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Abstract
To survive in competitive marketplaces, most organizations have adopted agile methodologies
to facilitate continuous integration and faster application delivery and rely on regression testing
during application development to validate the quality and reliability of the software after
changes have been made. Consequently, for large projects with cost and time constraints, it is
extremely difficult to determine which test cases to run at the end of each release. In this paper,
a test case prioritization and selection approach is proposed to improve the quality of releases.
From existing literature, we analyzed prevailing problems and proposed solution relevant to
regression testing in agile practices. The proposed approach is based on two phases. First, test
cases are prioritized by clustering those test cases that frequently change. In case of a tie, test
cases are prioritized based on their respective failure frequencies and coverage criteria. Second,
test cases with a higher frequency of failure or coverage criteria are selected. The proposed
technique was validated by an empirical study on three industrial subjects. The results show
that the method successfully selects an optimal test suite and increases the fault detection rate
(i.e., more than 90% in the case of proposed technique and less than 50% in other techniques),
which reduces the number of irrelevant test cases and avoids detecting duplicate faults. The
results of evaluation metrics illustrate that the proposed technique significantly outperform
(i.e., between 91 and 97%) as compared to other existing regression testing techniques (i.e.,
between 52 and 68%). Therefore, our model enhances the test case prioritization and selection
with the ability for earlier and high fault detection. Thus, pruning out irrelevant test cases and
redundant faults and enhancing the regression testing process for agile applications.
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1 Introduction

Over time, the world has become increasingly dependent on information technology and
software has now become an essential part of much of everyday life. This is also true for
businesses in a wide variety of industries, including airlines, media, security agencies, and
education. As a result, many methods and strategies have been developed to increase the
reliability and efficiency of software development projects in order to satisfy discerning
customers (Alkharabsheh et al. 2018; Felderer and Herrmann 2019; Horváth et al. 2019;
Zhao et al. 2019).

Many modern development strategies, such as agile methodologies, have been developed to
fulfill increasing demands to deliver high-quality software in a short amount of time with
limited resources in an extremely competitive environment (Agren et al. 2018; Anand and
Dinakaran 2017; Heck and Zaidman 2018). These strategies address frequent changes and
releases, team coordination, customer collaboration, continuous releases, etc. Continuous
integration (CI) methodologies and frequent releases are now standard practice in many
software organizations when it is essential to increase the speed of delivering new products
and features (Haghighatkhah et al. 2018; Horváth et al. 2019).

However, the number of changes introduced in each release or iteration to support new or
existing features significantly increases the number of bugs in the code (Kandil et al. 2015,
2016; Knauss et al. 2015; Thangiah and Basri 2016). This forces the team to prioritize fixing
bugs over regression testing, which compromises the quality of the released software. It is
much easier to reduce the regression requirements when there is only a small number of user
stories as retesting all test cases after each change for a large number of user stories quickly
becomes unworkable (Elbaum et al. 2014; Knauss et al. 2015; Rosero et al. 2017).

Agile practices rely on regression testing (RT), which requires a significant amount of effort
and resources during implementation (Hettiarachchi et al. 2016; Thangiah and Basri 2016).
Agile approaches utilize recursive implementations and test sequences to reduce the interval
between tests (Huang et al. 2012; Kandil et al. 2014). RT is commonly used to verify the
quality of software applications after modifications have been made in the development
process. It is a maintenance activity that is executed to provide assurance that the variations
and/or modifications have not adversely affected the present functionality of the software
(Ansari et al. 2016; Spieker et al. 2017). As large test suites require a significant amount of
time and expense to execute, various techniques have been proposed to reduce the time and
cost of execution, such as test case prioritization (TCP), regression test selection (RTS), test
suite minimization (TSM), and test suite augmentation (TSA) (Do 2016; Spieker et al. 2017).
RT reuses previous test suites as well as any new test cases that have been added to validate
new or modified features (Anderson et al. 2014; Do 2016). The TSM technique is used to
prune outdated or obsolete test cases, and regression selection selects a subclass of test suites
with which to validate modifications (Kandil et al. 2015; Miranda and Bertolino 2017). TCP
efficiently orders the test cases based on specific requirements, such as early fault detection or
coverage rate (Kandil et al. 2014; Panichella et al. 2015; Rosero et al. 2016; Rosero et al.
2017). The TSM and RTS methods identify test cases that should be permanently removed
from the test suite in order to focus on identifying significant faults in the changed parts of the
software (Al-Hajjaji et al. 2019; Ansari et al. 2016; Wang et al. 2019). TSA identifies newly
added code and creates new tests to validate the functions of the revised system (Kandil et al.
2016; Miranda and Bertolino 2017; Panichella et al. 2015). TCP is used to organize the
complete test suite to facilitate earlier fault detection within a limited time and cost based on
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various criteria, such as code coverage, faults, historical information, and requirements (Al-
Hajjaji et al. 2019; Azizi and Do 2018; Chen et al. 2018; Flemström et al. 2018; Wang et al.
2019).

A significant amount of research has been conducted to determine how to efficiently
prioritize and select test cases to increase the fault detection rate. However, existing RT
techniques in the agile environment lack the ability to effectively prioritize and select test
cases. The irrelevant and redundant test cases execution results in the identification of
redundant faults and repeated re-execution of the test suite.

Therefore, to address these issues, contributions of our research work are as follows:

& In our research, we present a test case prioritization and selection approach for agile
strategy in CI context on criteria of frequently changed and failed test cases, to increase the
capability of fault detection rate.

& The proposed model offers test case prioritization and selection using frequently change
test cases and failed test cases due to CI at every release in agile development strategies.
Consequently, we divide our proposed model called CTFF (prioritize and select frequently
change test cases and failed frequency) in two phases. The first phase consists of clustering
frequently change test cases into multiple clusters. Afterwards, parameters for prioritiza-
tion are generated based on the highest failure frequency, and if more than one test cases
have similar frequency, then test code coverage used as second priority criteria. In the
second phase, test cases with highest priority are selected from each cluster for execution
to identify maximum faults.

& Therefore, the proposed approach resolves drawback of RT in CI through modern devel-
opment strategies. The CTFF model evaluated using three different software with different
size of test cases developed in an agile environment. From the analysis of results, it is
revealed that the CTFF model detects more faults and effective in all cases as compared to
random prioritization and other fault-based methods.

& The study provides a roadmap, baseline, and empirical evidence for future research in
domain of RT for continuous integrations.

The remainder of this paper is organized as follows. Section 2 describes the related work
whereas Section 3 presents the methodology in which CTFF model is introduced. The details
of the empirical study are presented in Section 4. Results and discussion are presented in
Section 5, and conclusions drawn from this research are presented with future work direction
in Section 6.

2 Related work

This section summarized existing literature in regression test prioritization. Existing acknowl-
edged literature shows researchers’ probable diverse approaches used to improve the TCP and
RTS techniques for regression testing using agile methods.

Studies in the literature on agile RT have suggested that the optimum time for regression
testing techniques for agile environments is at the sprint and release level (Anita, and Chauhan,
N. 2014; Haghighatkhah et al. 2018; Kandil et al. 2016; Thangiah and Basri 2016). At the
sprint level, the authors in Kandil et al. (Kandil et al. 2016) proposed a weighted sprint TCP
technique that orders test cases on the basis of three parameters. While at the release level, a
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cluster-based release TCS technique was proposed to group user stories according to the
similarities between the modules. Whereas, the selection of test cases was dependent on
features identified by the faults in the failed test cases via text mining techniques. However,
no prioritization technique was proposed at the release level to prioritize the selected test cases
in order to determine which sequence of test cases must be completed to satisfy the testing
objective. In addition, no selection technique was proposed at the sprint level to assemble an
optimal regression test suite from the entire test suite. The benefit of selection at the sprint level
is that this will reduce the number of test cases, which will then reduce the time and effort
expended.

Kandil et al. (2015) reduced the number of test cases by evaluating the number of user
stories with similar issues that are covered by different test cases. The remaining test cases
were then prioritized using weighted agile parameters to increase the detection rate of faults.
Knauss et al. (2015) found that executing continuous integration activities in a large software
development project is difficult due to structural, social, and practical differences between
organizations. It is therefore essential that the test cases be prioritized so that faults can be
detected quickly, and bugs can be identified.

Some of the other common regression testing TCP techniques developed by various authors
are as follows. Coverage-based TCP uses coverage information to reorder the test cases in
order to identify the maximum number of faults (Horváth et al. 2019; Miranda and Bertolino
2018; Spieker et al. 2017). Coverage-based techniques use criteria for prioritization such as the
statement, branch, or path coverage (Gupta et al. 2015; Horváth et al. 2019). History-based
techniques employ historical data to prioritize the test cases in future sessions, which requires
historical information about the test cases to be maintained, such as the execution history of the
test cases, the fault detection rate (Abu Hasan et al. 2017; Al-Hajjaji et al. 2019; Aman et al.
2018; Azizi and Do 2018), and other factors (Azizi and Do 2018; Haghighatkhah et al. 2018;
Miranda and Bertolino 2018).

Other types of TCP for regression testing include human and probability-based techniques.
Lin et al. (2013) improved prioritization in the current version by referring to the results of
earlier versions. The experimental results identified similar types of test cases and found that
the proposed approach outperformed existing approaches. In addition, the method improved
software quality while ignoring test changes and continuously created test cases to cover new
features. The conclusion from the above-referenced studies is that methods are needed to more
accurately prioritize test cases based on historical information to improve long-term software
performance.

Wang and Zeng (2014) employed a prioritization model to add flexibility to the test case
prioritization process based on a multi-dimensional equation for sorting test cases for earlier
execution. They also found that the performance of dynamic test case prioritization strategies
could be improved by considering weighted probability distributions. However, a limitation is
that this technique ignores test changes and historical fault information and fails to maintain a
repository for future regression tests. Historical information with code coverage is more
effective in terms of fault detection than approaches in which only test cases covering changed
lines were executed (Gupta et al. 2015).The use of code-coverage information in prioritization
techniques improves maximum fault detection but overlooks the effectiveness of fault rate
detection and does not consider the requirements of regression testing.

Miranda and Bertolino (2017) proposed a hybrid approach for software reuse that improved
the fault detection rate and reduced the size of the test suite. However, they did not consider
coverage information pertaining to the reuse of test cases in regression testing. Silva et al. (2016)
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presented a hybrid approach for TCP and RTS, which was based on the relationship between
system components, was found to solve problems effectively with high quality. However, it did
not maintain a repository for historical information and did not consider the fault information of
test cases when performing regression testing on new versions of the software. Consequently,
large number of test cases were generated which degraded the fault detection ability.

The prioritization approach by Wang and Zeng (2016) used historical data and prioritized
requirements to determine the initial test case priority. Even though the performance of this
approach was acceptable, redundant faults were detected during fault divisions to requirement
property. The coverage information and change in test cases were not used for regression
testing. In addition, while multi-criteria were used for prioritization, the frequency of test
changes was ignored during prioritization. Abu Hasan et al. (2017) presented dissimilarity
clustering TCP using historical information to identify maximum faults in less time.

Elbaum et al. (2014) proposed an algorithm that increased the effectiveness of continuous
integration. The initial pre-submit phase applied RTS techniques to select test suites for the
specific modules to be tested. In the post-submit phase, dependent and changed modules were
tested and prioritization techniques utilized to sequence test cases to increase the likelihood of
earlier fault detection. Both phases employed novel techniques and proposed less expensive
algorithms. However, the proposed selection and prioritization techniques did not account for
the capability and variability of the computing infrastructure and only considered a limited
dataset. The problem with that approach is that different datasets are necessary in order to
properly understand the RTS limitations when the size of the code and the number of changes
increase. Other factors, such as the fault severity and importance of the user stories, are also
significant in agile environments.

Kandil et al. (2014) proposed an RTS approach that analyzed the historical relationship
between test case failures and code changes when determining the optimal test suite. However,
this approach employed a historical RTS technique that required the maintenance of reposi-
tories to store the historical data, which comes at a high cost, and this technique was not
automated. To date, this approach has only been used in two scenarios requiring a restructuring
of the test suite and rearranging of the effort across the test scope.

Anita and Chauhan (Anita,, and Chauhan, N. 2014) proposed a method of test selection that
used a weighted undirected graph of user stories based on the average path length and value
constraints. Test cases were selected based on their relevance to the specific source and
destination user stories. The advantage of this technique was that it selected an optimal set
of user stories to ensure high levels of quality and action. However, it was not automated and
test cases were selected only based on optimized user stories, and without any prioritization of
the test cases when determining the order of execution. This is problematic as other factors
should also be considered when selecting test cases in an agile environment.

Azizi and Do (2018) proposed TCP-based collaborative filtering recommender system
using change historical information in dynamic environment for decision-making process.
They observed that multi-criteria can improve the effectiveness of TCP and need to
increase fault rate with new item additions in an intelligent way. Haghighatkhah et al.
(2018) proposed RT for fault detection in a continuous integration environment. Avail-
ability of failure history data is an important criteria, but only improves effectiveness to a
certain extent while history-based diversity is more effective but has disadvantage of high
execution time. Ouriques et al. (2018) compared different existing TCP techniques in
context of model-based testing using replicated study to investigate influence of test case
size on the efficiency of fault detection rate ability.

Software Quality Journal (2020) 28:397–423 401



Al-Hajjaji et al. (2019) proposed similarity-based TCP technique for product line with diverse
feature interaction coverage. The study analyzed the effectiveness in both real and seeded fault
detection, after the evaluation on three different applications of distinctive feature size. Horváth
et al. (2019) investigated the impact of code coverage-based Java language tools on TCP and TSM,
and found that coverage information is useful to highlight number of line code covered by each test
case for optimization during RT. Whereas, Wang et al. (2019) for embedded systems, proposed
location-based TCP using gravitation law for high reliability after modification. Shin et al. (2018)
defined multi-objective TCP method for uncertainty prediction in cyber physical systems.

Other existing studies leveraged the TCP and RTS techniques to effectively identify the
maximum number of fault as soon as possible with a reduce number of test cases (Azizi and
Do 2018; Flemström et al. 2018; Haghighatkhah et al. 2018; Noor and Hemmati 2015; Spieker
et al. 2017; Wang and Zeng 2016). However, most of these prioritization techniques only
considered code coverage criteria and ignored information pertaining to the tests that frequent-
ly changed, which limited the ability to reduce the number of test cases and identify the
maximum number of faults (Azizi and Do 2018; Fischer et al. 2018; Flemström et al. 2018; Lu
et al. 2016; Ma et al. 2019; Noor and Hemmati 2015). Another limitation is that code coverage
criterion alone is not sufficient to identify a maximum number of faults, and multi-criteria are
necessary for optimal fault detection (Lachmann et al. 2015; Ouni et al. 2017; Shin et al. 2018).

TCP techniques have also been used along with other criteria to sort test cases for maximum
fault detection based on changes in the coverage information, fault rate, and historical infor-
mation (Aman et al. 2018; del Sagrado and del Águila 2018; Horváth et al. 2019; Magalhães
et al. 2017; Mahali and Mohapatra 2018), and a few studies also considered test changes
(Almasri et al. 2017; Azizi and Do 2018; Chen et al. 2018; Lu et al. 2016). However, there is
still a need to improve TCP techniques in order to locate latent bugs (Alkharabsheh et al. 2018;
Azizi and Do 2018; Felderer and Herrmann 2019; Miranda and Bertolino 2017; Özdağoğlu and
Kavuncubaşı 2019; Wang et al. 2019). It would also be extremely beneficial to identify a
technique that is able to detect the maximum number of faults in the shortest possible time.

A summary of the existing techniques based on respective factors and their limitations like
low fault detection ability, considering only code criteria, continuous integration, etc., is
provided in Table 1. From literature, we identified that the main reasons for proposing different
regression testing techniques are to increase fault detection ability with reduction of redundant
faults and irrelevant test cases using different criteria like coverage and historical information.
Consequently, these studies still lack in improving the rate of fault detection due to some
factors. These factors are fault detection ability (FDA), code coverage (CC), tests changes
(TC), fault rate (FR), multi-criteria (MC), irrelevant test cases (ITC), and continuous integra-
tion (CI) as described in Table 1 with reasons described in existing literature. These factors are
identified in multiple existing studies and are relevant to scope and context of our work, and
provide the basis for comparison of results.

As explained above, most existing RT techniques are not intended for use in agile
development, while there is room for improvement in those that do improve the quality of
modern development strategies for RT to provide maximum and earlier fault identification. In
this research, a test case prioritization and selection model is proposed for agile methodologies
in a CI context to identify frequently changed and failed test cases in order to increase the fault
detection rate. This model employs test case prioritization and selection by clustering fre-
quently changed test cases, produced by CI at every release.

The proposed model, called the CTFF model, prioritizes and selects frequently changed test
cases and the corresponding failure frequencies. The process consists of two phases. The first
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phase clusters redundant frequently changed test cases into multiple clusters and then
generates prioritization parameters based on the highest failure frequency. If multiple
test cases have similar failure frequencies, then test code coverage is used as the second
priority criterion. In the second phase, test cases are selected for execution from the
individual clusters to identify the maximum number of faults. In this way, the proposed
model addresses a key limitation of RT in CI.

Thus, a key objective of the CTFF model is to enhance the RT process for agile applications
by increasing the fault detection rate while excluding irrelevant and/or redundant tests and
considering the test cases that frequently change and/or fail.

3 Methodology

In this section, we present the proposed model and describe its internal processes and working.
In the CTFF model, applied hybrid techniques of regression testing to mitigate the shortcom-
ings of existing techniques, i.e., irrelevant test case selection and redundant faults. The test case
change history is used for clustering to reduce the size of test cases, frequently failed test cases
for prioritization of test cases with code coverage to remove ambiguity in case of same priority,
and then select highest priority test cases from each cluster to identify maximum faults as
quickly as possible.

3.1 Proposed CTFF model

A workflow of the proposed CTFF model is shown in Fig. 1, along with major phases
in the CTFF model. The motivation behind building such a model is to improve the
implementation of RT in agile development scenarios to ensure software quality at the
end of every feature or product release. The model is based on a hybrid of TCP and

Table 1 Limitations in existing techniques

Factors Limitations References

FDA Significantly declines due to an unnecessary
reduction in the size of test cases

Azizi and Do 2018; Fischer et al. 2018; Ma and
Provost 2017; Mahali and Mohapatra 2018;
Ouriques et al. 2018; Wang and Zeng 2016

CC In some cases, only code coverage not
significantly identifies maximum faults.

Abu Hasan et al. 2017; Haghighatkhah et al. 2018;
Horváth et al. 2019; Knauss et al. 2015; Lu
et al. 2016; Noor and Hemmati 2015; Silva
et al. 2016

TC Ignores the tests changes (Aman et al. 2018; Azizi and Do 2018; Lu et al.
2016

FR When a new test case added, or old test case
changed, detecting a fault is not the same as any
of the previously failing test cases.

Azizi and Do 2018; Fischer et al. 2018; Noor and
Hemmati 2015; Wang and Zeng 2016

MC Multi-criteria are optimal for prioritization, but
limited studies were found in contrast to this.

Lachmann et al. 2015; Noor and Hemmati 2015;
Ouni et al. 2017; Shin et al. 2018

ITC Usually select and execute irrelevant test cases Magalhães et al. 2017; Silva et al. 2016; Souto and
d’Amorim 2017)

CI Requires optimum technique at release level and
while continue integration

Kandil et al. 2016; Noor and Hemmati 2015;
Ouriques et al. 2018
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RTS and considers test case coverage instead of code coverage criteria during priori-
tization to select the most frequently changed and failed test cases. To better accom-
modate large numbers of test cases, the cases are clustered according to their change
frequency. If two clusters have similar change frequencies, then they are prioritized
based on their frequency of failure and coverage criteria. The underlying premise is that
if there are changes in the test cases, then the likelihood of faults increases, which then
affects the functionality of the software.

In the following, the main phases of the CTFF model are briefly described:

1. The first phase is the test case extraction. This phase consists of the following stages.

& User stories—In the agile environment, user stories are used to define the function-
ality that should be provided by the system. A user story explains what the user
expects from the system and represents the business value that an agile cross
functional team should add to the product in a sprint. In this step, user stories are
stored in a file for the selected sprint. Each user story can have multiple related test
cases.

& Test suite for current release/iteration—The user stories associated with the release are
captured in order to extract all associated test cases.

Product
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Fig. 1 CTFF model

Software Quality Journal (2020) 28:397–423404



2. The test case clustering process includes the following steps.

& Identify frequently changed test cases—Identify test cases that frequently change across
different releases of software user stories. The frequency of change is computed by taking
an average of the changes in similar test cases in each version of modified test cases. The
frequency of changes can be calculated as follows:

T f ¼ ∑Tcð Þ
.

n

h i
T f ¼ ∑Tcð Þ

.
n

h i
ð1Þ

where Tfis the change frequency of the test cases, Tc is the total number of test cases
changes in each release, and n is the number of times the software was modified.

& Cluster—In the cluster module, test cases are clustered into groups with similar frequen-
cies of change. In other words, test cases with similar change frequencies are grouped in
the same cluster. The CTFF algorithm employs a semi-supervised clustering technique
called semi-supervised K-means, which combined semi-supervised nonlinear dimension-
ality reduction and K-means (Abu Hasan et al. 2017; Arafeen and Do 2013; Gultepe and
Makrehchi 2018; Ni et al. 2017). In the K-means clustering process, the total number of
clusters depends on k, which is the number of elements used to group tests into clusters.
This process is illustrated in Fig. 2; which start from extracting data information using k
value to cluster data based on similarity. At the end, we get different clusters of unstruc-
tured large data to reduce complexity and ambiguity.

The distance between the test case frequency and the centroid of a cluster is based on
the Euclidean distance (ED) as per Eq. (2) (Arafeen and Do 2013; Gultepe and Makrehchi
2018; Ni et al. 2017) where dcf is the ED of test cases tc and tf,m is the number of instances,
and x is the instance feature value. Clustering was performed using the SPSS tool.

dcf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∑mk−1 X ck–X fkð Þ2

r
ð2Þ

3. After the test cases have been extracted and clustered, prioritization and selection are
performed.

& Generate parameters—First, metrics are generated for use when assigning priorities, the
most important of which is the number of frequently failed test cases. The error description
is captured from previous test executions and is then used to prioritize test system
functionality as follows.

Fp ¼ ∑TFið Þ
n

ð3Þ

where TFi is the total number of times the test cases failed, and n is the total number of
failed test cases. Code coverage criteria are used for prioritization if there are multiple
clusters with similar failed frequency percentages. In this case, the percentage of test
cases covered is used instead, which is defined as the total number of code lines
covered by each test case.

4. Prioritize test cases—In this step, the test clusters are ordered and prioritized to ensure that
the most important cases are selected first.
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5. Selection—Finally, the test suite is formalized to include all selected test cases from
among all of the clusters of large test cases that were identified as having the highest failed
frequency or highest coverage.

4 Empirical study

In this section, we investigate the effectiveness of the CTFF model described in Section 3. The
efficacy of the CTFF model is assessed by means of a practical assessment focused on the
following two research questions (RQs):

RQ1: Does the CTFF able to increase the fault detection rate during RT using clustering
frequently changed test cases and previous fault information?

In this RQ, we analyzed that either CTFF model increases the number of faults exposed or
not. As most existing studies in the literature did not cluster frequently changed test cases, nor
did they initialize the RT process based on test case changes.

RQ2: Is the proposed CTFF technique more effective and efficient as compared to random
prioritization and fault-based techniques?

To investigate effectiveness of the CTFF performance in terms of Average Percent of Faults
Detected (APFD) and f-measure for test suite prioritization and selection as compared to
existing random prioritization and fault-based procedures.

RQ3: Is performance of CTFF technique affected by the size of the test cases particular to
changes?

The objective of RQ3 to investigate the impact of selected test case sizes on the efficiency
of CTFF fault detection ability as compared to other techniques and to reduce irrelevancy in
TC selection and redundant fault detection in test prioritization.

4.1 Industrial systems

Three cases have been selected for performance evaluation of CTFF model. The selection of
three different cases was based on scope, domain, and backgrounds. One of the cases is the
open-source system, i.e., iTrust and other cases are from real-world industrial application; due
to confidentiality reasons, links to the involved companies were omitted and their names were
replaced by alphabetical numbering.

Case A (CA) iTrust is a patient centric electronic health record system. It was
developed by the Realsearch research group team at North Carolina State University
for patients to electronically record health-related information (Arafeen and Do 2013;
Hettiarachchi et al. 2016). An iTrust industrial system was used when estimating the
performance of the CTFF method. The iTrust system is an open-source application. In
terms of the corresponding test suite and test case change information, appropriate test
cases (TC) were developed, and other artifacts were generated, such as a traceability
matrix, requirement specification, and requirement-modification history, by the devel-
opers of iTrust.

Case B (CB) is a web-based IT services application that describes a large informa-
tion system (we obtained this application from a GR Solutions Private Ltd. company
Islamabad). The application was written in Java language and different technical
relevant information about construction-based projects. The company providing Case
C (CC) is a customer relationship management (CRM) (Azizi and Do 2018) system
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written in Java language to provide users a customized environment to create their own
shapes and diagrams without to writing code. Table 2 shows prioritization criteria for
representative applications. The data contains already verified use cases in which no
real faults exit so used mutant faults.

Test case change history data is also required and we derived this data from version base
of each respective application. The performance test of the CTFF model is based on three
releases of each application. A flow chart of this empirical study is shown in Fig. 3; which
starts from extracting user stories and recording requirement tasks. Then, extract TCs for
clustering and end after selection of optimal set of TCs to execute from large bundle of TCs.
The other techniques, i.e., random prioritization (RP) and fault-based (FB) used for effective-
ness measurement. The RP prioritize test cases simply with random priority assignment to
each test case for execution, and randomly assign to all application test cases for fault
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detection. While in FB, historical information about test cases is used, i.e., previous failure
rate for priority and selection of test cases.

The extracted requirement specification after conversion into user stories or task cards is
shown in Fig. 4, which depict list of some user stories for every release and complete system.
A snapshot of test cases that were extracted based on the user stories or tasks cards for current
release with complete execution steps are shown in Table 3. The test file consists of different
test cases according to each user’s story with steps of test case execution and verification at the
end of every release.

Note that the test cases were extracted for every release of the system. Then, the average
number of changes in the test cases was computed using Eq. (1). For example, TC − 1 changes
4 times and a total number of releases or modifications are 6; the change frequency is 0.66
times. All those test cases with similar change frequency in a single cluster and test cases with
different change frequency placed in different clusters. Therefore, for CA, five clusters were
extracted out of 143 TCs in one release.

The similar change frequencies of the test cases were clustered using the SPSS 19
tool. Figure 5 depicts the number of clusters and the number of cases in each cluster

Table 2 Prioritization criteria

Object Use cases No. of versions Size (LOC) No. of faults No. of test cases

CA 543 4 3432 21 940
CB 23,018 7 266,456 35 1234
CC 14,541 5 145,987 30 1320

Start

Step 1

Records
Requirements on

task card�

Extract User
Stories

Display
Release

Information

Display
Iteration

Information

Extract
TC

Step 2

Calculate Frequency of Test
Cases on Frequent Changes

Clustering on similar
frequency

Test�Cases
Clusters

Step 3

Generate Priority
Parameters

Calculate�
Priority Score

Test Cases
Prioritization

Select Failed Test Cases
frequency

Test
Coverage

Step 4

Identify Highest Priority
from each Cluster

Test Case
Selection

Test Cases
Suite

End

Fig. 3 Case study flow chart
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for two releases of CA, while Fig. 6 illustrates the centroids of the clusters to explain
that less frequently change TCs placed in cluster one, i.e., C1 and more frequently
change TCs placed in C5. Parameters were then generated based on the frequently
failed tests as the first priority criteria and test coverage as the second. Therefore, for
iTrust application, we depict the hierarchy of the clusters after classifying the test
cases based on the number of changes, as shown in Fig. 7, where the x-axis indicates
the details of the test cases and the y-axis indicates the numbers of clusters. From Fig.
7, it is clear that five numbers of clusters were created on the base of similarity of
change frequency of TCs. For example, in release 1 of 143 test cases included then
using SPSS tool (for Eq. (2) calculation) to identify clusters of TCs and in cluster
one, i.e., C1 include TC − 64, TC − 57, …, n and same in all clusters based on
changed frequency.

4.2 Mutant faults

Mutant faults were introduced into the iTrust code to properly validate fault detection.
Mutation testing is a method used to assess the completeness of a test suite by
implanting seeded errors into the application. This is used to determine whether the
test suite can distinguish these changes at a significantly lower cost than hand-seeded
faults. Different mutation operators are utilized, such as arithmetic administrator change
(e.g., the addition (+) operator is supplanted with a (−), (*) or (/)), Logical Connector
Change (e.g., the AND connector with an OR or XOR connector), Relational Operator
Change (e.g., the (>=) operator is replaced with (<=), (==), (!=)), Access Flag Change
(e.g., this operator changes a private access flag to a free access flag), Overriding
Variable Deletion (erases a declaration of overriding factors), Overriding Variable
Insertion (embeds factors from a parent class into the child class), Overriding Method
Deletion (erases a declaration of an overriding method in a subclass so that the
overridden method is referenced), and Argument Order Change (changes the order of
arguments in a method invocation, if there is more than one argument) (Arafeen and
Do 2013; Hettiarachchi et al. 2016).

In actual testing scenarios, programs do not typically contain as many faults as these
numbers of mutants. Thus, we introduced mutant faults, which were formed by randomly
selecting mutants from the pools of mutants created for each version to measure effectiveness
of the CTFF model.

SRS User_Stories_Id User_Stories_Title

1 US-SR-iTrust-001-01-01 Add Entry Ac�on

2 US-SR-iTrust-001-01-02 Delete Entry Ac�on

3 US-SR-iTrust-001-01-03 Edit Entry Ac�on

4 US-SR-iTrust-001-01-04 Edit Office Visit Base Ac�on

5 US-SR-iTrust-001-01-05 Office Visit Base Ac�on 

6 US-SR-iTrust-001-01-06 Pa�ent Base Ac�on

Fig. 4 User stories file
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4.3 Evaluation metrics

The following metrics are used in the evaluation of the proposed approach.

4.3.1 APFD

This metric is used to compute the fault detection rate over the entire prioritized test suite
(Azizi and Do 2018; Fischer et al. 2018; Li et al. 2018; Magalhães et al. 2017). The higher the
value of the fault detection rate, the earlier the maximum number of faults will be detected
during regression testing. This metric can be computed as follows.

APFD ¼ 1–
TF1 þ TF2 þ…þ TFmð Þ

mnð Þ þ 1

2n
ð4Þ

where TFi is the number of first test cases in order of execution, m is the total number of faults
identified in the program, and n is the number of test cases.

4.3.2 Precision (P)

The P measure indicates the accuracy with which test cases were selected to be rerun (Kandil
et al. 2016; Ni et al. 2017; Rosero et al. 2017), and can be computed as follows.

P ¼ jT0
f j

jT0
f þ T

0
rj ð5Þ

where T′f represents the set of selected test cases that revealed faults, and T′r represents the test
cases that did not reveal faults.

Number of Cases in each 
Cluster 

Cluster 1 21.000 
 2 29.000 
 3 18.000 
 4 61.000 
 5 14.000 
Valid  143.000 
Missing  .000 

Fig. 5 Clusters

Final Cluster Centers
Cluster

1 2 3 4 5

Tf .20 .40 .60 .80 1.00

Fig. 6 Clusters centroids
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4.3.3 Recall (R)

The R measure indicates the percentage of selected test cases relative to all failed test cases
(Kandil et al. 2016; Ni et al. 2017; Rosero et al. 2017) and can be computed as follows.

R ¼ jT0
f j

jT0
f þ T

0
nj ; ð6Þ

where T′n represents the set of tests that were not selected and did not fail. A value close to one
indicates a high level of accuracy.

4.3.4 F-measure (F)

This measure is a combination of both P and R, which indicates the overall efficiency of the
optimal test cases selection process (Kandil et al. 2016; Ni et al. 2017; Rosero et al. 2017). It
can be computed as follows.

F ¼ 2� P � Rð Þ
P þ Rð Þ ð7Þ

5 Results and discussion

The results of the practical assessment with respect to RQs are as follows.
RQ1: The results of evaluation confirmed that the approach adopted in the CTFF

model to cluster frequently changed test cases during process initialization significantly
increased the fault detection rate. When the CTFF procedure was applied to the CA,

02550100125 75150
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14:TC-57

46:TC-129
39:TC-114

29:TC-27
26:TC-17
68:TC-124
61:TC-117
58:TC-70
52:TC-23

127:TC-141
120:TC-134
117:TC-109
110:TC-102
107:TC-99
100:TC-83
97:TC-80
137:TC-88
131:TC-34

36:TC-69

49:TC-132

11:TC-19
04:TC-09

90:TC-73

Test C
ases

Numbers of Clusters
Fig. 7 Hierarchical view of clusters
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CB, and CC datasets, test cases with high priority were identified. Identical scenarios
were used to assess the performance of random and fault-based ordering techniques for
the purpose of comparison. In CTFF technique after applying clustering, we extracted
different clusters with similar change frequency of different TC size in all three cases.
Then, calculated failed frequency by dividing total number of times failed TC over total
time changes (using Eq. (3)). In the next step of CTFF technique, after the selection of
Frequently Failed Test Cases (FFTC) from each cluster for CA, CB, and CC, we
prioritized TCs in order to highest Failed Test Cases Frequency (FTCF). In case of a
tie in FTCF, we used Test Cases Coverage (TCC) as 2nd priority criteria for tie
breaking. The detail of priority and frequency criteria of selected TCs are listed in
Table 4 of all techniques.

The order of TCs used by various techniques are listed in Table 5 for all selected cases and
depicted different TCs for execution to detect maximum faults in first execution. The faults
detected by each method are depicted in Fig. 8 with a comparison of other methods in three
cases. The x-axis indicates the various TC executed while y-axis highlights a number of faults
detected for that test case.

The results show that the CTFF technique detected almost 100, 98, and 99% of the
faults in CA, CB, and CC respectively after first execution of TCs. While the perfor-
mance of other methods on the first run identified only 20, 30, and 40% for all cases
(fault-based) and 40, 20, and 50% for all three cases (random prioritization) of the
faults, respectively. Hence, Fig. 8 with box plots explained that most of faults detected
earlier in all cases, i.e., CA, CB, and CC using CTFF technique as comparison to RP
and FB. In RP and FB required many executions for detecting faults which increases
time and cost of development.

RQ2: We investigated the effectiveness of the CTFF with comparison to other
methods for all cases using APFD evaluation metric of Eq. (4). The results indicate
that APFD for the CTFF model is at higher rate as compared to those of existing
methods (i.e., RP and FB) and is shown in Fig. 9. In all three cases, CTFF has higher
APFD value which means that CTFF’s prioritization criteria is key component and have
a higher ability to identify faults than other methods in all three cases.

Table 4 Prioritization criteria

Sr. # FFTC FTCF TCC

CA CB CC CA (%) CB (%) CC (%) CA (%) CB (%) CC (%)

1 TC-25 TC-08 TC-35 90 85 89 29.5 29.5 29.5
2 TC-27 TC-22 TC-17 90 83 85 10.0 10.0 10.0
3 TC-30 TC-13 TC-20 80 85 85 30.0 30.0 30.0
4 TC-31 TC-33 TC-28 70 60 70 29.0 29.0 29.0
5 TC-18 TC-15 TC-12 60 50 60 25.0 25.0 25.0
6 TC-10 TC-30 TC-31 60 40 50 20.0 20.0 20.0
7 TC-29 TC-29 TC-29 50 40 40 17.1 17.1 17.1
8 TC-13 TC-13 TC-13 40 30 40 20.0 20.0 20.0
9 TC-05 TC-05 TC-05 40 60 30 18.7 18.7 18.7
10 TC-14 TC-14 TC-14 30 40 40 20.0 20.0 20.0
11 TC-01 TC-01 TC-01 20 30 30 18.5 18.5 18.5
12 TC-33 TC-33 TC-33 20 20 20 18.1 18.1 18.1
13 TC-08 TC-08 TC-08 10 20 20 17.3 17.3 17.3
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The results of the performance analysis are shown in Table 6 and Figs. 10, where it
can be seen that CTFF approach successfully identified an optimal set of test cases and
increased the fault detection capability. As shown, the precision, recall, and F measure
values using Eqs. 5, 6, and 7 respectively are calculated for the CTFF efficiency
analysis. The results indicate that test cases selected using CTFF have higher efficiency
(i.e. 0.95, 0.92, and 0.96 points F measure for CA, CB, and CC respectively) than
those of random prioritization (i.e., 0.56, 0.69, and 0.52 points F measure for CA, CB,
and CC respectively) and fault-based methods (i.e., 0.68, 0.67, and 0.67 points F
measure for CA, CB, and CC respectively) in CA, CB, and CC. Figure 10 a, b, and
c for CA, CB, and CC respectively show that CTFF is more efficient than other
methods. Consequently, results proved that selected test suite in CTFF for CA, CB,
and CC is optimal set of TCs with a higher degree of fault detection. Whereas, using
RP and FB techniques for CA, CB, and CC demonstrate less degree of fault detection
ability.

Table 5 Prioritized test suites

Sr.
#

Technique Test cases

1 CTFF approach CA {TC-25, TC-30, TC-31, TC-18, TC-29, TC-13, TC-14, TC-01, TC-33, TC-08}
CB {TC08, TC22, TC13, TC33, TC15, TC30, TC39, TC43, TC03, TC24, TC21,

TC53, TC18}
CC {TC35, TC17, TC20, TC28, TC13, TC03, TC19, TC33, TC15, TC12

TC61, TC23, TC18}
2 Random

prioritization
CA {TC-01, TC-03, TC-05, TC-07, TC-09, TC-11, TC-13, TC-15, TC-17, TC-19}
CB {TC-05, TC-13, TC-25, TC-37, TC-49, TC-51, TC-63, TC-75, TC-87, TC-99}
CC {TC-15, TC-23, TC-25, TC-33, TC-35, TC-43, TC-45, TC-53, TC-55, TC-63}

3 Fault-based CA {TC-29, TC-19, TC-18, TC-17, TC-16, TC-15, TC-14, TC-13, TC-12, TC-11}
CB {TC-25, TC-03, TC-35, TC-13, TC-15, TC-34, TC-65, TC-23, TC-75, TC-43}
CC {TC-11, TC-12, TC-21, TC-03, TC-35, TC-14, TC-65, TC-35, TC-25, TC-63}

Fig. 8 Comparison of the techniques
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RQ3: In this, evaluated impact of size of failed test case selection for execution on
irrelevancy and redundant faults using CTFF in all three cases. Further, compared
results with other techniques to provide more evidence about size variation sensitivity
to irrelevancy and redundancy. However, size variation for test suite execution was not
the same for each technique in all cases. The CTFF is less sensitive to test suite size for
prioritization and selection as compared to RP and FB. For test suite size variation
reduction, we divided total number failed TCs selected and prioritized over total TCs
failed. For large code coverage, we divide number of lines of code covered by failed
selected TCs for execution over total number of lines of code covered by each TC. The
results demonstrate that CTFF technique has no issue of irrelevant TC selection and
redundant faults after prioritization as shown in Fig. 11. The y-axis depict the relative
percentage of TC to size variation for all three techniques on x-axis. Whereas, results
for FB and RP indicate that these are more affected and have an issue of irrelevant TC
selection for execution with redundant fault detection after the execution of TC.

Fig. 9 APFD of all techniques

Table 6 Evaluation metric analysis

Type Cases CTFF Random prioritization Fault-based

Precision CA 0.92 0.48 0.68
Recall CA 1 0.70 0.70
F measure CA 0.958333 0.569492 0.689855
Precision CB 0.90 0.46 0.65
Recall CB 0.99 0.72 0.7
F measure CB 0.928125 0.69000 0.67407
Precision CC 0.92 0.45 0.63
Recall CC 1 0.68 0.71
F measure CC 0.964439 0.523076 0.6767
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5.1 Threats to validity

As is typical when evaluating case studies, several threats arise that dispute the theoretical
rationality of the results, which necessitates the repetition of the research to approve or refute
decisions. The core threats can be categorized as follows (Felderer and Herrmann 2019;
Miranda and Bertolino 2018; Ouriques et al. 2018):

Fig. 10 Performance analysis for CA, CB and CC
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& Internal TV related to factors regarding the arrangement of requirements. To address this
threat, mitigation steps must be adopted to avoid using diverse criteria for ordering and
selection. Therefore, we used test case change frequency and failed frequency to identify
higher fault detection rate ability to reduce irrelevancy and redundancy in test selection and
fault detection respectively. Experimental results proved that CTFF has improved fault
detection ability and detect maximum faults as earlier as possible.

& Construct TV considers the connections between the various concepts and reflections. This
requires the use of evaluation metrics to assess the validity of the diverse practices in the
CTFF model. Therefore, we used APFD metric for prioritization and F measure for
selection to estimate the effectiveness of CTFF as compared to other techniques.

& Conclusion TV relates to the associations between action and consequence. This can be
mitigated via a rigorous practical assessment of the various decisions employed in CTFF
authentication. Then, a case study can be used to defend the decisions via a qualitative
analysis to reduce the bias. All authors participated in evaluation for data collection and
counteractions on analysis of results.

& External TV relates to the generality of the verdicts in real industrial projects. This
enhances the validity of the conclusions and fosters more investigation in the relevant
domains by replicating the results of the research in diverse situations. Therefore, to avoid
this TV, we used three different subjects as a case study for evaluation so that results can be
validated in diverse domains.

6 Conclusions and future work

This study presents an approach to resolve challenges in regression testing when supporting
continuous integration activities in modern development strategies. Several techniques that
have been proposed in the literature failed to increase fault detection and identification rate as
they did not exclude redundant faults or irrelevant test cases during execution. In fact, most
existing techniques rely on code coverage or historical information when selecting and ranking
test cases, which ignores faulty test cases.

Fig. 11 Variation analysis
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To address the limitations in existing methods, we have proposed the CTFF model that
ranks and selects test cases by first clustering the test cases that frequently change. In the case
of a tie, test cases are prioritized based on the number of frequently failed test cases and
coverage criteria. Thus, CTFF improves the regression testing for agile software projects
specifically and provides significant implication for a software organization. For the imple-
mentation of proposed techniques, we investigated three software application, each application
based on different versions.

The outcome of the evaluation shows the following:

& The proposed technique significantly improved fault detection rate (i.e., more than 90%) at
earlier stages as compared to other techniques (less than 50% in RP and FB techniques).

& The results of evaluation metrics illustrate that the proposed technique significantly
outperforms (i.e., between 91 and 97%) as compared to other existing techniques (i.e.,
between 52 and 68%) to avoid irrelevancy and redundancy of test cases and faults
respectively.

& The results also described that frequently change and failed test case criteria in regression
testing is significant for fault detection, reduces irrelevancy in test case selection, redun-
dancy in faults, and reduces the need of maintaining large historical information.

Furthermore, the empirical evaluation results show that the CTFF model has a high fault
detection rate as well as the ability to identify the maximum number of faults rapidly.
Additionally, a limitation of our study is that we presented different case studies for evaluation
based on already collected datasets and results are not statistically verified which are usually
not adopted in a case study. Therefore, to mitigate this limitation, we need experimental
evaluation to analyze data using statistical analysis for reliability.

In future work, we are planning to extend the CTFF model to resolve regression testing
constraints in component-based software and product line engineering applications. We are
also planning to investigate additional research questions for controlled experiment-based
evaluation for future research. For instance, we may find a correlation among different metrics
to guide quality engineers and researchers for selection of the best suitable regression testing
techniques in different scenarios and environment for optimal reliability analysis.
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