
https://doi.org/10.1007/s11219-020-09498-y

Code smell detection using multi-label classification
approach

Thirupathi Guggulothu1 · Salman Abdul Moiz1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Code smells are characteristics of the software that indicates a code or design problem which
can make software hard to understand, evolve, and maintain. There are several code smell
detection tools proposed in the literature, but they produce different results. This is because
smells are informally defined or subjective in nature. Machine learning techniques help in
addressing the issues of subjectivity, which can learn and distinguish the characteristics of
smelly and non-smelly source code elements (classes or methods). However, the existing
machine learning techniques can only detect a single type of smell in the code element that
does not correspond to a real-world scenario as a single element can have multiple design
problems (smells). Further, the mechanisms proposed in the literature could not detect code
smells by considering the correlation (co-occurrence) among them. To address these short-
comings, we propose and investigate the use of multi-label classification (MLC) methods to
detect whether the given code element is affected by multiple smells or not. In this proposal,
two code smell datasets available in the literature are converted into a multi-label dataset
(MLD). In the MLD, we found that there is a positive correlation between the two smells
(long method and feature envy). In the classification phase, the two methods of MLC con-
sidered the correlation among the smells and enhanced the performance (on average more
than 95% accuracy) for the 10-fold cross-validation with the ten iterations. The findings
reported help the researchers and developers in prioritizing the critical code elements for
refactoring based on the number of code smells detected.

Keywords Code smells · Software quality · Code smell correlation · Multi-label
classification · Code smells detection · Machine learning techniques · Refactoring

This article belongs to the Topical Collection on Quality Management for Information Systems
Guest Editors: Mario Piattini, Ignacio Garcı́a Rodrı́guez de Guzmán, Ricardo Pérez del Castillo

� Thirupathi Guggulothu
thirupathi.gugguloth@gmail.com

Salman Abdul Moiz
salman@uohyd.ac.in

1 School of Computer and Information Sciences, University of Hyderabad,
Hyderabad, Telangana, India

Software Quality Journal (2020) : –28 1063 1086

Published online: 20204 April

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-020-09498-y&domain=pdf
http://orcid.org/0000-0002-9081-2816
mailto: thirupathi.gugguloth@gmail.com
mailto: salman@uohyd.ac.in

1 Introduction

Code smell refers to an anomaly in the source code that shows the violation of basic
design principles such as abstraction, hierarchy, encapsulation, modularity, and modifiabil-
ity (Booch 1980). Even if the design principles are known to the developers, they are often
violated because of inexperience, deadline pressure, and heavy competition in the market.
Fowler et al. (1999) have defined 22 informal code smells. These smells have different gran-
ularities based on their affected element such as class-level (God class, data class, etc.) and
method-level (long method and feature envy, etc.) code smells. One way to remove them is
by using refactoring techniques (Opdyke 1992), i.e., a technique that improves the internal
structure (design quality) of the code without altering the external behavior of the software.

In the literature, there are several techniques (Kessentini et al. 2014) and tools (Fontana
et al. 2012) available to detect different code smells. Each technique and tool produces dif-
ferent results. According to Kessentini et al. (2014), the code smell detection techniques can
be classified into seven categories: cooperative based (Abdelmoez et al. 2014), visualization
based (Murphy-Hill and Black 2010), search based (Palomba et al. 2015; Liu et al. 2013;
Palomba et al. 2013), probabilistic based (Rao and Reddy 2007), metric based (Marinescu
2004; Moha et al. 2010a; Tsantalis and Chatzigeorgiou 2009), symptoms based (Moha et al.
2010b), and manual techniques (Travassos et al. 1999; Ciupke 1999) which differ in the
underlying algorithm. Bowes et al. (2013) compared two smell detection tools on message
chaining and showed the disparity of results between them. Due to the differing results,
Rasool and Arshad (2015) classified, compared, and evaluated existing detection tools and
techniques so as to understand the categorization better. There are three main reasons for the
disparity in the results: (1) The developers can subjectively interpret the code smells, and
hence detected in different ways, (2) agreement between the detectors is low, i.e., several
tools or rules recognize different smells for different code elements, and (3) the threshold
value for identifying a smell can vary from one detector to another.

To address the above limitations, in particular, the subjective nature, Fontana et al.
(2016b) proposed a machine learning (ML) technique (supervised classification) to detect
four code smells with the help of 32 classification techniques. The authors showed that most
of the classifiers achieved more than 95% performance in terms of accuracy and F-measure.
After observing the results, authors have suggested that ML classifiers are the most suitable
approach for the code smell detection. Di Nucci et al. (2018) addressed some of the limita-
tions of Fontana et al. (2016b); one of the drawback reported is that the prepared datasets do
not represent a real-world scenario, i.e., in the datasets, metric distribution between smelly
and non-smelly instances is highly variant. This may enable the ML classifiers to easily
distinguish two classes (smelly and non-smelly). In the real-time environment, the bound-
ary between smelly and non-smelly characteristics is not always clear (Tufano et al. 2017;
Fontana et al. 2016a). To avoid this limitation and simulate more realistic datasets, Di Nucci
et al. (2018) configured the datasets of Fontana et al. (2016b) by merging the class-level
and method-level datasets, respectively. The merged datasets have reduced the metric distri-
bution and maintain more than one type of code smell instances. The authors experimented
the same ML techniques of the Fontana et al. (2016b), on revised datasets and achieved an
average of 76% accuracy in all models. The authors claimed that the performance of ML
classifiers is reduced when dataset represents the real-time scenario.

In this work, we addressed the reason why ML classifier performed less in the Di Nucci
et al. (2018) and showed that ML classifiers perform good even under the real-time scenario.
That is, in the merged datasets of Di Nucci et al. (2018), some of the instances are identical
but they are assigned as different (one is smelly and another one is non-smelly) decision

Software Quality Journal (2020) : –28 1063 10861064

labels called disparity. Due to disparity instances in the datasets, the classifiers performed
poorly in their work. Di Nucci et al. (2018) considered that the long method dataset has
an instance which is smelly, if the same instance exists in feature envy dataset irrespective
of smelly or non-smelly, then that instance of feature envy is merged into long method as
non-smelly. Now, long method dataset has same instance with 2 different decision labels
called disparity instance. This disparity will confuse the ML algorithms and result in poor
performance of Di Nucci et al. (2018). In this paper, we have removed the disparity instances
in the method-level merged datasets and experimented same tree-based classifier techniques
on them. The performance achieved in our work is similar to the performance of Fontana
et al. (2016b).

From the datasets of Fontana et al. (2016b) and Di Nucci et al. (2018), we have observed
that there are 395 common instances in method level, which are labeled with the two smells.
These instances led to an idea to form a multi-label dataset. Through this dataset, the dis-
parity can be eliminated, maintained similar metric distribution as in Di Nucci et al. (2018),
and more than one smell can be detected. In the literature (Azeem et al. 2019; Pecorelli et al.
2019b; Zaidi and Colomo-Palacios 2019), only one code smell was detected for the same
method with the help of ML (single label) classifier. In addition to it, no one has detected
the code smells by considering the correlation among them. In this paper, we formulate
the code smell detection as a multi-label classification (MLC) problem. The two factors
(multiple smell detection, correlation) can be achieved through the methods of MLC. It is
important for the developers to detect multiple code smells so that they (developers) can
schedule the smells accordingly for refactoring. The effort required in refactoring varies
from one smell to the other as they have correlation (one may influence the other) between
them. Refactoring such correlated smells results in reducing the developer’s effort.

For our study, we have considered two method-level code smell (long method and fea-
ture envy) datasets from Fontana et al. (2016b) and converted them into a multi-label dataset
(MLD). From the MLD, we found (by using lift measure) that there is a positive correla-
tion between the considered smells. Three MLC methods (binary relevance (BR), classifier
chain (CC), label combination (LC)) are applied on MLD by using 10-fold cross-validation
with the ten iterations. In the classification phase, among the three methods, BR does not
consider the correlation. The other two (CC, LC) approaches take advantage of positive cor-
relation and results in improved performances (on average 95%) than the BR (on average
91%).

The structure of the paper is organized as follows; The second section explains the back-
ground of ML classification technique and introduces a work related to the detection of code
smell using ML techniques; the third section defines the code smells used in preparation of
the multi-label dataset; the fourth section describes the proposed approach and addresses
few research questions; the fifth section shows the experimental study of the multi-label
classification; the sixth section shows the results of the proposed study and answers the
research questions; the sixth section outlines the threats to the validity of our work; the final
section gives conclusion and future directions.

2 Related work

Over the past fifteen years, researchers have presented various tools and techniques
for detecting code smells. According to Kessentini et al. (2014), there are seven diffe-
rent classification categories to detect code smells. They are cooperative-based approa-
ches, visualization-based approaches, machine learning–based approaches, probabilistic

Software Quality Journal (2020) : –28 1063 1086 1065

approaches, metric-based approaches, symptoms-based approaches, and manual approa-
ches. In this section, we only consider the machine learning approaches for detecting the
code smells.

2.1 Machine learning (supervised classification) approaches to detect code smells

Supervised classification is the task of using algorithms that allow the machine to learn
associations between instances and decision labels. Supervision comes in the form of pre-
viously labeled instances, from which an algorithm builds a model to predict the labels of
new instances automatically. Figure 1 shows the working procedure of supervised classifi-
cation algorithm. In ML, classification is of three types: binary (yes or no), multi-class, and
multi-label classification (MLC). In the literature (Azeem et al. 2019), code smell detection
is treated as a single label (binary) classifier which detects single type code smell (presence
or absence) only. Below is the summary of the related work of code smell detection using
single label classifiers.

Kreimer (2005) introduced an adaptive method to find the design flaws (viz., big
class/large class and long method) by combining the known approaches based on the soft-
ware metrics by using classification techniques called decision trees. IYC system and
WEKA package are the two software systems used for analysis purpose.

Khomh et al. (2009) have proposed a Bayesian approach to detect occurrences of
the Blob anti pattern on open-source programs (GanttProject v1.10.2 and Xerces v2.7.0).
Khomh et al. (2011) presented BDTEX (Bayesian Detection Expert) Goal Question Metric
approach to build Bayesian Belief Networks from the definitions of anti-patterns and vali-
date BDTEX with blob, functional decomposition, and spaghetti code anti-patterns on two
open-source programs.

Maneerat and Muenchaisri (2011) collected datasets from the literature to evaluate seven
bad smells. In order to predict those bad smells, seven machine learning algorithms and 27
design model metrics (extracted by a tool as independent variables) are used to detect these
smells. The author has not made any explicit references to the dataset.

Maiga et al. (2012) have introduced the SVM Detection approach by using the support
vector machine to detect anti-patterns . They have used open-source programs ArgoUML,
Azureus, and Xerces to study their subjects such as blob, functional decomposition,

Fig. 1 Working procedure of ML supervised classification technique

Software Quality Journal (2020) : –28 1063 10861066

spaghetti code, and Swiss army knife anti-patterns. They have enlarged their work by
initiating SMURF, taking the practitioner’s feedback into account.

Wang et al. (2012) have proposed a method that will help in understanding the destruc-
tive nature of predetermined cloning operations by using Bayesian Networks and a set of
features such as code, destination, and history.

Yang et al. (2015) studied the decisions of individual users by applying machine learning
algorithms on each code clones. White et al. (2016) detected code clone by using deep
learning techniques. The authors have sampled 398 files and 480 method levels pairs across
eight real-world Java software systems.

Amorim et al. (2015) studied to recognize the code smells through decision tree algo-
rithms. For this, the authors have experimented on four open-source projects and the results
were compared with the manual oracle, with existing detection approaches and machine
learning algorithms.

Fontana et al. (2016b) experimented 16 ML classification techniques on the four code
smell datasets (viz., data class, long method, feature envy, God class) to detect them. For this
study, the authors have used 74 Java systems that belongs to the Qualitus Corpus (Tempero
et al. 2010).

Fontana and Zanoni (2017) classified the code smells severity by using a machine learn-
ing method. This approach can help software developers to prioritize or rank the classes or
methods. Multinomial and regression classification techniques are applied for code smell
severity classification.

Di Nucci et al. (2018) have covered some of the limitations of Fontana et al. (2016b).
The authors configured the datasets of Fontana and provided new datasets that are suitable
for real-time scenarios.

Pecorelli et al. (2019a) investigated several techniques to handle data imbalance issues
to understand their impact on ML classifiers for code smell detection.

When observed, the major difference of the previous work with respect to the proposed
approach is the detection of code smells viewed as multi-label classification. No other
approaches have considered the correlation among the smells when detecting the code smell.
Table 1 presents a comparison of our study with respect to the referenced papers.

3 Evaluated code smells

In this paper, two method code smells have been used to create the multi-label dataset.
These code smells are more frequent and faultm prone or change prone as per literature
(Ferme 2013). They also cover different object-oriented quality dimension problems such as
complexity, size, coupling, encapsulation, cohesion, and data abstraction (Marinescu 2005).

Table 1 Comparison with prior work and this paper

Study Detecting mul-
tiple code smell
detection

Code smell cor-
relation consider-
ation

Dataset applica-
ble for real use-
case scenario

Fontana et al. (2016b) No No No

Di Nucci et al. (2018) No No Yes

Pecorelli et al. (2019a) No No No

This paper Yes Yes Yes

Software Quality Journal (2020) : –28 1063 1086 1067

Table 2 lists the selected two method code smells with their affected entities and quality
dimensions. The below subsections reports the characteristics of selected code smells.

– Long method: A code smell is said to be long method when it has many lines of code
and uses much of the data of the other classes. This increases the functional complexity
of the method and it will be difficult to understand.

– Feature envy: Feature envy is the method-level smell which uses more data from other
classes rather than its own class, i.e., it accesses more foreign data than the local.

4 Multi-label classification approach for code smell detection

This section describes the methodology followed in the empirical study that includes
referred datasets used to prepare the multi-label dataset by using the instances of referred
datasets. Then, applied multi-label classification models on them. Figure 2 shows the flow
graph (principle steps) of code smell detection using multi-label classification approach and
the following subsections describes them briefly:

4.1 Reference datasets

In this paper, we have considered two method-level datasets (long method and feature envy)
from Fontana et al. (2016b). In existing literature, these datasets are used for the detection
of one smell. In the following subsections, we briefly describe the data preparation method-
ology of Fontana et al. (2016b). These datasets are available at https://drive.google.com/
file/d/15aXc el-nx4tQwU3khunQ-I5ObSA1-Zb/view [or] http://www.essere.disco.unimib.
it/machine-learning-for-code-smell-detection/

4.1.1 Selection of systems

Fontana et al. (2016b) have analyzed Qualitus Corpus software systems which was collected
from Tempero et al. (2010). Among 111 systems of the corpus, 74 systems are considered
for smell detection. The remaining 37 systems cannot detect code smells as they are not
successfully compiled. The sizes (lines of code etc.,) of the 74 Java projects are shown in
Table 3. These projects also cover different application domains like database, tool, middle-
ware, and games. The complete characteristics (sizes, release date, etc.) of each project
and the domain they belong to are shown in the link that is available at https://github.com/
thiru578/Multilabel-Dataset

4.1.2 Metric extraction

For the given 74 software systems, Fontana et al. (2016b) have computed metrics at all levels
(project, package, class, method) by using the tool called “Design Features and Metrics for

Table 2 Selection of code smells

Code smell Affected entities Impacted on OO quality dimensions

Long method Method Complexity, size, coupling, cohesion

Feature envy Method Data abstraction, coupling

Software Quality Journal (2020) : –28 1063 10861068

https://drive.google.com/file/d/15aXc_el-nx4tQwU3khunQ-I5ObSA1-Zb/view
https://drive.google.com/file/d/15aXc_el-nx4tQwU3khunQ-I5ObSA1-Zb/view
http://www.essere.disco.unimib.it/machine-learning-for-code-smell-detection/
http://www.essere.disco.unimib.it/machine-learning-for-code-smell-detection/
https://github.com/thiru578/Multilabel-Dataset
https://github.com/thiru578/Multilabel-Dataset

Fig. 2 Flow graph of code smell detection using multi-label classification approach

Java” (DFMC4J). This tool parses the source code of Java projects through the Eclipse JDT
library. The computed metrics became features or attributes to the datasets and cover the
different quality dimensions, as shown in Fig. 3. The detail computation of each metric is
available at https://github.com/thiru578/Multilabel-Dataset.

4.1.3 Dataset preparation

Automatic code smell detection tools are used by Fontana et al. (2016b) to detect whether
the source code element is smelly or not. Table 4 reports the detection tools used to build
code smell datasets. For the built dataset, tools produced few false positive results, i.e., tools
may not identify actual code smell elements. To cope with this problem, authors have used
stratified random sampling on the elements of the considered systems. The sampling method
produced 1986 elements (826 smelly elements and 1160 non-smelly elements) which are
manually validated by the authors. To normalize the training datasets, the authors randomly
removed smelly and non-smelly elements resulted in the formation of 4 datasets. Each
dataset has 420 instances, among them, 1/3 (140) are smelly and 2/3 (280) are non-smelly.
These datasets (training) are given as input to the ML classification techniques.

4.2 Proposed approach

In this section, we discuss the construction of a multi-label code smell dataset and then
present a multi-label classification approach to classify the multiple smells on the prepared
dataset.

4.2.1 Construction of multi-label dataset

The considered long method and feature envy datasets have 420 instances each, which are
used for the construction of a multi-label dataset. The following are the steps involved in
creation of the multi-label dataset.

1. Initially, each data set has 420 instances. From those, 395 common instances are added
to the multi-label dataset with their corresponding two decision labels.

2. The remaining 25 uncommon instances of the LM dataset acts as input to the top
classifier model of FE (Fontana et al. 2016b) that predicts the FE label. Similarly, 25

Table 3 Summary of 74 projects

Number of Number of Number of Number of Number of

projects lines in packages in classes in methods in

all projects all projects all projects all projects

74 6,785,568 3420 51,826 404,316

Software Quality Journal (2020) : –28 1063 1086 1069

https://github.com/thiru578/Multilabel-Dataset

Fig. 3 Features of the multi-label dataset

uncommon instances of FE dataset are given as input to the top classifier model of LM
(Fontana et al. 2016b) that predicts the LM label. The predicted 50 uncommon instances
with their LM and FE decision labels are included in the multi-label dataset.

An overview of the procedure is depicted in Fig. 4. The result of the above steps are
formed as training dataset for multi-label classification models. Below is the explanation on
the training dataset.

Training dataset Figure 5 shows the representation of a multi-label dataset (training
dataset). In the dataset, each row represents method instances and the column represents the
features (metrics of all level) and decision variables (whether the method instance is smelly
or not). The dataset contains 445 method instances, 82 metrics, and 2 decision variables. As
per Di Nucci et al. (2018), the MLD is also applicable for real-time scenarios (reduced met-
ric distribution and maintain different types of smell instances). In general, for each instance
(either class or method), the metrics of the respective containers are included as features

Table 4 Automatic code smell detector tools

Code smell Detectors

Long method PMDa iPlasma (Marinescu 2005, 2002)

Feature envy Fluid Tool (Nongpong 2012), iPlasma (Marinescu 2005)

ahttp://pmd.sourceforge.net/

Software Quality Journal (2020) : –28 1063 10861070

http://pmd.sourceforge.net/

in the dataset shown in Fig. 6. Our work is on method-based code smell instances hence
included metrics of method, class, package, and project due to the containment relation. The
containment relation defines that a method is contained in a class, a class is contained in a
package, and a package is contained in a project.

4.2.2 Multi-label classification approach

Multi-label classification (MLC) is a way to learn from instances that are associated with
a set of labels (predictive classes). That is, for every instance, there can be one or more
labels associated with them. MLC is frequently used in some application areas like multime-
dia classification, medical diagnosis, text categorization, and semantic scene classification.
Similarly, in the code smell detection domain, instances are code elements and set of labels
are code smells, i.e., a code element can contain more than one type of smell which was not
addressed by the earlier approaches.

The advantage of MLC over single label classification (SLC) is that in the classification
phase, the methods of MLC consider correlation among the decision labels (code smells)
whereas, in SLC, each smell is classified independently. In the literature, Palomba et al.
(2017) stated that considered code smells are co-occurred frequently. The reason behind
this co-occurrence is that there is a common symptom (Access to Foreign Data (ATFD))

Fig. 4 Construction of multi-label dataset

Software Quality Journal (2020) : –28 1063 1086 1071

Fig. 5 Multi-label dataset

between the smells, which are defined in Section 3. The correlation between the smells led
to improve the classifier performance (Zhang and Zhou 2013) in MLC.

Methods ofmulti-label classification Two approaches are widely used to handle the prob-
lems of multi-label classification (Tsoumakas and Katakis 2007): Problem Transformation
Method (PTM) and Algorithm Adoption Method (AAM). In PTM, the multi-label dataset
is transformed to single label problem and solved by using appropriate classifiers. In AAM,
multi-label dataset is handled by adapting a single label classifier to solve it. In this paper,
only PTM is considered.

We have identified a set of specific research questions that guide us to classify the code
smell using the multi-label approach:

– RQ1: How many disparity instances exist in the configured datasets for the concerned
code smells in Di Nucci et al. (2018)?

– RQ2: What would be the performance improvement after removing the disparity
instances?

– RQ3: What percent (confidence) of the method-level code smells are correlated to one
another?

– RQ4: What would be the classifier performance with and without correlation consid-
eration?

5 Experimental setup

MLC approach is a new perspective for detecting the code smells. In this section, we have
explained the MLC experimental setup in detail so that it helps the researcher community

Fig. 6 Class and method metric instance

Software Quality Journal (2020) : –28 1063 10861072

for further investigation on it. Figure 7 represents the flow of experimental setup for MLC.
The phases of the MLC experimental setup are explained as follows:

Pre-processing: The constructed MLD training dataset has 82 metrics. Among them,
25 are class, 5 are package, and 6 are project level metrics which are irrelevant to the
method-level code smells because they can not contribute to detection of the method-
level code smells. Method metrics can cover all the structural information (coupling of
other classes, etc.) of the methods. Before applying ML classifiers on our MLD, the other
metrics such as class, package, and method metrics are removed from the dataset.

Problem transformation method: In PTM, multi-label dataset is transformed into sin-
gle label problem and solved them by using appropriate single label classifiers. Many
methods fall under PTM category. Among them, two methods can be thought as founda-
tion to many other methods. (1) Binary relevance method (Godbole and Sarawagi 2004):

Fig. 7 MLC experimental setup

Software Quality Journal (2020) : –28 1063 1086 1073

Fig. 8 Procedure of BR transformation method

it will convert a multi-label dataset to as many binary datasets as the number of different
labels that are present. All the different dataset predictions from the binary classifiers are
merged to get the outcome. (2) Label powerset method (Boutell et al. 2004): it is used
to convert a multi-label dataset to a multi-class dataset based on the label set of each
instance as a class identifier. The predicted classes are transformed back to the label set
using any multi-class classifier. In the transformation phase, these two methods do not
lose the information unlike max, min, random, etc. where we can lose the information.

Therefore, several methods are developed under binary relevance and label powerset
methods. In this paper, two are considered under BR called (1) binary relevance (BR) in
itself is a method and (2) classifier chain (CC) and one is consider under LP called label
combination (LC). In the following, a short description is reported for these 3 methods
and MEKA (Read et al. 2016) tool is provided implementation of the selected methods.

– Binary relevance: This is the simplest technique, which treats each label as a separate
single class classification problem. It does not model label correlation, i.e., smell
correlation. Figure 8 shows an example of the BR transformation method procedure.

– Classifier chains (Read et al. 2011): The algorithm tries to enhance binary relevance
by considering the label correlation. To predict the new labels, train “Q” (Q indicates
the number of binary datasets to split according to the number of labels in multi-
label dataset) classifiers which is connected to one another in such a way that the
prediction of each classifier is added to the dataset as new feature. Figure 9 shows
the example of the CC transformation method procedure.

– Label combination (Boutell et al. 2004): Treats each label combination as a single
class in a multi-class learning scheme. The set of possible values of each class is a
powerset of labels. Figure 10 shows an example of the LC transformation method
procedure.

Fig. 9 Procedure of CC transformation method

Software Quality Journal (2020) : –28 1063 10861074

Fig. 10 Procedure of LC transformation method

The reason for choosing CC and LC methods is that they capture the label depen-
dencies (correlation or co-occurrence) during classification to improve the classification
performance (Guo and Gu 2011).

Single label classifiers: After the transformation, top 5 tree-based (single label) classi-
fiers are used to predict multi-label methods (BR, CC, LC). The previous study (Azeem
et al. 2019) shows that these classifiers achieved high performance in the code smell
classification.

Validation procedure: To test the performance of different prediction models built, we
applied 10-fold cross-validation and ran them up to 10 times to cope up with randomness
(Hall et al. 2011). Figure 11 shows the procedure of 10-fold cross-validation. The process
is executed 10 times (10 × 10 = 100). For each iteration of cross-validation, a different
randomized dataset is used, and to create each fold, a stratified sampling on the dataset
is carried out.

Evaluation measures: The evaluation metric of MLC is different from that of single
label classification since for each instance, there are multiple labels, which may be clas-
sified as partly correct or partly incorrect. MLC evaluation metrics are classified into two

Fig. 11 Procedure of 10-fold cross-validation

Software Quality Journal (2020) : –28 1063 1086 1075

groups: (1) example-based metrics and (2) label-based metrics. In the example-based
metrics, each instance metric is calculated and the average of their metrics gives the
final outcome. Label-based metrics are computed for each label instead of each instance.
In this work, we have taken example-based measures. Label-based measures would fail
to directly address the correlations among the different classes (Sorower 2010). Equa-
tions 1, 2, and 3 are used to measure the performances of MLC methods, which belong
to the example-based metrics. In the given equations, D denotes the number of instances,
L represents the number of labels, Yi is the predicted labels for a given instance i, and Zi

indicates true labels for a given instance i. Detailed discussion of all other measures are
defined in Sorower (2010).

– Accuracy: The proportion of correctly predicted labels with respect to the number
of labels for each instance.

Accuracy = 1

|D|
|D|∑

i=1

|Yi ∩ Zi |
|Yi ∪ Zi | (1)

– Hamming loss: The prediction error (an incorrect label is predicted) and the missing
error (a relevant label not predicted) normalized over a total number of classes and
the total number of examples.

Hammingloss = 1

|D|
|D|∑

i=1

|Yi�Zi |
|L| (2)

– Exact match ratio: The predicted label set is identical to the actual label set. It is
the most strict evaluation metric.

Exactmatchratio = 1

|D|
|D|∑

i=1

I (Yi = Zi) (3)

6 Experimental results

6.1 Dataset results

To answer the RQ1, we have considered the configured datasets of Di Nucci et al. (2018).
The author merged the feature envy (FE) dataset into long method (LM) dataset and vice
versa. The merged datasets are listed in Table 5. Each dataset has 840 instances, among
them, 140 instances are smelly (affected) and 700 are non-smelly. While merging, there are
395 common instances among which 132 are smelly instances in the LM dataset. In the
same way, when LM is merged with FE, there are 125 smelly instances in FE dataset. These

Table 5 Configured datasets

Number of instances Method-level merged datasets

Long method Feature envy

Smelly instances Non-smelly instances Smelly instance Non-smelly instances

840 140 700 140 700

Software Quality Journal (2020) : –28 1063 10861076

Table 6 Number of instances affected in multi-label dataset

Long method Feature envy Decision label in Number of % of affected

affected affected multi-label dataset instances affected

Yes Yes 11 100 22.47%

Yes No 10 62 13.9%

No Yes 01 40 8.9%

No No 00 243 54.6%

132 and 125 instances suffer from disparity, i.e., the same instance is having two class labels
(smelly and non-smelly). These disparity instances (Di Nucci et al. 2018) induce perfor-
mance loss for standard single label ML classification techniques. The merged datasets are
available at https://figshare.com/articles/Detecting Code Smells using Machine Learning
Techniques Are We There Yet /5786631

In our work, we create a multi-label dataset by merging 395 common and 50 uncommon
(25 each) instances of LM and FE all put together; there are 445 instances. Table 6 shows
the percentage and number of instances affected in the dataset. Out of 445, 100 instances are
affected by both the smells. When concerned individually, there are 162 and 140 instances
affected by LM and FE smell, respectively.

6.2 Multi-label dataset statistics

Table 7 lists the basic measures of multi-label training dataset characteristics. Some of the
basic measures in single label dataset are attributes, instances, and labels. In addition to this,
there are other measures added to the multi-label dataset (Tsoumakas and Katakis 2007).
In the table, cardinality indicates the average number of active labels per instance. Dividing
this measure by the number of labels in a dataset results in a dimensionless measure known
as density. The two labels will have four label combinations (label sets) in our dataset. The
mean imbalance ratio (mean IR) gives information about whether the dataset is imbalanced
or not. Generally, Charte et al. (2015) in any multi-label dataset with a MeanIR value higher
than 1.5 should be considered imbalanced. With this, the prepared multi-label dataset is well
balanced because of the MeanIR value in our case is 1.07 which is less than the 1.5.

6.3 Co-occurrence analysis (market basket analysis)

To answer RQ3: In this section, we investigated the relation between two smells that can be
done through the association (support, confidence) and correlation (lift) analysis.

Association analysis: How often the presence of long method implies the existence of
feature envy and vice versa shown below. Support and confidence measures are used to
evaluate the association among the smells.

Table 7 Statistics of multi-label dataset

Number of Number of Number of Number of Cardinality Density MeanIR

instances features labels label sets

445 46 2 4 0.678 0.339 1.07

Software Quality Journal (2020) : –28 1063 1086 1077

https://figshare.com/articles/Detecting_Code_Smells_using_Machine_Learning_Techniques_Are_We_There_Yet_/5786631
https://figshare.com/articles/Detecting_Code_Smells_using_Machine_Learning_Techniques_Are_We_There_Yet_/5786631

1. Long method (LM) ⇒ Feature envy (FE):

Confidence = Support(LM ∩ FE)

Support(LM)
= 100/162 = 61.7%

2. Feature envy (FE) ⇒ Long method (LM) :

Confidence = Support(LM ∩ FE)

Support(FE)
= 100/140 = 71.4%

In the above equations, support indicates how frequent a smell occurs together and
confidence shows the number of times if-then patterns are formed.

Correlation analysis: Lift is a measure used to evaluate the correlation among the smells,
i.e., how long method and feature envy are really related rather than coincidentally
happening together.

Lif t (LM ⇒ FE) = Support(LM∩FE)
Support(LM)∗Support(FE)

= (100/445)
(162/445)∗(140/445)

= 0.22
(0.36)∗(0.31)

= 1.9

Lift (LM,FE) > 1 (Sheikh et al. 2004) indicates that LM and FE are positively correlated,
i.e., the occurrence of one implies the occurrence of another.

6.4 Performance improvement in existing datasets

To answer RQ2, we have removed 132 and 125 disparity instances of merged datasets of
the long method (LM) and feature envy (FE), respectively. Now, the LM dataset has 708
instances among them 140 are positive (Smelly), and 568 are negative (non-smelly). In FE,
the dataset has 715 instances among them 140 are positive, and 575 are negative. After
that, we applied single label ML techniques (tree-based classifiers) on those datasets. The
performance improved significantly on both the datasets which are shown in Tables 8 and 9.
Earlier, the performance of the long method and feature envy datasets was on an average of
73% and 75% respectively using tree-based classifiers. After removing disparity instances
in both the datasets, we got on an average of 95% and 98%, respectively. With this evidence,
disparity in Di Nucci et al. (2018) had reduced the performance of the concerned code smell
datasets.

Table 8 Long method results

Classifier Accuracy F-measure ROC area

B-Random Forest 95.9% 96.0% 97.6%

Random Forest 95.9% 96.0% 97.7%

B-J48 UnPruned 95.4% 95.5% 97.1%

B-J48 Pruned 94.7% 94.8% 97.7%

J48 Unpruned 93.5% 93.5% 91.9%

Software Quality Journal (2020) : –28 1063 10861078

Table 9 Feature envy results

Classifier Accuracy F-measure ROC area

B-Random Forest 98.0% 98.0% 99.9%

Random Forest 98.1% 98.2% 99.9%

B-J48 UnPruned 99.0% 99.0% 98.7%

B-J48 Pruned 99.1% 99.2% 99.3%

J48 Unpruned 98.1% 98.2% 98.0%

Summary:Di Nucci et al. (2018), configured the datasets of Fontana et al. (2016b),
to suit datasets for real use-case scenario’s (reduced the metric distribution, added
different type of smell instances) and applied ML classifiers on them. The authors
achieved on an average 73%-75% accuracy for method-level datasets and claimed
that, the results obtained by Fontana et al. (2016b) could not be generalized, thus
contrasting the real effectiveness of ML code smell detection. But in this work, we
have achieved 95%-98% of accuracy as similar as in Fontana et al. (2016b) after
removal of disparity instances. From these results, we conclude that ML classifiers
still gave good accuracy even for real use-case datasets.

6.5 Performances of multi-label classification

To answer RQ4: Three problem transformation methods (BR, CC, LC) are used to
transform multi-label training dataset into a set of binary or multi-class datasets. Then
the top 5 tree-based classification techniques are used on the transformed dataset.
The performances of those techniques are shown in Tables 10, 11, and 12, respec-
tively. To evaluate these techniques, we have run them for ten iterations using 10-fold
cross-validation. We measure average accuracy, hamming loss, and an exact match
of those 100 iterations. In addition to this, we also listed the label-based measures
of BR, CC, and LC methods respectively in Appendix, Tables 13, 14, and 15.
The results of all other measures are available to download at https://github.com/thiru578/
Multilabel-Dataset/blob/master/MLD Results.csv

Table 10 Results of BR method using top 5 single label classifiers

BR (10-fold cross-validation run for 10 iterations)

Single label classifier Example-based metrics

Accuracy (Jaccard index) Hamming loss Exact match

J48 Pruned 96.3% 0.028 94.4%

Random Forest 93.7% 0.044 91.9%

B-J48 pruned 94.6% 0.037 92.6%

B-J48 UnPruned 95% 0.035 93.1%

B-Random Forest 93.6% 0.044 91.8%

Software Quality Journal (2020) : –28 1063 1086 1079

https://github.com/thiru578/Multilabel-Dataset/blob/master/MLD_Results.csv
https://github.com/thiru578/Multilabel-Dataset/blob/master/MLD_Results.csv

Table 11 Results of CC method using top 5 single label classifiers

CC (10-fold cross-validation run for 10 iterations)

Single label classifier Example-based metrics

Accuracy (Jaccard index) Hamming loss Exact match

J48 Pruned 96.7% 0.024 95.3%

Random Forest 96.8% 0.022 95.6%

B-J48 pruned 96.5% 0.023 95.3%

B-J48 UnPruned 97% 0.022 95.5%

B-Random Forest 97% 0.021 95.8%

From Tables 10, 11, and 12, we report that all top 5 classifiers are performing well under
the three methods in all evaluation measures. In the tables, we have highlighted the best
classifier of each method in italic font. When we compare the three methods, CC and LC
are performing better than the BR in all three evaluation measures. The reason behind these
results is CC and LC methods considered the correlation during the classification, which
was not done by the BR. When we compare the CC and LC method, LC is performing
slightly better over the CC method. From these results, we observed that the correlation
among the smells can improve the classifier performance in detecting multiple smells.

7 Threats to validity

In this section, we have discussed the threats that might affect our empirical studies and how
to mitigate them.

Threats to internal validity In MLD construction, there are 395 common instances in the
considered datasets. These instances can be strongly distinguished as smelly or non-smelly
and any ML techniques can easily categorize the two classes. This kind of dataset is not
suitable in real-time scenario and it is similar to the limitation of Fontana et al. (2016b)
datasets which are shown by Di Nucci et al. (2018). To mitigate this issue, we have added
the 50 uncommon instances with their predicted labels to the MLD. The prediction labels
can be assigned with the help of classifier models of long method and feature envy (Fontana

Table 12 Results of LC method using top 5 single label classifiers

LC (10-fold cross-validation run for 10 iterations)

Single label classifier Example-based metrics

Accuracy (Jaccard index) Hamming loss Exact match

J48 Pruned 96.7% 0.02 96%

Random Forest 96.7% 0.024 95.4%

B-J48 pruned 97.5% 0.016 96.9%

B-J48 UnPruned 97.2% 0.018 96.4%

B-Random Forest 96.7% 0.024 95.4%

Software Quality Journal (2020) : –28 1063 10861080

et al. 2016b). The prediction procedure is discussed in Section 4.2.1, in step 2. After adding
the uncommon instances, now the MLD is suitable for real time due to the reduced metric
distribution.

Threats to external validity With respect to the generalizability of the findings (external
validity), we used two code smell datasets which are constructed from 74 open source Java
projects for our experimentation. However, we can not declare that our results can be gen-
eralized to other coding languages, practitioners, and industrial practice. Future replications
of this study are necessary to confirm the generalizability of our findings.

8 Conclusion and future directions

In this paper, two method-level code smells have been detected using multi-label classifi-
cation approaches. The mechanisms proposed in the literature detect a single type of code
smells for the same element (class or method). The main contributions of this paper can be
summarized as follows:

– Addressed the disparity instances in the existing method-level datasets and improved
the ML classifier performances from 73–75% to more than 95–98% by their removal.
From these results, we conclude that ML classifiers still gave good accuracy even for
real use-case scenario datasets. This work opens a new perspective for code smell
detection called multi-label classification (MLC).

– For MLC, we have constructed a multi-label dataset (MLD) by considering method-
level smell datasets from the single type detectors. We experimented with three
multi-label classification methods (BR, CC, LC) on the constructed dataset. The main
advantage of these methods (CC and LC) is that it takes the smell correlation (70% of
confidence found in MLD) during the classification and produces higher accuracy than
the BR method. The BR method does not consider the correlation and it classifies each
decision label (code smell) independently by splitting the labels. With consideration
of correlation, LC and CC method gave on an average of 96% and 95.5% of classi-
fier performance for the exact match evaluation measure. Without consideration of the
correlation, the BR method gave on an average of 92.7% classifier performance.

Though the proposed approach detected two code smells, it may not be limited to two.
The methods of MLC also consider a negative correlation among the smells. For example,
God class and data class smells can not co-occur (negative correlation) for the same class. In
the future, we want to investigate negative correlation smells with the proposed approach . In
addition to it, our findings have important implications for future research communities: (1)
After the detection of the code smells, it was analyzed which smell has to be refactored first
so as to reduce developer effort as different smell order requires varied effort. (2) Identify
(or prioritize) the critical code elements for refactoring, based on the number of code smells
an element can be detected, i.e., an element affected with more design problems (code
smells) is considered the highest priority for refactoring. (3) In code smell detection, the
number of code elements affected by the code smell in the software systems is reduced.
For example, Palomba et al. (2018) have shown that the affect of God class code smell is
less than 1% of the total number of classes in a system. This results in imbalanced dataset
for ML classification. Thus, to handle those imbalanced datasets some of the multi-label
classification methods like RAKEL (Tsoumakas et al. 2011) and PS (Read et al. 2008) are
used. Apart from these methods, there are some other techniques such as SMOTE which is

Software Quality Journal (2020) : –28 1063 1086 1081

used in Charte et al. (2015) to handle the imbalance datasets. In our study, the multi-label
dataset (MLD) is well balanced because we have considered only two code smells for the
experimentation. As the code smells increases, the MLD gets imbalanced.

The datasets, which are free from disparity instances, are available at https://github.com/
thiru578/Datasets-LM-FE.

The multi-label dataset is available for download at https://github.com/thiru578/
Multilabel-Dataset.

Appendix

Table 13 Results of BR method using top 5 single label classifers

BR (10-fold cross-validation run for 10 iterations)

Single label classifier Label-based metrics

Micro averaging Macro averaging

Micro precision Micro recall F1-Micro Macro precision Macro recall F1-Macro

J48 Pruned 95.8% 95.9% 95.8% 95.8% 95.9% 95.6%

Random Forest 94.8% 93.1% 93.5% 94.7% 92.8% 93.1%

B-J48 pruned 95.8% 93.6% 94.5% 95.7% 93.3% 94%

B-J48 UnPruned 96.1% 94.1% 94.9% 96.2% 93.8% 94.4%

B-Random Forest 94.8% 93% 93.4% 94.6% 92.7% 93%

Table 14 Results of CC method using top 5 single label classifers

CC (10-fold cross-validation run for 10 iterations)

Single label classifier Label-based metrics

Micro averaging Macro averaging

Micro precision Micro recall F1-Micro Macro precision Macro recall F1-Macro

J48 Pruned 95.9% 97.1% 96.5% 95.8% 97.1% 96.3%

Random Forest 95.4% 97.9% 96.6% 95.2% 97.9% 96.5%

B-J48 pruned 96.2% 96.6% 96.4% 96.2% 96.6% 96.3%

B-J48 UnPruned 96% 97.5% 96.7% 95.8% 97.4% 96.5%

B-Random Forest 95.7% 97.9% 96.8% 95.6% 97.9% 96.6%

Software Quality Journal (2020) : –28 1063 10861082

https://github.com/thiru578/Datasets-LM-FE
https://github.com/thiru578/Datasets-LM-FE
https://github.com/thiru578/Multilabel-Dataset
https://github.com/thiru578/Multilabel-Dataset

Table 15 Results of LC method using top 5 single label classifers

LC (10-fold cross-validation run for 10 iterations)

Single label classifier Label-based metrics

Micro averaging Macro averaging

Micro precision Micro recall F1-Micro Macro precision Macro recall F1-Macro

J48 Pruned 96.9% 97.8% 97% 96.7% 96.9% 96.7%

Random Forest 95.1% 97.2% 96.4% 95% 97.8% 96.3%

B-J48 pruned 97.9% 97.5% 97.6% 97.9% 97.3% 97.6%

B-J48 UnPruned 97.8% 96.8% 97.3% 97.8% 96.6% 97.1%

B-Random Forest 95.3% 97.6% 96.4% 95.1% 97.6% 96.3%

References

Abdelmoez, W., Kosba, E., Iesa, A.F. (2014). Risk-based code smells detection tool. In The international
conference on computing technology and information management (ICCTIM2014) (pp. 148–159): The
Society of Digital Information and Wireless Communication.

Amorim, L., Costa, E., Antunes, N., Fonseca, B., Ribeiro, M. (2015). Experience report: evaluating the
effectiveness of decision trees for detecting code smells. In 2015 IEEE 26th international symposium on
software reliability engineering (ISSRE) (pp. 261–269): IEEE.

Azeem, M.I., Palomba, F., Shi, L., Wang, Q. (2019). Machine learning techniques for code smell detectio: a
systematic literature review and meta-analysis. Information and Software Technology.

Booch, G. (1980). Object-oriented analysis and design. Addison-Wesley.
Boutell, M.R., Luo, J., Shen, X., Brown, C.M. (2004). Learning multi-label scene classification. Pattern

Recognition, 37(9), 1757–1771.
Bowes, D., Randall, D., Hall, T. (2013). The inconsistent measurement of message chains. In 2013 4th

International workshop on emerging trends in software metrics (WETSoM) (pp. 62–68): IEEE.
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F. (2015). Addressing imbalance in multilabel classification:

measures and random resampling algorithms. Neurocomputing, 163, 3–16.
Ciupke, O. (1999). Automatic detection of design problems in object-oriented reengineering. In Technology

of object-oriented languages and systems, 1999. TOOLS 30 Proceedings (pp. 18–32): IEEE.
Di Nucci, D., Palomba, F., Tamburri, D.A., Serebrenik, A., De Lucia, A. (2018). Detecting code smells using

machine learning techniques: are we there yet? In 2018 IEEE 25th International conference on software
analysis, evolution and reengineering SANER (pp. 612–621): IEEE.

Ferme, V. (2013). Jcodeodor: a software quality advisor through design flaws detection. Master’s thesis
University of Milano-Bicocca, Milano, Italy.

Fontana, F.A., & Zanoni, M. (2017). Code smell severity classification using machine learning techniques.
Knowledge-Based Systems, 128, 43–58.

Fontana, F.A., Braione, P., Zanoni, M. (2012). Automatic detection of bad smells in code: an experimental
assessment. Journal of Object Technology, 11(2), 5–1.

Fontana, F.A., Dietrich, J., Walter, B., Yamashita, A., Zanoni, M. (2016a). Antipattern and code smell false
positives: preliminary conceptualization and classification. In 2016 IEEE 23rd international conference
on software analysis, evolution, and reengineering (SANER), (Vol. 1 pp. 609–613): IEEE.

Fontana, F.A., Mäntylä, M.V., Zanoni, M., Marino, A. (2016b). Comparing and experimenting machine
learning techniques for code smell detection. Empirical Software Engineering, 21(3), 1143–1191.

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D. (1999). Refactoring: improving the design of
existing programs.

Godbole, S., & Sarawagi, S. (2004). Discriminative methods for multi-labeled classification. In Pacific-Asia
conference on knowledge discovery and data mining (pp. 22–30): Springer.

Guo, Y., & Gu, S. (2011). Multi-label classification using conditional dependency networks. In IJCAI
Proceedings-international joint conference on artificial intelligence, (Vol. 22 p. 1300).

Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S. (2011). Developing fault-prediction models: what
the research can show industry. IEEE Software, 28(6), 96–99.

Software Quality Journal (2020) : –28 1063 1086 1083

Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., Ouni, A. (2014). A cooperative parallel search-
based software engineering approach for code-smells detection. IEEE Transactions on Software
Engineering, 40(9), 841–861.

Khomh, F., Vaucher, S., Guéhéneuc, Y.G., Sahraoui, H. (2009). A Bayesian approach for the detection of
code and design smells. In 9th International conference on quality software, 2009. QSIC’09 (pp. 305–
314): IEEE.

Khomh, F., Vaucher, S., Guéhéneuc, Y.G., Sahraoui, H. (2011). Bdtex: a gqm-based Bayesian approach for
the detection of antipatterns. Journal of Systems and Software, 84(4), 559–572.

Kreimer, J. (2005). Adaptive detection of design flaws. Electronic Notes in Theoretical Computer Science,
141(4), 117–136.

Liu, H., Guo, X., Shao, W. (2013). Monitor-based instant software refactoring. IEEE Transactions on
Software Engineering, 1.

Maiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y.G., Antoniol, G., Aı̈meur, E. (2012). Support
vector machines for anti-pattern detection. In 2012 Proceedings of the 27th IEEE/ACM international
conference on automated software engineering (ASE) (pp. 278–281): IEEE.

Maneerat, N., & Muenchaisri, P. (2011). Bad-smell prediction from software design model using machine
learning techniques. In 2011 Eighth international joint conference on computer science and software
engineering (JCSSE) (pp. 331–336): IEEE.

Marinescu, R. (2002). Measurement and quality in objectoriented design. IEEE International Conference on
Software Maintenance.

Marinescu, R. (2004). Detection strategies: metrics-based rules for detecting design flaws. In 20th IEEE
International conference on software maintenance, 2004. Proceedings (pp. 350–359): IEEE.

Marinescu, R. (2005). Measurement and quality in object-oriented design. In Proceedings of the 21st IEEE
international conference on software maintenance, 2005. ICSM’05 (pp. 701–704): IEEE.

Moha, N., Gueheneuc, Y.G., Duchien, A.F., et al. (2010a). Decor: a method for the specification and detection
of code and design smells. IEEE Transactions on Software Engineering (TSE), 36(1), 20–36.

Moha, N., Guéhéneuc, Y.G., Le Meur, A.F., Duchien, L., Tiberghien, A. (2010b). From a domain analysis
to the specification and detection of code and design smells. Formal Aspects of Computing, 22(3-4),
345–361.

Murphy-Hill, E., & Black, A.P. (2010). An interactive ambient visualization for code smells. In Proceedings
of the 5th international symposium on software visualization (pp. 5–14): ACM.

Nongpong, K. (2012). Integrating “code smells” detection with refactoring tool support. Thesis, University
of Wisconsin-Milwaukee.

Opdyke, W.F. (1992). Refactoring: a program restructuring aid in designing object-oriented application
frameworks PhD thesis. PhD thesis: University of Illinois at Urbana-Champaign.

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshyvanyk, D. (2013). Detecting
bad smells in source code using change history information. In Proceedings of the 28th IEEE/ACM
international conference on automated software engineering (pp. 268–278): IEEE Press.

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., De Lucia, A. (2015). Mining version
histories for detecting code smells. IEEE Transactions on Software Engineering, 41(5), 462–489.

Palomba, F., Oliveto, R., De Lucia, A. (2017). Investigating code smell co-occurrences using association
rule learning: a replicated study. In IEEE Workshop on machine learning techniques for software quality
evaluation (MaLTeSQuE) (pp. 8–13): IEEE.

Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A. (2018). On the diffuseness and
the impact on maintainability of code smells: a large scale empirical investigation. Empirical Software
Engineering, 23(3), 1188–1221.

Pecorelli, F., Di Nucci, D., De Roover, C., De Lucia, A. (2019a). On the role of data balancing for machine
learning-based code smell detection. In Proceedings of the 3rd ACM SIGSOFT international workshop
on machine learning techniques for software quality evaluation (pp. 19–24): ACM.

Pecorelli, F., Palomba, F., Di Nucci, D., De Lucia, A. (2019b). Comparing heuristic and machine learning
approaches for metric-based code smell detection. In Proceedings of the 27th international conference
on program comprehension (pp. 93–104): IEEE Press.

Rao, A.A., & Reddy, K.N. (2007). Detecting bad smells in object oriented design using design change
propagation probability matrix 1.

Rasool, G., & Arshad, Z. (2015). A review of code smell mining techniques. Journal of Software: Evolution
and Process, 27(11), 867–895.

Read, J., Pfahringer, B., Holmes, G. (2008). Multi-label classification using ensembles of pruned sets. In
2008 Eighth IEEE international conference on data mining (pp. 995–1000): IEEE.

Read, J., Pfahringer, B., Holmes, G., Frank, E. (2011). Classifier chains for multi-label classification.
Machine Learning, 85(3), 333.

Software Quality Journal (2020) : –28 1063 10861084

Read, J., Reutemann, P., Pfahringer, B., Holmes, G. (2016). Meka: a multi-label/multi-target extension to
weka. The Journal of Machine Learning Research, 17(1), 667–671.

Sheikh, L.M., Tanveer, B., Hamdani, M. (2004). Interesting measures for mining association rules. In 8th
International multitopic conference, 2004. Proceedings of INMIC 2004 (pp. 641–644): IEEE.

Sorower, M.S. (2010). A literature survey on algorithms for multi-label learning. Oregon State University,
Corvallis, p. 18.

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., Noble, J. (2010). The qual-
itas corpus: a curated collection of java code for empirical studies. In Software engineering conference
(APSEC), 2010 17th Asia Pacific (pp. 336–345): IEEE.

Travassos, G., Shull, F., Fredericks, M., Basili, V.R. (1999). Detecting defects in object-oriented designs:
using reading techniques to increase software quality. In ACM sigplan notices, (Vol. 34 pp. 47–56):
ACM.

Tsantalis, N., & Chatzigeorgiou, A. (2009). Identification of move method refactoring opportunities. IEEE
Transactions on Software Engineering, 35(3), 347–367.

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: an overview. International Journal of Data
Warehousing and Mining (IJDWM), 3(3), 1–13.

Tsoumakas, G., Katakis, I., Vlahavas, I. (2011). Random k-labelsets for multilabel classification. IEEE
Transactions on Knowledge and Data Engineering, 23(7), 1079–1089.

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A., Poshyvanyk, D. (2017). When
and why your code starts to smell bad (and whether the smells go away). IEEE Transactions on Software
Engineering, 43(11), 1063–1088.

Wang, X., Dang, Y., Zhang, L., Zhang, D., Lan, E., Mei, H. (2012). Can i clone this piece of code here?
In Proceedings of the 27th IEEE/ACM international conference on automated software engineering
(pp. 170–179): ACM.

White, M., Tufano, M., Vendome, C., Poshyvanyk, D. (2016). Deep learning code fragments for code
clone detection. In Proceedings of the 31st IEEE/ACM international conference on automated software
engineering (pp. 87–98): ACM.

Yang, J., Hotta, K., Higo, Y., Igaki, H., Kusumoto, S. (2015). Classification model for code clones based on
machine learning. Empirical Software Engineering, 20(4), 1095–1125.

Zaidi, M.A., & Colomo-Palacios, R. (2019). Code smells enabled by artificial intelligence: a systematic
mapping. In International conference on computational science and its applications (pp. 418–427):
Springer.

Zhang, M.-L., & Zhou, Z.-H. (2013). A review on multi-label learning algorithms. IEEE Transactions on
Knowledge and Data Engineering, 26(8), 1819–1837.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Thirupathi Guggulothu is working as a Research Scholar in the area
of Software Engineering, University of Hyderabad and done his post
graduation in the stream of Computer Science, University of Hyder-
abad. He has worked as a Research Associate on the project titled
“implementation of A5/1 attack” sponsored by DLRL in the Univer-
sity of Hyderabad. His research interests include software evolution,
software maintenance, and machine learning. He qualified UGC NET
and TS SET in 2017.

Software Quality Journal (2020) : –28 1063 1086 1085

Salman Abdul Moiz is working as an Professor in School of Com-
puter & Information Sciences at the University of Hyderabad. He
worked as Professor and Head CSE at GITAM University, Hyder-
abad Campus. He has previously worked as Research Scientist at
Centre for Development of Advanced Computing, Bangalore. He is a
member of IEEE, ACM, IE, and EWB. His research interests include
software engineering, software re-usability, mobile databases, and
e-Learning.

Software Quality Journal (2020) : –28 1063 10861086

	Code smell detection using multi-label classification approach
	Abstract
	Introduction
	Related work
	Machine learning (supervised classification) approaches to detect code smells

	Evaluated code smells
	Multi-label classification approach for code smell detection
	Reference datasets
	Selection of systems
	Metric extraction
	Dataset preparation

	Proposed approach
	Construction of multi-label dataset
	Training dataset

	Multi-label classification approach
	Methods of multi-label classification

	Experimental setup
	Experimental results
	Dataset results
	Multi-label dataset statistics
	Co-occurrence analysis (market basket analysis)
	Performance improvement in existing datasets
	Performances of multi-label classification

	Threats to validity
	Threats to internal validity
	Threats to external validity

	Conclusion and future directions
	Appendix:
	References

