instances. In contrast, the test cases of the TGroup 2 use the
MediumOpenVidu resource with read-write access because they modify information that other
test cases can access if they are executed in the same instance. To avoid issues between test

Software Quality Journal (2020) 28:1147–1171 1161

cases due the concurrent access, the test cases of the TGroup 2 should be executed either
sequentially in the same instance or parallelized through different instances of the Medium
OpenVidu resources. However, the test cases of the TGroup 2 should not be executed in
parallel way in the same instance of the Medium OpenVidu resource.

Finally, all the test cases of TGroup 3 also use OpenVidu with read-write access, but in
contrast, they use the Heavy OpenVidu resource because they need storage to modify and
access to the data. To avoid issues between the test cases due the concurrent access, the test
cases of the TGroup 3 should be executed sequentially in the same instance. However, the test
cases of the TGroup 3 should not be executed in several instances of the Heavy OpenVidu
resources because the resource has a high elastic cost.

Table 1 summarizes the number of test cases per each TGroup and their possible execu-
tions. The TGroup 1 has 5 test cases, TGroup 2 has 11 test cases, and the TGroup 3 has 4 test
cases. The test cases of these TGroups will be executed in TJobs according to the scheduling.

Scheduling We have executed the four schedules that are detailed in Section 4 and represent-
ed in Fig. 4. The first schedule A creates one TJob per each TGroup, that means that the TJob 1
is created with all test cases of TGroup 1 (5 test cases), the TJob 2 with all of TGroup 2 (11 test
cases), and the TJob 3 with all of TGroup 3 (4 test cases). The three TJobs of schedule A are
executed in parallel each one in one instance. Despite the TJobs are executed in parallel, the
schedule A proposes that the test cases of each TJob should be executed sequentially in the
instance of the TJob. In contrast, schedule B proposes that the test cases of the TGroup 1
should be executed in the same TJob using one instance but the test cases in parallel. The
schedule C proposes to parallelize the execution of the TGroup 2 in 3 TJobs executing each
one in one instance. Finally, the schedule D, instead to parallelize the execution of the test
cases of TGroup 2 in three instances, parallelizes them in two instances. Once these four
schedules are executed, we answer the research questions analyzing the efficiency of the test
execution: memory required by the virtualized instances and execution time of the test cases.

RQ1: To evaluate how RETORCH may optimize the execution time of the test suite, we
have executed the schedules and obtained the execution time on the up to five virtualized
instances. Figure 5 depicts the execution time of the E2E test cases with the four schedules
represented in Fig. 4 (A, B, C, and D). The execution time is obtained from the test log
timestamps. The blue lines represent the execution time of the TGroup 1, the red about TGroup
2, the black about the TGroup 3, and the green/white the total execution time of the test suite
according to the schedule.

RETORCH reduces the execution time of the test suite by a 62% (from 149 s in the
schedule A to 57 s in the schedule D). The schedule A employs 149 s because the test cases of
TGroup 1 are executed sequentially during these 149 s. The schedule B execute these test

Table 1 FullTeaching test cases

No. of TGroup Resource name No of test cases Access mode Execution

1 Light OpenVidu 5 Read-only Sequentially in one instance
Parallel in one instance

2 Medium OpenVidu 11 Read-write Sequentially in one instance
Parallel in three instances
Parallel in two instances

3 Heavy OpenVidu 4 Read-write Sequentially in one instance

Software Quality Journal (2020) 28:1147–11711162

cases in parallel inside of the same instance reducing the execution time of the test cases of
TGroup 1 to 55 s. However, the execution time of schedule B is 101 s because the sequential
execution of the test cases of TGroup 2 takes 101 s. The schedule C executes the test cases of
the TGroup 2 in parallel in three instances reducing the execution time to 64 s. Finally,
schedule D executes the test cases of the TGroup 2 in two instances to optimize the resource
usage employing 57 s. According to the FullTeaching system and the four schedules evaluated,
RETORCH is able to reduce the execution time more than half through the identification of the
resources, grouping of the test cases, and the sequential/parallel scheduling according to test
dependencies.

RQ2: To evaluate the performance in terms of resource usage, we monitor the physical
memory used in all the virtualized instances during the testing. This measurement was
obtained via the HyperV performance monitor that provides the memory requested by each
instance together with the percentage of memory used at each moment.

With these two values, we obtain the memory used by the different virtualized instances at
every moment multiplying the percentage of use by the memory requested. The resource usage
in the four schedules is represented in Fig. 6. The x-axis represents the execution time and y-
axis the total amount of the memory used by all the instances in gigabytes. Note that the four
schedules represented in the figure employ different execution times. Schedule A takes 149 s,
but the schedule D finishes at 57 s. During these seconds, the memory usage varies in different
ways, sometimes with peaks and other times flatter depending on the sequential/parallel
execution of the test cases and instances. The schedule A executes the test cases in 3 instances,
the schedule B also in 3 instances, the schedule C in 5 instances, and the schedule D in 4
instances.

RETORCH reduces the execution time executing the test cases in parallel either in one
instance or several instances. The increasing of one instance also increases the memory usage,
but RETORCH provides a schedule that at the same time that reduces the execution time also
optimizes the usage of memory. We can observe from the schedule A to schedule D that

Fig. 5 Execution time different schedules

Software Quality Journal (2020) 28:1147–1171 1163

RETORCH reduces the execution time by 62% (RQ1), whereas the memory usage only
increases at ~× 2 (from ~ 8 to ~ 15 GB in the lower values and from ~ 12 to ~ 26 GB in the
peak). Despite the memory increases, RETORCH optimizes the memory usage at the same
time that aims to reduce the execution time.

The schedule A executes in parallel three TJobs in three instances employing ~ 15 GB. All
test cases of each TJobs are executed sequentially according to the schedule A, so the memory
usage is more or less flat (the lower value is ~ 8 GB, but usually is around ~ 15 GB). Schedule
B instead to execute the test cases of TGroup 1 sequentially in one instance proposes to
execute them in parallel in the one instance.

The parallel execution of these test cases not only reduces the execution time but also
increases the memory achieving a peak of ~ 24 GB when the test cases of TGroup 1 are
executed in parallel at the same time. Schedule C proposes to execute the test cases of TGroup
2 in parallel in three instances. The parallel execution of the test cases again decreases the
execution time but also increases the memory achieving some peaks of ~ 36 GB. The memory
has increased a lot because each instance of the three deployed for the test cases of TGroup 2
contains the Medium OpenVidu resource, Kurento media server resource, and MySQL data-
base resource. To optimize the resources, the schedule D proposes to reduce one instance for
the test cases of TGroup 2, that is, to execute two instances for the test cases of TGroup 2, one
instance for TGroup 1, and another instance for TGroup 3. The reduction of one instance from
schedule C to D not only improves the execution time but also reduces/optimizes the memory
usage from ~ 18 to ~ 15 GB in lower values and from ~ 36 to ~ 26 GB during the peak.
According to the FullTeaching system and the four schedules evaluated, RETORCH not only
reduces the execution time of E2E testing through the sequential/parallel execution but also
optimizes the resource usage varying the number of instances considering the resources
deployed.

Threats to validity The above evaluation shows promising results of the RETORCH ap-
proach. However, there are several issues that may threaten the validity of these results.
Regarding the internal threats, the evaluation analyzes the memory usage and execution time

Fig. 6 Memory usage in the different schedules

Software Quality Journal (2020) 28:1147–11711164

on which it is easy to introduce noise into the measures by other system processes. In order to
mitigate this issue, we performed the experimentation into the same dedicated computer inside
virtualized instances with the same specifications. Regarding the external threats that may limit
the ability to generalize the results, our evaluation is related to only one case of study with a
limited set of resources. Despite this, the results provide us insights that by carefully arranging
the resources used by the test cases, the overall efficiency of the test execution may be
improved, although more experimentation should be done with other systems and different
kinds of resources. Another issue is related to the size of the test suite. Although the test suite is
not large, it contains a variety of typical tests scenarios in E2E testing, which have been taken
from a real-world application. Finally, regarding the construct validity, we handled the most
representative variables (e.g., overall test execution time and memory consumption). Other
measures have not been considered (e.g., processor load). To mitigate this problem, we have
monitored the other resources, observing that the other resources remain with a low usage rate
compared with the memory.

6 RETORCH implementation

The automatization of RETORCH faces several challenges in order to identify the testing
resources, grouping the test cases considering their system/testing dependencies, and schedule
them efficiently in several machines. The first challenge is related to deal with the complexity
of the resource identification process and the dependencies between test cases resources. The
detection of those dependencies and the problems related to the test cases has been widely
treated in the literature in different ways (Gambi et al. 2018; Bell et al. 2015). In order to
identify the testing dependencies in RETORCH, we plan to adapt/modify state-of-the-art
approaches taking into account the particular characteristics of the E2E test cases based on
the categories and attributes described into the Section 3. Once the testing resources are
identified, RETORCH arranges the test cases in groups avoiding dependencies between the
test cases and the abovementioned resources. We plan to take advantage of the state-of-the-art
focused on make groups, as the clustering algorithms. More concisely, we plan to apply a
hierarchy clustering technique (Guha et al. 2001) that allows us to divide/aggregate the groups
of test cases (TGroups) in different machines.

Finally, into the scheduling process, the increasing complexity and heterogeneity of the test
cases/resources in real test suites is a challenging problem. We plan to devise or develop a
solver based on a scheduling algorithm, such as Job-Shop, Multi-Objective Task, Genetic, or
Shortest-Job-Next algorithms. These algorithms had been widely used to orchestrate resources
and processes in the Cloud and are beginning to be used to schedule test cases (Xie and Yang
2018).

7 Conclusions and future work

This article proposes an approach called RETORCH to orchestrate the execution of the end-to-
end test cases (E2E) through the identification of resources required to run an E2E test case,
the grouping of the test cases based on the minimization of the resources to be deployed, and
on the parallel scheduling of the tests in several instances. We performed an evaluation of
RETORCH with a real-world application in a Cloud test environment.

Software Quality Journal (2020) 28:1147–1171 1165

The results show that RETORCH improves the efficiency of the E2E test execution
optimizing their resources and execution time. The execution time is decreased through the
scheduling of the test cases in several instances considering the test dependencies and other
issues related to parallelize the test execution. Not only does the execution of the tests in
several instances increase the usage of resources like memory, but RETORCH can optimize
these resources avoiding the oversubscription that may cause redeployments through the
aggregation of similar tests in the same instance.

As future work, we plan to integrate RETORCH in the ElasTest platform to orchestrate
efficiently the execution of the E2E test cases. This would require the automatic identification
of both resources and dependencies between the tests in the Cloud systems. Another line of
research is to thoroughly evaluate the grouping and scheduling methods in the context of
optimizing the E2E test executions. Part of this work is currently on progress, and we plan to
develop a tool that allows selecting the resources and arranging testing with the test cases. With
this tool, we ought to autogenerate the scripting or pipelining code required by ElasTest or
other application to deploy the test cases with their required resources, avoiding the resource
oversubscription.

Funding information This work was supported in part by the Spanish Ministry of Economy and Competi-
tiveness under TestEAMoS (TIN2016-76956-C3-1-R) project and ERDF funds and by the European Project
ElasTest in the Horizon 2020 research and innovation program (GA No. 731535).

References

Augusto, C., Morán, J., Bertolino, A., de la Riva, C., & Tuya, J. (2019). RETORCH: Resource-aware end-to-end
test orchestration. In M. Piattini, P. Rupino da Cunha, I. García-Rodríguez de Guzmán, & R. Pérez-Castillo
(Eds.), 12th International Conference on the Quality of Information and Communications Technology
(QUATIC 2019) (p. 14). https://doi.org/10.1007/978-3-030-29238-6_22.

Bell, J., Kaiser, G., Melski, E., & Dattatreya, M. (2015). Efficient dependency detection for safe Java test
acceleration. 2015 10th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE 2015 - Proceedings, 770–
781. https://doi.org/10.1145/2786805.2786823.

Bertolino, A. (2007). Software testing research: Achievements, challenges, dreams. FoSE 2007: Future of
Software Engineering, 85–103. https://doi.org/10.1109/FOSE.2007.25.

Bertolino, A., Calabró, A., De Angelis, G., Gallego, M., García, B., & Gortázar, F. (2018). When the testing gets
tough, the tough get ElasTest. Proceedings - International Conference on Software Engineering (pp. 17–20).
https://doi.org/10.1145/3183440.3183497.

Bertolino, A., de Angelis, G., Gallego, M., García, B., Gortázar, F., Lonetti, F., & Marchetti, E. (2019). A
systematic review on cloud testing. ACM Computing Surveys, 52(5), 1–42. https://doi.org/10.1145/3331447.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016). Borg, Omega, and Kubernetes.
Communications of the ACM, 59(5), 50–57. https://doi.org/10.1145/2890784.

Casalicchio, E. (2017). Autonomic orchestration of containers: Problem definition and research challenges. In
ValueTools 2016 - 10th EAI international conference on performance evaluation methodologies and tools
(pp. 287–290). https://doi.org/10.4108/eai.25-10-2016.2266649.

Chakraborty, S. S., & Shah, V. (2011). Towards an approach and framework for test-execution plan derivation. In
2011 26th IEEE/ACM international conference on automated software engineering, ASE 2011, proceedings
(pp. 488–491). https://doi.org/10.1109/ASE.2011.6100106.

De Brito, M. S., Hoque, S., Magedanz, T., Steinke, R., Willner, A., Nehls, D., et al. (2017). A service
orchestration architecture for fog-enabled infrastructures. In 2017 2nd international conference on fog
and mobile edge computing, FMEC 2017 (pp. 127–132). https://doi.org/10.1109/FMEC.2017.7946419.

Docker Inc. (2017). Overview of Docker compose | Docker documentation. Retrieved October 14, 2019, from
Docker Inc. website: https://docs.docker.com/compose/.

Docker Inc. (2019). Swarm mode overview | Docker documentation. Retrieved October 15, 2019, from
https://docs.docker.com/engine/swarm/.

Software Quality Journal (2020) 28:1147–11711166

https://doi.org/10.1007/978-3-030-29238-6_22
https://doi.org/10.1145/2786805.2786823
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1145/3183440.3183497
https://doi.org/10.1145/3331447
https://doi.org/10.1145/2890784
https://doi.org/10.4108/eai.25-10-2016.2266649
https://doi.org/10.1109/ASE.2011.6100106
https://doi.org/10.1109/FMEC.2017.7946419
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/

Draft, W. (2014). TOSCA Simple Profile in YAML Version 1.0. (March), 1–83. Retrieved from http://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html.

ElasTest Developers Team. (2017). ElasTest: Full-teaching. Retrieved October 28, 2019, from https://github.
com/elastest/full-teaching.

ElasTest Developers Team. (2018). ElasTest: FullTeaching-experiment. Retrieved October 28, 2019, from
https://github.com/elastest/full-teaching-experiment.

Engström, E., Skoglund, M., & Runeson, P. (2008). Empirical evaluations of regression test selection techniques:
A systematic review. ESEM’08: Proceedings of the 2008 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, 22–31. https://doi.org/10.1145/1414004.1414011.

Esfahani, H., Fietz, J., Ke, Q., Kolomiets, A., Lan, E., Mavrinac, E., et al. (2016). CloudBuild: Microsoft’s
distributed and caching build service. In Proceedings - international conference on software engineering
(pp. 11–20). https://doi.org/10.1145/2889160.2889222.

Fitzgerald, B., & Stol, K. J. (2017). Continuous software engineering: A roadmap and agenda. Journal of Systems
and Software, 123, 176–189. https://doi.org/10.1016/j.jss.2015.06.063.

Gambi, A., Gorla, A., & Zeller, A. (2017). O!Snap: Cost-efficient testing in the cloud. Proceedings - 10th IEEE
international conference on software testing, verification and validation, ICST 2017, 454–459. https://doi.
org/10.1109/ICST.2017.51.

Gambi, A., Bell, J., & Zeller, A. (2018). Practical test dependency detection. Proceedings - 2018 IEEE 11th
international conference on software testing, verification and validation, ICST 2018, 1–11. https://doi.
org/10.1109/ICST.2018.00011.

Garcia, B., Lonetti, F., Gallego, M., Miranda, B., Jimenez, E., De Angelis, G., … Marchetti, E. (2018). A
proposal to orchestrate test cases. Proceedings - 2018 international conference on the quality of information
and communications technology, QUATIC 2018, 38–46. https://doi.org/10.1109/QUATIC.2018.00016.

Giotis, K., Kryftis, Y., & Maglaris, V. (2015). Policy-based orchestration of NFV services in software-defined
networks. 1st IEEE Conference on Network Softwarization: Software-Defined Infrastructures for Networks,
Clouds, IoT and Services, NETSOFT 2015, 1–5. https://doi.org/10.1109/NETSOFT.2015.7116145.

Guha, S., Rastogi, R., & Shim, K. (2001). CURE: An efficient clustering algorithm for large databases.
Information Systems, 26(1), 35–58. https://doi.org/10.1016/S0306-4379(01)00008-4.

Gyori, A., Shi, A., Hariri, F., &Marinov, D. (2015). Reliable testing: Detecting state-polluting tests to prevent test
dependency. 2015 International Symposium on Software Testing and Analysis, ISSTA 2015 - Proceedings,
223–233. https://doi.org/10.1145/2771783.2771793.

Harman, M. (2011). Making the case for MORTO: Multi objective regression test optimization. Proceedings - 4th
IEEE International Conference on Software Testing, Verification, and Validation Workshops, ICSTW 2011,
111–114. https://doi.org/10.1109/ICSTW.2011.60.

Herzig, K., Greiler, M., Czerwonka, J., & Murphy, B. (2015). The art of testing less without sacrificing quality.
Proceedings - International Conference on Software Engineering, 1, 483–493. https://doi.org/10.1109
/ICSE.2015.66.

Lachmann, R., Nieke, M., Seidl, C., Schaefer, I., & Schulze, S. (2017). System-level test case prioritization using
machine learning. Proceedings - 2016 15th IEEE International Conference on Machine Learning and
Applications, ICMLA 2016, 361–368. https://doi.org/10.1109/ICMLA.2016.163.

Liu, C. H., Chen, S. L., & Chen, W. K. (2017). Cost-benefit evaluation on parallel execution for improving test
efficiency over cloud. Proceedings of the 2017 IEEE International Conference on Applied System
Innovation: Applied System Innovation for Modern Technology, ICASI 2017, 199–202. https://doi.
org/10.1109/ICASI.2017.7988384.

Memon, A., Gao, Z., Nguyen, B., Dhanda, S., Nickell, E., Siemborski, R., & Micco, J. (2017). Taming google-
scale continuous testing. Proceedings - 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track, ICSE-SEIP 2017, 233–242. https://doi.org/10.1109
/ICSE-SEIP.2017.16.

Meyer, M. (2014). Continuous integration and its tools. IEEE Software, 31(3), 14–16. https://doi.org/10.1109
/MS.2014.58.

Microsoft. (n.d.). Orchestrator overview | Microsoft Docs. Retrieved October 15, 2019, from https://docs.
microsoft.com/en-us/system-center/orchestrator/learn-about-orchestrator?view=sc-orch-2019.

Oracle. (2019). MySQL. Retrieved November 3, 2019, from https://www.mysql.com/.
Pérez, P. F. (2017). Fullteaching: A web application to make teaching online easy. Retrieved from https://github.

com/pabloFuente/full-teaching.
Rothermel, G., Harrold, M. J., Von Ronne, J., & Hong, C. (2002). Empirical studies of test-suite reduction.

Software Testing Verification and Reliability, 12(4), 219–249. https://doi.org/10.1002/stvr.256.
Shull, F., Basili, V., Boehm, B., Brown, A. W., Costa, P., Lindvall, M., … Vinter, O. (2002). What we have

learned about fighting defects. Proceedings - International Software Metrics Symposium, 2002-Janua, 249–
258. https://doi.org/10.1109/METRIC.2002.1011343.

Software Quality Journal (2020) 28:1147–1171 1167

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
https://github.com/elastest/full-teaching
https://github.com/elastest/full-teaching
https://github.com/elastest/full-teaching-experiment
https://doi.org/10.1145/1414004.1414011
https://doi.org/10.1145/2889160.2889222
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1109/ICST.2017.51
https://doi.org/10.1109/ICST.2017.51
https://doi.org/10.1109/ICST.2018.00011
https://doi.org/10.1109/ICST.2018.00011
https://doi.org/10.1109/QUATIC.2018.00016
https://doi.org/10.1109/NETSOFT.2015.7116145
https://doi.org/10.1016/S0306-4379(01)00008-4
https://doi.org/10.1145/2771783.2771793
https://doi.org/10.1109/ICSTW.2011.60
https://doi.org/10.1109/ICSE.2015.66
https://doi.org/10.1109/ICSE.2015.66
https://doi.org/10.1109/ICMLA.2016.163
https://doi.org/10.1109/ICASI.2017.7988384
https://doi.org/10.1109/ICASI.2017.7988384
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1109/MS.2014.58
https://docs.microsoft.com/en-us/system-center/orchestrator/learn-about-orchestrator?view=sc-orch-2019
https://docs.microsoft.com/en-us/system-center/orchestrator/learn-about-orchestrator?view=sc-orch-2019
https://www.mysql.com/
https://github.com/pabloFuente/full-teaching
https://github.com/pabloFuente/full-teaching
https://doi.org/10.1002/stvr.256
https://doi.org/10.1109/METRIC.2002.1011343

Singh, S., & Chana, I. (2015). QoS-aware autonomic resource management in cloud computing: A systematic
review. ACM Computing Surveys, 48(3), 1–46. https://doi.org/10.1145/2843889.

Technologies, K. (2014). Kurento. Retrieved from https://www.kurento.org/.
Toczé, K., & Nadjm-Tehrani, S. (2018, June 4). A taxonomy for management and optimization of multiple

resources in edge computing. Wireless Communications and Mobile Computing, 2018, 1–23. https://doi.
org/10.1155/2018/7476201.

Uberti, J., & Thatcher, P. (2018). WebRTC Home. Retrieved from https://webrtc.org/.
University, R. J. C. (2017). OpenVidu. Retrieved from https://openvidu.io/.
Velasquez, K., Abreu, D. P., Goncalves, D., Bittencourt, L., Curado, M., Monteiro, E., & Madeira, E. (2017).

Service orchestration in fog environments. Proceedings - 2017 IEEE 5th International Conference on Future
Internet of Things and Cloud, FiCloud 2017, 2017-Janua, 329–336. https://doi.org/10.1109
/FiCloud.2017.49.

Velasquez, K., Abreu, D. P., Assis, M. R. M., Senna, C., Aranha, D. F., Bittencourt, L. F., Laranjeiro, N., Curado,
M., Vieira, M., Monteiro, E., &Madeira, E. (2018). Fog orchestration for the internet of everything: State-of-
the-art and research challenges. Journal of Internet Services and Applications, 9(1), 14–23. https://doi.
org/10.1186/s13174-018-0086-3.

Wong, W. E., Morgan, J. R., London, S., &Mathur, A. P. (1998). Effect of test set minimization on fault detection
effectiveness. Software - Practice and Experience, 28(4), 347–369. https://doi.org/10.1002/(SICI)1097-024
X(19980410)28:4<347::AID-SPE145>3.0.CO;2-L.

Xie, P., & Yang, D. (2018). Research on scheduling of software cloud testing. 2017 International Conference on
Computer Systems, Electronics and Control, ICCSEC 2017, 1311–1314. https://doi.org/10.1109
/ICCSEC.2017.8446709.

Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and prioritization: A survey. Software
Testing Verification and Reliability, 22, 67–120. https://doi.org/10.1002/stv.430.

Yu, L., Su, Y., & Wang, Q. (2009). Scheduling test execution of WBEM applications. Proceedings - Asia-Pacific
Software Engineering Conference, APSEC, 323–330. https://doi.org/10.1109/APSEC.2009.27.

Zhang, Z., Li, C., Tao, Y., Yangy, R., Tang, H., & Xu, J. (2014). Fuxi: A fault-tolerant resource management and
job scheduling system at internet scale. Proceedings of the VLDB Endowment, 7(13), 1393–1404. https://doi.
org/10.14778/2733004.2733012.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Software Quality Journal (2020) 28:1147–11711168

https://doi.org/10.1145/2843889
https://www.kurento.org/
https://doi.org/10.1155/2018/7476201
https://doi.org/10.1155/2018/7476201
https://webrtc.org/
https://openvidu.io/
https://doi.org/10.1109/FiCloud.2017.49
https://doi.org/10.1109/FiCloud.2017.49
https://doi.org/10.1186/s13174-018-0086-3
https://doi.org/10.1186/s13174-018-0086-3
https://doi.org/10.1002/(SICI)1097-024X(19980410)28:4<347::AID-SPE145>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1097-024X(19980410)28:4<347::AID-SPE145>3.0.CO;2-L
https://doi.org/10.1109/ICCSEC.2017.8446709
https://doi.org/10.1109/ICCSEC.2017.8446709
https://doi.org/10.1002/stv.430
https://doi.org/10.1109/APSEC.2009.27
https://doi.org/10.14778/2733004.2733012
https://doi.org/10.14778/2733004.2733012

Cristian Augusto received the degree in Computer Science in Information Technology from the University of
Oviedo, Gijon, Spain in 2018. He is currently finishing his master’s degree in Computer Engineering into Oviedo
University. His interest research areas in the field of Software Engineering are Big Data, privacy-preserving
techniques and Software Testing mainly focused on the efficient use of resources in the test process. He has also
been part since 2018 of the Software Engineering Research Group (GIIS) at the Oviedo University.

Jesús Morán received the Ph.D. degree in computing from the University of Oviedo, Spain, in 2019. He is a
Lecturer of the Computer Science Department with the University of Oviedo, Spain. He is a member of the
Software Engineering Research Group. His research interests include software testing, big data technologies, and
distributed programming.

Software Quality Journal (2020) 28:1147–1171 1169

Antonia Bertolino received the M.S. degree in electronic engineering from the University of Pisa, Pisa, Italy, in
1985. She is a Research Director with the Italian National Research Council—Institute of Information Science
and Technologies (ISTI), Pisa, Italy. Her research focuses on software and service testing. Ms. Bertolino is an
Associate Editor for Transactions on Software Engineering and Methodology, Empirical Software Engineering
Journal, and Journal of Software: Evolution and Process. She also serves as Senior Editor for the Journal of
Systems and Software. She has been the General Chair of the 2015 International Conference on Software
Engineering, Florence, Italy.

Claudio de la Riva received the Ph.D degree in computing from the University of Oviedo, Spain, in 2004. He is
an Associate Professor of the Computer Science Department with the University of Oviedo, Spain. He is a
member of the Software Engineering Research Group. His research interests include software verification and
validation, software quality and software testing, mainly focused on testing database applications and services.

Software Quality Journal (2020) 28:1147–11711170

Javier Tuya received the Ph.D. degree in engineering from the University of Oviedo, Oviedo, Spain, in 1995. He
is a Professor with the University of Oviedo, Oviedo, Spain, where he is the Research Leader of the Software
Engineering Research Group. He is the Director of the Indra-Uniovi Chair, a member of the ISO/IEC JTC1/SC7/
WG26 Working Group for the recent ISO/IEC/IEEE 29119 Software Testing Standard, and a Convener of the
corresponding UNE National Body Working Group. His research interests in software engineering include
verification, and validation and software testing for database applications and services.

Affiliations

Cristian Augusto1 & Jesús Morán1 & Antonia Bertolino2 & Claudio de la Riva1 & Javier
Tuya1

Jesús Morán
moranjesus@uniovi.es

Antonia Bertolino
antonia.bertolino@isti.cnr.it

Claudio de la Riva
claudio@uniovi.es

Javier Tuya
tuya@uniovi.es

1 Computer Science Department, University of Oviedo, Gijón, Spain
2 ISTI-CNR, Consiglio Nazionale delle Ricerche, Pisa, Italy

Software Quality Journal (2020) 28:1147–1171 1171

	RETORCH: an approach for resource-aware orchestration of end-to-end test cases
	Abstract
	Introduction
	Related work
	Test reduction, prioritization, and minimization techniques
	Test dependency detection
	Test resource optimization
	Orchestration

	RETORCH overview
	Main concepts of RETORCH
	Resource categories
	Static attributes
	Access mode and dynamic attributes

	Processes

	Working example
	Evaluation
	RETORCH implementation
	Conclusions and future work
	References

