
Software Quality Journal (2019) 27: 149–201
https://doi.org/10.1007/s11219-018-9418-6

Automated functional testing of mobile applications: a
systematic mapping study

Porfirio Tramontana1 ·Domenico Amalfitano1 ·Nicola Amatucci1 ·
Anna Rita Fasolino1

Published online: 24 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Context Testing is a critical and costly activity in the life cycle of a mobile application, due
to the growing request of new applications and to the rapid evolution of mobile devices and
frameworks. Testing automation may represent an effective solution to improve the quality
of mobile applications and to reduce testing costs. Objective We have performed a system-
atic mapping study to find, analyze, and classify papers in the scientific literature that are
related to the automation of functional testing of mobile applications with the aim to pro-
vide a classification scheme useful for researchers and practitioners to have a clear view of
the state of the art and to easily find existing solutions to their issues.Method We have con-
ducted the study on the basis of a set of 18 research questions. Search queries have been
formulated and applied to 7 search engines and the resulting papers have been filtered by
considering sets of inclusion and exclusion criteria. The selected papers have been system-
atically classified and, in addition, a bibliometric analysis has been performed. Results A
systematic map including 131 papers has been obtained and is publicly available. The papers
have been classified on the basis of the supported testing activities, the characteristics of
the techniques and tools they present, and the evaluation methodologies adopted to validate
them. The bibliometric analysis has allowed the identification of the most active researchers,
the most attractive venues, and the most influential papers. Conclusions The analysis of
the systematic mapping has allowed the identification of some research trends and gaps in
this field of study. For example, we have observed a strong prevalence of Android-based
approaches, a lack of contributions from industry, and the absence of specific venues and
journals focused on mobile testing automation.

Keywords Mobile applications · Testing automation · Functional testing ·
Systematic mapping

� Porfirio Tramontana
ptramont@unina.it

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-018-9418-6&domain=pdf
http://orcid.org/0000-0003-3264-185X
mailto: ptramont@unina.it

150 Software Quality Journal (2019) 27:149–201

1 Introduction

The widespread diffusion of smartphones and other mobile devices makes the mobile appli-
cations market very dynamic and profitable. The quality and, in particular, the reliability
of such applications may be key factors that determine their success. The rapidity with
which mobile applications have to be evolved to maintain their appeal and to be adapted to
the characteristics of new devices makes testing and quality assurance very important and
critical activities.

Manual testing of mobile applications may be a very costly activity both in terms of time
and resources, as well as an extremely boring, repetitive, and error-prone activity. For exam-
ple, there is a large fragmentation of mobile systems and devices, as witnessed by the recent
study of OpenSignal that has found in August 2015 the existence of more than 24,000 differ-
ent types of devices supporting Android1. A consequent issue is related to the need to repeat
the same tests on a very large number of different devices and execution environments. Not
surprisingly, a growing interest in mobile testing automation techniques and tools has been
demonstrated by the industry. For example, as regards the Android framework, three tech-
nologies supporting testing activities have been developed and distributed since the first
versions of the framework in 2008 (i.e., the Monkey tool, which is capable of automati-
cally triggering random event sequences, the MonkeyRunner scripting language, and the
InstrumentationTestCase library by means of which the tester can implement automatically
executable test cases), and they have contributed to the diffusion of the Android framework.
Moreover, both Google and Amazon have recently released some cloud services supporting
the automated testing of Android applications (i.e., Android Robo Test from Google2 and
the built-in Fuzz Test from Amazon3).

A great interest in mobile testing automation has been recorded in the literature, too. The
first papers related to testing automation of Symbian applications have been published in
2006 (Delamaro et al. 2006), while the first paper related to Android smartphones dates back
to 2010 (Liu et al. 2010a) and the first secondary papers discussing challenges, approaches,
and future directions of mobile testing automation have been published in 2012 and 2013
(Muccini et al. 2012; Amalfitano et al. 2013b; Dubinsky and Abadi 2013; Kirubakaran and
Karthikeyani 2013).

Nowadays, there is a large fragmentation of papers focused on different aspects of mobile
testing automation including functional testing, security testing, usability testing, context-
awareness testing, and energy efficiency assessment (Zein et al. 2016). This fragmentation,
together with the continuous proposal of new techniques and prototypes of tools, makes it
difficult for researchers and practitioners to have a clear view of the state of the art in mobile
testing automation.

Systematic mapping studies represent a well-known mean to shed light on a wide area
of research by systematically classifying all the contributions in literature with respect to a
given set of categories. According to Petersen et al., a software engineering systematic map
is a defined method to build a classification scheme and structure a software engineering
field of interest (Petersen et al. 2008). Systematic mapping studies are different from sys-
tematic literature reviews that are focused on a more qualitative review of the contributions

1https://opensignal.com/reports/2015/08/android-fragmentation/
2https://firebase.google.com/docs/test-lab/robo-ux-test
3http://docs.aws.amazon.com/devicefarm/latest/developerguide/test-types-built-in-fuzz.html

https://opensignal.com/reports/2015/08/android-fragmentation/
https://firebase.google.com/docs/test-lab/robo-ux-test
http://docs.aws.amazon.com/devicefarm/latest/developerguide/test-types-built-in-fuzz.html

Software Quality Journal (2019) 27:149–201 151

found in literature. From this point of view, systematic mapping may represent the starting
point for systematic literature reviews (Kitchenham et al. 2009).

In this paper, we present a systematic mapping study centered on techniques and tools
supporting the automation of functional testing activities on mobile applications.

According to ISO 29119 Software Testing Standard (2013), testing of the functional
characteristics of the software under test is referred as functional testing, while testing of
the other quality characteristics is referred as non-functional testing. In this study, we intend
as functional testing all the activities related to the verification of the correct execution
of the whole application under test or of some of its parts, with respect to its functional
requirements. It has been distinguished by non-functional testing that is driven by the quality
requirements of the applications, such as its security, privacy, usability, performance, and
energy efficiency.

There are two main reasons behind the selection of this specific research area in this
study. The first reason is the relative lack of similar studies in literature.

In fact, some secondary papers in literature deal with broader research areas, such as the
study of Holl and Elberzhager (2016) that focused on quality assurance of mobile applica-
tions; the one of Zein et al. (2016) that deals with security, privacy, usability, and context
awareness testing (and found only 29 works directly related to testing automation); the one
of Sahinoglu et al. (2015) that considers both functional and non-functional testing activi-
ties; and the one of Ahmad et al. (2018) that considers development challenges (including
testing) related both to native mobile applications, to mobile web applications, and to hybrid
applications. Other secondary studies such as the one of Corral et al. (2015) and the one
of Mendez-Porras et al. (2015b) are updated to 2013 and 2014, respectively. The work of
Mendez-Porras et al. (2015b) is the most similar to ours since its specific topic is mobile
testing automation. With respect to this paper, we have followed a more accurate method-
ology and to perform a more detailed analysis and classification of the contributions in
literature, taking into account the papers published in the last 3 years, too.

The second reason is the fundamental importance of testing automation activities in the
context of mobile applications. In fact, even the automation of a single testing task, such as
the generation of test cases, their execution or the oracle evaluation may produce a remark-
able reduction of the costs of the testing process (Crispin and Gregory 2009). Consequently,
testing automation may make feasible the execution of complex and effective testing pro-
cesses that are instead too much expensive for manual testing approaches. In addition, the
automation of functional testing activities may enable the automation of quality assurance
activities, as it can be observed in several works in literature. Automatically generated func-
tional test suites can be reused in the context of compatibility testing of mobile applications
with respect to different combinations of devices and operating system versions (Vilkomir
and Amstutz 2014; Vilkomir et al. 2015; Zhang et al. 2015a). Another example is repre-
sented by the approach proposed by Behrouz et al. (2015) that exploits test cases generated
by static and dynamic analysis techniques (including random testing techniques) to explore
the execution scenarios of an Android application and to measure the energy consumption.
Finally, Canfora et al. (2013) have developed a system to measure some user experience
parameters on real devices by exploiting techniques supporting the automatic execution of
test cases.

The systematic mapping study presented in this paper has been carried out on the basis of
the guidelines proposed by Petersen et al. (2008). First of all, four goals have been formu-
lated that aim at (1) the classification of the works in literature in terms of their support to
testing automation, (2) the evaluation of the characteristics of the proposed techniques and
tools, (3) the classification of the proposed techniques and tools in terms of how they have

152 Software Quality Journal (2019) 27:149–201

been evaluated and compared with the state of the art, and (4) the identification via biblio-
metric analyses of the most prolific authors, institutions, and countries, the most influential
publications, and the venues and journals that more frequently have included papers related
to this topic. By means of the GQM approach (Basili et al. 1994), a number of research
questions and metrics related to the proposed goals have been defined.

The literature research has been carried out on seven different search engines with a
set of search queries that have been designed by improving the ones proposed by previous
secondary works in literature and validated with respect to a set of relevant papers. The
4509 papers retrieved by search engines have been filtered on the basis of inclusion and
exclusion criteria obtaining a set of 131 relevant articles. Each of these articles has been
analyzed in depth by the authors in order to extract the information necessary to fill the map.
The systematic map has been analyzed in order to provide a detailed description of state
of the art in this research field with its emerging trends and existing gaps. The systematic
map is available online at https://goo.gl/678T5P for validation purposes: our intent is to
periodically update it in the future.

The remainder of the paper is structured in the following way: Section 2 provides a survey
of the secondary works in literature that are related to the mobile testing automation area;
the adopted research methodology is described in detail in Section 3, while the results of the
systematic mapping study are presented in Section 4. Threats to the validity of the presented
study are discussed in Section 5 while further discussions about the way to identify the most
relevant contributions found in literature, the emerging trends, and the current research gaps
are included in Section 6. Finally, conclusions are reported in Section 7.

2 Related work

Several works in the last years have studied challenges, research directions, and trends in
mobile application testing, usually based on informal surveys of existing literature and tools.

In particular, Muccini et al. (2012) have summarized the main challenges and research
directions in mobile testing automation, while Amalfitano et al. (2013b) have provided a
wider view on this field in 2013, by focusing on open issues from different testing perspec-
tives. Another similar work has been presented in 2013 by Kirubakaran and Karthikeyani
(2013), that discussed about challenges and solutions provided by testing automation tech-
niques. Also in 2013, Dubinsky and Abadi (2013), in the context of theWorkshop onMobile
Development Lifecycle, have collected from participants a list of 45 challenges that they
have organized in three research questions for planning future researches on mobile testing
automation. Arzensek and Hericko (2014) and Saad and Awang Abu Bakar (2014) in 2014
have focused their contributions respectively on the criteria to select the characteristics of a
mobile application testing tool and on the features of the existing commercial testing tools.
Gao et al. (2014) have provided a large overview of mobile testing and tools up to 2014.
Good surveys of mobile applications automated testing techniques are also included in the
related work sections of some recent papers (Moran K et al. 2016; Mao et al. 2016). Finally,
in 2018, Ahmad et al. (2018) have identified the challenges of both native, web, and hybrid
mobile applications by means of an empirical study and have found how testing is still a
relevant challenge for each type of mobile applications. A different perspective has been
considered by Kochhar et al. (2015) and by Silva et al. (2016) that have studied how mobile
application testers try to automate their work and what their needs.

Recently, secondary works addressing the problem of the comparison of the performance
of techniques and tools for mobile testing automation have been published. Choudhary et al.

https://goo.gl/678T5P

Software Quality Journal (2019) 27:149–201 153

(2015) in 2015 have presented an empirical comparison of the performance of some of the
most popular mobile testing automation tools available in literature, while Amalfitano et
al. (2015b, 2017) and Jiang et al. (2017) have presented empirical comparisons focused on
different testing techniques implemented in the context of the same testing tool.

Several works have addressed specific topics in the area of mobile testing automation.
For example, Harrison et al. (2013) have proposed a literature review specifically focused
on mobile usability testing, while Li et al. (2016a) have recently proposed a technical report
with a systematic literature review of techniques and tools for static analysis of Android
apps.

Several other works have addressed research fields that are wider than the one addressed
in our study. Corral et al. (2015) have presented a systematic mapping updated to 2012,
focusing their attention on development practices helping testing and quality assurance of
mobile applications. More recently, Holl and Elberzhager (2016) have presented a sys-
tematic mapping regarding quality assurance of mobile applications. They have provided
answers to seven research questions regarding the approaches found in literature supporting
both testing and quality assurance of mobile applications, including automatic and man-
ual approaches, static and dynamic analysis, and functional and non-functional testing. The
study have selected 230 papers from Scopus, ScienceDirect, IEEE, and ACM, published up
to 2015.

Another recent systematic mapping study is the one presented by Zein et al. (2016). This
work is focused on a wide spectrum of testing techniques, including studies on security,
privacy, usability, and context awareness testing by including 79 relevant papers after a very
selective process. In particular, they have selected a subset of 29 papers related to mobile
testing automation. Another similar study is the one of Sahinoglu et al. (2015) that in 2015
have presented a systematic mapping including both functional and non-functional mobile
testing approaches published up to 2014. They have included 123 papers and their research
questions have studied at a coarse level of detail the typologies of testing activities focused
on by the selected papers.

With respect to the studies (Corral et al. 2015; Holl and Elberzhager 2016; Sahinoglu
et al. 2015), we have restricted the research field to mobile functional testing automation. In
this more focused context, we have designed questions addressing specific aspects related
to mobile functional testing automation. With respect to the study of Zein et al. (2016) that
considers functional testing automation besides other different types of mobile testing and
quality assurance activities, we did not select only papers providing an empirical evaluation
of the proposed techniques and tools. We included also papers providing a demonstration of
the feasibility of the proposed techniques.

The unique systematic mapping study related to the specific field of automation of func-
tional testing for mobile applications is the one of Mendez-Porras et al. (2015b). This
work addresses several general questions on the basis of a selected subset including 83
papers up to 2014, such as bibliometric analyses of authors, journals, and venues, the chal-
lenges of automated testing of mobile applications, the proposed techniques and approaches,
and the adopted evaluation methods. This work has represented a good starting point for
our research. In particular, with respect to this work, we have improved the investiga-
tion protocol by performing an objective validation of the proposed queries, by widening
the search to other search engines such as ACM and Google Scholar, and by perform-
ing a more detailed analysis of the existing works, on the basis of a richer set of research
questions.

154 Software Quality Journal (2019) 27:149–201

3 Researchmethodology

The research methodology followed in this study is based on the guidelines provided by
Petersen et al. (2008, 2015) and Kitchenham and Charters (2007).

The process followed in this paper is composed of six sequential steps. Each step includes
a list of tasks that have been executed sequentially and each task has produced some outputs.
Figure 1 shows the steps, the tasks, and the main outputs of the process.

The first step consists of the definition of the research questions that will guide the pro-
cess: to this aim we have adopted the Goal/Questions/Metrics paradigm. At the end of this
step, a candidate classification scheme has been designed.

In the second step, the strategy for searching relevant papers in literature has been
defined. Firstly, a set of sources of evidence has been selected, then a set of queries on these
sources has been defined, executed, and validated. The results of the execution of these
queries represent the initial set of candidate papers.

In the third step, two sets of inclusion and exclusion criteria have been defined to filter
the studies that are relevant to this systematic mapping.

The fourth step is devoted to the screening of papers and to the selection of the ones
relevant for the topic addressed by this study. It consists of a preliminary elimination of
duplicated studies followed by the Keywording of Abstracts task. In the execution of this
task, the title, keywords, and abstract of each paper have been analyzed in order to evaluate
which papers can be excluded since they do not satisfy all the inclusion criteria or they
satisfy some of the exclusion criteria.

In the Data Extraction and Mapping step, the filtered set of papers has been analyzed
in detail by reading each of them. The papers that satisfy the above-defined criteria have
been included in the study and the data needed to fill the classification scheme have been
collected. The final systematic map has been obtained at the end of this step.

Finally, analyses and discussions of the metrics evaluated on the systematic map have
been carried out and reported in this paper that represent the output of this last step.

Details about the execution of each step of the systematic mapping process will be
reported in the next subsections.

3.1 Definition of the research questions

This study builds a classification scheme of the works in literature related to the proposal
and the evaluation of techniques and tools supporting the automation of functional testing
activities in the context of mobile applications.

Fig. 1 The systematic mapping process

Software Quality Journal (2019) 27:149–201 155

In order to express this objective in terms of research questions and to link them to
metrics the Goals/Questions/Metrics (GQM) paradigm originally proposed by Basili et al.
(1994) has been applied. This methodology has been used both to formulate the research
questions and to define the metrics needed to map the studies. A detailed description of the
proposed goals, questions, and metrics follows.

3.1.1 Goals

The four goals of this study are:

G1 To classify the articles in the area of mobile application functional testing automation
on the basis of the offered support to testing automation and of the addressed testing
levels.

G2 To study in detail the characteristics of the proposed techniques and tools, such as the
enabling inputs, their support to the generation of test cases, the generated test outputs
and the supported mobile frameworks.

G3 To study how the proposed techniques and tools have been evaluated in terms of the
characteristics of the experiments that have possibly been carried out, the involved
applications under test, and the comparisons with other techniques and tools.

G4 To identify the most active researchers in this area and their affiliations, the most
attractive venues and journals for papers in this field, and the most influential papers.

3.1.2 Research questions

For each of the four proposed goals, a set of specific questions have been formulated. With
respect to the first goal (G1), the following questions have been posed:

RQ 1.1 What testing activities are automated?
RQ 1.2 What testing levels are addressed?

The first question is aimed at classifying the selected papers with respect to the degree
of automation they provide to the testing process. In particular, we have evaluated if the
techniques and tools proposed in the considered articles support the automation of test case
design and implementation, test case execution, and oracle definition and evaluation. The
second question aims at the classification of the papers according to the addressed testing
level (i.e., unit testing, integration testing, or system testing).

The second goal (G2) has been addressed by the following seven research questions:

RQ 2.1 What inputs are used by the proposed testing techniques to derive test artifacts?
RQ 2.2 What kinds of techniques are proposed for test case generation?
RQ 2.3 What kinds of test oracles are considered?
RQ 2.4 What kinds of test artifacts are generated?
RQ 2.5 What are the characteristics of the proposed testing tools?
RQ 2.6 Which mobile frameworks are the targets of the proposed techniques and tools?
RQ 2.7 Are the proposed techniques and tools usable on emulators or real devices?

This set of questions aims at the detailed analysis of the main characteristics of the pro-
posed techniques and tools. In particular, RQ 2.1 focuses on the inputs needed to enable
the proposed techniques and tools such as source code, executable code, high-level mod-
els, existing test cases, or user sessions, while RQ 2.2 focuses on the proposed test case

156 Software Quality Journal (2019) 27:149–201

generation techniques, if any. The questions RQ 2.3 and RQ 2.4 respectively examine the
considered test oracles, if any, and the outputs generated by the application of the proposed
testing techniques. RQ 2.5 has been posed to collect information about the characteristics of
the proposed testing tools (if any), such as their names, their dependencies on other exter-
nal tools or resources, their availability (e.g., open source, free downloadable, commercial
or not available), the type of technique adopted for test case generation (i.e., static analysis,
dynamic analysis or hybrid, i.e., that combines static and dynamic analyses), the languages
used for the tool implementation, the targeted execution framework, and the date of their
last update. The questions RQ 2.6 and RQ 2.7 are directed to the technological characteris-
tics of the proposed techniques and tools, since they express the technological scope (i.e.,
Android, iOS, Windows Phone, or others) and the possibility to apply them to real devices,
emulated devices or both.

The third goal (G3) has been pursued by analyzing in detail the evaluation experiments
carried out to validate the proposed techniques and tools and to compare their results with
the ones obtained by using other similar tools. In particular, the following three questions
have been posed:

RQ 3.1 What are the characteristics of the performed evaluation studies?
RQ 3.2 What are the characteristics of the sets of applications objects of the evaluation

experiments?
RQ 3.3 What are the characteristics of the performed comparative studies?

Question RQ 3.1 is focused on the evaluation studies performed to validate the proposed
techniques and tools. We have distinguished between papers providing experimental studies
aiming at the evaluation of the performance of the proposed techniques or tools and papers
providing only a demonstration of the feasibility of the proposed technique or tool. The
question RQ 3.2 investigates the type and the quantity of the applications considered by the
evaluation experiments reported in the selected papers. Finally, question RQ 3.3 regards the
characteristics of the comparative studies that possibly have been carried out to compare the
performance of the proposed techniques and tools with the ones of other tools considered
as benchmarks.

Finally, the goal G4 has been investigated by posing some questions related to the demo-
graphics and bibliometrics of the selected articles and authors. The following questions have
been formulated:

RQ 4.1 What is the number of published articles per year?
RQ 4.2 Which are the venues having the higher article counts?
RQ 4.3 Which are the more influential articles in terms of citation counts?
RQ 4.4 Who are the authors with the higher number of articles?
RQ 4.5 Which countries have produced more articles?
RQ 4.6 Which are the author affiliations?

The first question aims at the investigation of the trend of interest of the scientific
community over the years with respect to the studied topic, while the second question sum-
marizes the venues and journals that more frequently host contributions in this field. The
third question aims at the evaluation of the papers that have had more influence on the liter-
ature by taking into account the number of works citing them. The fourth question has been
posed to individuate the more prolific authors. Finally, the last two questions classify the
papers in terms of the country of work of the authors and of their affiliation (academia or
industry).

Software Quality Journal (2019) 27:149–201 157

3.1.3 Metrics

In order to support the evaluation of the research questions, for each of them an attribute
or a list of sub-attributes has been formulated. For each attribute and sub-attribute, a set of
possible values has been defined.

These lists of attributes and possible values have been just sketched in the first step of the
process leaving the possibility to refine them during the next steps. In particular, these lists
have been modified during the Data Extraction and Mapping step and finalized at the end of
that step. Table 1 reports, for each research question, the set of attributes and sub-attributes
that have to be evaluated for each selected paper and the list of possible values for each of
these attributes. For the sake of brevity, we have reported only the final version of this list.
In Table 1, the sub-attributes have been written in italic.

The attributes have been designed in order to admit zero or more possible values for each
paper. In fact, some attributes are not applicable to each paper (e.g., the tool characteristics
are applicable only on papers presenting a tool).

In order to provide answers to the proposed research questions, for most of the considered
attributes, we have considered and automatically evaluated the metric consisting in counting
the occurrences of each value assigned to each attribute.

3.2 Search strategy definition

The search strategy adopted in this paper is inspired by the one proposed by Kitchenham
and Charters (2007) and recently adopted by Zein et al. (2016).

In detail, (1) we have selected a set of sources of evidence (i.e., online available search
engines), (2) we have selected a set of keywords able to drive the search, (3) we have formu-
lated a set of tentative search strings including the selected keywords, (4) we have executed
the proposed queries on the considered search engines, and (5) we have validated the results
of these queries. In order to perform this validation, we have preventively built a list of
papers that we consider relevant for the proposed topic and we have evaluated the ability of
the formulated queries in retrieving the papers belonging to this list. The last three opera-
tions have been repeated until the tentative queries have been able to retrieve all the papers
of this list.

The set of sources of evidence has been built by considering the online databases that
index Computer Science literature and that have been often considered in other system-
atic mapping studies, too. In particular, the search engines that have been considered
are as follows: Scopus4, IEEExplore5, ACM6, SpringerLink7, ISI Web of Knowledge8,
ScienceDirect9, and Google Scholar10.

In general, it is expected that the most part of the papers retrievable by using IEEEx-
plore, ACM, SpringerLink, ISI, and ScienceDirect are retrievable by using Scopus, too,
because Scopus has been designed to be an aggregator of all the contributions available

4https://www.scopus.com/
5http://ieeexplore.ieee.org/Xplore/home.jsp
6http://dl.acm.org/advsearch.cfm
7http://link.springer.com/
8https://webofknowledge.com/
9http://www.sciencedirect.com/
10http://scholar.google.com

https://www.scopus.com/
http://ieeexplore.ieee.org/Xplore/home.jsp
http://dl.acm.org/advsearch.cfm
http://springerlink.bibliotecabuap.elogim.com/
https://webofknowledge.com/
http://www.sciencedirect.com/
http://scholar.google.com

158 Software Quality Journal (2019) 27:149–201

Table 1 Final classification scheme reporting attributes and sub-attributes that have been evaluated on each
selected paper and possible values for the attributes

RQ Attribute Sub-attributes and possible values

1.1 Support to Testing Automation Test Case Generation - Test Execution - Oracle Definition /
Evaluation

1.2 Testing Level Unit Testing - Integration Testing - System Testing

2.1 Testing Input Source Code - Bytecode / Executable - User Sessions - Man-
ually Inferred Models - Automatically Inferred Models -
Existing Test Cases - Bug Repository

2.2 Test Case Generation
Technique

Model Based - Model Learning / Active Learning - User Ses-
sions Based Capture and Replay - Random - Search Based -
Mutation - Manual

2.3 Oracle Crashes / Exception Occurrence - Expected Bitmap -
Expected GUI State Invariant Condition - Manually Designed
Assertions

2.4 Generated Test Artifact Test Input Values - Executable Test Cases - Oracles - Appli-
cation Models - Test Reports

2.5 Attributes of the Testing Tool Tool Name - Names of 3rd Party Included Components Tool
Availability (Open Source - Free Download - Demo Version -
Commercial Version - not available)

Test Generation Technique (Static Analysis - Dynamic Anal-
ysis - Hybrid)

Implementation Language - Targeted Framework - Time of
Last Update

2.6 Supported Mobile Framework Android - iOS - Windows Phone - Symbian / J2ME

2.7 Testing Platform Emulator - Real Device

3.1 Evaluation Evaluation Method (Experimental - Demonstration of Fea-
sibility) Evaluation Metric (Code coverage - Injected Faults
Found - Real Failures Found)

3.2 Attributes of the Set of AUTs
Involved in the Evaluation

Number of AUTs - AUTs Size (Toy Examples - Small Apps -
Large Apps) AUTs Availability (Open Source Apps - Real
Commercial Apps)

3.3 Attributes of the Performed
Comparative Studies

Names of the Compared Tools-Comparison Attributes(Failure
Detection Capability - Code Coverage Capability - Offered
Features)

4.1 Publication Year

4.2 Publication Journal or Venue

4.3 Number of Citations of the Paper

4.4 Publication Authors

4.5 Publication Countries of Authors

4.6 Affiliation of Authors Name of the Institution - Type (Industry - Academia)

from the most relevant publishers. Google Scholar, instead, has a larger scope, since it has
been designed to index any content available on the web. For this reason, a larger number
of contributions is retrievable by Google Scholar but the relevance of these contributions
should be accurately evaluated.

After the selection of the sources of evidence, a set of tentative search strings has been
built by selecting popular keywords used in this field. We have selected these keywords both
on the basis of our specific knowledge of the research field and on the keywords used by

Software Quality Journal (2019) 27:149–201 159

similar systematic mapping studies in literature (i.e., Mendez-Porras et al. 2015b; Zein et al.
2016; Sahinoglu et al. 2015; Holl and Elberzhager 2016). Synonyms and other alternative
keywords have been considered, too. The boolean operator OR has been used to consider
different synonyms while the boolean operator AND has been used to link the different
keywords. Since each search engine supports a different syntax for queries and provides
different options to filter the search, different search strings have been formulated taking
into account the peculiarities of the search engines.

Four main keywords have been considered: “mobile applications” (having as popu-
lar hyponyms the keywords “Android applications,” “apps,” “iOS applications,” “Symbian
applications,” “Windows Phone applications”), “testing,” “technique” (for which different
synonyms and hyponyms have been considered, such as “approach,” “method,” “tool,” and
“framework”), and “automation” (and its synonyms “automated” and “automatic”).

The proposed search strings are conceptually equivalent between them. For all the
engines, the searches have been restricted to title, abstract, and keywords of each indexed
paper. In addition, the search on Scopus has taken into account, too, the titles of the papers
referenced in the bibliography section of each paper. On Scopus and ScienceDirect, the
search has been restricted to the Computer Science field to reduce the set of results. The
possibility of extending the search to the entire text of the papers is available only in some
search engines such as IEEExplore and ACM, but has been discarded in order to limit the
wideness of the set of results (when the search has been extended to the full text of the
papers, the same search strings returned 8,931 results for IEEExplore and 397,267 results
for ACM). For Google Scholar, instead, the search regards always the full text of the papers.
Google Scholar estimated that the number of returned results was higher than 56,000 but we
have limited the analysis to the first 1,000 results that are the more relevant ones according
to the Google Scholar ranking algorithm.

In order to validate the proposed search strings, we have selected a set of papers that have
been judged relevant for this systematic mapping study. This set includes 55 papers recently
cited by recent secondary studies in literature (Zein et al. 2016; Choudhary et al. 2015), in
the related work sections of some recent and influential papers (Moran K et al. 2016; Mao
et al. 2016) or in the Ph.D. thesis of one of the authors (Amatucci 2016). The other authors
have preventively read these papers and have confirmed that they should be included in this
study for their relevance.

Table 2 shows the final set of search strings that have been formulated for the seven
considered search engines. In particular, the third column of this table reports the number
of papers from this set of 55 relevant papers that have been retrieved, too, by each of the
considered search engines, while the total number of papers retrieved by each query is
shown in the last column. The last row of the table shows that all the 55 relevant papers
have been found by at least one search engine and that the total number of retrieved papers
(including duplicates) is 4509.

The queries to the search engines have been carried out on September 1, 2017, and report
only the papers indexed at that date. The results reported in Table 2 show that the Scopus
search engine is able to find 54 out of the 55 relevant papers (the paper of Mirzaei et al.
(2012) is only retrievable on ACM and Google Scholar), while Google Scholar is able to find
46 out of 55 relevant papers. The remaining search engines have retrieved smaller subsets
of relevant papers because they index only papers from a subset of publishers. Since the
selected search strings have demonstrated their ability to retrieve all the 55 selected papers
in at least one of the considered search engines, they have been considered valid for this
systematic mapping study.

160 Software Quality Journal (2019) 27:149–201

Table 2 The search strings that have been executed on the different search engines and the obtained results
(the queries have all been executed on September 1, 2017)

Search engine Search string No. of retrieved No. of retrieved

relevant papers papers

Scopus ALL (((”mobile applications” OR ”Android appli-
cations” OR apps OR ”Windows Phone applications”
OR ”Symbian applications” OR ”iOS applications”)
AND testing AND (technique OR approach OR
method OR tool OR framework) AND (automation
OR automated OR automatic))) AND (LIMIT-TO
(SUBJAREA,”COMP”))

54 2409

IEEExplore ((”mobile applications” OR ”Android applications”
OR apps OR ”Windows Phone applications” OR
”Symbian applications” OR ”iOS applications”)
AND testing AND (technique OR approach OR
method OR tool OR framework) AND (automation
OR automated OR automatic))

22 192

ACM ((”mobile applications” OR ”Android applications”
OR apps OR ”Windows Phone applications” OR
”Symbian applications” OR ”iOS applications”)
AND testing AND (technique OR approach OR
method OR tool OR framework) AND (automation
OR automated OR automatic))

24 212

SpringerLink ((”mobile applications” OR ”Android applications”
OR apps OR ”Windows Phone applications” OR
”Symbian applications” OR ”iOS applications”)
AND testing AND (technique OR approach OR
method OR tool OR framework) AND (automation
OR automated OR automatic))

0 460

ISI TOPIC: (”mobile applications” OR ”Android appli-
cations” OR apps OR ”Windows Phone applications”
OR ”Symbian applications” OR ”iOS applications”)
AND TOPIC:(testing) AND TOPIC: (technique OR
approach OR method OR tool OR framework) AND
TOPIC: (automation OR automatic OR automated)

22 167

ScienceDirect tak(((”mobile applications” OR ”Android applica-
tions” OR apps OR ”Windows Phone applications”
OR ”Symbian applications” OR ”iOS applications”)
AND testing AND (technique OR approach OR
method OR tool OR framework) AND (automa-
tion OR automated OR automatic))){[} All
Sources(Computer Science){]}.

1 69

Google Scholar ((”mobile applications” OR ”Android applications”
OR apps OR ”Windows Phone applications” OR
”Symbian applications” OR ”iOS applications”)
AND testing AND (technique OR approach OR
method OR tool OR framework) AND (automation
OR automated OR automatic))

46 1000

Total 55 4509

The search strings reported in Table 2 have been selected after several trials characterized
by worst performance in terms of retrieval of the set of 55 relevant papers. For example,
the same search on Scopus limited only to title, abstract, and keywords fields returned 209
results including only 26 out of 55 expected papers.

Software Quality Journal (2019) 27:149–201 161

Differently from our search strings, the more general search strings proposed by Zein
et al. (2016) have been able to retrieve only 49 of the 55 relevant papers on Scopus, but with
a total number of retrieved papers that is more than 10,000. The search strings proposed by
the similar work of Mendez-Porras et al. (2015b) are able to find only 50 out of 55 relevant
papers on Scopus and are not executable on some search engines such as IEEExplore, due
to the current limitation of 15 keywords per query.

3.3 Study selection criteria definition

The purpose of the inclusion and exclusion criteria is to limit the study selection to papers
that fit in the proposed topic, i.e., techniques and tools for the automation of functional
testing of mobile applications and that are available in scientific literature. To this aim, a set
of inclusion criteria useful to identify studies that could be considered in this mapping has
been designed. In addition, another set of exclusion criteria has been formulated in order to
exclude studies related to other fields of interest or not specifically focused on the selected
topic.

In details, the following list of inclusion criteria has been considered:

1. Studies must be directly related to automated software testing techniques for native
mobile applications.

2. Studies must be focused on functional testing of mobile applications, including, too,
system testing, unit testing, integration testing, or any other testing activity aiming at
the verification of the functional correctness of the application.

3. Studies must provide a qualitative or a quantitative evaluation of the proposed contri-
butions.

In order to filter the set of papers from off topic ones, the following list of exclusion
criteria have been defined:

1. Studies focused on testing embedded systems in general, and not directly related to
mobile devices.

2. Studies focused on mobile communication infrastructure, mobile hardware, or
robotics.

3. Studies focused on testing mobile applications different from native applications, such
as mobile web applications.

4. Studies focused on other testing or quality assurance techniques, such as security
testing, performance testing, energy consumption evaluation, usability testing, and
compatibility testing.

5. Studies focused on static analysis without support to testing automation.
6. Studies related to other software development phases such as analysis, design, or

implementation and not focused on testing.
7. Studies that merely present opinions or ideas without any proposed testing technique

and any implemented testing tool.
8. Studies written in languages other than English or not available on the Internet in

full-text form.
9. Studies that did not appear in the published proceedings of a peer reviewed conference,

symposium, or workshop, or did not appear in a journal or magazine (i.e., thesis,
technical reports, patents, blogs, or personal web pages).

10. Studies that are duplicates of other studies.
11. Surveys, reviews, mapping studies, and any other secondary study.

162 Software Quality Journal (2019) 27:149–201

3.4 Screening of papers

During the execution of the Screening of Papers step of the process, the set of papers
retrieved by the search engines has been progressively reduced by filtering duplicated and
irrelevant papers.

A first filtering of the 4509 returned results consisting of the automatic elimination of
duplicates, i.e., the elimination of all but the first entry of each paper retrieved in more than
one search engine.

After this task, 3810 papers remained, as shown by the third column of Table 3. A major-
ity of this papers (2409) are indexed by Scopus that is the first considered search engine.
For example, the 86 papers in the IEEExplore row are articles that have been retrieved by
IEEExplore but that have not been retrieved by Scholar.

The filtering of the remaining papers has been executed by means of the Keywording of
Abstracts task based on the inclusion and exclusion criteria presented in the previous sub-
section. In detail, the authors have analyzed title, abstract, and keywords (where available)
of the 3810 considered papers and have filtered out all the articles that do not satisfy all
the inclusion criteria or that satisfy one or more exclusion criteria. All the borderline papers
for which this analysis has not been sufficient to include or exclude them have not been
excluded in this step. After the execution of this screening activity, 351 papers remained.
The fourth column of Table 3 reports the number of papers remaining, grouped for search
engine.

The papers retrieved by IEEExplore, ACM, ISI, and ScienceDirect are generally very
recent papers (not yet indexed by Scopus) or papers published in venues not covered by
Scopus. The 105 papers retrieved only on Google Scholar correspond to papers not indexed
by the other search engines or to papers retrievable only with a full-text research.

3.5 Data extraction andmapping of studies

The Data Extraction and Mapping step has been performed by the authors by completely
reading the full text of the 351 selected papers.

The papers to be analyzed have been divided between the authors and each author eval-
uated if the paper should be included or excluded from the systematic mapping on the basis
of the study selection criteria. In addition, for all the papers resulting from this filtering,

Table 3 Number of selected papers after the different steps of the systematic mapping process

Search Engine Number of papers Number of papers Number of papers Number of selected

retrieved from remaining after selected after papers

search engines elimination of duplicates Keywording of Abstract

Scopus 2409 2409 218 108

IEEExplore 192 86 12 0

ACM 212 84 11 6

SpringerLink 460 436 0 0

ISI 167 27 5 1

ScienceDirect 69 61 0 0

Google Scholar 1000 707 105 16

Total 4509 3810 351 131

Software Quality Journal (2019) 27:149–201 163

the authors have assigned values to each of the attributes in Table 1, when applicable. The
authors have had some joint meetings in order to discuss about the inclusion or exclusion
of all the borderline papers and to review the values assigned to the attributes. Only the
demographic and bibliometric data requested by the fourth goal of the study have been
automatically extracted from the data exported from the search engines without any need
for reviews or joint discussions.

At the end of this step, a set of 131 papers has been selected. The last column of Table 3
reports the final number of selected papers for each considered search engine.

3.6 Data availability

The Systematic Mapping reporting the complete list of the selected papers and all the values
assigned to each attribute of each paper is not reported here for reasons of space, but it is
available online at https://goo.gl/678T5P.

4 Analysis of results

The data extracted and collected during the previous steps have been aggregated in order to
provide answers to the proposed research questions. In the following, the results obtained
from the study and the answers that can be given to each research question will be presented
and discussed.

4.1 RQ 1.1What testing activities are automated?

Only 23 out of 131 papers provide fully automated testing processes including automatic
test case generation and execution and automatic generation and evaluation of test oracles
(Adamsen et al. 2015; Amalfitano et al. 2012a, 2015d; Costa et al. 2014; Hao et al. 2014;
Hu et al. 2016; Imparato 2015; Liang et al. 2014; Liu et al. 2016; Maji et al. 2012; Mao et al.
2016; Mendez-Porras et al. 2015a; Mirzaei and Heydarnoori 2015; Moran K et al. 2015;
Packevicius et al. 2015; Takala et al. 2011, White et al. 2015; Liu et al. 2014a; Zaeem et al.
2014; Zhu et al. 2015; Li et al. 2016b, 2017; Fazzini et al. 2016b).

Of the remaining papers, 63 present techniques and tools that are able to automati-
cally generate and execute test cases but that do not provide any support to the automatic
definition or evaluation of oracles.

On the other hand, we have found 32 papers that support the automatic test case execu-
tion and the oracle definition and evaluation (in most cases, the occurrence of crashes and
exceptions has been evaluated).

In addition, we have found 13 papers that provide automation only for a single activity
of the testing process. Five of them provide support only to the automatic generation of
test cases that are not directly executable. In particular, in Puspika et al. (2015), Zheng
et al. (2017), and Shabaan et al. (2017), model-based techniques are proposed, while Yu
and Takada (2016) describe an approach based on the generation of external events and Liu
et al. (2017) propose an approach exploiting machine learning techniques.

Seven other papers are focused on the automatic test execution. For example, in the paper
of Griebe et al. (2016), the problem of executing test cases on speech-based applications is
faced. Other studies are related to the automatic test execution in the context of Windows
mobile applications (Mayan et al. 2015), Symbian applications (She et al. 2009; Jiang et al.
2007), or cloud infrastructures (Prathibhan et al. 2014). Finally, the works of Sadeh (2011)

https://goo.gl/678T5P

164 Software Quality Journal (2019) 27:149–201

and Liu et al. (2014b) propose techniques for the automatic execution of unit test cases in
the context of Android applications.

Finally, there is only one paper completely devoted to oracle evaluation. In the approach
presented in Hsiao et al. (2014), the Android framework has been instrumented so that logs
of the executions of the Android applications under test are generated while it is exercised
by real users. These logs are automatically analyzed in order to detect concurrency races.

Table 4 reports the total list of the references of the 131 papers retrieved by the study,
classified on the bases of the support offered to the testing activities.

Table 4 List of selected papers, grouped by their support to test automation

Retrieved papers

Fully automation Adamsen et al. (2015), Amalfitano et al. (2012a, 2015d), Costa et al.
(2014), Hao et al. (2014), Hu et al. (2016), Imparato (2015), Liang
et al. (2014), Liu et al. (2010a), Maji et al. (2012), Mao et al. (2016),
Mendez-Porras et al. (2015a), Mirzaei and Heydarnoori (2015), Moran
K et al. (2016), Packevicius et al. (2015), Takala et al. (2011), White
et al. (2015), Liu et al. (2014a), Zaeem et al. (2014), Zhu et al. (2015),
Li et al. (2016b, 2017), Fazzini et al. (2017)

Test case generation and
execution

Anbunathan and Basu (2015), Baek and Bae (2016), Bielik et al. (2015),
Do et al. (2016), Gomez (2015), Hu and Neamtiu et al. (2011a, b,
2014, 2015, 2016), Jaaskelainen et al. (2012), Joorabchi et al. (2016),
Lin et al. (2014), Liu et al. (2010b, 2013), Ma et al. (2016), Machado
et al. (2013), Machiry et al. (2013), Maiya et al. (2014), van der Merwe
et al. (2012), Morgado and Paiva (2016a, b), Raut and Tomar (2014),
Ravindranath et al. (2014), Salva and Laurencot (2015), Shan et al.
(2016), Song et al. (2015), Tao and Gao (2016), Tang et al. (2016), Ye
et al. (2013), Yeh et al. (2014), Zhauniarovich et al. (2015), Salihu and
Ibrahim (2016), Moran et al. (2017), Yoo and Lee (2017), Paulovsky
et al. (2017), Wu et al. (2016), Arnatovich et al. (2016), Zhang et al.
(2016)

Test case execution and
oracle definition and eval-
uation

Amalfitano et al. (2011, 2012a, 2013a, 2015a, c), Anand et al. (2012),
Anbunathan and Basu (2016a, b), Azim and Neamtiu (2013), Choi et al.
(2013), Coelho et al. (2016), Delamaro et al. (2006), De Cleva Farto
and Endo (2015), Dev et al. (2012), Dutia et al. (2015), Gomez et al.
(2013, 2016), Gudmundsson et al. (2016), Griebe and Gruhn (2014),
Griebe et al. (2015), Hesenius et al. (2014), Jamrozik and Zeller (2016),
Jensen et al. (2013), Jha et al. (2015), Jiang et al. (2016), Kaasila
et al. (2012), Li et al. (2014a, b), Lin et al. (2014), Linares-Vasquez
(2015a), Linares-Vasquez et al. (2015b), Liu et al. (2015, 2014a), Lu
et al. (2012), Akanksha Ashok Magare (2016), Mahmood et al. (2014),
Majeed and Ryu (2016), Meng et al. (2015), Mirzaei et al. (2012, 2016a,
b), Nagowah and Sowamber (2012), Nguyen et al. (2012), Qin et al.
(2016a, b), Reddy et al. (2016), San Miguel and Takada (2016), Su
(2016), Sun et al. (2016), Wang et al. (2014), Wen et al. (2015), Yang
et al. (2013), Yeh et al. (2014), Zeng et al. (2016), Zhang and Pi (2015a),
and Zun et al. (2016)

Only test case generation Puspika et al. (2015), Yu and Takada (2016), Zheng et al. (2017), Liu
et al. (2017), and Shabaan et al. (2017)

Only test case execution Griebe et al. (2016), Jiang et al. (2007), Liu et al. (2014b), Mayan et al.
(2015), Prathibhan et al. (2014), Sadeh (2011), and She et al. (2009)

Only oracle definition and
evaluation

Hsiao et al. (2014)

Software Quality Journal (2019) 27:149–201 165

Figure 2 shows the distribution of papers according to the support offered to the testing
activities.

4.2 RQ 1.2What testing levels are addressed?

Most of the proposed papers (122 out of 131) present system testing approaches, in which
the whole application is tested in its execution environment (real devices or emulators). In
particular, there is a large number of GUI-based approaches, in which test cases are defined
as sequences of events or interactions acting on the GUI of the application under test.

Only two approaches regard integration testing. The works of Maji et al. (2012) and Jha
et al. (2015) are focused on the testing of the interactions between the main components of
the application under test (e.g., activities, services, broadcast receivers) by means of specific
intent calls.

Seven papers propose techniques and tools supporting unit testing (Delamaro et al. 2006;
Sadeh 2011; Mirzaei et al. 2012; van der Merwe et al. 2012; Liu et al., 2014b, 2014c). In
the works of Mirzaei et al. (2012) and van der Merwe et al. (2012) and Liu et al. (2014c),
specific components of the Android applications are tested in isolation from the target exe-
cution environment. In fact, in these three approaches, the application components are tested
on the traditional Java Virtual Machine (JVM) instead of on the specific Dalvik Virtual
Machine that was mounted on almost all the Android devices at the time of the writing of
these papers. The other four papers propose techniques and tools directly supporting unit
testing of classes and methods included in Android applications (Delamaro et al. 2006;
Sadeh 2011; Liu et al. 2014b; De Cleva Farto and Endo 2015).

A possible reason for which so few approaches to unit and integration testing are avail-
able in literature may be that many of the techniques supporting unit and integration testing
designed for desktop applications can be reused on mobile applications, too. For example,
the JUnit framework can be used to test any component of an Android application that is
not dependent on any specific functionality of the targeted mobile device. Thus, there is no
need of mobile specific unit testing techniques.

4.3 RQ 2.1What inputs are used by the proposed testing techniques to derive test
artifacts?

Most of the contributions found in literature exploits one or more of the following five
sources of information: the source code of the application under test, its executable code
(usually bytecode), high-level models, existing test cases, and user sessions.

Fig. 2 Classification of papers according to the support to testing automation

166 Software Quality Journal (2019) 27:149–201

There is a substantial equivalence between the number of white box approaches based on
the analysis of the source code of the applications under test (53 out of 131) and the number
of black box approaches needing only the executable code (57 out of 131).

Black box approaches have been often evaluated on very large sets of free applications
available on public markets such as Google Play for Android, while white box approaches
have often been evaluated on sets of applications found on public repositories of open-
source mobile applications (for example, http://f-droid.org for Android applications).

Forty-seven approaches are based on the analysis of high-level models of the application
under test. In particular, 20 papers are based on manually designed models of the application
under test (including, for example, finite state machines (Nguyen et al. 2012; Majeed and
Ryu 2016; Su 2016), sequence diagrams (Anbunathan and Basu 2016b), activity diagrams
Griebe et al. 2015; Li et al. 2014a). Tweny-seven other approaches are instead based on
models that are automatically generated by reverse engineering processes, such as GUI trees
(Wang et al. 2014; Wen et al. 2015).

The 23 approaches based on existing user sessions include the 12 ones proposing capture
and replay techniques able to collect and re-execute user sessions. The other ones are gen-
erally able, too, to transform existing user sessions in executable test cases. Usually, basic
user events are considered by these approaches, but there are some papers specializing in
the identification and generation of complex gesture events typical of mobile devices, such
as the one of Hesenius et al. (2014).

Other 23 contributions are based on the transformation of existing test cases, that are
often in the form of executable JUnit test cases for Android applications. Finally, there
is only a preliminary contribution based on information obtained from bug repositories
(Mendez-Porras et al. 2015a) in which only the requirements of a test generation system
based on the analysis of a bug repository have been proposed.

The histogram in Fig. 3 reports the distribution of the selected papers with respect to the
types of needed input sources.

Fig. 3 Types of input sources used by the techniques and tools proposed in the selected papers

http://f-droid.org

Software Quality Journal (2019) 27:149–201 167

4.4 RQ 2.2What kinds of technique are proposed for test case generation?

The automatic generation of test cases is a fundamental feature for most of the approaches
found in literature. Only 14 out of 131 contributions are based on manually written test
cases: in these cases, the automation is limited to test case execution or evaluation.

In the approaches presented in 69 of the 131 considered papers, the test case generation
is obtained with model-based techniques. These techniques are based on high-level models
(i.e., behavioral models such as sequence diagrams, activity diagrams, GUI trees, event flow
graphs, finite state machines) or low-level models (i.e., models directly related to the code
of the applications under test, such as control flow graphs or call graphs). In addition, in 29
papers, models are automatically generated during the testing process itself (they are usually
called active learning techniques; Hao et al. 2015).

In 21 other contributions, test cases have been generated by transforming existing user
sessions in executable test cases as shown by the answer to the previous research question.

In only 2 articles, test cases have been obtained by mutating existing test cases (Adamsen
et al. 2015; Amalfitano et al. 2013a). Both Adamsen et al. (2015) and Amalfitano et al.
(2013a) have injected specific sequences of events in existing test cases reproducing, for
example, the closing and restart of the application or the loss of the Internet connection and
to test the robustness of the application under test with respect to these events.

In 22 cases, random techniques support mobile application testing. Both uniform random
techniques (for example in Choi et al. (2013), Machiry et al. (2013), Hu et al. (2014), and
Amalfitano et al. (2015c)) and smarter random techniques (for example in Liu et al. (2010a),
Hu and Neamtiu (2011a), Machiry et al. (2013), andWen et al. (2015)) have been considered
for test case generation.

A recent trend appears, the proposal of search-based testing techniques, usually based on
genetic algorithms: in this study, we have found five contributions since 2014 (Mahmood
et al. 2014; Zhu et al. 2015; Amalfitano et al. 2015a; Mao et al. 2016; Su 2016).

A summary of the techniques used for test case generation is shown in the histogram
reported in Fig. 4.

4.5 RQ 2.3What kinds of test oracles are considered?

As regards the oracle definition, it is generally considered the most difficult phase of the
testing process to be automated (Barr et al. 2015). In 66 of the considered papers, no
approaches at all for automatic oracle definition and evaluation have been proposed. In addi-
tion, in 48 of the remaining approaches, the detection of crashes or exceptions represents
the unique implicit way to evaluate the result of the executed test cases.

More specific test oracles have been proposed in few papers. In eight papers, models of
the behavior of the application are available from application design or via reverse engi-
neering, and an abstraction of the state of the GUI of the application under test has been
proposed. In these cases, it is possible to define the expected GUI state at the end of the
execution of each test case. The result of the test case is given by the comparison between
the expected GUI state and the state of the GUI that has been obtained (Costa et al. 2014;
Hao et al. 2014; Hu et al. 2014; Hu et al. 2015; Salva and Laurencot 2015; Joorabchi et al.
2016; Baek and Bae 2016; Hu et al. 2016). In particular, this approach has been used for the
evaluation of the fidelity of the replayed traces in capture and replay techniques (Hu et al.
2014, 2015).

In five contributions, the result of the test is obtained by automatically comparing the
screenshot of the current GUI with the expected one that usually has been obtained by

168 Software Quality Journal (2019) 27:149–201

Fig. 4 Types of techniques for test case generation proposed in the selected papers

previous executions of the same application (in Liu et al. (2010b), Lin et al. (2014), Mendez-
Porras et al. (2015a), Packevicius et al. (2015), and Tang et al. (2016)), whereas seven other
articles propose the evaluation of invariants, such as race conditions (Hsiao et al. 2014;
Maiya et al. 2014; Bielik et al. 2015) or other specific invariants (Hao et al. 2014; Shan
et al. 2016; Li et al. 2017). In particular, in Zaeem et al. (2014), invariants retrieved from
the analysis of common bugs of the applications have been considered as oracles.

Finally, in five papers, manually written assertions have been used to evaluate the pro-
posed testing tool (Fazzini et al. 2017; Liu et al. 2014a; She et al. 2009; Jiang et al. 2016;
Wu et al. 2016).

Figure 5 shows the distribution of papers with respect to the types of oracles.

4.6 RQ 2.4What kinds of test artifacts are generated?

As regards the explicit outputs of the proposed testing techniques and tools, 75 papers pro-
pose techniques that generate executable test cases. In many cases, the tests can be executed
only by means of the same tool able to generate them. In some cases, the proposed tools
are able to export the generated test cases so that they can be executed outside the context
of the test generation process (for example, in the form of JUnit test cases). For example,
Android Ripper (Amalfitano et al. 2012b) is able to generate executable JUnit test cases,
while RERAN (Gomez et al. 2013) is able to reproduce the same user sessions that have
been captured, and Sapienz (Mao et al. 2016) is able to generate sequence of events by
means of which it is possible to derive test cases.

In most of the approaches (112 out of 131 papers), a test execution report is provided
as output, providing information about crashes, code coverage, or just an execution log. In
addition, as shown by RQ 2.2, in 27 papers, models are automatically built during the testing
activities and can be considered as an additional output that can be useful to comprehend

Software Quality Journal (2019) 27:149–201 169

Fig. 5 Types of oracles considered in the selected papers

the behavior of the tested application. Finally, in 15 cases, the proposed techniques are able
to produce input values that can be used to automatically generate test cases.

4.7 RQ 2.5What are the characteristics of the proposed testing tools?

Most of the selected contributions are not strictly theoretical or methodological, but they
include the presentation of tools implementing the proposed testing techniques. In fact, 107
different tools have been presented in the selected papers, but only some of these tools
are freely available. The source code of 22 of these tools is available, usually in the con-
text of github projects, whereas six of these tools are available only in executable form or
in demo version (i.e., Agrippin Amalfitano et al. (2015a), the executable only versions of
Android Ripper used in Amalfitano et al. 2012a, b, EventRacer (Bielik et al. 2015), Trim-
Droid (Mirzaei et al. 2016b), and BARISTA (Fazzini et al. 2017)). In addition, three tools
are commercially available (i.e., Testdroid (Kaasila et al. 2012), Caiipa (Liang et al. 2014),
and MZoltar (Machado et al. 2013) for which a limited demo version is also available): they
have borne as academic prototypes and they have evolved in commercial tools.

It is interesting to see that all the open-source tools presented in the selected papers
have been developed for the Android platform, whereas Caiipa is the unique example of

170 Software Quality Journal (2019) 27:149–201

a commercial tool presented in the selected papers and developed for the Windows Phone
framework.

The test generation techniques adopted by the 22 open-source tools have been classi-
fied by distinguishing between static analysis techniques (where tests are generated on the
basis of information such as source code or high-level models of the application under test),
dynamic analysis techniques (where tests are generated and executed on-the-fly by analyz-
ing the application during its execution), and hybrid techniques (that combine static and
dynamic analyses). We found six tools based on static analysis techniques: ICCMATT (Jha
et al. 2015) and DroidFuzzer (Ye et al. 2013), that analyze the source code of the appli-
cation under test including the Android manifest, BBoxTester (Zhauniarovich et al. 2015),
and CRAXDroid (Yeh et al. 2014) that analyze the bytecode of the application, Magi[c]
(Nguyen et al. 2012) that analyzes a statically designed FSM model of the application, and
THOR (Adamsen et al. 2015), that mutates the source code of existing test cases.

Thirteen other tools are based on dynamic analysis techniques. Most of them exploit
systematic model learning and/or random techniques for the automatic exploration of the
GUI of the application under test (e.g., Android Ripper (Amalfitano et al. 2012b), A3E
(Azim and Neamtiu 2013), SwiftHand (Choi et al. 2013), Dynodroid (Machiry et al. 2013),
SlumDroid (Imparato 2015), DroidMate (Jamrozik and Zeller 2016), MCrawlT (Salva and
Laurencot 2015), PUMA (Hao et al. 2014), SmartMonkey (Sun et al. 2016), DroidBot (Li
et al. 2017), and DroidRacer (Maiya et al. 2014)). Finally, RERAN (Gomez et al. 2013) and
VALERA (Hu et al. 2015) are capture and replay tools able to automatically generate and
execute test cases corresponding to the observed executions of the application under test.

The remaining three tools combine static and dynamic analysis techniques. In fact,
Sapienz (Mao et al. 2016) combines information obtained by static analysis and dynamic
exploration techniques to implement a search-based exploration strategy. KREFinder and
KREReproducer (Shan et al. 2016) respectively exploits a static analysis technique to find
the resume and restart event handlers, and a dynamic exploration technique to test the
behavior of the application under test with respect to the execution of these events. Finally,
JPF-Android (van der Merwe et al. 2012) exploits static analysis to model an Android appli-
cation in order to dynamically test it by adopting a Java PathFinder extension in the context
of a Java Virtual Machine.

Not all these tools are currently maintained: 14 out of 22 have not been updated since
2016. The strict dependence between the tools and the rapidly evolving Android environ-
ment makes very hard and time consuming the maintenance of these projects. Choudhary
et al. (2015) have performed a comparative experiment of the performance of several of
these tools by executing them in the same execution environment. They have reported about
their difficulties in adapting the tools to a common target execution environment. Most of
the tools have been implemented partially or totally in Java in order to interact with the
source code of the application under test and/or with the Android JUnit test environment.
Some tools (in particular the ones interacting at low level with the Android framework) have
been implemented by partially or totally using other languages such as Python (Ye et al.
2013; Zhauniarovich et al. 2015; Li et al. 2017; Maiya et al. 2014; Mao et al. 2016; Sun
et al. 2016), Scala (Choi et al. 2013), Ruby (Azim and Neamtiu 2013), Kotlin (Jamrozik and
Zeller 2016), C (Gomez et al. 2013), C++ (Hu et al. 2015), and Javascript (Adamsen et al.
2015).

Table 5 reports a summary of the characteristics of the 22 open-source tools, the type of
the adopted test case generation technique, the URLs at which they are currently available,
and the date of their last update.

Software Quality Journal (2019) 27:149–201 171

Table 5 Characteristics of open-source testing tools

Tool name Tool description

A3E (Azim and Neamtiu 2013) It is a tool able to dynamically execute user events on the
application under test by performing depth first or targeted
exploration strategies on dynamically reconstructed activity
transition graphs. It is able to measure the achieved coverage in
terms of executed activities and methods. It is able to generate
executable sequence of events.

Technique Type: Dynamic analysis

URL: https://github.com/tanzirul/a3e

Last updated: September 15, 2016

Android Ripper (Amalfitano et al. 2012b) It is an active learning tool able to generate test cases based
on the exploration of a dynamically built GUI model of the
application under test. It supports different exploration strate-
gies including random and systematic strategies and is able to
generate reusable test cases. It has been evaluated in terms of
achieved code coverage and number of found crashes and has
been used, too, to compare the performance of different testing
strategies (Amalfitano et al. 2017).

Technique Type: Dynamic analysis

URL: https://github.com/reverse-unina/AndroidRipper

Last updated: December 28, 2017

BBox Tester (Zhauniarovich et al. 2015) It is a tool able to automatically generate test cases by statically
analyzing the bytecode of the application under test. The effec-
tiveness of the generated test cases can be measured in terms of
code coverage by means of Emma.

Technique Type: Static analysis

URL: https://github.com/zyrikby/BBoxTester

Last updated: June 11, 2016

CRAX Droid (Yeh et al. 2014) It is a tool able to generate test cases on the basis of the sym-
bolic execution of the bytecode of the Android applications
under test. Its effectiveness has been evaluated in terms of
crashes found.

Technique Type: Static analysis

URL: https://github.com/Lance0312/craxdroid

Last updated: May 1, 2014

Droid Fuzzer (Ye et al. 2013) It is a tool able to statically generate fuzz test cases on the
Android application under test on the basis of information
retrieved from the Android Manifest file. The effectiveness
of the test cases is evaluated by detecting framework and
application crashes.

Technique Type: Static analysis

URL: https://github.com/manfiS/droidfuzzer

Last updated: February 13, 2016

Droid Mate (Jamrozik and Zeller 2016) It is a tool able to dynamically generate and execute user events
on the application under test on the basis of the set of executable
events retrieved by the UIAutomator library.

Technique Type: Dynamic analysis

URL: https://github.com/konrad-jamrozik/droidmate

Last updated: August 6, 2017

https://github.com/tanzirul/a3e
https://github.com/reverse-unina/AndroidRipper
https://github.com/zyrikby/BBoxTester
https://github.com/Lance0312/craxdroid
https://github.com/manfiS/droidfuzzer
https://github.com/konrad-jamrozik/droidmate

172 Software Quality Journal (2019) 27:149–201

Table 5 (continued)

DroidBot (Li et al. 2017) It is a tool able to automatically generate and execute test cases
on the basis of a state-transition model generated on the fly and
on a depth-first exploration strategy.

Technique Type: Dynamic analysis

URL: https://github.com/honeynet/droidbot

Last updated: March 22, 2018

Droid Racer (Maiya et al. 2014) It is a tool able to dynamically generate and execute test cases
aimed at revealing failures due to data races in the application
under test.

Technique Type: Dynamic analysis

URL: http://www.iisc-seal.net/droidracer

Last updated: May 13, 2017

Dynodroid (Machiry et al. 2013) It is a tool able to dynamically explore the application under test
by means of uniform random, smart random, or active learn-
ing strategies. It is able to dynamically execute both user and
system events. It has been evaluated in terms of achieved code
coverage and crashes found.

Technique Type: Dynamic analysis

URL: https://bitbucket.org/pag-lab/dynodroid

Last updated: November 14, 2017

ICCMATT (Jha et al. 2015) It is a tool able to automatically generate test cases on the
basis of Intercomponent Communication models built by stati-
cally analyzing the source code and the manifest of the Android
application under test.

Technique Type: Static analysis

URL: https://github.com/HiFromAjay/ICCMATT

Last updated: September 28th, 2016

JPF-Android (van der Merwe et al. 2012) It is a tool able to dynamically test an Android application
by executing it in the context of a Java Virtual Machine by
exploiting the Java Path Finder tool.

Technique Type: Static and dynamic Analyses

URL: http://heila.bitbucket.org/jpf-android/

Last updated: November 16, 2017

KREFinder (Shan et al. 2016) It is a tool able to analyze the bytecode of the application under
test in order to find the code of the resume and restart event
handlers and the data involved in the execution of these meth-
ods. The tool is able to dynamically test an Android application
against failures subsequent to sequences of these events.

Technique Type: Static and dynamic Analyses

URL: https://github.com/krefinder/krefinder-source-code

Last updated: July 19, 2016

Magi[c] (Nguyen et al. 2012) It is a tool able to generate test cases on the basis of a statically
defined FSM model representing the behavior of the Android
application under test, by combining model-based and combi-
natorial testing techniques. It is able to evaluate the achieved
code coverage and the corresponding ability in finding model
violations.

Technique Type: Static analysis

URL: http://selab.fbk.eu/magic/

Last updated: February 16, 2012

https://github.com/honeynet/droidbot
http://www.iisc-seal.net/droidracer
https://bitbucket.org/pag-lab/dynodroid
https://github.com/HiFromAjay/ICCMATT
http://heila.bitbucket.org/jpf-android/
https://github.com/krefinder/krefinder-source-code
http://selab.fbk.eu/magic/

Software Quality Journal (2019) 27:149–201 173

Table 5 (continued)

MCrawlT (Salva and Laurencot 2015) It is a tool able to perform different dynamic exploration strate-
gies on the Android application under test by applying a technique
based on the ant colony optimization algorithm. It is able to
evaluate the achieved code coverage and the failure finding ability.

Technique Type: Dynamic analysis

URL: https://github.com/statops/MCrawlerT

Last updated: November 27, 2014

PUMA (Hao et al. 2014) It is a framework by means of which many different dynamic
testing strategies expressed with the Pumascript language can be
executed. In particular, it supports random testing, accessibility
testing, security testing, and dynamic analysis of the Android
application under test.

Technique Type: Dynamic analysis
URL: https://github.com/USC-NSL/PUMA
Last updated: September 2, 2014

RERAN (Gomez et al. 2013) It is a capture and replay tool able to automatically generate
replayable sequence of events on the basis of the observation
of the execution of the Android application under test on a real
device.

Technique Type: Dynamic analysis

URL: https://github.com/lorenzogomez/RERAN

Last updated: August 7, 2013

Sapienz (Mao et al. 2016) It is a tool able to generate a set of executable test cases on
an Android application under test, guided by a multi-objective
search-based testing strategy aimed at optimizing code coverage,
failures finding capability and test sequences length. It combines
random and systematic strategies for test case generation.

Technique Type: Static and dynamic analyses

URL: http://github.com/Rhapsod/sapienz

Last updated: August 27, 2017

Slum Droid (Imparato 2015) It is a tool able to extend the Android Ripper tool by considering
different strategies of setting of the input field values during the
exploration of the application under test.

Technique Type: Dynamic analyses[-.5pt]

URL: https://github.com/slumdroid

Last updated: October 10, 2016

Smart Monkey (Sun et al. 2016) It is a tool able to extend and improve Monkey by applying
techniques of visual saliency detection to the screenshots of the
Android application under test, in order to identify operable parts
of the GUI and to execute randomly generated events on them.

Technique Type: Dynamic analysis

URL: https://github.com/sunchenglong/smartmonkey

Last updated: March 17, 2016

Swift Hand (Choi et al. 2013) It is a tool able to efficiently explore the GUI of the Android
application under test by means of an optimized active learning
L* strategy aiming at the minimization of application restarts. The
effectiveness of the executed exploration has been evaluated in
terms of the achieved branch coverage.

Technique Type: Dynamic analysis

URL: https://github.com/wtchoi/SwiftHand

Last updated: January 13, 2015

https://github.com/statops/MCrawlerT
https://github.com/USC-NSL/PUMA
https://github.com/lorenzogomez/RERAN
http://github.com/Rhapsod/sapienz
https://github.com/slumdroid
https://github.com/sunchenglong/smartmonkey
https://github.com/wtchoi/SwiftHand

174 Software Quality Journal (2019) 27:149–201

Table 5 (continued)

THOR (Adamsen et al. 2015) It is a tool able to inject in existing JUnit test cases sequences of neu-
tral events (i.e., events that should not cause variations in the applications’
behavior). By executing the generated test cases, it is possible to evaluate
the robustness of the Android application under test by observing if the
GUIs remain unchanged after the execution of each sequence of neutral
events.

Technique Type: Static analysis

URL: https://github.com/cs-au-dk/thor

Last updated: May 17, 2017

VALERA (Hu et al. 2015) It is a tool supporting capture and replay of user and system events
that improves the RERAN tool in terms of fidelity of representation and
replication of complex events.

Technique Type: Dynamic analysis

URL: http://spruce.cs.ucr.edu/valera/tutorial.html

Last updated: September 29, 2016

These tools are usually based on existing libraries and other tools. The most commonly
used resource is the Robotium11 library supporting the writing of JUnit test cases, that
is used by 21 tools. Other similar libraries are UIAutomator12 (used in 11 contributions),
HierarchyViewer13 (used in two contributions), and Espresso14 (used just in Tang et al.
2016). Espresso is the library recommended by Google for the development of test cases
but it is not yet considered by other academic studies, probably for its recent diffusion (it
is available and integrated with Android Studio just since 2014). The Emma library, that
is available in all the Android framework versions, has been used in 14 different contribu-
tions to measure code coverage. Other supporting tools often used and that are provided by
the Android framework are Monkey15 (used in nine contributions) and chimpchat, that is
included in MonkeyRunner16 (used in five contributions) that are both able to generate and
send low-level random events to an Android application. Java Path Finder17, that is a frame-
work designed to analyze Java applications, has been used in five contributions to perform
symbolic analysis of the Java source code of Android applications.

4.8 RQ 2.6Whichmobile frameworks are the targets of the proposed techniques
and tools?

On the basis of the collected data, the mobile framework object of most of the existing stud-
ies in literature is the Android framework. In fact, 121 papers out of 131 propose techniques
suitable for some Android framework versions.

11https://github.com/RobotiumTech/robotium
12https://google.github.io/android-testing-support-library/docs/uiautomator/
13https://developer.android.com/studio/profile/hierarchy-viewer.html
14https://google.github.io/android-testing-support-library/docs/espresso/
15https://developer.android.com/studio/test/monkey.html
16https://developer.android.com/studio/test/monkeyrunner/index.html
17http://javapathfinder.sourceforge.net/

https://github.com/cs-au-dk/thor
http://spruce.cs.ucr.edu/valera/tutorial.html
https://github.com/RobotiumTech/robotium
https://google.github.io/android-testing-support-library/docs/uiautomator/
https://developer.android.com/studio/profile/hierarchy-viewer.html
https://google.github.io/android-testing-support-library/docs/espresso/
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkeyrunner/index.html
http://javapathfinder.sourceforge.net/

Software Quality Journal (2019) 27:149–201 175

The iOS-based systems are rarely objects of specific studies in literature, probably due
to their proprietary nature, that makes it difficult for their diffusion in the academic com-
munity. In fact, we found in this study only a single paper proposing a testing technique
applied to iOS applications (the recent one of Liu et al. 2017) and other four papers that
propose techniques and tools that are both applicable to iOS and Android applications (Li
et al. 2014a; Joorabchi et al. 2016; Gudmundsson et al. 2016; Zun et al. 2016). In addition,
just three papers are focused on the less diffused Windows Phone framework (Liang et al.
2014; Ravindranath et al. 2014; Mayan et al. 2015). Six other papers are based on Sym-
bian or J2ME (Delamaro et al. 2006; Jiang et al. 2007; She et al. 2009; Liu et al. 2010b;
Nagowah and Sowamber 2012; Dev et al. 2012), but they have all been published before
2013 since this framework is clearly in a declining phase. Figure 6 shows the prevalence of
Android-based contributions with respect to the ones based on the other platforms.

4.9 RQ 2.7 Are the proposed techniques and tools usable on emulators or real
devices?

Unfortunately, the details given in the considered papers are not always sufficient to provide
an answer to this question. In some cases, in fact, no information at all has been provided,
while in some other cases, this information can only be deduced by observing the descrip-
tion of the experiments reported in the evaluation section. On the basis of the available
information, it appears that in 65 contributions the testing approach can be executed on emu-
lators, while in 40 cases it can be executed on real devices and in the remaining 26 cases
it can be executed on both real devices and emulators. In particular, the use of real devices
enables some specific analysis involving different devices (e.g., Android TVs in Jiang et al.
2016), the verification of timing problems in capture and replay approaches (Gomez et al.
2013; Gomez et al. 2016; Ravindranath et al. 2014), and the detection of critical races (Hsiao
et al. 2014; Maiya et al. 2014).

Fig. 6 Distribution of papers according to the targeted mobile frameworks

176 Software Quality Journal (2019) 27:149–201

4.10 RQ 3.1What are the characteristics of the performed evaluation studies?

In 45 papers out of 131, the validity of the proposed techniques and tools have been shown
only on the basis of a demonstration of their feasibility obtained by showing examples of
their use.

In the remaining 86 papers, experimental evaluations of the proposed techniques and
tools have been carried out, and specific effectiveness metrics have been measured. The
more frequently considered effectiveness metric is the number of failures that have been
found (in particular crashes, exceptions or any other failure revealed by the considered ora-
cles): these metrics have been evaluated in 54 different papers. Code coverage metrics (such
as LOC coverage, method coverage, branch coverage, activity coverage) have been mea-
sured, instead, in 44 different papers. In 18 of these papers, both these evaluations have been
carried out. More rarely, techniques and tools have been evaluated in terms of their ability
in finding injected faults (in six papers).

Figure 7 shows the distribution of papers according to the different considered evaluation
methods.

4.11 RQ 3.2What are the characteristics of the sets of applications objects of the
evaluation experiments?

Most of the evaluation studies reported in the selected papers involve toy examples or real
mobile applications. In only nine cases, the papers provide only a qualitative evaluation
of the proposed techniques in terms of a description of the offered features, without any
example or case study (Hesenius et al. 2014; Kaasila et al. 2012; Mendez-Porras et al.
2015a; Prathibhan et al. 2014; Reddy et al. 2016; Mirzaei et al. 2012; van der Merwe et al.
2012; Akanksha Ashok Magare 2016; Dutia et al. 2015).

In 30 of the remaining papers, the evaluation of the proposed techniques or tools is based
only on toy examples, i.e., applications realized and proposed by the authors of the paper,
while in all the other articles, case studies involving real mobile applications have been pre-
sented. In 13 papers, just a case study involving a simple application is presented, while in

Fig. 7 Distribution of papers according to the considered evaluation methods

Software Quality Journal (2019) 27:149–201 177

Fig. 8 Distribution of papers according to the number of object applications

other 44 papers, several applications (from 2 to 10) have been used to assess the effective-
ness of the proposed contribution. In 25 of the remaining cases, a more significant evaluation
is presented, based on a number of applications between 11 and 100. Finally, in 10 cases,
massive experiments involving more than 100 applications have been presented.

Figure 8 shows the distribution of the papers with respect to the number of application
object of the evaluation of the proposed techniques and tools.

The tools experimented on more than 100 applications are BBoxTester (Zhauniarovich
et al. 2015), EventRacer (Bielik et al. 2015), PUMA (Hao et al. 2014), DroidMate (Jamrozik
and Zeller 2016), Caiipa (Liang et al. 2014), JarJarBinks (Maji et al. 2012), Sapienz (Mao
et al. 2016), SIG-Droid (Mirzaei and Heydarnoori 2015), Vanarsena (Ravindranath et al.
2014), and KREfinder (Shan et al. 2016). The experiments involving the largest quantity
of applications are all related to black box testing techniques searching for crashes or other
invariant oracles, since they can be carried out in a fully automated testing process.

Many of the experiments involving a number of applications between 10 and 100 are
aimed at the evaluation of white box testing techniques. For example, the model learning
techniques provided by Dynodroid (Machiry et al. 2013), MCrawlT (Salva and Laurencot
2015), and Crashscope (Moran K et al. 2016) have been tested, respectively, on 50, 32, and
20 applications.

The applications under test selected for the experiments are usually open-source real
applications (in 49 cases), often downloaded from F-Droid18. In 32 cases, real applica-
tions published on an official market (usually Google Play19 market for Android apps)
have been considered. Open-source applications from F-Droid have generally been used for
experiments involving source code coverage measures, while applications downloaded from
Google Play have generally been used for black box testing approaches.

In some cases (in particular, in the experiments involving open-source applications), it is
possible to estimate the complexity of the tested applications since the authors have reported
some size metrics (usually the number of LOCs of the applications under test). We have
found this information on 28 papers and we can observe that in only two papers very small

18https://f-droid.org/
19https://play.google.com/store

https://f-droid.org/
https://play.google.com/store

178 Software Quality Journal (2019) 27:149–201

applications (less than 1 kLOC in average) have been considered, while in 17 cases the
experiments involved relatively small applications (between 1 and 10 kLOC in average).
Only eight experiments involved medium-sized applications having more than 10 kLOC in
average.

4.12 RQ 3.3What are the characteristics of the performed comparative studies?

Experiments involving the comparison between the effectiveness of the proposed
approaches with the one of other existing tools represent a convincing way to evaluate the
improvements of the considered approach with respect to the state of the art. Our study
shows that they are not very common in this field.

In fact, only in 39 papers out of 131 is there at least a comparative study of the
performance of the proposed testing approach.

The tool that is mostly used as baseline for comparisons is the Monkey tool (available
in the Android Framework) that can be executed in a completely automatic manner, almost
without any configuration effort. It has been considered as a term of comparison in 26 dif-
ferent articles. Other tools considered for comparative evaluations are Dynodroid (used as
term of comparison in 10 papers), Android Ripper (in seven papers), and A3E and Swift-
hand (in three papers). In only four papers, comparisons between the effectiveness of the
proposed testing tool and the one of test cases designed by human testers (students or the
authors of the paper) have been presented.

Different attributes have been considered to compare the performance of the proposed
approach with other existing ones: in particular, failure detection capability has been consid-
ered in 15 papers while code coverage capability has been used in 23 other papers. Simple
comparisons in terms of offered features have been performed in 14 papers. In particular,
in eight papers (Zhauniarovich et al. 2015; Zhu et al. 2015; Machiry et al. 2013; Mao et al.
2016; Moran K et al. 2016; Nguyen et al. 2012; Qin et al. 2016a; Wu et al. 2016), com-
parative experiments have been carried out, where failure detection capability and achieved
code coverage have been both considered.

The papers presenting the comparative experiments involving the largest number of dif-
ferent tools are the ones of Salva and Laurencot (2015) and of Moran K et al. (2016). In the
paper of Salva and Laurencot, the performance of the proposed MCrawlT tool is compared
to the ones of Monkey, Orbit, Guitar, AndroidRipper, SwiftHand, and Dynodroid both in
terms of offered features, achieved code coverage, and failure detection capability. In the
paper of Moran et al., instead, there is a comparative study of the features offered by 20 dif-
ferent tools and an experiment for the comparison of the failure detection capability of the
proposed CrashScope tool with the ones of five other different tools (A3E, Android Ripper,
Dynodroid, PUMA, Monkey). However, other interesting comparative studies can be found
in secondary works, such as in the recent works of Choudhary et al. (2015) and Amalfitano
et al. (2015b, 2017).

4.13 RQ 4.1What is the number of published articles per year?

The evaluation of the article count per year has confirmed the relative youth of the mobile
testing automation field and a growing interest in its findings. In fact, as shown in Fig. 9,
there are very few papers before 2011. These papers (Delamaro et al. 2006; Jiang et al. 2007;
She et al. 2009; Liu et al. 2010b) are all about J2ME or Symbian, while the first paper based
on Android applications is from the same authors of one of the papers on Symbian (Liu et al.
2010a). Since 2011, probably due to the great success and diffusion of the Android devices,

Software Quality Journal (2019) 27:149–201 179

Fig. 9 Distribution of the selected papers per year and per used frameworks

there has been a rapid growth of the number of articles based on Android application testing
(and in few cases on testing of Windows mobile phone applications or iOS applications),
that has reached a peak in 2015 with 36 different papers. In 2017, eight papers have already
been published at the time of this study.

4.14 RQ 4.2Which are the venues having the higher article counts?

The growing interest of the scientific community for this field is also witnessed by the num-
ber of papers published and presented on general purpose, eminent conferences, such as
the International Conference on Software Engineering (ICSE), hosting nine mobile testing
automation papers in the last years six and the ACM Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA) that has hosted five articles. Several other
articles have been presented in other general software engineering conferences: four at the
Symposium on the Foundations of Software Engineering (FSE), four at the Asia-Pacific
Software Engineering Conference (APSEC), three at the Automated Software Engineering
Conference (ASE), three at the International Computer Software and Applications Confer-
ence (COMPSAC), three at the ACM Symposium on Applied Computing (SAC), two at the
Conference on Programming Language Design and Implementation (PLDI), and two at the
Conference on Software Engineering and Knowledge Engineering (SEKE).

The two specific communities hosting mobile testing automation papers are the testing
community and the mobile computing community. In the testing community, we have found
six papers presented at the Workshop on Automation of Software Test (AST), five papers
at the International Symposium on Software Testing and Analysis (ISSTA), five at the
International Conference on Software Testing, Verification and Validation (ICST), three at
the International Workshop on TESTing Techniques and Experimentation Benchmarks for
Event-Driven Software (TESTBEDS), and two at the International Symposium on Software
Reliability Engineering (ISSRE). In venues related to the mobile computing community,

180 Software Quality Journal (2019) 27:149–201

instead, there are, among the others, six papers presented at the ACM International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft), two papers at the
International Conference on Mobile Systems, Applications, and Services (Mobisys), two
papers at the International Workshop on Mobile Development (Mobile!), and two papers
at the International Workshop on Software Development Lifecycle for Mobile (DeMobile).
Figure 10 shows in the form of histogram the venues hosting at least two of the papers
included in this study.

Finally, in the last years, some of the more influential journals have published researches
on mobile testing automation (such as two papers in ACM Software Engineering Notes
(van der Merwe et al. 2012; Mirzaei et al. 2012): one paper in the Journal of Systems
and Software (Qin et al. 2016a), in IEEE Software (Amalfitano et al. 2015d), in the IEEE
Transactions on Software Engineering (Lin et al. 2014), and in the IEEE Transactions on
Reliability (Jiang et al. 2016). In addition, two secondary papers related to mobile testing
automation have been published in the Journal of Systems and Software (Zein et al. 2016;
Amalfitano et al. 2017).

4.15 RQ 4.3Which are themore influential articles in terms of citation counts?

An approximate analysis of the influence of the publications can be carried out by counting
the overall number of articles citing the ones considered in this systematic mapping study.
With reference to the count values provided by the Scopus search engine (that appears to
be the more exhaustive search engine considered in this study), it is possible to observe that
the most cited work is the one of Amalfitano et al. (2012b) presented at the IEEE/ACM
International Conference on Automated Software Engineering (ASE) in 2012, having 156
citations up to September 2017. Other contributions of some of these authors are in the set
of the most cited papers of Amalfitano et al. (2011, 2015d). Other works with more than 100
citations are the ones of Machiry et al. (141 citations), Anand et al. (2012) (112), Hu and

Fig. 10 Venues hosting two or more of the selected papers

Software Quality Journal (2019) 27:149–201 181

Neamtiu (104), and Gomez et al. (101). Figure 11 shows the most cited papers considered
in this study.

It is interesting to note that almost all the most cited contributions have a practical rel-
evance, since they present open-source testing tools, that sometimes have been used as
benchmarks in citing papers.

4.16 RQ 4.4Who are the authors with the higher number of articles?

The authors having the highest number of papers are currently Amalfitano, Fasolino, and
Tramontana, who work in the same group at the University of Naples and are authors of
eight different papers; Neamtiu (seven papers); and Linares-Vazquez (5 papers). It is inter-
esting to note that only a very limited number of interchanges of authors between different
groups have been observed.

4.17 RQ 4.5Which countries have producedmore articles?

The analysis of the countries of affiliation of the authors of the selected papers shows how
this field of study is diffused worldwide, with contributions from all the continents. The
countries with the higher number of contributions are the USA (38), China (26), Italy (10),
and India (9). Figure 12 shows a world map where countries having more publications are
filled in with darker colors. It is possible to observe, too, that only 17 works have been
written by authors of at least two different countries of affiliation.

4.18 RQ 4.6Which are the author affiliations?

A detailed analysis of the affiliations of the authors of the selected papers has revealed that
only few articles result from collaborations between authors from industry and authors from
academia (17 papers), whereas the most part of the articles (115 papers) have been written

Fig. 11 The most cited papers (up to September 2017)

182 Software Quality Journal (2019) 27:149–201

Fig. 12 Map of the country of affiliation of the authors of the selected papers

only by authors from academia. No papers have been written only by authors from indus-
try. The most active groups in this fields are the ones of the University of Naples Federico
II (8 papers), of the College of William and Mary in the USA (6 papers), of the Nanjing
University in China (6 papers), of the University of California (5 papers), and of the George
Mason University (4 papers). As regards the industry, 3 papers are in collaboration with
Microsoft Research and other 3 in collaboration with Fujitsu laboratories. Figure 13 pro-
vides a geographical view of the distribution of the affiliation of the authors of the selected
papers where larger circles indicate the institutions from which larger numbers of papers
come from.

5 Threats to validity

Threats to the validity of a systematic mapping study are due to several possible aspects such
as the suitability of the categorization scheme, the recall and precision of study selection,
the accuracy of data extraction, and the correctness of the conclusions. In this section, we
will discuss the main threats to the validity of this study and the actions that have been taken
to mitigate them in coherence with the classification of threats adopted by Vahid Garousi in
some of its systematic mapping studies (e.g., in Garousi et al. 2013; Garousi and Mantyla
2016).

5.1 Threats to Internal validity

Threats to internal validity can be caused by the process adopted to select the articles
considered in this systematic mapping.

Software Quality Journal (2019) 27:149–201 183

Fig. 13 Geographical map of the affiliations of the author of the selected papers

A first threat is related to the capability of the designed queries in finding all the works
in literature describing techniques and tools supporting automation of functional testing of
mobile applications. To this purpose, the set of keywords considered in the queries has been
initially designed on the basis of the domain knowledge of the authors and of the similar
keywords used in the most similar studies in literature (in particular, the ones of Holl Holl
and Elberzhager (2016), Zein et al. (2016), Mendez-Porras et al. (2015b), and Sahinoglu
et al. (2015)). Queries resulting from several combinations of keywords have been for-
mulated taking into account the characteristics and the limitations imposed by the search
engines, too. In order to validate the proposed queries, they have been preliminary verified
with respect to a set of 55 publications that should surely be included in the systematic
mapping for their coherence with the topic of the study, as described in Section 3.2.

A second threat is related to the evaluation of the inclusion and exclusion criteria. To
this aim, inclusion and exclusion criteria have been expressed in order to be objectively
evaluated and to mitigate the risk of arbitrary judgements of the authors of the study. In
addition, each author labeled as “borderline” each paper for which he has some doubts about
its inclusion. The inclusion and the exclusion of these papers have been jointly discussed by
all the authors in order to have a shared decision.

5.2 Threats to construct validity

Threats to construct validity are related to the suitability of the proposed RQs and of the
attributes characterizing the categorization scheme. In order to limit this threat, the GQM
approach has been used to preserve the traceability between research goals, questions, and
metrics. The categorization scheme has been obtained in several steps. In the first step, a
set of attributes and possible values has been jointly designed by all the authors. During
the data extraction step, the authors have classified the papers with respect to the proposed
categorization scheme but feeling free to add other possible attributes and values that in

184 Software Quality Journal (2019) 27:149–201

their opinion better fit the characteristics of the analyzed papers with respect to the proposed
research questions. Finally, the authors have restructured the categorization scheme taking
into account the added attributes and values. With this process, we think that the risk that
relevant details of the analyzed papers have been neglected has been mitigated.

Another threat is related to possible inaccuracies of the extracted data. To mitigate this
threat, for each considered paper the authors have labeled as borderline all the attributes
for which they have some doubts about their values. The values assigned to these attributes
have been discussed and fixed after a final joint review involving all the authors.

In more detail, we have observed that some questions are more prone to be answered
inaccurately. As regards RQ 2.5, in order to know if each proposed tool is currently available
on the web, we have considered the URLs declared in the papers and we have verified if the
tool is actually available at that address. In addition, for the tools for which no URLs have
been reported in the paper, we have searched online, on the basis of the name of the tool, if
it is currently available. In this way, we have found that some tools that were not available
at the time of the publication of the paper are now online, whereas some other tools are
no more available at the indicated URLs. It is possible that some tools have changed their
names or have been merged in other tools or frameworks, so we have not been able to find
them. Of course, the list of available tools should be periodically updated in the online map.
As regards RQ 2.7, many papers do not explicitly indicate whether the proposed techniques
and tools are executable on real devices and/or emulators. In these cases, it was assumed
that they can be executed on both. In some other papers, the answer to this question has been
based on the experimental configuration declared in the evaluation section of the article.
The number of citations needed to answer RQ 4.3 has been measured considering only
Scopus, since it is the search engine providing the most complete view of the academic
literature, as confirmed by the preliminary validation of the search queries. To this aim, we
have discarded the measures provided by less inclusive search engines such as IEEExplore
and ACM and the ones provided by Google Scholar that take into account many sources
such as web sites, personal blogs, and other sources that are outside the scope of this study.

5.3 Threats to conclusion validity

In order to mitigate the possibility to give incorrect answers to the proposed research ques-
tions, we have formulated our conclusions only on the basis of the analysis of the extracted
data. The online availability of the extracted data makes it possible for other researchers
to independently validate the correctness of the conclusions. The spreadsheet with all the
extracted data can be freely downloaded and commented on by readers and the authors will
correct and update it periodically.

5.4 Threats to external validity

A first threat to external validity is related to its replicability. To avoid this threat, in this
paper all the details needed to make possible an independent replication of the study have
been reported.

Another threat is related to the generalization of the results of the study. The scope of this
study is limited to the academic community, whereas its validity in the different contexts
of software industry has not been evaluated. As regards the academic community, the com-
pleteness of the study is guaranteed by the set of considered search engines, which includes
all those commonly used by software engineering researchers and by similar systematic
mapping studies. On the other hand, the proposed strategy for study selection cannot be

Software Quality Journal (2019) 27:149–201 185

extended to the industrial context, where contributions may be found as blog posts, pages on
commercial web sites, presentations, videos, and other forms. As recently shown by Garousi
and Mantyla (2016), a multivocal literature review (MLR) could be the way to extend the
scope of an academic systematic mapping study to the industrial world.

6 Discussion

This section presents a possible approach for selecting papers from the systematic mapping
using a ranking metric and reports a discussion about emerging trends and current research
gaps in the field of automated functional testing of mobile apps.

6.1 Extracting relevant papers from the systematic mapping

As we already have reported in Section 1, Petersen et al. (2008, 2015) specify that a system-
atic mapping provides a classification scheme and structures a software engineering field
of interest. In order to show how different facets of this scheme can be combined to answer
more specific research questions, we now present a possible approach for article selection
that expresses the readers’ specific research interests.

To reach his specific objective, a reader will have to select a number of indicators from
the ones measured in the systematic mapping study that he considers as relevant for his
specific research interests. Therefore, the reader will have to design a scoring function to
assign each indicator a score. Each paper will be ranked by means of a ranking metric that
aggregates the single indicator scores. Finally, the reader will be able to select the papers
that reach specific score values.

For example, a reader may be interested in selecting only articles that are characterized
by a strong academic relevance in the literature and presenting techniques/tools having a
strong practical relevance. To this aim, he may select the six indicators reported below and
design the corresponding scoring functions for each of them.

A simple scoring function has been considered, that assigns each paper with a score of
0 or 1 for each indicator. An exception is represented by the indicator C4 for which the
scoring function assigns one of the three possible scores of 0, 0.5, and 1.

The six considered indicators and the corresponding scoring functions are the following:

C1 The editorial relevance of the journal in which the paper has been included or of
the conference at which the paper has been presented. Well-known ranking systems
have been considered, i.e., Scimago20 for journals and the Core Rankings Portal21 for
conferences. One point has been assigned to papers published on journals belonging
to the quartiles Q1 and Q2 according to Scimago and to papers presented at rank A or
A* conferences according to Core Ranking, zero points otherwise.

C2 The number of citations to the paper, already presented discussing RQ 4.3. One point
has been assigned to papers reaching at least the threshold of 50 citations, zero points
otherwise.

C3 The availability of the tool. One point has been assigned to papers describing publicly
available testing tools, zero points otherwise.

20http://www.scimagojr.com/index.php
21http://portal.core.edu.au/conf-ranks/

http://www.scimagojr.com/index.php
http://portal.core.edu.au/conf-ranks/

186 Software Quality Journal (2019) 27:149–201

C4 The approach used to evaluate the effectiveness of the proposed testing tech-
niques/tools. It has been checked if in the selected papers the effectiveness has been
evaluated by means of coverage metrics (e.g., code coverage or model coverage) or
by counting the number of failures/faults detected. 0.5 points have been assigned
to papers in which the effectiveness has been assessed only by means of coverage
measures, 0.5 points for papers reporting only the number of detected failures or
faults. One point has been assigned to papers presenting both these approaches, and
zero points to papers that do not provide any empirical validation of the proposed
technique/tool.

C5 The size of the application sample involved in the possible empirical study reported
in the paper. One point has been assigned to papers reporting the results of studies
involving at least 10 applications, zero points otherwise.

C6 The existence of empirical comparisons between the techniques/tools proposed in
the paper and the state of the art. One point has been assigned to papers reporting
techniques that have been empirically compared against the state of art (in the same
paper or in other selected papers), zero points otherwise.

The total score of each paper can range between 0 and 6: the greater the value, greater
the relevance of the paper.

Of course, we are aware that the selection of the indicators and the corresponding scoring
functions can influence the results of the evaluation and that the corresponding scoring
functions could produce different rankings of the analyzed papers. In particular, with respect
to the proposed ranking metric, recent papers are hindered by the number of citations while
older tools could be not involved in comparative studies due to the evolution of the mobile
execution environments. The scoring functions and the ranking metric have been directly
evaluated on the latter columns of the spreadsheet available at https://goo.gl/678T5P and can
be easily modified by the readers by modifying the formulas reported in that spreadsheet.

The 12 papers that have reached a score of at least 4 points are reported in Table 6, while
the complete ranking can be seen in the last column of the online spreadsheet.

According to the proposed ranking, the more relevant paper is the one of Machiry et al.
(2013) presenting the publicly available tool Dynodroid that have demonstrated its ability
in automatically testing Android applications with both model learning and random-based
techniques, reaching a good code coverage level and founding real failures. Dynodroid has
demonstrated its testing adequacy in an empirical study involving 50 applications, compar-
ing it with the one of Monkey. It has been often considered as a benchmark for the other
tools developed since 2013.

The second most relevant paper is the one of Azim and Neamtiu (2013) that presents
A3E, another tool able to automatically explore and test Android applications. A3E has
demonstrated its testing adequacy in terms of code coverage in an experiment involving
25 applications, and has been used as a benchmark by some other studies, that have often
obtained better performance. A3E has been publicly available since 2013.

Another very relevant paper is the one of Mao et al. (2016) that presents the Sapienz
tool, that is able to automatically explore and test Android applications outperforming Dyn-
odroid and some other tools available in 2016, both in terms of code coverage and capability
of finding real software failures. The improvements introduced by Sapienz are essentially
related to its effective combination of random, systematic, and search-based exploration
techniques. Sapienz is publicly available but it is no longer maintained (as stated on the tool
web site).

https://goo.gl/678T5P

Software Quality Journal (2019) 27:149–201 187

Table 6 Most relevant papers according to the proposed ranking metric

Paper title Total score

Dynodroid: An input generation system for android apps (Machiry et al. 2013) 6

Targeted and depth-first exploration for systematic testing of Android apps (Azim
and Neamtiu 2013)

5,5

Sapienz: Multi-objective automated testing for android applications (Ma et al. 2016) 5

Using GUI ripping for automated testing of android applications (Amalfitano et al.
2012b)

5

RERAN: Timing- and touch-sensitive record and replay for Android (Gomez et al.
2013)

4,5

Towards black box testing of android apps (Zhauniarovich et al. 2015) 4

PUMA: Programmable UI-automation for large-scale dynamic analysis of mobile apps
(Hao et al. 2014)

4

Combining Model-Based and Combinatorial Testing for Effective Test Case Generation
(Nguyen et al. 2012)

4

Automatic Text Input Generation for Mobile Testing (Zheng et al. 2017) 4

Automatically Discovering, Reporting and Reproducing Android Application Crashes
(Moran K et al. 2016)

4

Testing android apps via guided gesture event generation (Wu et al. 2016) 4

A Context-Aware Approach for Dynamic GUI Testing of Android Applications (Zhu
et al. 2015)

4

Another tool able to explore Android applications in a completely automatic way, with
different possible random and systematic techniques, is Android Ripper, presented by Amal-
fitano et al. in a series of papers since 2011 (Amalfitano et al. 2011, 2012a, b, 2015d). The
effectiveness of the tool in terms of achieved code coverage has been assessed by different
experiments involving Android applications, and this tool has been used as a benchmark
in many other different studies that have sometimes overtaken its performance. The tool is
publicly available and maintained at the time of this research.

The paper of Choi et al. (2013) presents Swifthand, another tool for the automatic explo-
ration and testing of Android applications that is publicly available and maintained up to
2015. It has been used, too, as benchmark by other studies (Mao et al. 2016).

Other very relevant papers present contributions related to the automation of more spe-
cific testing activities. The papers of Azim et al. have presented the tools RERAN and
VALERA (Gomez et al. 2013; Hu et al. 2015) that are record and replay tools able to extract
and analyze the sequences of events corresponding to user interactions with an Android
application and to generate executable test cases able to reproduce these interactions with a
high fidelity. The RERAN tool is currently publicly available and represents a very useful
tool to automatically generate test cases by user sessions.

The paper of Maiya et al. (2014), instead, presents DroidRacer, that is devoted to the
automatic research of concurrency bugs on Android applications. The DroidRacer tool has
been capable to find many real bugs and is currently available and maintained. The recent
paper of Shan et al. (2016) presents KREFinder, a tool able to find bugs due to incorrect
management of the resume and restart of Android applications on the basis of information
extracted via static analysis. KREFinder is publicly available and has been maintained up to
2016.

188 Software Quality Journal (2019) 27:149–201

Finally, the paper of Hao et al. (2014) has presented a tool called PUMA and a language
to configure it (PUMAScript) allowing the implementation of many different testing and
quality assessment tasks on Android applications. The tool is publicly available and cur-
rently maintained. It represents the most flexible presented tool since it has been applied to
several different testing activities.

In our knowledge, we can confirm the actual relevance of all the selected papers, so we
are confident about the usefulness of the proposed metric.

6.2 Focus on GUI-based testing approaches for Android applications

Almost all the works found by this study concern techniques and tools applicable to the
Android framework (about 92% of the total, as shown by the answer to RQ 2.6), with very
few works that focus on other popular frameworks like iOS. We think that the reason of this
polarization is related to the open-source nature of most of the Android tools, that makes
it possible for researchers the realization of free testing tools and their free sharing for
academic purposes.

In addition, most of the proposed approaches tackle the problem of testing by executing
events on the GUI of the application under test. The reason for which GUI-based testing
techniques are so popular may be due to the availability of libraries supporting GUI test-
ing of Android applications via JUnit test cases since its earlier versions (the fundamental
InstrumentationTestCase library has been released with the first version of Android in 2008).

The Android framework also provides tools and libraries allowing low-level interactions
with the applications under test, such as MonkeyRunner or other basic system tools such
as sendEvent and getEvent through which you can have access to the event stream of the
application under test. They have been rarely exploited by the tools found in literature: a
unique contribution in the literature is based on MonkeyRunner (Dutia et al. 2015), while
sendEvent and getEvent are the basis for the capture and replay tools RERAN (Gomez et al.
2013) and Valera (Hu et al. 2015).

The low-level testing tool that is more often used by the tools retrieved in this study
is Monkey that automatically generates random events and sends them to the device by
means of the sendEvent tool. No contributions at all have been found regarding testing
of native code components developed in C++ language using the Android NDK develop-
ment framework. Moreover, no specific testing approaches focused on the automatic testing
of components of Android applications such as services, broadcast receivers, and content
providers have been found in literature.

Other testing issues for which few contributions have been found in literature are context-
aware testing and concurrency testing.

Context-aware testing is an important issue for mobile applications due to the large avail-
ability of sources of contextual events on mobile devices (i.e., sensors, Internet connection,
background services, etc.). Nevertheless, of this evidence, only 12 of the considered papers
take into account these events (i.e., Amalfitano et al. 2013a; Gomez et al. 2013; Hu et al.
2015; Liang et al. 2014; Griebe and Gruhn et al. 2014, 2015; Adamsen et al. 2015; Song
et al. 2015; Hu and Neamtiu 2016; Qin et al. 2016a; Yu and Takada 2016; Arnatovich et al.
2016). On the other hand, the interest on this field appears to be growing since most of these
publications have been published in the last 2 years. The recent studies of de Sousa Santos
et al. (2017) and Matalonga et al. (2017) have further highlighted this lack in the current
literature.

Concurrency races represent the cause of many failures in mobile applications. In par-
ticular, although in the first Android versions the support to concurrency was quite limited,

Software Quality Journal (2019) 27:149–201 189

a large support to develop concurrent Android applications is now available to develop-
ers, including the support for threads and asynchronous tasks. On the other hand, very few
approaches devoted to the search of concurrency races from the tester point of view have
been found in this study (in particular, only 5 papers have been found (Hsiao et al. 2014;
Maiya et al. 2014; Tang et al. 2016; Hu et al. 2016; Li et al. 2016b)).

6.3 Scarce attention to fault modeling and finding

As observed by formulating an answer for the question RQ 3.1, the two more frequent test-
ing targets of the papers included in this study are code coverage and failure detection,
whereas bug finding and fixing received a very limited attention. In fact, the objective of
more than 50 approaches is to find failures of mobile applications, including crashes, unhan-
dled exceptions, concurrency races, and context-aware issues. On the other hand, only few
papers attempted to find them by characterizing application faults. Only a single approach
is focused on bug localization (the one of Machado et al. 2013) and only one other uses
historical bug information from bug repositories to identify new bugs (Mendez-Porras et al.
2015a).

6.4 Distance between industry and academia

In our systematic mapping, we have found a very limited number of contributions from
the industry or from collaborations between industry and academia. This can be due to the
strategies followed by many companies that do not publish freely available testing tools. For
example, the first three tools from academia that have been the basis for commercial projects
(i.e., Testdroid (Kaasila et al. 2012), Caiipa (Liang et al. 2014), and MZoltar (Machado
et al. 2013)) are not more freely available and no other academic publications regarding
their evolution can be found in literature. Another example is related to Google, that has
released several testing services for Android applications in the last years (e.g., the Espresso
library, the Firebase Test Lab cloud environment, the Android Robo Test tool for automatic
testing) but no academic publications demonstrating their effectiveness. On the other hand,
information about these tools can be found in other forms, such as tutorials on the Android
Developer web site22 or videos from the Google I/O events23.

In addition, in the academic papers, we have not found any validation experiment involv-
ing testing of real industrial applications during their development, but only experiments
involving black box testing of already published industrial applications (Zeng et al. 2016).
This observation confirms the conclusion highlighted in the systematic mapping of Zein
et al. (2016) about the absence of case studies on large commercial applications during their
life cycle. On the other hand, differently from other observations reported in Zein et al.
(2016), the answer to the research question RQ 3.2 shows how a relevant number of testing
techniques and tools have now been evaluated with respect to large sets of real applications
available on public markets.

6.5 Comparative studies and testing benchmarks

The analysis of both primary studies considered in the systematic mapping and sec-
ondary studies described in Section 2 has shown that there is a relative lack of papers

22https://developer.android.com/guide/index.html
23https://events.google.com/io2016/

https://developer.android.com/guide/index.html
https://events.google.com/io2016/

190 Software Quality Journal (2019) 27:149–201

addressing comparison experiments involving different techniques and tools for mobile
testing automation, but that this is an emerging topic.

Comparative experiments are included in few papers and the experiments that have been
carried out present many limitations in terms of replicability and in terms of generalization
of the conclusions. We have investigated about the existing issues making difficult a fair
comparison between the available testing tools. A first issue is the rapid obsolescence of the
academic tools available in literature that is primarily due to the very rapid evolution of the
Android framework and of its supporting development environment that make continuous
evolutive maintenance tasks on the testing tools necessary.

For this reason, it is difficult to design a testing harness able to compare different testing
tools in the same environment and it is difficult, too, to select a set of applications on which
all the tools under comparison can be executed.

In addition, most of the available testing tools are released in the form of prototypes
without the possibility to customize all the characteristics of the tools. For example, in many
tools, it is not possible to set preconditions on the applications under test.

Several recent works have tried to face these issues. The recent contribution of Choud-
hary et al. (2015) represents the better tentative to perform a fair comparison between the
available tools. They have realized a test harness able to test different tools in the context
of the same machine and in the same execution conditions. To this aim, they have contacted
the authors of the tools published in literature up to 2014 and with their collaboration they
have modified almost all the available open-source tools in order to execute them on a com-
mon Linux-based environment. They reported that they have been able to include only 7
tools on their experimentation: Monkey, Dynodroid (Machiry et al. 2013), Android Ripper
(Amalfitano et al. 2012b), A3E (Azim and Neamtiu 2013), SwiftHand (Choi et al. 2013),
PUMA (Hao et al. 2014), and ACTeve (Anand et al. 2012). Due to the rapid evolution of
the Android framework, it is also very difficult to establish a common benchmark of appli-
cations. For example, Choudhary et al. (2015) attempted to form a testing benchmark by
considering a set of applications that was previously tested in the papers presenting the tools
under comparison. They collected 68 applications, but they admitted that only 51 of them
resulted as executable on each of the seven considered testing tools.

A different approach has been followed by Amalfitano et al. (2017), that have focused
their attention on testing techniques, by comparing the performance of several active
learning and random techniques in the context of the same testing environment.

The problem of the comparison between the performance of academic tools and com-
mercial tools is still open, since only the open-source tool Monkey has been involved in
comparative experiments. For example, there are no experiments comparing the perfor-
mance of commercial tools such as Android Robo Test24 from Google or capture and replay
tools such as Robotium Recorder25, Espresso Test Recorder26, and Ranorex Android Test
Automation27. In the same way, there are no papers presenting comparisons with testing
frameworks for testing iOS applications, such as Earl Grey28 and Frank29.

24https://firebase.google.com/docs/test-lab/robo-ux-test
25https://robotium.com/products/robotium-recorder
26https://developer.android.com/studio/test/espresso-test-recorder.html
27http://www.ranorex.com/mobile-automation-testing/android-test-automation.html
28https://opensource.google.com/projects/earlgrey
29https://github.com/TestingWithFrank/Frank

https://firebase.google.com/docs/test-lab/robo-ux-test
https://robotium.com/products/robotium-recorder
https://developer.android.com/studio/test/espresso-test-recorder.html
http://www.ranorex.com/mobile-automation-testing/android-test-automation.html
https://opensource.google.com/projects/earlgrey
https://github.com/TestingWithFrank/Frank

Software Quality Journal (2019) 27:149–201 191

6.6 Absence of specific venues and journals focused onmobile testing automation

A relevant number of papers focused on mobile testing automation has been found in litera-
ture, in particular in the last years, as shown in Fig. 9. Sometimes, in the recent past, specific
sessions of scientific conferences have been centered on some aspects of mobile testing
automation (for example, the sessions called “UI Automation” at MobiSys 2014, “Quality
Assurance” at Mobilesoft 2015, “Mobile GUI” at ISSRE 2015, “Android” at ISSTA 2016,
“Testing Smartphone Applications” at AST 2016). In addition, sessions related to testing
mobile applications have been often hosted by industrial events such as the Google Test-
ing Automation Conference (GTAC)30 that do not publish papers indexed by the considered
search engines. Although this is a good level of interest of the scientific community, no spe-
cific venues have been dedicated so far to mobile testing automation or, more in general, to
mobile testing. Analogously, no special issues on this topic have been already published in
international journals. These considerations appear as an evidence of the temporary absence
of a cohesive community of scientists involved in this topic.

7 Conclusions

The systematic mapping study presented in this paper provides a panorama of the state of
the art of the scientific literature in the specific field of the automation of functional testing
of mobile applications. This study presents a classification of the contributions provided
by a set of 131 papers in literature, selected by applying an accurate strategy based on
validated search queries and on the application of a set of inclusion and exclusion criteria.
The systematic mapping study has been guided by 4 main goals and a total of 18 different
research questions.

This study represents an upgrade with respect to the existing secondary studies in litera-
ture focused on the specific field of automation of functional testing of mobile applications.
It can represent a useful tool for researchers, students, and practitioners in order to have an
overall and detailed view of the state of the scientific literature related to the considered
topic. For validation purposes, all the information necessary for replication of the study
have been made available in this paper, as well as all the extracted data are available online
at https://goo.gl/678T5P in the form of a Google spreadsheet. The online spreadsheet can
be freely downloaded or commented on by readers that can propose edit operations to the
authors, too.

The analysis of the systematic map has allowed the individuation of some research trends
and some gaps in this research area. In particular, this study has found that there are few con-
tributions from the industry and that there is a lack of contributions regarding specific topics
such as techniques and tools for testing iOS applications, testing tools based on Android
Espresso, and testing techniques aiming at testing of C++-based components of mobile
applications. In addition, a limited attention on some topics including context-aware testing,
concurrency testing, and fault detection has been revealed. Finally, the analysis of bibliogra-
phy has demonstrated the absence of specific venues and journal focused on mobile testing
automation. We are confident that these gaps can be filled by researchers in the next years.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

30https://developers.google.com/google-test-automation-conference/

https://goo.gl/678T5P
https://developers.google.com/google-test-automation-conference/

192 Software Quality Journal (2019) 27:149–201

References

Adamsen, C.Q., Mezzetti, G., Moller, A. (2015). Systematic execution of android test suites in adverse con-
ditions. In Proceedings of the 2015 International Symposium on Software Testing and , ISSTA 2015
(pp. 83–93). New York: ACM. https://doi.org/10.1145/2771783.2771786.

Ahmad, A., Li, K., Feng, C., Asim, S.M., Yousif, A., Ge, S. (2018). An empirical study of investigating
mobile applications development challenges. IEEE Access, 6, 17:711–17:728. https://doi.org/10.1109
/ACCESS.2018.2818724.

Akanksha Ashok Magare, M.D.L. (2016). Automated gui testing for android application. Imperial Journal
of Interdisciplinary Research, 2(8), 884–888.

Amalfitano, D., Fasolino, A.R., Tramontana, P. (2011). A gui crawling-based technique for android mobile
application testing. In ICST Workshops (pp. 252–261).

Amalfitano, D., Fasolino, A., Tramontana, P., De Carmine, S., Imparato, G. (2012a). A toolset for gui testing
of android applications (pp. 650–653). https://doi.org/10.1109/ICSM.2012.6405345, cited By 16.

Amalfitano, D., Fasolino, A.R., Carmine, S.D., Memon, A., Tramontana, P. (2012b). Using gui ripping for
automated testing of android applications. In ASE ’12: Proceedings of the 27th IEEE international
conference on Automated software engineering. DC: IEEE Computer Society Washington.

Amalfitano, D., Fasolino, A., Tramontana, P., Amatucci, N. (2013a). Considering context events in event-
based testing of mobile applications. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW) (pp. 126–133). https://doi.org/10.1109/ICSTW.2013.22.

Amalfitano, D., Fasolino, A., Tramontana, P., Robbins, B. (2013b). Testing android mobile applications:
Challenges, strategies, and approaches. Advances in Computers, 89, 1–52. https://doi.org/10.1016/B9
78-0-12-408094-2.00001-1.

Amalfitano, D., Amatucci, N., Fasolino, A., Tramontana, P. (2015a). Agrippin: A novel search based testing
technique for android applications (pp. 5–12), https://doi.org/10.1145/2804345.2804348, cited By 1.

Amalfitano, D., Amatucci, N., Fasolino, A.R., Tramontana, P. (2015b). A conceptual framework for the com-
parison of fully automated gui testing techniques. In Sixth International Workshop on Testing Techniques
for Event BasED Software (TESTBEDS) (pp. 2015).

Amalfitano, D., Amatucci, N., Fasolino, A.R., Tramontana, P., Kowalczyk, E., Memon, A. (2015c). Exploit-
ing the saturation effect in automatic random testing of android applications. In The Proceedings of the
2nd ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft) (pp.
2015).

Amalfitano, D., Fasolino, A., Tramontana, P., Ta, B., Memon, A. (2015d). Mobiguitar: Automated model-
based testing of mobile apps. IEEE Software, 32(5), 53–59. https://doi.org/10.1109/MS.2014.55, cited
By 29.

Amalfitano, D., Amatucci, N., Memon, A., Tramontana, P., Fasolino, A. (2017). A general framework for
comparing automatic testing techniques of android mobile apps. Journal of Systems and Software, 125,
322–343. https://doi.org/10.1016/j.jss.2016.12.017, cited By 0.

Amatucci, N. (2016). Automated gui testing techniques for android applications. PhD thesis, Ph.D. course in
Information Technology and Electrical Engineering.

Anand, S., Naik, M., Yang, H., Harrold, M. (2012). Automated concolic testing of smartphone apps. No
GIT-CERCS-12-02.

Anbunathan, R., & Basu, A. (2015). A recursive crawler algorithm to detect crash in android application
(pp. 256–267), https://doi.org/10.1109/ICCIC.2014.7238518, cited By 0.

Anbunathan, R., & Basu, A. (2016a). Automatic test generation from uml sequence diagrams for android
mobiles. International Journal of Applied Engineering Research, 11(7), 4961–4970. cited By 0.

Anbunathan, R., & Basu, A. (2016b). Data driven architecture based automated test generation for android
mobile. https://doi.org/10.1109/ICCIC.2015.7435772, cited By 0.

Arnatovich, Y.L., Ngo, M.N., Kuan, T.H.B., Soh, C. (2016). Achieving high code coverage in android ui
testing via automated widget exercising. In 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC) (pp. 193–200), https://doi.org/10.1109/APSEC.2016.036.

Arzensek, B., & Hericko, M. (2014). Criteria for selecting mobile application testing tools (vol. 1266, pp.
1–8), cited By 0.

Azim, T., & Neamtiu, I. (2013). Targeted and depth-first exploration for systematic testing of android apps.
SIGPLAN Not, 48(10), 641–660. https://doi.org/10.1145/2544173.2509549.

Baek, Y.M., & Bae, D.H. (2016). Automated model-based android gui testing using multi-level gui
comparison criteria (pp. 238–249), https://doi.org/10.1145/2970276.2970313, cited By 0.

Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S. (2015). The oracle problem in software test-
ing: a survey. IEEE Transactions on Software Engineering, 41(5), 507–525. https://doi.org/10.1109
/TSE.2014.2372785.

https://doi.org/10.1145/2771783.2771786
https://doi.org/10.1109/ACCESS.2018.2818724
https://doi.org/10.1109/ACCESS.2018.2818724
https://doi.org/10.1109/ICSM.2012.6405345
https://doi.org/10.1109/ICSTW.2013.22
https://doi.org/10.1016/B978-0-12-408094-2.00001-1
https://doi.org/10.1016/B978-0-12-408094-2.00001-1
https://doi.org/10.1145/2804345.2804348
https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1016/j.jss.2016.12.017
https://doi.org/10.1109/ICCIC.2014.7238518
https://doi.org/10.1109/ICCIC.2015.7435772
https://doi.org/10.1109/APSEC.2016.036
https://doi.org/10.1145/2544173.2509549
https://doi.org/10.1145/2970276.2970313
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785

Software Quality Journal (2019) 27:149–201 193

Basili, V.R., Caldiera, G., Rombach, H.D. (1994). The goal question metric approach. In Encyclopedia of
Software Engineering. Wiley.

Behrouz, R.J., Sadeghi, A., Garcia, J., Malek, S., Ammann, P. (2015). Ecodroid: An approach for
energy-based ranking of android apps. In 2015 IEEE/ACM 4th International Workshop on Green and
Sustainable Software (pp. 8–14). https://doi.org/10.1109/GREENS.2015.9.

Bielik, P., Raychev, V., Vechev, M. (2015). Scalable race detection for android applications (vol. 25-30-Oct-
2015, pp. 332–348). https://doi.org/10.1145/2814270.2814303, cited By 5.

Canfora, G., Mercaldo, F., Visaggio, C.A., DAngelo, M., Furno, A., Manganelli, C. (2013). A
case study of automating user experience-oriented performance testing on smartphones. In 2013
IEEE Sixth International Conference on Software Testing, Verification and Validation (pp. 66–69).
https://doi.org/10.1109/ICST.2013.16.

Choi, W., Necula, G., Sen, K. (2013). Guided gui testing of android apps with minimal restart and approxi-
mate learning. In Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented
programming systems languages and applications (pp. 623-640). ACM.

Choudhary, S.R., Gorla, A., Orso, A. (2015). Automated test input generation for android: Are we there yet?
(e). In 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp.
429–440). https://doi.org/10.1109/ASE.2015.89.

Coelho, T., Lima, B., Faria, J.P. (2016). Mt4a: a no-programming test automation framework for android
applications. In Proceedings of the 7th International Workshop on Automating Test Case Design,
Selection, and Evaluation (pp. 59–65), A-TEST 2016. New York: ACM. https://doi.org/10.1145/299
4291.2994300.

Corral, L., Sillitti, A., Succi, G. (2015). Software assurance practices for mobile applications. Computing,
97(10), 1001–1022. https://doi.org/10.1007/s00607-014-0395-8.

Costa, P., Paiva, A., Nabuco, M. (2014). Pattern based gui testing for mobile applications (pp 66–74).
https://doi.org/10.1109/QUATIC.2014.16, cited By 6.

Crispin, L., & Gregory, J. (2009). Agile Testing: A Practical Guide for Testers and Agile Teams, 1st edn.
Addison-Wesley Professional.

de Sousa Santos, I., de Castro Andrade, R.M., Rocha, L.S., Matalonga, S., de Oliveira, K.M., Travassos, G.H.
(2017). Test case design for context-aware applications: Are we there yet? Information and Software
Technology (pp. –). https://doi.org/10.1016/j.infsof.2017.03.008.

De Cleva Farto, G., & Endo, A. (2015). Evaluating the model-based testing approach in the
context of mobile applications. Electronic Notes in Theoretical Computer Science, 314, 3–21.
https://doi.org/10.1016/j.entcs.2015.05.002, cited By 2.

Delamaro, M., Vincenzi, A., Maldonado, J. (2006). A strategy to perform coverage testing of mobile applica-
tions. In Proceedings of the 2006 international workshop on Automation of software test (pp. 118–124).
ACM,.

Dev, R., Jaaskelainen, A., Katara, M. (2012). Model-based gui testing. case smartphone camera and
messaging development. Advances in Computers, 85, 65–122. https://doi.org/10.1016/B978-0-12-39
6526-4.00002-3, cited By 2.

Do, Q., Yang, G., Che, M., Hui, D., Ridgeway, J. (2016). Regression test selection for android applications
(pp. 27–28). https://doi.org/10.1145/2897073.2897127, cited By 0.

Dubinsky, Y., & Abadi, A. (2013). Challenges and research questions for testing in mobile development:
Report on a mobile testing activity. In Proceedings of the 2013 ACM Workshop on Mobile Development
Lifecycle, MobileDeLi ’13 (pp. 37–38). New York: ACM. https://doi.org/10.1145/2542128.2542140.

Dutia, S.N., Oh, T.H., Oh, Y.H. (2015). Developing automated input generator for android mobile device to
evaluate malware behavior. In Proceedings of the 4th Annual ACM Conference on Research in Informa-
tion Technology, RIIT ’15 (pp. 43–43). New York: ACM. https://doi.org/10.1145/2808062.2808065.

Fazzini, M., Freitas, E.N.D.A., Choudhary, S.R., Orso, A. (2017). Barista: A technique for recording, encod-
ing, and running platform independent android tests. In 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST) (pp. 149–160). https://doi.org/10.1109/ICST.2017.21.

Gao, J., Bai, X., Tsai, W.T., Uehara, T. (2014). Mobile application testing: a tutorial. Computer, 47(2), 46–55.
https://doi.org/10.1109/MC.2013.445.

Garousi, V., Mesbah, A., Betin-Can, A., Mirshokraie, S. (2013). A systematic mapping study of web
application testing. Information and Software Technology, 55(8), 1374–1396. https://doi.org/10.1016
/j.infsof.2013.02.006.

Garousi, V., &Mantyla, M.V. (2016). When and what to automate in software testing? a multi-vocal literature
review. Information and Software Technology, 76, 92–117. https://doi.org/10.1016/j.infsof.2016.04.015.

Gomez, L., Neamtiu, I., Azim, T., Millstein, T. (2013). Reran: Timing- and touch-sensitive record and replay
for android. In Proceedings of the 2013 International Conference on Software Engineering, IEEE Press,
Piscataway, NJ, USA, ICSE ’13 (pp. 72–81).

https://doi.org/10.1109/GREENS.2015.9
https://doi.org/10.1145/2814270.2814303
https://doi.org/10.1109/ICST.2013.16
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1145/2994291.2994300
https://doi.org/10.1145/2994291.2994300
https://doi.org/10.1007/s00607-014-0395-8
https://doi.org/10.1109/QUATIC.2014.16
https://doi.org/10.1016/j.infsof.2017.03.008
https://doi.org/10.1016/j.entcs.2015.05.002
https://doi.org/10.1016/B978-0-12-396526-4.00002-3
https://doi.org/10.1016/B978-0-12-396526-4.00002-3
https://doi.org/10.1145/2897073.2897127
https://doi.org/10.1145/2542128.2542140
https://doi.org/10.1145/2808062.2808065
https://doi.org/10.1109/ICST.2017.21
https://doi.org/10.1109/MC.2013.445
https://doi.org/10.1016/j.infsof.2013.02.006
https://doi.org/10.1016/j.infsof.2013.02.006
https://doi.org/10.1016/j.infsof.2016.04.015

194 Software Quality Journal (2019) 27:149–201

Gomez, M. (2015). Debugging of Mobile Apps in the Wild Guided by the Wisdom of the Crowd. In
2nd International Conference on Mobile Software Engineering and Systems - ACM Student Reasearch
Competition. Florence.

Gomez, M., Rouvoy, R., Adams, B., Seinturier, L. (2016). Reproducing context-sensitive crashes of mobile
apps using crowdsourced monitoring (pp. 88–99). https://doi.org/10.1145/2897073.2897088, cited By 1.

Griebe, T., & Gruhn, V. (2014). A model-based approach to test automation for context-aware mobile appli-
cations. In Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC ’14 (pp.
420–427). New York:ACM. https://doi.org/10.1145/2554850.2554942.

Griebe, T., Hesenius, M., Gruhn, V. (2015). Towards automated ui-tests for sensor-based mobile appli-
cations. Communications in Computer and Information Science, 532, 3–17. https://doi.org/10.1007
/978-3-319-22689-7 1, cited By 0.

Griebe, T., Hesenius, M., Gesthuesen, M., Gruhn, V. (2016). Test Automation for Speech-Based Appli-
cations. In Fujita, H., & Papadopoulos, G.A. (Eds.) New Trends in Software Methodologies,
Tools and Techniques, Frontiers in Artificial Intelligence and Applications, (Vol. 286 pp. 85–100).
https://doi.org/10.3233/978-1-61499-674-3-85, 15th International Conference on New Trends in Intelli-
gent Software Methodology Tools, and Techniques (SoMeT), CYPRUS, SEP 13-15, 2016.

Gudmundsson, V., Lindvall, M., Aceto, L., Bergthorsson, J., Ganesan, D. (2016). Model-based testing of
mobile systems - an empirical study on quizup android app (vol. 208, pp. 16–30). https://doi.org/10.4204
/EPTCS.208.2, cited By 0.

Hao, S., Liu, B., Nath, S., Halfond, W.G., Govindan, R. (2014). Puma: Programmable ui-automation for
large-scale dynamic analysis of mobile apps. In Proceedings of the 12th Annual International Confer-
ence on Mobile Systems, Applications, and Services, MobiSys ’14 (pp. 204–217). New York: ACM.
https://doi.org/10.1145/2594368.2594390.

Harrison, R., Flood, D., Duce, D. (2013). Usability of mobile applications: literature review and rationale for
a new usability model. Journal of Interaction Science, 1(1), 1. https://doi.org/10.1186/2194-0827-1-1.

Hesenius, M., Griebe, T., Gries, S., Gruhn, V. (2014). Automating ui tests for mobile applications with formal
gesture descriptions (pp. 213–222). https://doi.org/10.1145/2628363.2628391, cited By 4.

Holl, K., & Elberzhager, F. (2016). Quality assurance of mobile applications: A systematic mapping study.
In Proceedings of the 15th International Conference on Mobile and Ubiquitous Multimedia, MUM ’16
(pp 101–113). New York:ACM. https://doi.org/10.1145/3012709.3012718.

Hsiao, C.H., Pereira, C., Yu, J., Pokam, G., Narayanasamy, S., Chen, P., Kong, Z., Flinn, J. (2014).
Race detection for event-driven mobile applications. ACM SIGPLAN Notices, 49(6), 326–336.
https://doi.org/10.1145/2594291.2594330, cited By 3.

Hu, C., & Neamtiu, I. (2011a). Automating gui testing for android applications. In Proceedings of the 6th
International Workshop on Automation of Software Test (pp. 77–83).

Hu, C., & Neamtiu, I. (2011b). A gui bug finding framework for android applications (pp. 1490–1491).
https://doi.org/10.1145/1982185.1982504, cited By 6.

Hu, G., Yuan, X., Tang, Y., Yang, J. (2014). Efficiently, effectively detecting mobile app bugs with appdoctor.
In Proceedings of the Ninth European Conference on Computer Systems, EuroSys ’14 (pp. 18:1–18:15).
New York: ACM. https://doi.org/10.1145/2592798.2592813.

Hu, Y., & Neamtiu, I. (2016). Fuzzy and cross-app replay for smartphone apps (pp. 50–56), https://doi.
org/10.1145/2896921.2896925, cited By 0.

Hu, Y., Azim, T., Neamtiu, I. (2015). Versatile yet lightweight record-and-replay for android (vol. 25-30-Oct-
2015, pp. 349–366), https://doi.org/10.1145/2814270.2814320, cited By 4.

Hu, Y., Neamtiu, I., Alavi, A. (2016). Automatically verifying and reproducing event-based races in android
apps. In Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016
(pp. 377–388). New York: ACM. https://doi.org/10.1145/2931037.2931069.

Imparato, G. (2015). A combined technique of gui ripping and input perturbation testing for android apps
(vol. 2, pp. 760–762). https://doi.org/10.1109/ICSE.2015.241, cited By 0.

ISO 29119 Software Testing Standard (2013). Software and systems engineering software testing part 1:
concepts and definitions. ISO/IEC/IEEE, 29119-1(E), 1–64. https://doi.org/10.1109/IEEESTD.2013.
6588537.

Jaaskelainen, A., Takala, T., Katara, M. (2012).Model-Based Gui Testing of Android Applications, Addison-
Wesley Professional (Pearson Education) (pp. 253–275).

Jamrozik, K., & Zeller, A. (2016). Droid mate: A robust and extensible test generator for android (pp. 293–
294). https://doi.org/10.1145/2897073.2897716, cited By 0.

Jensen, C.S., Prasad, M.R., Moller, A. (2013). Automated testing with targeted event sequence generation.
In Proceedings of the 2013 International Symposium on Software Testing and Analysis, ISSTA (pp.
67–77). New York: ACM. https://doi.org/10.1145/2483760.2483777.

https://doi.org/10.1145/2897073.2897088
https://doi.org/10.1145/2554850.2554942
https://doi.org/10.1007/978-3-319-22689-7_1
https://doi.org/10.1007/978-3-319-22689-7_1
https://doi.org/10.3233/978-1-61499-674-3-85
https://doi.org/10.4204/EPTCS.208.2
https://doi.org/10.4204/EPTCS.208.2
https://doi.org/10.1145/2594368.2594390
https://doi.org/10.1186/2194-0827-1-1
https://doi.org/10.1145/2628363.2628391
https://doi.org/10.1145/3012709.3012718
https://doi.org/10.1145/2594291.2594330
https://doi.org/10.1145/1982185.1982504
https://doi.org/10.1145/2592798.2592813
https://doi.org/10.1145/2896921.2896925
https://doi.org/10.1145/2896921.2896925
https://doi.org/10.1145/2814270.2814320
https://doi.org/10.1145/2931037.2931069
https://doi.org/10.1109/ICSE.2015.241
https://doi.org/10.1109/IEEESTD.2013.6588537
https://doi.org/10.1109/IEEESTD.2013.6588537
https://doi.org/10.1145/2897073.2897716
https://doi.org/10.1145/2483760.2483777

Software Quality Journal (2019) 27:149–201 195

Jha, A., Lee, S., Lee, W. (2015). Modeling and test case generation of inter-component communication in
android (pp. 113–116). https://doi.org/10.1109/MobileSoft.2015.24, cited By 2.

Jiang, B., Long, X., Gao, X. (2007). Mobiletest: A tool supporting automatic black box test for software on
smart mobile devices. https://doi.org/10.1109/AST.2007.9, cited By 1.

Jiang, B., Chen, P., Chan, W.K., Zhang, X. (2016). To what extent is stress testing of android tv appli-
cations automated in industrial environments? IEEE Transactions on Reliability, 65(3), 1223–1239.
https://doi.org/10.1109/TR.2015.2481601.

Jiang, B., Zhang, Y., Chan, W.K., Zhang, Z. (2017). Which factor impacts gui traversal-based
test case generation technique most? a controlled experiment on android applications. In 2017
IEEE International Conference on Software Quality, Reliability and Security (QRS) (pp. 21–31).
https://doi.org/10.1109/QRS.2017.12.

Joorabchi, M., Ali, M., Mesbah, A. (2016). Detecting inconsistencies in multi-platform mobile apps (pp.
450–460). https://doi.org/10.1109/ISSRE.2015.7381838, cited By 0.

Kaasila, J., Ferreira, D., Kostakos, V., Ojala, T. (2012). Testdroid: Automated remote ui testing on android.
https://doi.org/10.1145/2406367.2406402, cited By 5.

Kirubakaran, B., & Karthikeyani, V. (2013). Mobile application testing 2014; challenges and solution
approach through automation. In 2013 International Conference on Pattern Recognition, Informatics
and Mobile Engineering (PRIME) (pp. 79–84). https://doi.org/10.1109/ICPRIME.2013.6496451.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software
engineering. Technical Report EBSE Technical Report EBSE-2007-01, Software Engineering Group
School of Computer Science and Mathematics. Keele University and Department of Computer Science,
University of Durham.

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S. (2009). Systematic
literature reviews in software engineering - a systematic literature review. Information and Software
Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009.

Kochhar, P.S., Thung, F., Nagappan, N., Zimmermann, T., Lo, D. (2015). Understanding the test automation
culture of app developers. In 2015 IEEE 8th International Conference on Software Testing, Verification
and Validation (ICST) (pp. 1–10). https://doi.org/10.1109/ICST.2015.7102609.

Li, A., Qin, Z., Chen, M., Liu, J. (2014a). Adautomation: An activity diagram based automated gui testing
framework for smartphone applications (pp. 68–77). https://doi.org/10.1109/SERE.2014.20, cited By 1.

Li, L., Bissyande, T., Papadakis, M., Rasthofer, S., Bartel, A., Octeau, D., Klein, J., Le Traon, Y. (2016a).
Static analysis of android apps: A systematic literature review. Technical report, Interdisciplinary
Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg, Fraunhofer
SIT Technische Universitat Darmstadt. Germany: University of Wisconsin and Pennsylvania State
University.

Li, Q., Jiang, Y., Gu, T., Xu, C., Ma, J., Ma, X., Lu, J. (2016b). Effectively manifesting concurrency bugs
in android apps. In 2016 23rd Asia-Pacific Software Engineering Conference (APSEC) (pp. 209–216).
https://doi.org/10.1109/APSEC.2016.038.

Li, X., Jiang, Y., Liu, Y., Xu, C., Ma, X., Lu, J. (2014b). User guided automation for testing mobile
apps. In Software engineering conference (APSEC), 2014 21st asia-pacific (Vol. 1, pp. 27–34).
https://doi.org/10.1109/APSEC.2014.13.

Li, Y., Yang, Z., Guo, Y., Chen, X. (2017). Droidbot: A lightweight ui-guided test input generator for android.
In Proceedings of the 39th International Conference on Software Engineering Companion, ICSE-C ’17
(pp. 23–26). Piscataway: IEEE Press. https://doi.org/10.1109/ICSE-C.2017.8.

Liang, C. J. M., Lane, N.D., Brouwers, N., Zhang, L., Karlsson, B.F., Liu, H., Liu, Y., Tang, J., Shan,
X., Chandra, R., Zhao, F. (2014). Caiipa: Automated large-scale mobile app testing through contex-
tual fuzzing. In Proceedings of the 20th Annual International Conference on Mobile Computing and
Networking (pp. 519–530). New York: ACM. https://doi.org/10.1145/2639108.2639131.

Lin, Y.D., Rojas, J., Chu, E.H., Lai, Y.C. (2014). On the accuracy, efficiency, and reusability of auto-
mated test oracles for android devices. Software Engineering. IEEE Transactions on, 40(10), 957–970.
https://doi.org/10.1109/TSE.2014.2331982.

Linares-Vasquez, M. (2015a). Enabling testing of android apps (Vol. 2, pp. 763–765). https://doi.org/10.11
09/ICSE.2015.242, cited By 1.

Linares-Vasquez, M., White, M., Bernal-Cardenas, C., Moran, K., Poshyvanyk, D. (2015b). Mining android
app usages for generating actionable gui-based execution scenarios (vol. 2015-August, pp. 111–122).
https://doi.org/10.1109/MSR.2015.18, cited By 2.

Liu, Z., Gao, X., Long, X. (2010a). Adaptive random testing of mobile application. In 2010 2nd international
conference on Computer engineering and technology (ICCET) (Vol. 2, pp. V2–297). IEEE.

Liu, Z., Liu, B., Gao, X. (2010b). Test automation on mobile device (pp. 1–7). https://doi.org/10.1145
/1808266.1808267, cited By 0.

https://doi.org/10.1109/MobileSoft.2015.24
https://doi.org/10.1109/AST.2007.9
https://doi.org/10.1109/TR.2015.2481601
https://doi.org/10.1109/QRS.2017.12
https://doi.org/10.1109/ISSRE.2015.7381838
https://doi.org/10.1145/2406367.2406402
https://doi.org/10.1109/ICPRIME.2013.6496451
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1109/ICST.2015.7102609
https://doi.org/10.1109/SERE.2014.20
https://doi.org/10.1109/APSEC.2016.038
https://doi.org/10.1109/APSEC.2014.13
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1145/2639108.2639131
https://doi.org/10.1109/TSE.2014.2331982
https://doi.org/10.1109/ICSE.2015.242
https://doi.org/10.1109/ICSE.2015.242
https://doi.org/10.1109/MSR.2015.18
https://doi.org/10.1145/1808266.1808267
https://doi.org/10.1145/1808266.1808267

196 Software Quality Journal (2019) 27:149–201

Liu, Y., & Xu, C. (2013). Veridroid: Automating android application verification. https://doi.org/10.114
5/2541534.2541594, cited By 0.

Liu, C.H., Lu, C.Y., Cheng, S.J., Chang, K.Y., Hsiao, Y.C., Chu, W.M. (2014a). Capture-replay testing for
android applications. In 2014 International Symposium on Computer, Consumer and Control (IS3C) (pp.
1129–1132). https://doi.org/10.1109/IS3C.2014.293.

Liu, Y., Lu, Y., Li, Y. (2014b). An android-based approach for automatic unit test (Vol. 2014),
https://doi.org/10.1049/cp.2014.1290, cited By 0.

Liu, Y., Xu, C., Cheung, S.C., Yang, W. (2014c). Checkerdroid : Automated quality assurance for smartphone
applications. Int J Software and Informatics, 8, 21–41.

Liu, C.H., Chen, S.L., Chen, H.K. (2015). Robotdroid-a keyword-driven testing tool for android applica-
tions. Frontiers in Artificial Intelligence and Applications, 274, 1865–1874. https://doi.org/10.3233/
978-1-61499-484-8-1865, cited By 0.

Liu, P., Zhang, X., Pistoia, M., Zheng, Y., Marques, M., Zeng, L. (2017). Automatic text input generation for
mobile testing. In Proceedings of the 39th International Conference on Software Engineering, ICSE ’17
(pp 643–653). Piscataway: IEEE Press. https://doi.org/10.1109/ICSE.2017.65.

Lu, L., Hong, Y., Huang, Y., Su, K., Yan, Y. (2012). Activity page based functional test automation for
android application (pp. 37–40). https://doi.org/10.1109/WCSE.2012.15, cited By 3.

Ma, X., Wang, N., Xie, P., Zhou, J., Zhang, X., Fang, C. (2016). An automated testing platform for mobile
applications (pp. 159–162). https://doi.org/10.1109/QRS-C.2016.25, cited By 0.

Machado, P., Campos, J., Abreu, R. (2013). Mzoltar: Automatic debugging of android applications (pp 9–16).
https://doi.org/10.1145/2501553.2501556, cited By 3.

Machiry, A., Tahiliani, R., Naik, M. (2013). Dynodroid: an input generation system for android apps. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013
(pp. 224–234). New York: ACM. https://doi.org/10.1145/2491411.2491450.

Mahmood, R., Mirzaei, N., Malek, S. (2014). Evodroid: Segmented evolutionary testing of android apps.
In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014 (pp. 599–609). New York: ACM. https://doi.org/10.1145/2635868.2635896.

Maiya, P., Kanade, A., Majumdar, R. (2014). Race detection for android applications. SIGPLAN Not, 49(6),
316–325. https://doi.org/10.1145/2666356.2594311.

Majeed, S., & Ryu, M. (2016). Model-based replay testing for event-driven software (vol. 04-08-April-2016,
pp. 1527–1533). https://doi.org/10.1145/2851613.2851794, cited By 0.

Maji, A., Arshad, F., Bagchi, S., Rellermeyer, J. (2012). An empirical study of the robustness of inter-
component communication in android. In 2012 42nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN) (pp. 1–12). https://doi.org/10.1109/DSN.2012.6263963.

Mao, K., Harman, M., Jia, Y. (2016). Sapienz: Multi-objective automated testing for android applications.
In Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016 (pp.
94–105), New York: ACM. https://doi.org/10.1145/2931037.2931054.

Matalonga, S., Rodrigues, F., Travassos, G.H. (2017). Characterizing testing methods for context-aware
software systems: Results from a quasi-systematic literature review. Journal of Systems and Software,
131(Supplement C), 1–21. https://doi.org/10.1016/j.jss.2017.05.048.

Mayan, A.J., Menezes, J.R., Bruce, J. (2015). Developing a mobile based automated testing tool for windows
phone 8. Modern Applied Science, 9, 91–98.

Mendez-Porras, A., Nieto Hidalgo, M., Garcia-Chamizo, J., Jenkins, M., Porras, A. (2015a). A top-down
design approach for an automated testing framework. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9454, 37–49.
https://doi.org/10.1007/978-3-319-26401-1 4, cited By 0.

Mendez-Porras, A., Quesada-Lopez, C., Jenkins, M. (2015b). Automated testing of mobile applications: a
systematic map and review. In Araujo, J., Condori-Fernandez, N., Goulão, M., Matalonga, S., Ben-
como, N., Oliveira, T., de la Vara, J.L., Brito, I.S., Antonelli, L., Pimentel, E., Miranda, J.J., Kalinowski,
M., Pastor, Ó., Olsina, L., Guizzardi, R., España, S., Cuadros-Vargas, E. (Eds.) XVIII Ibero-american
conference on software engineering, URP,SPC,UCSP (pp. 195–208). Lima-Peru: UCSP.

Meng, Z., Jiang, Y., Xu, C. (2015). Facilitating reusable and scalable automated testing and analysis for
android apps. In Proceedings of the 7th Asia-Pacific Symposium on Internetware, ACM, New York, NY,
USA, Internetware ’15 (pp. 166–175). https://doi.org/10.1145/2875913.2875937.

Mirzaei, N., Malek, S., Pasareanu, C.S., Esfahani, N., Mahmood, R. (2012). Testing android apps through
symbolic execution. SIGSOFT Softw Eng Notes, 37(6), 1–5. https://doi.org/10.1145/2382756.2382798.

Mirzaei, H., & Heydarnoori, A. (2015). Exception fault localization in android applications (pp 156–157).
https://doi.org/10.1109/MobileSoft.2015.42, cited By 0.

https://doi.org/10.1145/2541534.2541594
https://doi.org/10.1145/2541534.2541594
https://doi.org/10.1109/IS3C.2014.293
https://doi.org/10.1049/cp.2014.1290
https://doi.org/10.3233/978-1-61499-484-8-1865
https://doi.org/10.3233/978-1-61499-484-8-1865
https://doi.org/10.1109/ICSE.2017.65
https://doi.org/10.1109/WCSE.2012.15
https://doi.org/10.1109/QRS-C.2016.25
https://doi.org/10.1145/2501553.2501556
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2635868.2635896
https://doi.org/10.1145/2666356.2594311
https://doi.org/10.1145/2851613.2851794
https://doi.org/10.1109/DSN.2012.6263963
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1016/j.jss.2017.05.048
https://doi.org/10.1007/978-3-319-26401-1_4
https://doi.org/10.1145/2875913.2875937
https://doi.org/10.1145/2382756.2382798
https://doi.org/10.1109/MobileSoft.2015.42

Software Quality Journal (2019) 27:149–201 197

Mirzaei, N., Bagheri, H., Mahmood, R., Malek, S. (2016a). Sig-droid: Automated system input generation
for android applications (pp. 461–471). https://doi.org/10.1109/ISSRE.2015.7381839, cited By 0.

Mirzaei, N., Garcia, J., Bagheri, H., Sadeghi, A., Malek, S. (2016b). Reducing combinatorics in gui testing
of android applications (Vol. 14-22-May-2016, pp. 559–570). https://doi.org/10.1145/2884781.2884853,
cited By 0.

Moran K, Linares-Vasquez, M., Bernal-Cardenas, C., Vendome, C., Poshyvanyk, D. (2016). Auto-
matically discovering, reporting and reproducing android application crashes. In 2016 IEEE
International Conference on Software Testing, Verification and Validation (ICST) (pp. 33–44).
https://doi.org/10.1109/ICST.2016.34.

Moran, K., Linares-Vasquez, M., Bernal-Cardenas, C., Vendome, C., Poshyvanyk, D. (2017). Crashscope:
A practical tool for automated testing of android applications. In Proceedings of the 39th International
Conference on Software Engineering Companion, ICSE-C ’17 (pp. 15–18). Piscataway: IEEE Press.
https://doi.org/10.1109/ICSE-C.2017.16.

Morgado, I., & Paiva, A. (2016a). Impact of execution modes on finding android failures (Vol. 83, pp. 284–
291). https://doi.org/10.1016/j.procs.2016.04.127, cited By 0.

Morgado, I., & Paiva, A. (2016b). Testing approach for mobile applications through reverse engineering of
ui patterns (pp 42–49). https://doi.org/10.1109/ASEW.2015.11, cited By 0.

Muccini, H., Di Francesco, A., Esposito, P. (2012). Software testing of mobile applications: Challenges and
future research directions. In 2012 7th International Workshop on Automation of Software Test (AST)
(pp. 29–35). https://doi.org/10.1109/IWAST.2012.6228987.

Nagowah, L., & Sowamber, G. (2012). A novel approach of automation testing on mobile devices (Vol. 2,
pp. 924–930). https://doi.org/10.1109/ICCISci.2012.6297158, cited By 3.

Nguyen, C., Marchetto, A., Tonella, P. (2012). Combining model-based and combinatorial testing for
effective test case generation (pp. 100–110). https://doi.org/10.1145/04000800.2336765, cited By 25.

Packevicius, S., Usaniov, A., Stanskis, S., Bareisa, E. (2015). The Testing Method Based on Image Analysis
for Automated Detection of UI Defects Intended for Mobile Applications, (pp. 560–576). Cham: Springer
International Publishing. https://doi.org/10.1007/978-3-319-24770-0 48.

Paulovsky, F., Pavese, E., Garbervetsky, D. (2017). High-coverage testing of navigation models in android
applications. In Proceedings of the 12th International Workshop on Automation of Software Testing, AST
’17 (pp. pp 52–58). Piscataway: IEEE Press. https://doi.org/10.1109/AST.2017.6.

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M. (2008). Systematic mapping studies in software engineer-
ing. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software
Engineering, EASE’08 (pp. 68–77). Swinton: British Computer Society.

Petersen, K., Vakkalanka, S., Kuzniarz, L. (2015). Guidelines for conducting systematic mapping
studies in software engineering: an update. Information and Software Technology, 64, 1–18.
https://doi.org/10.1016/j.infsof.2015.03.007.

Prathibhan, C.M., Malini, A., Venkatesh, N., Sundarakantham, K. (2014). An automated testing framework
for testing android mobile applications in the cloud. In 2014 IEEE International Conference on Advanced
Communications, Control and Computing Technologies (pp. 1216–1219). https://doi.org/10.1109
/ICACCCT.2014.7019292.

Puspika, B., Hendradjaya, B., Danar Sunindyo, W. (2015). Towards an automated test sequence genera-
tion for mobile application using colored petri net (pp. 445–449). https://doi.org/10.1109/ICEEI.20
15.7352542, cited By 0.

Qin, Y., Xu, C., Yu, P., Lu, J. (2016a). Sit: Sampling-based interactive testing for self-adaptive apps. Journal
of Systems and Software, 120, 70–88. https://doi.org/10.1016/j.jss.2016.07.002, cited By 0.

Qin, Z., Tang, Y., Novak, E., Li, Q. (2016b). Mobiplay: A remote execution based record-and-replay tool
for mobile applications (Vol. 14-22-May-2016, pp. 571–582). https://doi.org/10.1145/2884781.2884854,
cited By 1.

Raut, P., & Tomar, S. (2014). Android mobile automation framework. International Journal of Multidisci-
plinary Approach and Studies. 1–12.

Ravindranath, L., Nath, S., Padhye, J., Balakrishnan, H. (2014). Automatic and scalable fault detection for
mobile applications. In Proceedings of the 12th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’14, pp. 190–203. ACM. https://doi.org/10.1145/2594368.2594377.

Reddy, K., Babu Rajesh, V., Pareek, H., Patil, M. (2016). Dynaldroid: A system for automated dynamic
analysis of android applications (pp. 124–129). https://doi.org/10.1109/RAECE.2015.7510239, cited By 0.

Saad, N., & Awang Abu Bakar, N. (2014). Automated testing tools for mobile applications. https://doi.org/10
.1109/ICT4M.2014.7020665, cited By 0.

https://doi.org/10.1109/ISSRE.2015.7381839
https://doi.org/10.1145/2884781.2884853
https://doi.org/10.1109/ICST.2016.34
https://doi.org/10.1109/ICSE-C.2017.16
https://doi.org/10.1016/j.procs.2016.04.127
https://doi.org/10.1109/ASEW.2015.11
https://doi.org/10.1109/IWAST.2012.6228987
https://doi.org/10.1109/ICCISci.2012.6297158
https://doi.org/10.1145/04000800.2336765
https://doi.org/10.1007/978-3-319-24770-0_48
https://doi.org/10.1109/AST.2017.6
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1109/ICACCCT.2014.7019292
https://doi.org/10.1109/ICACCCT.2014.7019292
https://doi.org/10.1109/ICEEI.2015.7352542
https://doi.org/10.1109/ICEEI.2015.7352542
https://doi.org/10.1016/j.jss.2016.07.002
https://doi.org/10.1145/2884781.2884854
https://doi.org/10.1145/2594368.2594377
https://doi.org/10.1109/RAECE.2015.7510239
https://doi.org/10.1109/ICT4M.2014.7020665
https://doi.org/10.1109/ICT4M.2014.7020665

198 Software Quality Journal (2019) 27:149–201

Sadeh, B. (2011). A study on the evaluation of unit testing for android systems. International Journal of New
Computer Architectures and their Applications (IJNCAA), 4(1).

Sahinoglu, M., Incki, K., Aktas, M.S. (2015).Mobile Application Verification: A Systematic Mapping Study,
(pp. 147–163). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-21413-9 11.

Salihu, I.A., & Ibrahim, R. (2016). Systematic exploration of android apps’ events for automated testing. In
Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media,
MoMM ’16 (pp. 50–54). New York: ACM. https://doi.org/10.1145/3007120.3011072.

Salva, S., & Laurencot, P. (2015). Model inference and automatic testing of mobile applications. In
International Journal On Advances in Software, Vol. 8. Iaria.

San Miguel, J.L., & Takada, S. (2016). Gui and usage model-based test case generation for android applica-
tions with change analysis. In Proceedings of the 1st International Workshop on Mobile Development,
Mobile! 2016 (pp. 43–44), New York: ACM. https://doi.org/10.1145/3001854.3001865.

Shabaan, M.M., Hamza, H.S., Omar, Y. M. K. (2017). Effects of fsm minimization techniques on num-
ber of test paths in mobile applications mbt. In 2017 IEEE 15th International Conference on Software
Engineering Research, Management and Applications (SERA) (pp. 297–302). https://doi.org/10.110
9/SERA.2017.7965741.

Shan, Z., Azim, T., Neamtiu, I. (2016). Finding resume and restart errors in android applications. In Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2016 (pp. 864-880). New York: ACM. https://doi.org/10.114
5/2983990.2984011.

She, S., Sivapalan, S., Warren, I. (2009). Hermes: A Tool for testing mobile device applications. In Software
engineering conference, 2009. ASWEC’09 (pp. 121–130). Australian: IEEE.

Silva, D.B., Endo, A.T., Eler, M.M., Durelli, V. H. S. (2016). An analysis of automated tests for
mobile android applications. In 2016 XLII Latin American Computing Conference (CLEI) (pp. 1–9).
https://doi.org/10.1109/CLEI.2016.7833334.

Song, K., Han, A.R., Jeong, S., Cha, S. (2015). Generating various contexts from permissions for testing
android applications (Vol. 2015-January, pp. 87–92). https://doi.org/10.18293/SEKE2015-118, cited By 0.

Su, T. (2016). Fsmdroid: Guided gui testing of android apps. In Proceedings of the 38th Interna-
tional Conference on Software Engineering Companion, ICSE ’16 (pp. 689–691). New York: ACM.
https://doi.org/10.1145/2889160.2891043.

Sun, C., Zhang, Z., Jiang, B., Chan, W.K. (2016). Facilitating monkey test by detecting operable regions
in rendered gui of mobile game apps. In 2016 IEEE International Conference on Software Quality,
Reliability and Security (QRS) (pp. 298–306). https://doi.org/10.1109/QRS.2016.41.

Takala, T., Katara, M., Harty, J. (2011). Experiences of system-level model-based gui testing of an
android application. In Proceedings of the 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, ICST ’11 (pp. 377–386). Washington: IEEE Computer Society.
https://doi.org/10.1109/ICST.2011.11.

Tang, H., Wu, G., Wei, J., Zhong, H. (2016). Generating test cases to expose concurrency bugs in android
applications (pp. 648–653). https://doi.org/10.1145/2970276.2970320, cited By 0.

Tao, C., & Gao, J. (2016). On building test automation system for mobile applications using gui ripping (vol
2016-January, pp. 480–485). https://doi.org/10.18293/SEKE2016-168, cited By 0.

van der Merwe, H., van der Merwe, B., Visser, W. (2012). Verifying android applications using java
pathfinder. SIGSOFT Softw Eng Notes, 37(6), 1–5. https://doi.org/10.1145/2382756.2382797.

Vilkomir, S., & Amstutz, B. (2014). Using combinatorial approaches for testing mobile applications. In 2014
IEEE Seventh International Conference on Software Testing, Verification and Validation Workshops (pp.
78–83). https://doi.org/10.1109/ICSTW.2014.9.

Vilkomir, S., Marszalkowski, K., Perry, C., Mahendrakar, S. (2015). Effectiveness of multi-device testing
mobile applications. In 2015 2nd ACM International Conference on Mobile Software Engineering and
Systems (pp. 44–47). https://doi.org/10.1109/MobileSoft.2015.12.

Wang, P., Liang, B., You, W., Li, J., Shi, W. (2014). Automatic android gui traversal with high
coverage. In Proceedings of the 2014 Fourth International Conference on Communication Sys-
tems and Network Technologies, CSNT ’14 (pp. 1161–1166). Washington: IEEE Computer Society.
https://doi.org/10.1109/CSNT.2014.236.

Wen, H.L., Lin, C.H., Hsieh, T.H., Yang, C.Z. (2015). Pats: a parallel gui testing framework for android
applications. In 2015 IEEE 39Th annual computer software and applications conference (Vol. 2. pp.
210–215). https://doi.org/10.1109/COMPSAC.2015.80.

https://doi.org/10.1007/978-3-319-21413-9_11
https://doi.org/10.1145/3007120.3011072
https://doi.org/10.1145/3001854.3001865
https://doi.org/10.1109/SERA.2017.7965741
https://doi.org/10.1109/SERA.2017.7965741
https://doi.org/10.1145/2983990.2984011
https://doi.org/10.1145/2983990.2984011
https://doi.org/10.1109/CLEI.2016.7833334
https://doi.org/10.18293/SEKE2015-118
https://doi.org/10.1145/2889160.2891043
https://doi.org/10.1109/QRS.2016.41
https://doi.org/10.1109/ICST.2011.11
https://doi.org/10.1145/2970276.2970320
https://doi.org/10.18293/SEKE2016-168
https://doi.org/10.1145/2382756.2382797
https://doi.org/10.1109/ICSTW.2014.9
https://doi.org/10.1109/MobileSoft.2015.12
https://doi.org/10.1109/CSNT.2014.236
https://doi.org/10.1109/COMPSAC.2015.80

Software Quality Journal (2019) 27:149–201 199

White, M., Linares-Vasquez, M., Johnson, P., Bernal-Cardenas, C., Poshyvanyk, D. (2015). Generating repro-
ducible and replayable bug reports from android application crashes. In 2015 IEEE 23rd International
Conference on Program Comprehension (ICPC) (pp. 48–59). https://doi.org/10.1109/ICPC.2015.14.

Wu, X., Jiang, Y., Xu, C., Cao, C., Ma, X., Lu, J. (2016). Testing android apps via guided gesture
event generation. In 2016 23rd Asia-Pacific Software Engineering Conference (APSEC) (pp. 201–208).
https://doi.org/10.1109/APSEC.2016.037.

Yang, W., Prasad, M.R., Xie, T. (2013). A grey-box approach for automated gui-model generation of mobile
applications. In Fundamental Approaches to Software Engineering (pp. 250–265). Springer.

Ye, H., Cheng, S., Zhang, L., Jiang, F. (2013). Droidfuzzer: Fuzzing the android apps with intent-filter tag. In
Proceedings of International Conference on Advances in Mobile Computing and Multimedia, MoMM
’13 (pp. 68:68–68:74). New York: ACM. https://doi.org/10.1145/2536853.2536881.

Yeh, C.C., Lu, H.L., Chen, C.Y., Khor, K.K., Huang, S.K. (2014). Craxdroid: Automatic android system
testing by selective symbolic execution (pp. 140–148). https://doi.org/10.1109/SERE-C.2014.32, citedBy 3.

Yoo, H., & Lee, Y. (2017). An automatic mobile app. testing method with user event scenario. In
2017 18th IEEE International Conference on Mobile Data Management (MDM) (pp. 394–396).
https://doi.org/10.1109/MDM.2017.71.

Yu, S., & Takada, S. (2016). Mobile application test case generation focusing on external events. In Proceed-
ings of the 1st International Workshop on Mobile Development, Mobile! 2016 (pp. 41-42). New York:
ACM. https://doi.org/10.1145/3001854.3001864.

Zaeem, R.N., Prasad, M.R., Khurshid, S. (2014). Automated generation of oracles for testing user-interaction
features of mobile apps. In Proceedings of the 2014 IEEE International Conference on Software
Testing, Verification, and Validation, ICST ’14 (pp. 183–192). Washington: IEEE Computer Society.
https://doi.org/10.1109/ICST.2014.31.

Zein, S., Salleh, N., Grundy, J. (2016). A systematic mapping study of mobile application testing techniques.
Journal of Systems and Software, 117, 334–356. https://doi.org/10.1016/j.jss.2016.03.065.

Zeng, X., Li, D., Zheng, W., Xia, F., Deng, Y., Lam, W., Yang, W., Xie, T. (2016). Automated test input
generation for android: Are we really there yet in an industrial case?. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016 (pp. 987–
992). New York: ACM. https://doi.org/10.1145/2950290.2983958.

Zhang, S., & Pi, B. (2015a). Mobile functional test on taas environment. In 2015 IEEE Symposium on Service-
Oriented System Engineering (pp. 315–320). https://doi.org/10.1109/SOSE.2015.27.

Zhang, T., Gao, J., Cheng, J., Uehara, T. (2015a). Compatibility testing service for mobile appli-
cations. In 2015 IEEE Symposium on Service-Oriented System Engineering (pp. 179–186).
https://doi.org/10.1109/SOSE.2015.35.

Zhang, A., He, Y., Jiang, Y. (2016). Crashfuzzer: Detecting input processing related crash bugs in
android applications. In 2016 IEEE 35th International Performance Computing and Communications
Conference (IPCCC) (pp. 1–8). https://doi.org/10.1109/PCCC.2016.7820625.

Zhauniarovich, Y., Philippov, A., Gadyatskaya, O., Crispo, B., Massacci, F. (2015). Towards black box testing
of android apps. In 2015 10th International Conference on Availability, Reliability and Security (ARES)
(pp. 501–510). https://doi.org/10.1109/ARES.2015.70.

Zheng, H., Li, D., Liang, B., Zeng, X., Zheng, W., Deng, Y., Lam, W., Yang, W., Xie, T. (2017). Automated
test input generation for android: Towards getting there in an industrial case. In Proceedings of the 39th
International Conference on Software Engineering: Software Engineering in Practice Track, ICSE-SEIP
’17 (pp. 253–262). Piscataway: IEEE Press. https://doi.org/10.1109/ICSE-SEIP.2017.32.

Zhu, H., Ye, X., Zhang, X., Shen, K. (2015). A context-aware approach for dynamic gui testing of android
applications (vol 2, pp. 248–253). https://doi.org/10.1109/COMPSAC.2015.77, cited By 0.

Zun, D., Qi, T., Chen, L. (2016). Research on automated testing framework for multi-platform mobile appli-
cations. In 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS) (pp.
82–87). https://doi.org/10.1109/CCIS.2016.7790229.

https://doi.org/10.1109/ICPC.2015.14
https://doi.org/10.1109/APSEC.2016.037
https://doi.org/10.1145/2536853.2536881
https://doi.org/10.1109/SERE-C.2014.32
https://doi.org/10.1109/MDM.2017.71
https://doi.org/10.1145/3001854.3001864
https://doi.org/10.1109/ICST.2014.31
https://doi.org/10.1016/j.jss.2016.03.065
https://doi.org/10.1145/2950290.2983958
https://doi.org/10.1109/SOSE.2015.27
https://doi.org/10.1109/SOSE.2015.35
https://doi.org/10.1109/PCCC.2016.7820625
https://doi.org/10.1109/ARES.2015.70
https://doi.org/10.1109/ICSE-SEIP.2017.32
https://doi.org/10.1109/COMPSAC.2015.77
https://doi.org/10.1109/CCIS.2016.7790229

200 Software Quality Journal (2019) 27:149–201

Porfirio Tramontana is an Assistant Professor at the University of Naples Federico II. He graduated in
Computer Engineering in 2001 and had a Ph.D. degree in 2005 at the same university. His research is
focused on Software Engineering applied to Mobile andWeb applications. His research fields include reverse
engineering, testing, maintenance, comprehension, migration of legacy systems, and software quality.

Domenico Amalfitano is a postdoctoral researcher at the University of Naples Federico II. His research
mainly concerns the reverse engineering, comprehension, migration, testing, and testing automation of event-
driven software systems, mostly for web applications, mobile applications, and GUIs. Amalfitano received a
PhD in Computer Engineering and Automation from the University of Naples Federico II.

Software Quality Journal (2019) 27:149–201 201

Nicola Amatucci is a postdoctoral researcher at the University of Naples Federico II. His research interests
are mainly related to event-based testing and mobile application testing. He received a PhD in Computer
Engineering and Automation from the University of Naples Federico II in 2016.

Anna Rita Fasolino is an Associate Professor in the Department of Electrical Engineering and Information
Technology of the University of Naples Federico II. Her research interests include software testing, software
maintenance, reverse engineering, embedded software engineering, and mobile and web engineering. Prof.
Fasolino has coordinated several research and technology transfer projects most of them conducted in coop-
eration with industrial partners. She has served on program committees for numerous events in the field of
software engineering.

Affiliations

Porfirio Tramontana1 ·Domenico Amalfitano1 ·Nicola Amatucci1 ·
Anna Rita Fasolino1

Domenico Amalfitano
domenico.amalfitano@unina.it

Nicola Amatucci
nicola.amatucci@unina.it

Anna Rita Fasolino
fasolino@unina.it

1 Department of Electrical Engineering and Information Technology, University of Naples Federico II,
Naples, Italy

http://orcid.org/0000-0003-3264-185X
mailto: domenico.amalfitano@unina.it
mailto: nicola.amatucci@unina.it
mailto: fasolino@unina.it

	Automated functional testing of mobile applications:
	Abstract
	Abstract
	Introduction
	Related work
	Research methodology
	Definition of the research questions
	Goals
	Research questions
	Metrics

	Search strategy definition
	Study selection criteria definition
	Screening of papers
	Data extraction and mapping of studies
	Data availability

	Analysis of results
	RQ 1.1 What testing activities are automated?
	RQ 1.2 What testing levels are addressed?
	RQ 2.1 What inputs are used by the proposed testing techniques to derive test artifacts?
	RQ 2.2 What kinds of technique are proposed for test case generation?
	RQ 2.3 What kinds of test oracles are considered?
	RQ 2.4 What kinds of test artifacts are generated?
	RQ 2.5 What are the characteristics of the proposed testing tools?
	RQ 2.6 Which mobile frameworks are the targets of the proposed techniques and tools?
	RQ 2.7 Are the proposed techniques and tools usable on emulators or real devices?
	RQ 3.1 What are the characteristics of the performed evaluation studies?
	RQ 3.2 What are the characteristics of the sets of applications objects of the evaluation experiments?
	RQ 3.3 What are the characteristics of the performed comparative studies?
	RQ 4.1 What is the number of published articles per year?
	RQ 4.2 Which are the venues having the higher article counts?
	RQ 4.3 Which are the more influential articles in terms of citation counts?
	RQ 4.4 Who are the authors with the higher number of articles?
	RQ 4.5 Which countries have produced more articles?
	RQ 4.6 Which are the author affiliations?

	Threats to validity
	Threats to Internal validity
	Threats to construct validity
	Threats to conclusion validity
	Threats to external validity

	Discussion
	Extracting relevant papers from the systematic mapping
	Focus on GUI-based testing approaches for Android applications
	Scarce attention to fault modeling and finding
	Distance between industry and academia
	Comparative studies and testing benchmarks
	Absence of specific venues and journals focused on mobile testing automation

	Conclusions
	References
	Affiliations

