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Abstract
As an essential feature of smart cyber-physical systems (CPSs), self-healing behaviors play a
major role in maintaining the normality of CPSs in the presence of faults and uncertainties. It is
important to test whether self-healing behaviors can correctly heal faults under uncertainties to
ensure their reliability. However, the autonomy of self-healing behaviors and impact of
uncertainties make it challenging to conduct such testing. To this end, we devise a fragility-
oriented testing approach, which is comprised of two novel algorithms: fragility-oriented
testing (FOT) and uncertainty policy optimization (UPO). The two algorithms utilize the
fragility, obtained from test executions, to learn the optimal policies for invoking operations
and introducing uncertainties, respectively, to effectively detect faults. We evaluated their
performance by comparing them against a coverage-oriented testing (COT) algorithm and a
random uncertainty generation method (R). The evaluation results showed that the fault
detection ability of FOT+UPO was significantly higher than the ones of FOT+R, COT+
UPO, and COT+R, in 73 out of 81 cases. In the 73 cases, FOT+UPO detected more than
70% of faults, while the others detected 17% of faults, at the most.
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1 Introduction

The integration of computation, communication, and control awards cyber-physical systems
(CPSs) with a higher level of intelligence, which enables them to autonomously adapt and
optimize their behavior at runtime (Bures et al. 2015). One of such autonomous characteristics
is self-healing, which endows CPSs with the ability to detect fault occurrences, diagnose
causes, and recover. We refer to this kind of CPSs as self-healing CPSs (SH-CPSs).

Besides recuperation, the self-healing behaviors of SH-CPSs have to deal with uncertainty
gracefully. Due to intimate coupling between the cyber and physical components, SH-CPSs
are usually affected by various uncertainties. By uncertainty, we mean Bthe lack of knowledge
of which value an uncertain factor will take at a given point in time during execution^ (Ma
et al. 2018). In this paper, we limit our scope to environmental uncertainty, namely, measure-
ment uncertainties from sensors and actuation deviations from actuators.

Since self-healing behaviors play a key role in securing CPSs’ normal functionality, it is
important to check the correctness of self-healing behaviors in the presence of uncertainty.
However, achieving this task is non-trivial. Although formal verification can rigorously prove
the correctness, these technologies are still not applicable to large-scale applications, due to
high computational complexity particularly when many uncertainties need to be considered
(Schupp et al. 2015). Testing is another option. However, at the current stage, the state of
practice of testing CPSs is an ad hoc, trial and error testing approach, which cannot provide
sufficient rigor in fault detection (Zheng and Julien 2015). For the state of art of testing CPSs,
coverage-oriented structural testing is dominating (Asadollah et al. 2015). However, the high
dimension of CPSs’ behaviors, the tight integration of cyber and physical components, and the
unpredictable operational environment make the space of CPSs’ behaviors extremely large. It
is difficult to find faults in such huge space by just randomly searching or trying out each
possibility. Note that there are two kinds of faults: flaws in the SH-CPS under test (SUT) and
faults targeted by self-healing behaviors. Except particular explanation, a fault in the following
paragraphs refers to a flaw instead of a fault injected for testing self-healing behaviors.

To overcome the limitations of existing methods, we propose a fragility-oriented approach.
In this approach, we try to identify how likely the SUT is going to fail in a given state, i.e., the
fragility of the SUT. The fragility is used as a heuristic to guide the testing process to spend
more testing effort on the fragile states so that faults can be more effectively detected.

To detect faults in the SUT under uncertainty, we have to apply fragility to select two kinds
of inputs. The first is operation invocation, which controls the behavior performed by the SUT.
Invoking different operations or calling the same set of operations with different orders may
both lead to distinct system states. The second is uncertainty values. They define the
uncertainty-introduced environment, where the SUT is executed. Both operation invocations
and uncertainty values need to be cautiously selected to find the most fragile state and detect
faults.

For operation invocation, we have devised a fragility-oriented testing (FOT) algorithm. It
employs a reinforcement learning approach to find the optimal sequence of operation invoca-
tions concerning fault revelation. Regarding the generation of uncertainty values, we proposed
a distribution-based generation method in our previous work (Ma et al. 2017). In this method,
the variation of each uncertainty is expressed as a probability or possibility distribution. Based
on the distribution, uncertainty values are generated. Since this method merely derives
uncertainty values from fixed distributions, without utilizing any heuristic, it is suboptimal
regarding the effectiveness of generating uncertainties for fault revelation.
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To overcome this weakness, we present an uncertainty policy optimization (UPO) algo-
rithm in this paper. The algorithm uses a parameterized policy to address the uncertainty
generation problem. The policy takes state variable values of the SUT as input. Based on the
values, the policy decides the uncertainty values that should be introduced for the current state
to increase the fragility of the SUT. Directed by the fragility obtained from executions, the
UPO algorithm gradually optimizes the policy in terms of the fragility of the SUT that can be
achieved by following the policy. In such way, the UPO algorithm manages to effectively find
a sequence of uncertainty values that can work together with a sequence of operation
invocations to reveal a fault.

We compared the performance of UPO and FOT against coverage-oriented testing (COT)
(Veanes et al. 2006) and the random uncertainty generation method (R) by applying them to
test nine self-healing behaviors of three real-world case studies. Each self-healing behavior
was tested under eight uncertainties, with three settings of time budgets and three ranges of
uncertainty variation. In total, 81 testing jobs (nine self-healing behaviors × three testing times
× three uncertainty scales) were accomplished by each testing approach. The experiment
results showed that the fault detection ability of FOT+UPO is significantly higher than the
ones of FOT+R, COT+UPO, and COT+R, in 73 out of 81 cases. In the 73 cases, FOT+UPO
detected more than 70% of faults, while merely less than 17% of faults were detected by the
other three approaches.

This paper is an extension of our previous conference paper (Ma et al. 2017). The new
contributions of this paper are as follows: (1) the fragility-oriented testing (FOT) algorithm has
been improved with the ability to detect multiple faults. (2) A new fragility-oriented
algorithm—uncertainty policy optimization (UPO) has been devised for uncertainty genera-
tion. (3) The performances of the two algorithms have been evaluated by comparing the
numbers and percentages of detected faults of four testing approaches, using nine self-healing
behaviors from three case studies.

We organize the paper as follows. Section 2 presents the background, followed by a running
example given in Section 3. Section 4 presents an overview of the fragility-oriented testing
approach. Section 5 and Section 6 present the FOT and UPO algorithms, respectively.
Section 7 illustrates the implementation. Section 8 presents the evaluation, Section 9 summa-
rizes related work, and Section 10 concludes the paper.

2 Background

The proposed fragility-oriented testing approach is devised based on two fundamental tech-
niques. One is model execution and the other is reinforcement learning. This section introduces
two kinds of models used in the approach—Executable Test Model (ETM) and Dynamic Flat
State Machine (DFSM) in Section 2.1 and Section 2.2, respectively. Section 2.3 summarizes a
test model execution framework—TM-Executor. Section 2.4 describes the general idea of
reinforcement learning and Section 2.5 explains how to use an artificial neural network (ANN)
to facilitate reinforcement learning.

2.1 Executable Test Model

A CPS can be seen as a set of networked physical units, working together to monitor and
control physical processes. A physical unit can be further decomposed into sensors, actuators,
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and controllers. A controller monitors and controls physical processes via sensors and actua-
tors, which are functional behaviors. As a specific type of CPSs, SH-CPSs can monitor fault
occurrences and adapt its behavior to self-healing behaviors when a fault occurs. As the
objective of a self-healing behavior is to restore functional behaviors, both expected functional
and self-healing behaviors need to be captured for testing. Previously, we proposed a UML-
based modeling framework, called MoSH (Ma et al. 2018), which allows creating an ETM for
the SH-CPS under test (SUT). The ETM consists of a set of UML state machines annotated
with dedicated stereotypes from the MoSH profiles.

The set of state machines captures expected functional and self-healing behaviors of the
SUT: SM = {sm1, … , smi, … , smn}, where MoSH stereotypes are applied to annotate the

states in state machines. A smi has a set of states Ssmi ¼ ssmi1;…; ssmi j;…; ssmis
� �

and

transitions Tsmi ¼ tsmi1;…; tsmik ;…; tsmitf g. A state ssmi j (ssmi j∈Ssmi ) is defined by a state
invariant Osmi j, which is specified as an OCL1 constraint, constraining one or more state
variables. When ssmi j is active, its corresponding state invariant has to be satisfied. A transition
tsmik (tsmik∈Tsmi ) is defined as a tuple t ≔ (ssrc, star, op, g), where ssrc and star are the source and
target states of t, op denotes an operation call event that can trigger the transition,2 and the
operation represents a testing interface used to control the SUT. g signifies the transition’s
guard, an OCL constraint. It restricts input parameter values that can be used to invoke the
operation for firing the transition. By conforming to the fUML3 and Precise Semantics Of
UML State Machines (PSSM)4 standards, the specified state machines are executable. Thus,
the test model is called an ETM.

2.2 Dynamic Flat State Machine

Test execution with concurrent and hierarchical state machines is computationally expensive
and complex. Since statically flattening state machines may lead to state explosion, we
implemented an algorithm to dynamically and incrementally flatten UML state machines into
a Dynamic Flat State Machine (DFSM) during test execution. A DFSM has a set of states

S ¼ s1; s2;…; sα…; sκf g and a set of transitions T ¼ t1; t2;…; tβ…tm
� �

. Each state sα in

S is constituted by states from each smi, denoted as sα ¼ ssm1x⋀ssm2y⋀…⋀ssmnz. Accordingly,

the conjunction of all constituents’ state invariants osm1x
0⋀osm2y

0⋀…⋀osmnz
0

h i
forms the state

invariant of sα, denoted as oα0 . Meanwhile, the set of transitions connecting the DFSM states
is captured by T. In the test model, the interactions among different state machines are modeled
by transitions with effects of sending signals (Ma et al. 2018). When such a transition is
triggered, it sends signals that activate the transitions in other state machines. The set of
activated transitions are represented by the initially triggered transition in the flattened state
machine. Consequently, each transition tβ belonging to T is uniquely mapped to a transition
tsmxt in a state machine smx, expressed as tβ ¼ tsmxt. While the Executable Test Model (ETM)
is being executed, the DFSM is dynamically constructed. The fragility-oriented testing (FOT)
algorithm uses the DFSM to learn the value of firing each transition and find the optimal

1 http://www.omg.org/spec/OCL/2.4
2 Though call, change, and signal event occurrences can all be triggers to model expected behaviors, only
transitions having call event occurrences as triggers can be activated from the outside. A change event or a signal
event is only for the SUT’s internal behaviors, which cannot be controlled for testing.
3 http://www.omg.org/spec/FUML/1.2.1
4 http://www.omg.org/spec/PSSM/1.0/Beta1
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transition selection policy to effectively find faults. Thus, we mainly use DFSM in the
following paragraphs.

2.3 Test model execution framework

We developed a testing framework called TM-Executor in our previous work (Ma et al. 2018).
By executing the test model and the SUTat the same time, the framework can dynamically test
the SUT against the model. Figure 1 presents the execution process. According to the
execution semantics of UML state machines, TM-Executor executes the test model, i.e., a
set of UML state machines (S1). During the execution, TM-Executor dynamically and
incrementally derives a DFSM from the set of state machines (S2). The DFSM points out
the candidate transitions that can be triggered to drive the execution of the model. Directed by
an operation invocation policy, TM-Executor selects a transition and generates an operation
invocation to trigger the transition (S3~S7). As aforementioned, a transition’s trigger op and
guard g specify the operation and the parameter values to be used to trigger the transition.
While an operation is invoked, an operation call event is generated, which drives the execution
of the test model. Meanwhile, the operation is executed to call a corresponding testing
interface, which makes the SUT enter the next state.

Two kinds of testing interfaces can be specified as a transition’s trigger op. One is functional
control operation, which instructs the SUT to execute a nominal functional operation. Another
is fault injection operation, which introduces a fault in the SUT, based on which TM-Executor
controls when and which faults to be injected to the SUT to trigger its self-healing behaviors.

On the other hand, TM-Executor uses an uncertainty generation policy to generate the
uncertainty values and introduces the uncertainty values into the SUT to test the system under
uncertainty (S8~S10). Via testing interfaces, state variable values are queried from the SUT
and used by TM-Executor to evaluate state invariants of the active state (S11). If an invariant is
evaluated false, it means that the SUT fails to behave consistently with the ETM and a fault is
detected.

2.4 Reinforcement learning

To effectively detect faults in SH-CPSs under uncertainty, we aim to find the optimal policy for
invoking operations and introducing uncertainties. The policy helps us find the sequence of
operation invocations together with the sequence of uncertainty values that can reveal faults.
Finding such optimal policies is exactly the goal of reinforcement learning, an automatic

Fig. 1 Test execution process
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approach to learning the optimal policy from interactions (Sutton and Barto 1998). Conse-
quently, we devise two reinforcement learning–based algorithms to facilitate testing SH-CPSs
under uncertainty.

Figure 2 presents the general idea of reinforcement learning in the context of testing. The
reinforcement-learning algorithm directs a testing agent to take testing actions on the SUT,
with the aim of maximizing the possibility for the SUT to fail, i.e., maximizing the likelihood
to detect faults. The agent tests the SUT in discrete time steps. At each time step t, the agent
uses testing interfaces to obtain the state of the SUT St, represented as a collection of state
variables. After that, it selects a testing action At from the set of available actions in state St.
Caused by the action, the state of the SUTchanges from St to St + 1. The agent evaluates Ft+ 1—
the likelihood that the SUT is to fail in St + 1, which is defined as fragility in this paper. Taking
the fragility as a heuristic, the reinforcement algorithm continuously adjusts the agent’s action
selection policy to achieve the highest fragility and effectively detect faults.

2.5 Artificial neural network

The policy used in the reinforcement learning can be saved in two ways. One is tabular form,
which explicitly specifies the probability to take action in a given state. However, when the
number of potential states or the number of valid actions becomes huge, it is intractable to store
the probability for each pair of state and action. In this case, the policy has to be stored in an
approximate form. One well-known form is artificial neural network (ANN) (Yegnanarayana
2009), which has been successfully applied together with reinforcement learning in many
algorithms (Arulkumaran et al. 2017; Li 2017).

An ANN consists of layers of interconnected neurons, as shown in Fig. 3. The first layer is
an input layer. Each neuron in the input layer represents one dimension of the input space, and
the activity of these neurons is just outputting the value of the corresponding dimension. Via
weighted connections, the value is scaled by the weights of connections and transited to the
neurons in the next layer, which is called the hidden layer. The neurons in the hidden layer
called hidden neurons add a bias to the sum of received values. After that, they input the result
to an activation function and send the output of this function to all their successors. The values
pass through the network in this way until reaching the last layer, the output layer. The neurons
in the output layer are called output neurons. The activity of output neurons is the same with
hidden neurons, except that the output neurons use an output function instead of the activation
function to calculate the final outputs.

Via the network structure, the ANN can compactly save the mapping relations between
inputs and outputs. In the context of reinforcement learning–based testing, the input is the state
of the SUT, and the output is the testing action to be performed in that state. However, this
benefit of applying ANN is at the cost of lower accuracy. Since it is almost infeasible to train

Fig. 2 Testing with reinforcement learning (Sutton and Barto 1998)
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an ANN with 100% accuracy (Yegnanarayana 2009), an estimation error will be introduced
when the ANN instead of a tabular form is used to estimate the output for a given input. Also,
training an ANN is computationally expensive. Compared with tabular form, applying ANN to
save the policy for reinforcement learning requires more computational resources, and it takes
an extra amount of time to train the ANN (Sutton and Barto 1998).

In this paper, we divide the testing task into two subtasks. One is responsible for selecting
operation invocations, and the other takes charge of introducing uncertainties. For the first
subtask, the test model specifies the valid operation invocations for each state. When intro-
ducing uncertainties, each uncertainty can arbitrarily take any value within its variation range.
Therefore, the search space of the second subtask is significantly larger than the one of the first
subtask. Due to this reason, we devise a tabular form–based algorithm for the first subtask and
apply ANN to address the second subtask.

3 Running example

We use an unmanned aerial vehicle control system (i.e., ArduCopter5) as a running example to
illustrate the problem of testing SH-CPS under uncertainty. Figure 4 presents a UML class
diagram, which captures a simplified architecture of the system. In the diagram, each class
represents a sensor, actuator, controller, or physical unit; accessible state variables are specified
as class attributes; and the operations capture available testing interfaces.

As shown in Fig. 4, ArduCopter has two physical units, i.e., Copter and Ground Control
Station (GCS). With the GCS, users remotely control the Copter using some flight modes.
During the flight, the Copter is constantly affected by environmental uncertainties such as
measurement bias from the GPS. The uncertainties are specified via the «Uncertainty»
stereotype, provided in MoSH profile (Ma et al. 2018). An example is shown in the upper
right corner of Fig. 4. The stereotype attribute universe specifies the variation range of the
uncertainty, and measure defines the uncertainty’s probability distribution. For the uncertainty
posBias, i.e., the measurement bias of position, its variation range is between − 2.5 and 2.5,
and the value of the uncertainty follows a normal distribution with mean 0 and variance 0.9.
These are specified based on the product specification of the GPS.

Fig. 3 Example of artificial neural network

5 http://ardupilot.org/copter/
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Based on the class diagram, the expected behaviors of the classes are specified as an ETM
(shown in Fig. 11 in Appendix). The ETM captures both functional and self-healing behaviors.
The functional behaviors, such as FlightControlBehavior and ADSBBehavior, specify how the
system should behave when an operation is invoked, and the self-healing behaviors specify
how a fault is to be healed.

CollisionAvoidance is one of the self-healing behaviors. Due to improper flight control
(operational fault), the copter may approach another aircraft. In such case, the copter automat-
ically adapts the velocity and orientation (i.e., the angles of rotations in roll, pitch, and yaw) of
the flight to avoid a collision.

Figure 5 presents a partial simplifiedDFSMcorresponding to the ETM forArduCopter.We take
one path (bold transitions in Fig. 4: t1➔ t2➔ t3➔ t4➔ t11➔ t12➔ t19➔ t21) to explain test
execution.

Starting from the Initial state, the DFSM directly enters Stopped, as no trigger is required to
enter the first state. From Stopped, TM-Executor fires t2 by calling the functional control operation
arm to launch the Copter. As a result, Started becomes active. To make the system enter state Lift,
TM-Executor invokes operation throttlewith a valid value of input parameter t obtained by solving
guard constraint [t > 1500 and t < 2000] via constraint solver EsOCL (Ali et al. 2013). Then, the
Copter takes off and reaches the Lift state. In the Lift state, TM-Executor invokes throttle with t =
1500. This invocation triggers the Copter to hover above the ground. In the Hovering state, TM-
Executor either changes the Copter’s movement (i.e., firing t5, t7, or t19) or invokes the fault
injection operation setThreat, which simulates that an aircraft is approaching from the left behind of

Fig. 4 Simplified architecture of ArduCopter
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the Copter to trigger the collision avoidance behavior. Assume the second option is adopted.
Triggered by this, the collision avoidance behavior controls the Copter to fly away from the
approaching aircraft. When the distance between them (threatDis) is over 1000 m (not shown in
Fig. 5), the collision threat is avoided and the Copter’s flight mode changes back to the previous
one. Hence, t12 is traversed.6 Then TM-Executor chooses to trigger t19, followed by
firing t21, to stimulate the copter to pass through the Landing state and reaches the final
state.

In addition to operation invocations, a sequence of uncertainty values is required to execute
ArduCopter under uncertainty. Since the control loop frequency of the copter is 400 Hz, the
copter’s controller reads sensor data and outputs actuation commands every 2.5 ms. Each
reading and controlling is potentially affected by uncertainties like measurement noise from
the GPS and actuation deviation from the motor. Therefore, every 2.5 ms, the value of each
uncertainty has to be generated and be used to impact the copter’s sensing or actuating to
simulate the effect of uncertainties.

In parallel to the execution, TM-Executor periodically obtains the values of the SUT’s state
variables through testing interfaces and repeatedly uses these values to evaluate the active
state’s invariant, using the constraint evaluator Dresden OCL (Demuth and Wilke 2009). If an
invariant is evaluated to be false, then a fault is detected.

The decisions of which operation to invoke and which uncertainty values to use determine
whether a fault can be found in an execution. From specifications, we know that there is a fault
in the collision avoidance behavior when an aircraft is approaching from − 45° and the copter
is flying to the forward left; the collision avoidance behavior has to reverse the copter’s
orientation to make the two aerial vehicles fly away. Since reversing the orientation takes more
time than other orientation adjustments, the copter, in this case, flies closer to the approaching
aircraft. Due to noisy sensor data and inaccurate actuations, a collision does have a chance to
occur in this condition.

To detect the fault leading to the collision, the fault injection operation setThreat needs to be
invoked in state ForwardLeft, i.e., t17 must be activated. However, activating t17 once may
not be sufficient to find the fault. On the one hand, a large number of input parameter values
could be used to invoke an operation for firing a transition, e.g., t3 (Fig. 5). Each input leads to
a distinct flight orientation, and only in a few specific orientations, the collision is likely to

Fig. 5 Simplified partial DFSM for ArduCopter

6 When a collision is avoided, the copter is back to the flight mode. Hence, no testing interface needs to be
invoked to trigger t12. When the flight mode is changed back, a corresponding change event is generated by TM-
Executor to activate the transition. As this event is from inside, we do not capture it in DFSM.
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happen. On the other hand, the copter’s orientation is also affected by measurement uncer-
tainties from sensors and actuation inaccuracy from actuators. Therefore, it requires a specific
sequence of operation invocations and a specific sequence of uncertainty values to make the
collision happen.

From numerous candidates, it is challenging to find the Bright^ operation invocations and
sequence of uncertainty values to reveal a fault. Motivated by this, we present a fragility-
oriented approach to find such cases to detect faults effectively.

4 Fragility-oriented testing under uncertainty

Invoking operations and introducing uncertainty are the two tasks that have to be fulfilled to
detect faults in SH-CPS under uncertainty.

The task of operation invocation decides which operation to be invoked and which input
parameter values to be used to drive the execution of the SUT. A sequence of operation
invocations determines the path in the Dynamic Flat State Machine (DFSM) that the SUTwill
follow in executions. Besides, the model regulates the operations that can be invoked under
each state.

The task of introducing uncertainty defines a concrete uncertainty-introduced environment,
in which the SUT is tested. Whenever the SUT interacts with its environment via sensors or
actuators, the environmental uncertainty may take effect, and thus, uncertainty values have to
be generated and introduced into the SUT. For each uncertainty, its value can vary within a
valid range. The combination of multiple uncertainties at different interaction points forms a
great number of possible sequences of uncertainty values. A specific sequence of operation
invocations has to work together with a specific sequence of uncertainty values to reveal a
fault. To reduce the complexity of finding the two kinds of input, we adopt a two-step
approach, as presented in Fig. 6.

The first step concentrates on finding a sequence of operation invocations that can make the
SUT reach the most fragile state. During the first step, uncertainty values are only randomly
generated. When an optimal sequence of invocations is found, it is used in the second step to
drive the execution of SUT and test model, during which a sequence of uncertainty values will
be found for fault revelation.

For the first step, we devise the fragility-oriented testing algorithm. By exploring various
transitions in the test model and evaluating its consequent fragilities with multiple iterations,

Fig. 6 Overview of fragility-oriented testing under uncertainty
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the algorithm identifies the most fragile state and learns the shortest path to reach it. Accord-
ingly, the sequence of operation invocations used to trigger the transitions in this path is
selected as the optimal one and used in the next step.

In the second step, the sequence of invocations is fixed, and the uncertainty policy
optimization algorithm gradually optimizes a parameterized uncertainty generation policy to
find a corresponding sequence of uncertainty values that can reveal a fault. If a fault is
detected, the transitions directly connected with the current active state are marked Bfaulty,^
and it returns to the first step to find another invocation sequence without considering the
Bfaulty^ transitions. Otherwise, if no faults are detected in a certain number of executions, the
fragilities corresponding to the states in the selected path are discounted by a discount factor.
Based on the updated fragility, the fragility-oriented testing algorithm will recalculate the
optimal sequence of invocations. Accordingly, the uncertainty policy optimization algorithm
will try to find a corresponding sequence of uncertainty values again to detect faults.

The algorithms used in the two steps are presented in Section 5 and Section 6, respectively.

5 Fragility-oriented operation invocation

Definition 1 The fragility of the SUT in a given state s is a real value between 0 and 1,
denoted as F sð Þ. It describes how close (distance wise) the state invariant of s is to be false,
where 1 means that the state invariant is false and 0 means that it is far from being violated. We
therefore define F sð Þ as follows:

F sð Þ ¼ 1−dis :oð Þ ð1Þ
where :o is the negation of state s’s invariant o and dis :oð Þ is a distance function (adopted
from Ali et al. 2013) that returns a value between 0 and 1 indicating how close the constraint
:o is to be true. For instance, in the running example, if the SUT is currently in state Avoiding2
and the value of state variable threatDis is 15, then the distance of invariant BthreatDis > 10^ to

be false can be calculated as dis : threatDis > 10ð Þð Þ ¼ 15−10ð Þþ1
15−10ð Þþ1þ1 ¼ 0:86, according to the

distance function7 defined in Ali et al. (2013). The closer the distance is to zero, the higher the
possibility the invariant is to be violated, i.e., the SUT failing in the state. Hence, 1−dis :oð Þ is
used to define the fragility of the SUT in state s.

Definition 2 The T value of a transition expressed as T tð Þ is a real value between 0 and 1. It
states the possibility that a fault can be revealed after firing the transition t. With an assumption
that the more fragile the SUT is, the higher the chance a fault can be revealed, we define the T
value of a transition as the discounted highest fragility of the SUT after firing the transition:

T tð Þ ¼ max
s∈Snext

γn∙F sð Þf g ð2Þ

where γ (0 ≤ γ < 1) is a discount rate; Snext is a set of states that can be reached from t’s target
state via a path in the DFSM, and n is the number of transitions between s and t’s target state.
As for testing, revealing faults via a short path is preferable, we penalize the fragility of a state
by multiplying γn, if traversing at least n transitions is required to reach the state from t’s target

7 The distance function of greater operator is dis(x > y) = (y − x + k)/(y − x + k + 1), when x ≤ y, where k is an
arbitrary positive value. Here, we set k = 1. More details are in Ali et al. (2013).
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state. For example, in Fig. 5, to obtain the T value of t4, we calculate the discounted fragility of
the SUT in each state in Snext. For the fragility corresponding to Avoiding1, it needs to be
discounted by γ2, since two transitions t5 and t9 have to be traversed to reach Avoiding1 from
t4’s target state Forward. Clearly, the value of γ determines the importance of the state to be
reached in the future.

5.1 Overview

The objective of the fragility-oriented testing (FOT) algorithm is to find the optimal operation
invocation policy to find faults effectively. To achieve this objective, FOT tries to learn
transitions’ T values during the execution of the SUT. Each transition’s T value indicates the
possibility that a fault will be revealed after firing the transition. When transitions’ T values are
learned, by simply firing the transition with the highest T value, FOT can manage to find faults
effectively. The pseudocode of FOT is presented below in Algorithm 1 (L1–L16).

In the beginning, all transitions’ actual T values are unknown. As every transition has a
possibility to reveal a fault, the estimated T value of each transition is initialized with the
highest one (L1, L2). This encourages the algorithm to extensively explore uncovered
transitions (Sutton and Barto 1998). After that, iterations of test execution and the learning
process begin. At each iteration, the execution of the test model as well as the SUT starts from
the initial state (L4) and terminates at a final state (L5). During the execution, a DFSM is
dynamically constructed (L6) to enable the learning of T values. Whenever, the SUT enters a
state s, FOT selects one of the outgoing transitions of s according to their estimated T values
(L7, L8) and makes TM-Executor trigger the selected transition (L9). As the transition is fired,

the system moves from s to s
0
. If the state invariant of s

0
is not satisfied, then a fault is detected

(L11–L14). In this case, the current active state of the DFSM will be marked Bfaulty.^ Any
transition connected with the faulty state will not participate in the transition selection and T
value learning in the future.

Algorithm 1 FOT(TMExecutor executor, ETM etm, int maxIteration):
Input executor is TM-Executor, the testing framework 

etm is the Executable Test Model
maxIteration is the maximum iteration number 

Begin
1 for each transition in etm
2 transition.Tvalue 1              // initialize T-values of transitions
3 for i=1 to maxIteration
4 etm.Start( )
5 while etm.ReachFinalState( ) is false
6 dfsm     EnrichDFSM(etm) // dynamically construct the DFSM
7 reachedTransitions dfsm.activeState.outgoingTransitions
8 selectedTransition SoftmaxSelect(reachedTransitions) //select transition
9 executor.Trigger(selectedTransition)

10 stateInvariant selectedTransition.target.invariant
11 if executor.Evaluate(stateInvariant) is false
12 LogFaultDetected(selectedTransition)
13 dfsm.MarkFaultDetected(dfsm.activeState)
14 break
15 fragility 1- executor.DistanceToViolation(stateInvariant)
16 executor.UpdateTvalue(selectedTransition, fragility) // revise the T-value of selectedTransition

End
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If no invariant violation happens, the algorithm will evaluate the fragility of the SUT

in s
0
(L15), i.e., F s

0� �
, and use F s

0� �
to update estimated T values. Since it is possible to

reach s
0
via numerous transitions, finding all these transitions and updating their T values

are computationally impractical for a test model with hundreds of transitions. Thus, FOT
only updates the estimated T value of the last triggered transition (L16). For instance, in
the running example, when t11 is invoked and the state of the SUT changes to
Avoiding2, FOT evaluates the value of F Avoiding2ð Þ and uses the value to update the

T value of t11, i.e., T t11ð Þ. Since F s
0� �
is not a constant value, the upper bound of F s

0� �
is used to update the T value. As the iteration of the execution proceeds, the estimated T
values are continuously updated and getting close to their actual values. In this way, the
T values are learned from the execution and the learned T values direct FOT to
effectively find faults. Note that testing budget determines the maximum number of
iterations. If it is too small, FOT may not be able to find faults. The details of T value
learning and transition selection policy are explained in the next two subsections,
respectively.

5.2 T value learning

Before executing the SUT and the Executable Test Model (ETM), the T value T tð Þ of every
transition is unknown. We adopt a reinforcement learning approach to learn T tð Þ from
execution. A fundamental property of T tð Þ is that it satisfies a recursive relation, which is
called the Bellman equation (Sutton and Barto 1998), as shown in the formula below:

T tð Þ ¼ max F starð Þ; γ∙ max
tsuc∈Tsuc

T tsucð Þ
� �

ð3Þ

where star is the target state of transition t; Tsuc represents a set of direct successive transitions
whose source state is star. This equation reveals the relation between the T values of a
transition and its direct successive transitions. It states that the T value of t must be equal to
the greater of two values: the fragility of t’s target state (F starð Þ) and the maximum discounted

T value of t’s direct successive transitions (γ∙ max
t
0∈Tsuc

T t
0

� 	
). Given a DFSM, T tð Þ is the unique

solution to satisfy Eq. (3). So, we try to update the estimate of each T value to make it get
increasingly closer to satisfy Eq. (3). When Eq. (3) is satisfied by the estimated T values for all
transitions, it implies that the true T tð Þ is learned.

Inspired by Q-learning (Sutton and Barto 1998), a reinforcement learning method, FOT
uses the estimated T value ET tð Þ to approximate T tð Þ, i.e., the true T value. ET tð Þ is updated
in the following way to make it approach T tð Þ.

ET tð Þ0 ¼ max F starð Þ; γ∙ max
tsuc∈Tsuc

ET tsucð Þ
� �

ð4Þ

where ET tð Þ0 denotes the updated estimate of t’s T value and ET tsucð Þ represents the current
estimated T value of a successive transition.
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Equation (4) enables FOT to iteratively update ET tð Þ. Once a transition t is triggered, the
fragility of the SUT in t’s target state F starð Þ can be evaluated using Eq. (1). Using Eq. (4),
ET tð Þ can be updated whenever a fragility value is obtained. As proved in Sutton and Barto
(1998), as long as the estimated T values are continuously updated, ET tð Þ will converge to the
true T value: T tð Þ.

However, the fragility of the SUT in a state dynamically changes, due to the variation of test
inputs and environmental uncertainty. To deal with this, we use the bootstrapping technique
(Mooney et al. 1993) to predict the distribution of the fragility and select the upper bound of its
95% interval as the value for F starð Þ, to update the estimated T value. Thus ET tð Þ is iteratively
updated by the following equation:

ET tð Þ0 ¼ max Upper F starð Þ½ �; γ∙ max
tsuc∈Tsuc

ET tsucð Þ
� �

ð5Þ

where Upper F starð Þ½ � is the upper bound of F starð Þ’s 95% confidence interval.

5.3 Softmax transition selection

To effectively find faults, FOT should extensively explore different paths in a DFSM.
Meanwhile, the covered high T value transitions should be exploited (triggered) more fre-
quently to find faults, as a high T value implies a high possibility to reveal faults. Hence, in
FOT, we use a softmax transition selection policy to address the dilemma of exploration and
exploitation (Kaelbling et al. 1996) by assigning a selection probability to a transition
proportional to the transition’s T value. The selection probability is given below (from
Sutton and Barto 1998):

Prob t
0
out

� 	
¼ eET t

0
outð Þ=τ=∑tout∈Tout

eET toutð Þ=τ ð6Þ

where Prob t
0
out

� �
denotes the selection probability of an outgoing transition t

0
out; ET t

0
out

� �
is

the estimated T value; Tout represents the set of all outgoing transitions under the current
DFSM state, and τ is a parameter, called temperature (Anzai 2012). τ is a positive real value
from 0 to infinity. A large τ causes transitions to be equally selected, whereas a small τ causes
high T value transitions to be selected much more frequently than transitions with lower T
values.

In the beginning, all transitions’ estimated T values (ET tð Þ) are initialized to 1; thus,
initially, transitions have equal probability to be selected. As testing proceeds, ET tð Þ is
continuously updated using Eq. (5). Directed by ET tð Þ, the softmax policy assigns a high
selection probability to transitions that lead to states with high fragilities. As a result, more
fragile states will be exercised more frequently. Note that this does not preclude covering the
less fragile states. In addition, loops in the test model are also covered depending on fragilities
of states involved in a loop.
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6 Uncertainty policy optimization

When a sequence of operation invocations is selected, the sequence determines the path in the
DFSM that the SUT will follow in test executions. Besides the operation invocations, a
sequence of uncertainty values is required to execute the SUT under uncertainty. Due to the
effect of uncertainty and the execution of the SUT, the state variables of the SUT constantly
vary within a range in each state. Consequently, every state si in the execution path corre-
sponds to a number of state instances .

Definition 3 A state instance, , is an instance of an abstract state, si, in a DFSM. The state
instance reflects the SUT’s actual state at a specific time point, and the state instance is represented
by the values of the SUT’s all state variables, i.e., . Based on the definition
of fragility, we define the fragility of the SUT in a given state instance as follows:

Note that although the state invariant oi of a state si constrains only a few state variables,
the other state variables may have impacts on the constrained variables. Therefore, all
state variables may have direct or indirect effects on the fragility. Due to this reason, we
employ the values of all state variables to represent the state instance .

Figure 7 illustrates the relationship between state and state instance. The number of
state instances corresponding to a state depends on the number of environmental inter-
actions that the SUT performs in the state. For instance, after the operation arm is
invoked, ArduCopter takes 1 s to enter the next state Started. Within 1 s, the copter
reads sensor and controls actuators 400 times. Consequently, the state Stopped corre-
sponds to 400 state instances.

As the behavior of the SUT has been determined by the selected operation invoca-
tions, the uncertainty values uij decide the next state instance, , and the SUT will
switch to from the previous instance, . To effectively detect faults, the optimal
uncertainty values should be used to maximize the fragility of the SUT. To effectively
find the optimal uncertainty values, this section presents the UPO algorithm.

6.1 Uncertainty generation policy

To effectively explore various uncertainty values, we propose to use a parameterized
policy to decide the uncertainty values. The policy determines

… 
… 

Initial Stopped Final… 

Fig. 7 Relations between states and state instances

(7)
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the probability distribution of uij given the condition that is the current state
instance. The conditional probability distribution can be changed, by adjusting policy
parameters θ.

As artificial neural network (ANN) has been demonstrated to be an effective decision-
making mechanism (Aronson et al. 2005), we adopt ANN as the parameterized policy for
uncertainty generation.

An ANN, used for uncertainty generation, takes a state instance as input. Each
neuron in the input layer represents a state variable of the SUT. The input neurons
make the values of state variables traverse the ANN. Based on the received values, the
output neurons calculate the final output. Each output determines the probability
distribution of one uncertainty, under the condition that the current state instance is
the one fed to the input layer. Inspired by an existing algorithm (Schulman et al. 2015),
we use a truncated normal distribution as the conditional probability distribution. The
mean value of the distribution is the output value, and the value of its variance is a
constant positive value ε. By sampling from the distribution, we can decide the
uncertainty values to be used for each state instance. Figure 8 presents an example of
the ANN used for the running example. The ANN receives the values of all state
variables. The values are processed by the interconnected neurons and are mapped to a
truncated normal distribution for each uncertainty.

To effectively find faults, we need to optimize the parameterized policy so that the
uncertainty values generated from the policy can increase the fragility of the SUT and
make the system likely to fail. The parameters of the policy include the weights of
connections and bias values of neurons. Except them, the numbers of layers and the
neurons in hidden layers, the activation function, and the output function are all
predefined. Once being set up, they are fixed. The next section explains an iterative
approach to optimize the policy concerning these parameters.

6.2 Policy optimization

The goal of policy optimization is to tune the parameters of the uncertainty generation
policy, to maximize the fragility of the SUT. The policy determines the
uncertainty values to be introduced in each state instance. When the state instance

Fig. 8 Example of uncertainty generation policy
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and uncertainty values uij are given, the next state instance is determined, as shown
in Fig. 7. Since the execution of the SUT always starts from the same initial state
instance, when the sequence of operation invocations is fixed, the uncertainty generation
policy also determines the probability distribution of the state instance. It
means the policy decides the probability that a state instance can be reached by the
SUT in an execution. Based on this, we formally express the goal function as follow
(Schulman et al. 2015):

where E denotes the expectation of the highest discounted fragility, , that can be
obtained by following a given policy πθ. ρθ denotes the probability distribution of the state instance,
which is controlled by the parameters of the policy. denotes the highest discounted
fragility that can be reached after introducing uncertainty values uij in a state instance :

Since the value of depends on the state instances that are to be covered after

and the policy determines the following states, the value of also relies on the

policy. As a result, both ρθ and depend on the parameters of the policy.

Suppose we have two policies: πθ and πθ
0 . To compare them, we have to apply both policies

to execute the SUT a number of times, and derive the distributions of state instance and the
values of highest discounted fragility from the execution. Since the cost to execute the SUT is
relatively high, it is difficult to find the direction for improvement directly based on Eq. (8).

To simplify the optimization problem, we choose to optimize an approximation of the goal
function (Kakade and Langford 2002):

Note that ρθ is changed to ρθ0 and is changed to . This allows us
to directly find the optimal improvement direction based on the ρθ0 and

obtained from an existing policy πθ0 , without extra executions. The general idea is that

the value of points out the expected reward of introducing uncertainty
values uij in a given state . To increase the total expectation, we just need to adjust
the parameters of the policy to increase the probability to generate uij in , if

is high. As proven in Schulman et al. (2015), as long as the Kullback–
Leibler divergence, a distance measure, between the two policy πθ and πθ

0 is bounded by

a constant step size, the true reward function η(πθ) is guaranteed to be improved.
To further simplify the calculation of Eq. (10), we replace the expectation over the

uncertainty values following πθ by the expectation over the uncertainty values following πθ
0 ,

according to importance sampling (Glynn and Iglehart 1989):

(11)

(10)

(9)

(8)
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Based on this, we propose the following policy optimization algorithm, as given in Algorithm
2. The general idea is that whenever we find a sequence of uncertainty values u11, u12, …, unm
that leads to a high fragility, i.e., their is high, we adjust θ′ to θ to increase the
probability to generate the uncertainty sequence.

Initially, an ANN, used as the uncertainty generation policy, is constructed (L1). After
initializing the vectors used for saving samples of states, uncertainty values, and
discounted fragilities, the iteration of execution begins (L7). During execution, uncer-
tainty values are generated by the policy (L10) and are introduced to the SUT (L11) to
run it under uncertainty. Affected by the uncertainty values, the state of the SUT switches
to another one. The fragility of the SUT in the new state is evaluated and discounted by a
discount factor (L13). If the discounted fragility exceeds the highest one that has been
found so far, it means that a better sequence of uncertainty values is found to make the
SUT more fragile (L17). In this case, we apply the conjugate gradient algorithm
(Hestenes and Stiefel 1952) to adjust the parameter values of the policy to maximize
the generation probability of the sequence of uncertainty values (L20). After that, the
updated policy is used in the following execution to find an even better sequence of
uncertainty values.
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7 Implementation

We implemented the fragility-oriented testing approach in TM-Executor. Figure 9 presents its
three packages: software in the loop testing (light gray), uncertainty generation (dark gray),
and FOT (white).

TM-Executor tests the software of the SUT in a simulated environment. During testing, sensor
data is computed by simulation models in simulators. Based on the simulated data, the software
generates actuation instructions to control the system. Uncertainties are added to simulators’ input
and output to simulate the effects of uncertainties. Based on the valid range of each uncertainty, the
UPO algorithm generates uncertainty values whenever sensor data or actuation instructions are
transferred between the software and simulators. By using the values to modify simulators’ inputs
and outputs, the uncertainties are introduced into the testing environment.

The SUT and its Executable Test Model (ETM) are executed together by an execution
engine, which is deployed in Moka (Tatibouet 2016), a UML model execution platform.
During the execution, the engine dynamically derives a DFSM from the test model and
uses it to guide the execution. Meanwhile, the active state’s state invariant is checked by
a test inspector (using Dresden OCL (Demuth and Wilke 2009)). The inspector evaluates
the invariant with the actual values of the state variables, which are updated by the
execution engine via testing interfaces (Section 2.3). If the invariant is evaluated to be
false, a fault is detected. Otherwise, the inspector calculates the fragility of the SUT in
the current state, using Eq. (1). Taking fragility as input, the FOT algorithm updates its
estimate of T value (Eq. (5)) and uses the softmax policy to select the next transition.
Next, the test driver generates a valid test input with EsOCL (Ali et al. 2013), a search-
based test data generator, for firing the selected transition. The execution engine takes
this input to invoke the corresponding operation, causing the ETM and the SUT to enter
the next state. In this way, T values are learned from iterations of execution and the
learned T values direct FOT to effectively find faults.

Fig. 9 SH-CPS testing framework (Ma et al. 2018)
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8 Evaluation

This section presents the performance evaluation of FOT and UPO, including experiment
design in Section 8.1, experiment execution in Section 8.2, experiment results in Section 8.3,
the discussion in Section 8.4, and threats to validity in Section 8.5.

8.1 Experiment design

This section presents the design of the experiment, by following three carefully defined
research questions.

8.1.1 Research questions

RQ1: Does FOT+UPO have the highest fault detection ability for testing SH-CPSs under
uncertainty?

Since testing SH-CPSs under uncertainties comprises two tasks, i.e., invoking operations
and introducing uncertainties, we devise FOT and UPO to address them, respectively. To
assess their performance, we select a baseline algorithm for each of them. For FOT, we
choose a coverage-oriented testing (COT) algorithm as the baseline since it is a prevalent
approach applied in the testing of CPSs (Asadollah et al. 2015). This algorithm selects
operation invocations based on the coverage frequencies of transitions, and its aim is to
evenly traverse each transition. With respect to uncertainty generation, UPO is compared
with a random approach. In this approach, uncertainty values are just generated from
probability or possibility distributions. As a result, we have two algorithms, i.e., FOT and
COT, for selecting operation invocations, and two algorithms, i.e., UPO and Random
(R), for generating uncertainty values. In total, we obtain four approaches: FOT+UPO,
FOT+R, COT+UPO, COT+R. We apply them to test three SH-CPSs to check which
approach can detect more faults in SH-CPSs under uncertainties.

RQ2: To what extent the fault detection ability can be enhanced by FOT and UPO,
compared with the others?

With this research question, we aim to investigate the effectiveness of FOT + UPO, i.e., assess
the percentage of improvement regarding fault detection ability achieved by FOT and UPO
compared with the other three approaches.

RQ3: Concerning the optimal testing approach, what are the correlations between fault
detection ability, testing time, and the scale of uncertainty variation?

The number of detected faults not only depends on the fault detection ability of a testing
approach but also relies on the variation range of each uncertainty and the amount of
time that can be used by the testing approach. This research question helps us reveal
whether more faults can be detected as the testing time and the scale of uncertainty
variation increase.
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8.1.2 Case studies

We used three open-source SH-CPSs for evaluation: (1) ArduCopter is a fully featured copter
control system supporting 18 flight modes to control a copter. It has five self-healing behaviors
to avoid crash and collision; (2) ArduRover8 is an autopilot system for ground vehicles having
two self-healing behaviors to avoid an obstacle and handle the disruption of control link; (3)
ArduPlane9 is an autonomous plane control system having two self-healing behaviors to avoid
collision and address network disruption. Test execution was performed with software in the
loop simulators, including GPS, barometer, accelerometer, gyroscope, and motor simulators.
Nine fault injection operations were implemented in the simulators to trigger the nine self-
healing behaviors to test them in the presence of uncertainty.

The three SH-CPSs are affected by eight uncertainties related to the sensors and actuators.
Based on the product specifications of the sensors and actuators, we specified their variation
range, as presented in Table 1.

Before testing, we built the Executable Test Model (ETM) for each self-healing behavior of the
three case studies. Table 2 shows the statistics of the ETMs. Moreover, we examined the average
amount of time that the testing framework takes to execute the ETM and the SUT from their initial
state to a final state, as presented in the last row of Table 2. Note that the average execution times
are determined by the implementation of the SUTs, and they are not affected by different testing
approaches.

8.1.3 Experiment tasks

Three tasks have to be performed to address the three research questions. Table 3 gives an
overview of the three tasks.

For RQ1, T1 is performed to investigate which testing approach can detect more faults in the
nine self-healing behaviors under the eight uncertainties. To reduce the impact of testing time and
the scale of uncertainty variation, we choose three settings for each of them. The three testing times
are 72, 144, and 216 h. This allows each testing approach to execute the ETM and the SUT
approximately 500, 1000, and 1500 times to find faults. Meanwhile, we choose three scales of
uncertainty variation: 80%, 100%, and 120%. One hundred percent represents the standard

8 http://ardupilot.org/rover/
9 http://ardupilot.org/plane/

Table 1 Identified uncertainties from the three case studies

Hardware Uncertainty Range Hardware Uncertainty Range

Accelerometer Noise (− 9 mg, + 9 mg) GPS Position
accuracy

(− 2.5 m, + 2.5 m)

Non-linearity (− 0.5%, + 0.5%) Velocity
accuracy

(− 0.05 m/s,
+ 0.05 m/s)

Motor Rotation noise (− 0.3°, + 0.3°) Gyroscope Noise (− 0.3°/s, + 0.3°/s)
Acceleration

noise
(− 0.02 m/s2,

+ 0.02 m/s2)
Barometer Accuracy (− 150 Pa, + 150 Pa)
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variation ranges shown in Table 1. Eighty percent (120%) means reducing (increasing) the ranges
by 20%. For instance, the 80%, 100%, and 120%variation ranges of the uncertaintyNoise from the
accelerometer are (− 7.2mg, + 7.2mg), (− 9mg, + 9mg), and (− 10.8mg, + 10.8mg), respectively.
The ranges are only modified by 20% to avoid making the uncertainty variation ranges deviate too
far from the reality. The differences in uncertainty scale help us reveal the fault detection ability of a
testing approach under different uncertainty scales.

As a result, the nine self-healing behaviors are tested with the four approaches in nine different
test settings. In total, 81 testing jobs are to be conducted for each of the four approaches. Moreover,
each testing job is performed ten times to reduce the impact of randomness.

Regarding RQ2, T2 is performed to calculate the percentage of improvement in terms of
fault detection when the optimal testing approach is applied.

For RQ3, we conduct T3 to analyze the correlations among fault detection ability, testing
time, and the scale of uncertainty variation.

Table 3 Overview of experiment design

RQ Task Metric Statistical test Testing
approach

Testing
time (h)

Scale of
uncertainty
variation

Case studies

1 T1: compare the

fault detection

ability of the

selected testing

approaches

NDF Mann–Whitney

U test, Vargha

and Delaney’s

Â12

1: FOT+UPO

2: FOT+R

3: COT+UPO

4: COT+R

1: 72

2: 144

3: 216

1: 80%

2: 100%

3: 120%

1: ArduCopter

(5 SH

behaviors)

2: ArduPlane

(2 SH

behaviors)

3: ArduRover

(2 SH

behaviors)

2 T2: calculate the

improvement

with respect to

the percentage

of faults detected

by the optimal

approach

PDF N/A

3 T3: Analyze the

correlations
between

the fault detection

ability, testing time,

and uncertainty

scale

N/A The optimal

one

Table 2 Descriptive statistics of ETMs

ArduCopter ArduRover ArduPlane

ETM1 ETM2 ETM3 ETM4 ETM5 ETM6 ETM7 ETM8 ETM9

#States 64 60 70 64 36 58 54 79 40
#Transitions 440 268 286 440 106 306 303 347 104
Avg. Exe. time (min) 8 9 7 8 8 10 11 6 6
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8.1.4 Evaluation metrics and statistics tests

RQ1: We define the number of detected faults (NDF) to quantify the fault detection
ability of each testing approach. NDF is the number of faults that are detected by an
approach in a self-healing behavior within limited testing time. As the first step of
analyzing the results, we applied the Shapiro–Wilk test with a significance level of
0.05 to check the normality of NDF values. Results show that the distribution of the
NDF values departs from normality. Therefore, we use the non-parametric Mann–
Whitney U test with the significant level of 0.05 to determine the significance of
differences between two testing approaches. That is, a comparison result is statistically
significant if the p value is less than 0.05. Furthermore, following the guideline in Arcuri

and Briand (2011), we apply Vargha and Delaney’s Â12 statistics to measure the effect
size, i.e., measure the probability that a testing approach A can detect more faults than

another approach B. If A and B are equivalent, Â12 equals 0.5. If Â12 is greater than 0.5,
then A has higher chance to detect more faults than B.

RQ2: To calculate to what extent the fault detection ability can be enhanced by the optimal
testing approach, compared with the others, we define another metric: the percentage of
detected faults (PDF), that is, the percentage of faults in one self-healing behavior that can
be detected by a testing approach. It is calculated as follows:

PDFi ¼ NDFi

Totali

where NDFiis the number of faults detected in one testing job for the ith self-healing
behavior, and Totali is the total number of faults detected in the behavior. Because the
number of actual faults cannot be determined, the total number of detected faults is
used instead. This metric normalizes the number of detected faults, which enables us to
compare the performance of each approach across different self-healing behaviors.

RQ3: We also use PDF as a measure of fault detection ability to analyze its relations with
testing time and the scale of uncertainty variation. Here, we are interested in assessing the
monotonic relations among them, i.e., whether more faults can be detected, as the testing time
and the scale of uncertainty increase. Consequently, we apply box plot to present the
distribution of PDF under each testing time and uncertainty scales, based on five numbers:
minimum, first quartile, median, third quartile, and maximum. In the plot, a rectangle spans the
first quartile to the third quartile. A mark inside the rectangle indicates the median, and the
lines above and below the rectangle denote the maximum and minimum.

8.2 Experiment execution

We implemented the proposed algorithms in the TM-Executor (Ma et al. 2018). As
explained in Section 4, each testing approach consists of two steps: selecting a sequence
of operation invocations and finding a sequence of uncertainty values. The number of
iterations for the first step is 200, and the maximum iteration number for the second step
is 500. For FOT, we set discount rate γ to 0.99 and temperature τ to 0.2. For UPO, the
ANN used as uncertainty generation policy contains three layers: an input layer, an
output layer, and a hidden layer. The number of input neurons is equal to the number of
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state variables of each SUT, and the number of hidden neurons is two times the number
of input neurons. The number of output neurons is equal to the number of uncertainties.
The variance ε used by the stochastic policy is 0.4. These are commonly used settings in
reinforcement learning (Duan et al. 2016).

The experiment is executed on Abel, a computer cluster at the University of Oslo.10 Each
testing job is run with eight cores and 32 GB RAM.

8.3 Experiment results

RQ1: Table 4 presents the average number of faults detected by each testing approach
(task T1). From the table, we can observe that FOT+UPO detected more faults than the
other three approaches for all the case studies and test settings. We further conducted a
statistical test to determine whether such results are statistically significant.

Table 5 summarizes the results of comparing the NDF achieved by FOT+UPO against
those achieved by FOT+R, COT+UPO, and COT+R. FOT+UPO significantly outperformed

the other approaches in 73 out of 81 testing jobs, as the values of Â12 are greater than 0.5 and
73 p values are less than 0.05. For the other eight cases, since the scale of uncertainty is low,
the four testing approaches only detected few faults within 72 h. Thus, there is no significant
difference among the four approaches.

Therefore, the answer to RQ1 is that among the four testing approaches, FOT+UPO
has the highest fault detection ability for testing SH-CPSs under uncertainties. Compared
with the others, FOT+UPO detected significantly more faults in 73 out of 81 testing jobs.

RQ2: To compare the fault detection ability of each testing approach across the nine self-
healing behaviors, we calculated the PDF by dividing the NDF by the total number of faults
detected in the experiment (task T2). Table 6 presents the results. In most cases, FOT+UPO
detected more than 70% of faults, while FOT+R and COT+UPO merely detected less than
17% of faults. For COT+R, it only detected one fault once in a self-healing behavior of
ArduRover.

Therefore, we answer RQ2 as comparedwith COTand random uncertainty generation, FOTand
UPO together can enhance the fault detection ability of a testing approach by at least 50%. FOT+
UPO detected over 70% faults in most cases, whereas FOT+R, COT+UPO, and COT+R at most
detected 17%, 3%, and 1% faults on average, respectively.

RQ3:Using box plot, we investigated the correlations among the fault detection ability (PDF) of
FOT+UPO, testing time (TT), and the scale of uncertainty variation (SU). As shown in Fig. 10,
when SU is 0.8 or 1.0,PDF tends to increase as TT grows from 72 to 216 h. The tendency becomes
less significant when SU is increased to 1.2. This indicates that when SU is relatively low, the
testing approach needs to take 216 h to detect all the faults, whereas when SU is high, 144 h are
sufficient for the testing approach to find most faults.

Regarding the correlation between PDF and SU, it exposes similar phenomena. When
TT is 72 h, the median of PDF increases from 0 to 0.2, as SU grows from 0.8 to 1.2.
When TT is extended to 144 h, their positive relation becomes less significant. As the
testing approach has sufficient time to detect most faults, there is no significant differ-
ence in PDF for different SUs.

Therefore, we answer RQ3 as PDF is positively correlated with both TT and SU. As TT or
SU increases, PDF tends to increase as well. However, when SU is high, or TT is long, the

10 http://www.uio.no/english/services/it/research/hpc/abel/
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positive correlations become less significant. Since PDF reaches a relatively high value earlier,
it cannot be further significantly promoted.

8.4 Discussion

Based on the results of the experiment, we have three key observations. First, due to the effect
of uncertainties, self-healing behaviors might fail to timely detect faults or improperly adapt
system behaviors. For instance, because of sensors’ measurement uncertainties, the copter
could not accurately capture its location, orientation, and velocity. When the copter was about
to collide with another vehicle, inaccurate measurements sometimes caused the copter to

Table 4 Average number of faults detected by each approach

Setting Approach ArduCopter ArduPlane ArduRover Avg.

SH1 SH2 SH3 SH4 SH5 SH1 SH2 SH1 SH2

S1 FOT+UPO 0.3 0.4 0.3 0.3 0.2 0.7 0.4 0.3 0.2 0.3
FOT+R 0 0 0 0 0 0 0 0 0 0
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S2 FOT+UPO 1.3 1.8 1.5 1.7 1.8 1.9 1 1 1 1.4
FOT+R 0.1 0 0 0 0 0 0 0.1 0.2 0
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S3 FOT+UPO 2.1 2.4 2 2.2 2.1 1.9 1 1 1 1.7
FOT+R 0.1 0 0 0 0 0.1 0.1 0.2 0.4 0.1
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S4 FOT+UPO 0.5 0.6 0.4 0.5 0.5 1.1 0.8 0.9 0.9 0.7
FOT+R 0 0 0 0 0 0 0 0 0 0
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S5 FOT+UPO 1.2 1.9 1.9 2.1 2 2 1 1 1 1.6
FOT+R 0.1 0 0 0.1 0 0.2 0.1 0.1 0.3 0.1
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S6 FOT+UPO 2.3 2.6 2.5 2.3 2.4 2 1 1 1 1.9
FOT+R 0.3 0 0.1 0.1 0 0.3 0.1 0.3 0.5 0.2
COT+UPO 0 0 0 0 0 0 0 0.1 0.1 0
COT+R 0 0 0 0 0 0 0 0 0 0

S7 FOT+UPO 0.9 0.6 0.5 0.5 0.6 1.3 0.9 1 1 0.8
FOT+R 0 0 0 0 0 0 0 0 0 0
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S8 FOT+UPO 2 2.5 2.3 2.5 2.7 2 1 1 1 1.9
FOT+R 0.1 0 0.1 0 0.1 0.3 0.1 0.2 0.3 0.1
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S9 FOT+UPO 2.8 2.9 3.1 2.8 3 2 1 1 1 2.1
FOT+R 0.3 0.1 0.2 0 0.1 0.4 0.2 0.4 0.5 0.2
COT+UPO 0 0.1 0 0 0 0.1 0 0.1 0.1 0
COT+R 0 0 0 0 0 0 0 0.1 0 0

S1, test 72 h with 80% uncertainty range; S2, test 144 h with 80% uncertainty range; S3, test 216 h with 80%
uncertainty range; S4, test 72 h with 100% uncertainty range; S5, test 144 h with 100% uncertainty range; S6, test
216 h with 100% uncertainty range; S7, test 72 h with 120% uncertainty range; S8, test 144 h with 120%
uncertainty range; S9, test 216 h with 120% uncertainty range
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incorrectly adjust its orientation, leading to a collision. Therefore, it is necessary to test self-
healing behaviors in the presence of environmental uncertainties. To build such a testing
environment, we adapt the software in the loop approach. In this approach, uncertainties are
explicitly introduced via sensor data and actuation instructions. Second, it requires a specific
sequence of operation invocations and a specific sequence of uncertainty values to reveal a
fault caused by the effect of uncertainties. Invoking different operations or invoking the same
operation with different inputs can both lead to distinct system states. Moreover, the impacts of
uncertainties cause the states to diverge further. Since a fault may only be activated in a few
special states, specific operation invocations and uncertainty values need to be found to reveal
the fault. In this context, coverage-oriented testing, which aims to evenly explore each system
state, is ineffective to find faults. To address this issue, we present a fragility-oriented approach
in this paper. By focusing on the fragile states of the SUT, it managed to find faults more
effectively. Third, FOT and UPO have to cooperate to effectively detect faults under uncer-
tainties. Directed by the fragility obtained from execution, FOT and UPO can gradually learn

Table 6 Percentage of faults detected by each testing approach

Setting Approach ArduCopter ArduPlane ArduRover Avg.
(%)

SH1
(%)

SH2
(%)

SH3
(%)

SH4
(%)

SH5
(%)

SH1
(%)

SH2
(%)

SH1
(%)

SH2
(%)

S1 FOT+UPO 10 10 10 8 7 35 40 30 20 19
FOT+R 0 0 0 0 0 0 0 0 0 0
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S2 FOT+UPO 43 45 50 43 60 95 100 100 100 71
FOT+R 3 0 0 0 0 0 0 10 20 4
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S3 FOT+UPO 70 60 67 55 70 95 100 100 100 80
FOT+R 3 0 0 0 0 5 10 20 40 9
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S4 FOT+UPO 17 15 10 17 17 55 80 90 90 43
FOT+R 0 0 0 0 0 0 0 0 0 0
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S5 FOT+UPO 40 48 48 70 67 100 100 100 100 75
FOT+R 3 0 0 3 0 10 10 10 30 7
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S6 FOT+UPO 77 65 63 77 80 100 100 100 100 85
FOT+R 10 0 3 3 0 15 10 30 50 13
COT+UPO 0 0 0 0 0 0 0 10 10 2
COT+R 0 0 0 0 0 0 0 0 0 0

S7 FOT+UPO 30 15 13 13 15 65 90 100 100 49
FOT+R 0 0 0 0 0 0 0 0 0 0
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S8 FOT+UPO 67 63 58 63 68 100 100 100 100 80
FOT+R 3 0 3 0 3 15 10 20 30 9
COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S9 FOT+UPO 93 73 78 70 75 100 100 100 100 88
FOT+R 10 3 5 0 3 20 20 40 50 17
COT+UPO 0 3 0 0 0 5 0 10 10 3
COT+R 0 0 0 0 0 0 0 10 0 1
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the optimal policy to select operation invocations and the optimal uncertainty generation
policy, respectively. The experiment results demonstrated that compared with the other
approaches, FOT+UPO could enhance the fault detection ability by at least 50%.

8.5 Threats to validity

Conclusion validity is concerned with factors that affect the conclusion drawn from the
outcome of experiments (Wohlin et al. 2012). Because of random transition selection and
random uncertainty generation used by the four testing approaches, randomness in the results
is the most probable conclusion validity threat. To reduce this threat, all the testing jobs were

repeated ten times. We applied the Mann–Whitney U test and Vargha and Delaney’s Â12 to
evaluate the statistical difference and magnitude of improvement.

Internal validity threat refers to the influence that affects the causal relationship between the
treatment and outcome (Wohlin et al. 2012), i.e., the testing approach and its fault detection
ability. Since testing time and scale of uncertainty have impacts on the performance of a testing
approach, they could be the threat to internal validity. To reduce such threat, we compared the
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performance of the four selected testing approaches under three testing times and three
uncertainty scales.

External validity threats concern the generalization of the experiment results (Wohlin et al.
2012). We employed nine self-healing behaviors from three real case studies to compare the
performance of four testing approaches. However, additional case studies are needed to
generalize the results further.

Construct validity is concerned with how well the metrics used in the experiment reflect the
construct (Wohlin et al. 2012)—fault detection ability of a testing approach. Because the
number of actual faults is unknown, we used the number of detected faults and the percentage
of detected fault as the evaluation metrics, which are comparable across the four testing
approaches.

9 Related work

This section presents the related work from three aspects: model-based testing in Section 9.1,
testing with reinforcement learning in Section 9.2, and uncertainty-wise testing in Section 9.3.

9.1 Model-based testing

Model-based testing (MBT) has shown good results of producing effective test suites to reveal
faults (Enoiu et al. 2016). For a typical MBT approach, abstract test cases are generated from
models first, e.g., using structural coverage criteria (e.g., all state coverage) (Utting et al. 2012;
Grieskamp et al. 2011). Generated abstract test cases are then transformed into executable
ones, which are executed on the SUT. To reduce the overhead caused by test cases generation,
researchers proposed to combine test generation, selection, and execution into one process (de
Vries and Tretmans 2000; Larsen et al. 2004). de Vries and Tretmans (2000) created a testing
framework, with which the SUT is modeled as a labeled transition system. By parsing this
model, test inputs are generated on the fly to perform conformance testing. This approach aims
to test all paths belonging to this model. However, if loops exist or the specified model is large,
additional mechanisms are required to reduce the state space. Larsen et al. (2004) proposed a
similar testing tool for embedded real-time systems. It uses the timed I/O transition system as
the test model, and test inputs are randomly generated from the model on the fly for testing.

Different from the existing works, the proposed fragility-oriented testing approach relies on
the execution of ETMs to facilitate the testing of SH-CPSs under uncertainty. During the
execution, FOT and UPO apply reinforcement learning techniques to learn the optimal policy
of invoking operations and best policy of generating uncertainties, respectively. In addition,
our work focuses on testing self-healing behaviors in the presence of environmental uncer-
tainty, which is not covered by existing works.

9.2 Testing with reinforcement learning

The first reinforcement learning–based testing algorithm was proposed in Veanes et al.
(2006). It uses frequencies of transitions’ coverage as the heuristics of reinforcement
learning. Directed by the frequencies, the algorithm tries to explore all transitions
equally. However, a long-term reward is not realized in this approach. Groce et al. Groce
et al. (2012) created a framework to simplify the application of reinforcement learning

Software Quality Journal (2019) 27: –61 645 9 643



for testing, which uses coverage as the heuristic and relies on SARSA(λ) (Sutton and
Barto 1998) for calculating long-term rewards. Similarly, Araiza-Illan et al. (2016) used
coverage as the reward function to test human–robot interactions with reinforcement
learning. Due to uncertainty, achieving the full transition coverage is insufficient to find
faults in self-healing behaviors. Thus, we propose to use fragility instead of coverage as
the heuristic. Moreover, we devised two novel algorithms, i.e., FOT and UPO, for
operation invocation and uncertainty generation, respectively.

9.3 Uncertainty-wise testing

Regarding uncertainty-wise testing, some taxonomies of uncertainty for self-adaptive systems
have been proposed in Ramirez et al. (2012) and Esfahani and Malek (2013), and a conceptual
model of uncertainty for CPSs has been built in Zhang et al. (2015). To test systems in the
presence of the uncertainty, Fredericks et al. (2014) developed a run-time testing framework. It
dynamically adapts a set of predefined test cases to test whether the SUT behaves correctly
when adaptation is required to handle changes in environmental conditions. However, the
paper does not mention how to obtain the initial test cases and how to construct an uncertainty-
introduced testing environment. Yang et al. (2014) devised a formal approach to verify the
correctness of self-adaptive applications under uncertainty, while the formal verification
approach is computationally expensive, and it requires extra effort to prove the SUT is
consistent with the verified model. Zhang et al. (2017) proposed a multi-objective search-
based approach for test case generation and minimization, with the aim of discovering
unknown uncertainties.

Different from the existing works, we aim to test whether the SUT can behave properly in
the presence of uncertainty. To effectively detect faults, we devise the UPO algorithm. By
utilizing the fragility to optimize the uncertainty generation policy (an ANN), it manages to
effectively find a sequence of uncertainty values that can cooperate with a sequence of
operation invocations to reveal faults.

10 Conclusion

This paper presents a fragility-oriented approach for testing self-healing cyber-physical sys-
tems (SH-CPSs) under uncertainty. The testing approach consists of two steps. One is to select
a sequence of operation invocations, which determines the behavior of the SH-CPS under
testing (SUT) in test execution. The other is to generate a sequence of uncertainty values to
make the SUT behave under uncertainty. For the two steps, we devise two algorithms:
fragility-oriented testing (FOT) and uncertainty policy optimization (UPO). Both of them
employ the fragility to learn the optimal policies for operation invocations and uncertainty
generation, respectively. To evaluate their performance, we compared them against three
testing approaches: FOT+R, COT+UPO, and COT+R, where COT represents a coverage-
oriented algorithm for operation invocations and R represents a random mechanism for
uncertainty generation. The four testing approaches were applied to test nine self-healing
behaviors from three real-world case studies. The testing results showed that FOT+UPO
significantly detected more faults than the other three approaches, in 73 out of 81 testing jobs.
In the 73 jobs, FOT+UPO detected more than 70% of faults, while the others detected 17% of
faults, at the most.
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Appendix

Fig. 11 Simplified ETM for ArduCopter. Figure 11 presents a simplified ETM for ArduCopter. According to the
ETM, a DFSM can be constructed, and part of the DFSM is shown in Fig. 5
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