
On the proposal and evaluation of a benchmark-based
threshold derivation method

Gustavo Vale1,2 & Eduardo Fernandes1,3 &

Eduardo Figueiredo1

Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Software-intensive systems have been growing in both size and complexity. Con-
sequently, developers need better support for measuring and controlling the software quality.
In this context, software metrics aim at quantifying different software quality aspects. How-
ever, the effectiveness of measurement depends on the definition of reliable metric thresholds,
i.e., numbers that characterize a metric value as critical given a quality aspect. In fact, without
proper metric thresholds, it might be difficult for developers to indicate problematic software
components for correction, for instance. Based on a literature review, we have found several
existing methods for deriving metric thresholds and observed their evolution. Such evolution
motivated us to propose a new method that incorporates the best of the existing methods. In
this paper, we propose a novel benchmark-based method for deriving metric thresholds. We
assess our method, called Vale’s method, using a set of metric thresholds derived with the
support of our method, aimed at composing detection strategies for two well-known code
smells, namely god class and lazy class. For this purpose, we analyze three benchmarks
composed of multiple software product lines. In addition, we demonstrate our method in
practice by applying it to a benchmark composed of 103 Java open-source software systems.
In the evaluation, we compare Vale’s method to two state-of-the-practice threshold derivation
methods selected as a baseline, which are Lanza’s method and Alves’ method. Our results

Software Qual J
https://doi.org/10.1007/s11219-018-9405-y

* Gustavo Vale
vale@fim.uni-passau.de

Eduardo Fernandes
eduardofernandes@dcc.ufmg.br

Eduardo Figueiredo
figueiredo@dcc.ufmg.br

1 Department of Computer Science, Federal University of Minas Gerais (UFMG), Belo Horizonte,
Brazil

2 Department of Computer Science, University of Passau, Passau, Germany
3 Informatics Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro,

Brazil

(2019) 27:275–306

Published online: 1 May 2018

http://orcid.org/0000-0002-8879-5797
http://orcid.org/0000-0002-1222-2247
http://orcid.org/0000-0002-6004-2718
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-018-9405-y&domain=pdf

suggest that the proposed method provides more realistic and reliable thresholds, with better
recall and precision in the code smell detection, when compared to both baseline methods.

Keywords Softwaremetric . Threshold . Benchmark . Software product lines . Code smell

1 Introduction

Since software-intensive systems have been growing in both size and complexity, developers
require better support for measuring and controlling the software quality (Fenton 1991;
Gamma et al. 1995). In this context, software metrics may guide developers in assessing
different software quality aspects, such as maintainability and changeability (Chidamber and
Kemerer 1994; Lorenz and Kidd 1994). Therefore, we may improve the quality of software-
intensive systems by using metrics related to different software entities, such as classes,
methods, and concerns. However, the effectiveness of measurement directly depends on the
definition of reliable thresholds, i.e., numbers that characterize a metric value as critical for a
specific quality aspect (Oliveira et al. 2014). That is, a single metric value may not suffice to
draw a conclusion on the quality of a software entity and the whole system.

In order to visualize the state-of-the-art on threshold derivation, we have conducted an ad
hoc literature review of methods for deriving metric thresholds. We aimed at understanding the
strengths and weaknesses of the existing methods. Based on this review, we observed that
threshold derivation first relied on the opinion of developers (McCabe 1976; Nejmeh 1988).
Second, it evolved to rely on the consensus of developers (Coleman et al. 1995). Third,
methods for threshold derivation emerged and relied on data from a single software system
(Erni and Lewerentz 1996). Finally, as from the first to the second case, software engineers
started to use a set of software systems, so-called benchmarks (Alves et al. 2010; Ferreira et al.
2012; Oliveira et al. 2014). In a benchmark-based method, we derive thresholds based on data
from similar systems, i.e., systems that share the same programming language, domain, or size
scale, for instance (Mori et al. 2018). From the ad hoc review, we propose a method that
combines the main strengths of existing methods (Vale and Figueiredo 2015).

The proposed method, called Vale’s method, is a benchmark-based threshold derivation
method composed of five well-defined steps. It derives metric thresholds that allow developers
to characterize a metric value into five labels: very low, low, moderate, high, and very high.
Additionally, Vale’s method respects the metric distribution because it does not correlate
metrics or assign weights to the analyzed metrics, for instance. To assess the reliability of
the thresholds derived by Vale’s method, we compare its results with the thresholds derived by
two state-of-the-practice methods, namely Lanza’s method (Lanza and Marinescu 2006) and
Alves’ method (Alves et al. 2010). We selected these two methods because both are bench-
mark-based, composed of well-defined steps, provide thresholds in a step-wise format, and
have interesting particularities to discuss. For instance, Lanza’s relies on mean and standard
deviation to derive thresholds, while Alves’ correlates metrics for the same goal.

This paper evaluates our method in two ways. First, we compare our method with Lanza’s
method and Alves’ method using software product lines (SPL). At this evaluation, we build
three SPL benchmarks and explore specific characteristics of the three threshold derivation
methods. We also evaluate each method by using the derived thresholds to detect two code
anomalies: god class and lazy class. God class is a class with too much knowledge and
responsibility in the system and lazy class is a class with too little knowledge and responsibility

Software Qual J (2019) 27:275–306276

(Fowler 1999). In addition, we demonstrate the use of our method in practice by comparing the
three threshold derivation methods with larger, object-oriented systems. Some of these systems
are well-known and have several clients, such as ArgoUML, Hibernate, and JavaCC.

Our results in the first evaluation suggest that Vale’s method provides better recall and
precision than the baseline methods. In our generalizability study, we observe lower and
more balanced thresholds derived by Vale’s than derived by the two other methods. As
lessons learned, we present a list of eight desirable points for threshold derivation
methods. In summary, we learned that methods should (i) be systematic and deterministic,
(ii) derive thresholds in a step-wise format, (iii) be weakly dependent on the number of
systems, (iv) be strongly dependent on the number of entities, (v) not correlate metrics, (vi)
compute upper and lower thresholds, (vii) provide representative thresholds regardless of
the metric distribution, and (viii) provide tool support. Finally, we observe varying
thresholds per benchmark, which suggests that threshold derivation is sensitive to the
system characteristics, e.g., size and complexity.

We highlight that this paper evolves our previous work (Vale and Figueiredo 2015)
with four major contributions. First, it revises and generalizes our previously proposed
method to allow its application on general software systems. Second, in addition to the
method evaluation with SPLs, we demonstrate Vale’s method in this paper with a Java
benchmark composed of 103 medium-to-large-sized software systems. Third, in addition
to the comparison of Vale’s with Lanza’s methods (Lanza and Marinescu 2006), we
compare our method with Alves’ method (Alves et al. 2010). Fourth, we introduce a
supporting tool for Vale’s method, called TDTool which stands for threshold derivation
tool (Veado et al. 2016). Furthermore, we add relevant discussions to our previous work,
such as the discussions that compare the two evaluations (SPL and Java benchmarks,
respectively) and updated related work.

The remainder of this paper is organized as follows. Section 2 provides background
information and discussion of related work. Section 3 describes Vale’s method for metric
threshold derivation. Section 4 introduces the supporting tool for our method. Section 5
presents a practical example of our method. Section 6 evaluates Vale’s method using three
SPL benchmarks, by comparing both Lanza’s and Alves’ methods with Vale’s one. Section 7
applies all three methods to a Java benchmark. Section 8 discusses the main study decisions
regarding the Vale’s method proposal, the different thresholds derived per benchmark, and a
theoretical comparison of four related methods. Section 9 discusses threats to the study
validity. Section 10 concludes the paper and suggests future work.

2 Background and related work

This section presents the description of some metrics used in this study and an overview of
methods to derive metric thresholds. Section 2.1 presents the metrics used in this study.
Section 2.2 describes the protocol we followed to identify threshold derivation methods. We
then group and describe the main strategies and methods to derive thresholds in the following
three sections. Section 2.3 discusses thresholds derived by programming experience and metric
analysis. Section 2.4 presents methods for characterizing metric distributions. Section 2.5
presents methods that are benchmark-based and consider the skewed distribution of metrics.
Strategies and methods of Sects. 2.3 to 2.5 are related to the method we propose in this study.
Finally, Sect. 2.6 summarizes the main results of our ad hoc literature review.

Software Qual J (2019) 27:275–306 277

2.1 Software metrics

In this study, we use eight software metrics: coupling between objects (CBO), depth
inheritance tree (DIT), lack of cohesion in methods (LCOM), number of children (NOC),
response for a class (RFC), weight method per class (WMC), lines of code (LOC), and
number of constant refinements (NCR). We chose these metrics because they capture
different quality attributes (e.g., size, coupling, cohesion, and complexity) and, except for
NCR, they are well known by the software quality community. For instance, CBO, DIT,
LCOM, NOC, RFC, and WMC are six metrics that compose the CK suite (Chidamber
and Kemerer 1994). Although NCR is not a well-known metric, we chose it because this
metric captures an interesting view of the complexity of SPL components. We describe
each of the eight metrics as follows.

& Coupling between objects (CBO) (Chidamber and Kemerer 1994) counts the number of
classes called by a given class. CBO measures the degree of coupling among classes.
Figure 1a illustrates an example of how CBO is calculated. In this example, each box
represents classes and each arrow represents the relation between two classes.

& Depth of inheritance tree (DIT) (Chidamber and Kemerer 1994) counts the number of
levels a subclass inherits methods and attributes from a superclass in the inheritance tree. It
is another metric to estimate the class complexity/coupling. Figure 1b presents an example
of DIT computation. As can be seen in Fig. 1b, if a class has DIT = 0, the subclass of this
class has DIT = 1 and so on.

& Lack of cohesion in methods (LCOM) (Chidamber and Kemerer 1994) measures the
cohesion of methods of a class in terms of the frequency that they share attributes. LCOM
is calculated by subtracting the number of method pairs that share an attribute access from
the number of method pairs that do not share any attribute access. Figure 1c shows an
example of how LCOM is computed. For instance, M1 and M2 are methods that share the
use of A1 attribute. However, M3 does not share any attribute access with M1 or M2.
Therefore, LCOM is 1 in this example.

& Number of children (NOC) (Chidamber and Kemerer 1994) counts the number of direct
sub-classes of a given class. This metric indicates code reuse. Figure 1d presents an
example of NOC computing. For instance, the class root in the inheritance tree has two
sub-classes at the level immediately below. Therefore, this class has NOC = 2. On the other
hand, leaf classes have no sub-classes. Therefore, their NOC is 0.

& Response for a class (RFC) (Chidamber and Kemerer 1994) counts the number of methods
in a class that may be executed when an object of the given class receives a message. This
metric supports the assessment of class complexity. Figure 1e presents an example of RFC.
In this figure, class1 implements two methods, and it calls three methods from other
classes. These five methods may be potentially called in objects of this class. Therefore,
RFC is 5 for class1.

& Weighted method per class (WMC) (Chidamber and Kemerer 1994) counts the number of
methods in a class. This metric can be used to estimate the complexity of a class. Each
method weights equal one in this study. Figure 1f illustrates how WMC is computed. For
each method in a class, the value of WMC is incremented. Therefore, in case of Fig. 1f,
there are three methods and, hence, WMC is 3.

& Lines of code (LOC) (Lorenz and Kidd 1994) counts the number of uncommented lines of
code per class. The value of this metric indicates the size of a class. Figure 1g presents an

Software Qual J (2019) 27:275–306278

illustrative example of LOC. As can be seen in this example, LOC counts code lines, but
LOC ignores either commented lines or blank lines. Hence, in Fig. 1g, LOC is equal to 8.

(a) CBO (b) DIT

(c) LCOM (d) NOC

public class Class1
public static void method1(){

Variable.method3();
}
public static void method2(){

variable2.method4();
Class2.method5();

}
}

RFC = 5

public class Class
public static void method1()
{...}
public static void method2()
{...}
public static void method3()
{...}

}
WMC = 3

(e) RFC (f) WMC

public class Class{
private static int attributel;
private static int attribute2;
//Methods of the class

public void static main(...){
int variable1 = 0;
int variable2 = 0;

}
}

LOC = 8

(g) LOC (h) NCR

Fig. 1 Examples of computing metrics

Software Qual J (2019) 27:275–306 279

& Number of constant refinements (NCR) (Abilio et al. 2016) counts the number of refine-
ments that a constant has. NCR indicates how complex the relationship between a constant
and its features is. Constants and refinements are files that can often be found in feature-
oriented programming (FOP) (Batory and O’Malley 1992). That is, refinements can
change the behavior of a constant (such as a class) if a certain feature is included in a
product. Figure 1h presents an example of NCR. In Fig. 1h, we have the features i, j, and k;
classes a, b, and, c; ai, bi, and ci are constants of feature i; and aj, cj, and ck are refinements
of features j and k. Therefore, constants ai, bi, and ci have NCR equals to 1, 0, and 2,
respectively.

2.2 Literature review protocol

This section presents the protocol of a literature review to identify methods to derive
thresholds. To identify such methods, we performed an ad hoc literature review. We opted
for an ad hoc literature review because we have found a systematic literature review (SLR)
(Lima et al. 2016) with a similar purpose of our review. An SLR is a well-defined method to
identify, evaluate, and interpret all relevant studies regarding a particular research question,
topic area, or the phenomenon of interest (Kitchenham and Charters 2007). The purpose of the
related SLR (Lima et al. 2016) is to identify papers that present and discuss metric thresholds.
Hence, as we are interested in methods to derive thresholds, we assume that they identify such
methods or, at least, present strategies and papers related to this context.

Therefore, we used the related SLR (Lima et al. 2016) as our starting point. This SLR
reports 19 papers that present and discuss thresholds. We have not only analyzed all these
19 papers, but also performed the snowballing technique. This technique consists in
investigating the references retrieved in the selected papers to find additional relevant
papers to increase the scope of the search, providing broader results (Brereton et al. 2007).
Hence, after applying the forward snowballing, we got an amount of 50 primary studies.
These primary studies were selected following four inclusion criteria: (i) the paper must be
in computer science area, (ii) the paper must be written in English, (iii) the paper must be
available in electronic form, and (iv) the paper must propose or use at least one method to
derive metric thresholds. The list of primary studies can be found on the supplementary
website (LabSoft 2017).

2.3 Thresholds derived from programming experience and metric analysis

Many authors defined metric thresholds according to their programming experience. For
example, the values 10 and 200 were defined as thresholds for McCabe (1976) and NPATH
(Nejmeh 1988), respectively. The aforementioned values are used to indicate the presence (or
absence) of code smells. Regarding Maintainability Index (MI), the values 65 and 85 are
defined as thresholds (Coleman et al. 1995). When MI values are higher than 85, between 85
and 65, or smaller than 65, they are considered as highly maintainable, moderately maintain-
able, and difficult to maintain, respectively. These thresholds rely on programming experience
and they are difficult to reproduce or generalize. Additionally, the lack of scientific support can
lead to disagreement about the values. However, unlike these papers (Coleman et al. 1995;
McCabe 1976; Nejmeh 1988), our research does not aim to propose a method to derive
thresholds based on programming experience.

Software Qual J (2019) 27:275–306280

Erni and Lewerentz (1996) propose the use of mean (μ) and standard deviation (σ) to derive
a threshold (T) from software data. A threshold is calculated as T = μ+ σ and T = μ− σ when
high and low values of a metric indicate potential design problems, respectively. Lanza and
Marinescu (2006) use a similar method in their research for 45 Java projects and 37 C++
projects. Nevertheless, they use four labels: low, mean, high, and very high. Labels low, mean,
and high is calculated in the same way as Erni and Lewerentz (1996). Label very high is
calculated as T = (μ+ σ) × 1.5. Abilio et al. (2015) use the same method than Lanza and
Marinescu (2006), but they derive thresholds for eight SPLs. These methods rely on a common
statistical technique. However, Erni and Lewerentz (1996), Abilio et al. (2015), and Lanza and
Marinescu (2006) do not analyze the underlying distribution of metrics. The problem with
these methods is that they assume that metrics are normally distributed, limiting the use of
these methods. In contrast, our research focuses on a method that does not make assumptions
about data normality.

French (1999) also proposes a method based on the mean and standard deviation. However,
French used the Chebyshev’s inequality theorem (whose validity is not restricted to normal
distributions). A metric threshold T can be calculated by T = μ+ k × σ, where k is the number
of standard deviations. Additionally, this method is sensitive to the large number of outliers
(Mori et al. 2018). For metrics with high range or high variation, this method identifies a
smaller percentage of observations than its theoretical maximum. Herbold et al. (2011) propose
a method for threshold derivation that does not depend on the context of the collected metrics,
e.g., the target programming language or abstraction level. For this purpose, the authors rely on
machine learning and data mining techniques. Finally, Perkusich et al. (2015) propose a
method to support the interpretation of values for software metrics. Instead of deriving
thresholds that indicate acceptable values for a metric, the proposed method relies on Bayesian
networks that consider subjective factors of software development. Thus, their method aims to
support managers in minimizing wrong decisions based on software measurement and assess-
ment. In contrast to French (1999), Herbold et al. (2011), and Perkusich et al. (2015), our
method was designed to derive thresholds from benchmark data and, as such, it is resilient to
high variation of outliers. In addition, we did not use Chebyshev’s inequality theorem, machine
learning, or Bayesian networks.

2.4 Methods for characterizing metric distributions

Chidamber and Kemerer (1994) use histograms to characterize and analyze data. For each
of their 6 metrics (e.g., WMC and CBO), they plotted histograms per programming
language to discuss metric distribution and spotted outliers in C++ and Smalltalk systems.
Spinellis (2008) compares metrics of four operating system kernels (i.e., Windows, Linux,
FreeBSD, and OpenSolaris). For each metric, boxplots of the four kernels are put side-by-
side showing the smallest observation, lower quartile, median, mean, higher quartile, and
the highest observation and identified outliers. The boxplots are then analyzed by the
author and used to give ranks, + or − to each kernel. However, as the author states, the
ranks are given subjectively. Vasa et al. (2009) propose the use of Gini coefficients to
summarize a metric distribution across a system. The analysis of the Gini coefficient for 10
metrics using 50 Java and C# systems revealed that most of the systems have common
values. Moreover, higher Gini coefficient values indicate problems and, when analyzing
subsequent releases of source code, a difference higher than 0.04 indicates significant
changes in the code. In contrast to Chidamber and Kemerer (1994), Spinellis (2008), and

Software Qual J (2019) 27:275–306 281

Vasa et al. (2009), we did not use histograms, mean, median, or Gini coefficient to
calculate thresholds and we derive thresholds based on data from a benchmark.

2.5 Benchmark-based methods that consider the skewed metric distribution

This section describes methods closer to ours because they are transparent, the thresholds are
extracted from benchmark data, and the methods consider the skewed distribution of metrics.
Alves et al. (2010) propose a method that weights software metrics by lines of code and aim at
labeling each entity of a system based on thresholds. Each label is defined based on a pre-
determined percentage of entities. This method proposes 70, 80, or 90% to represent the
following labels: low (between 0 and 70%), moderate (70–80%), high (80–90%), and very
high (> 90%). Similarly, Ferreira et al. (2012) present a method for calculating thresholds. This
method consists in grouping the extracted metrics in a file and gets three groups, with high,
medium, and low frequency. The groups are called good, regular, and bad measurements,
respectively. The authors do not make clear how to extract the three groups since they argue
that the groups rely on visual analysis. Oliveira et al. (2014) propose a method based on a
formula, named compliance rate. The main differences of this method are that it extracts
relative thresholds instead of absolute ones and it does not label components. Oliveira’s
method defines one threshold for software metric per system (Oliveira et al. 2014). In contrast
to Alves, Ferreira, and Oliveira, our method does not correlate metrics, we present different
labels in a step-wise format, and our method has lower bound thresholds.

2.6 Literature review summary

By analyzing all the 50 primary studies, we could see that researchers have been worried about
thresholds for a long time once the first published paper identified in our review is from 1976.
In addition, this topic is still opened because researchers nowadays propose methods to derive
thresholds. Despite it being an open topic, we can see an evolution in such methods. This
evolution can be summarized in three key points: (i) to be derived from benchmarks, (ii) to be
based on well-defined methods, and (iii) to consider the skewed metric distribution.

The first key point regards the confidence of the derived thresholds. In the past, software
engineers derived thresholds through their subjective opinion (McCabe 1976; Nejmeh 1988).
After, they started to discuss in groups to get a consensus about the thresholds (Coleman et al.
1995). Later, software engineers started to use systems to help them to derive thresholds (Erni
and Lewerentz 1996). Finally, as from the first to the second case, they started to use a group of
software systems, called benchmarks, to support the threshold derivation (Ferreira et al. 2012;
Oliveira et al. 2014). The idea of using benchmark-based methods is to get common charac-
teristics of entities from a benchmark and assume that discrepant values might have a problem.
In this context, benchmark means a set of similar systems, e.g., developed in the same
programming language, domain, or with similar size or type.

The second key point is related to the method replicability. A method should output the
same threshold for a metric when the same input is provided. Therefore, the method should be
deterministic. Consequently, deterministic methods prevent subjective decisions in threshold
derivation and they can be automatically performed. Hence, huge benchmarks can be used as
input increasing the scope and reliability of the derived thresholds.

The third key point is related to the statistical approach used by methods to derive
thresholds. This point is important because software metrics can have different distributions,

Software Qual J (2019) 27:275–306282

such as normal, power law (heavy-tail), and common distributions. A method using only mean
and median can provide invalid or non-representative thresholds for non-normal distributions.
Previous works assumed that software metrics follow a normal distribution (Chidamber and
Kemerer 1994; Erni and Lewerentz 1996). Despite that assumption, several studies (Concas
et al. 2007; Ferreira et al. 2012; Louridas et al. 2008; Oliveira et al. 2014) clearly demonstrate
that most software metrics do not follow normal distributions, limiting the use of methods that
use mean to derive thresholds, for example.

Therefore, based on the results of this literature review, we conclude that methods should be
benchmark-based, transparent, straightforward, replicable, and respect skewed metric distri-
bution. Hence, if they respect these guidelines, methods tend to provide more reliable
thresholds.

3 The proposed method to derive thresholds

The method proposed in this section was designed according to the following guidelines: (i) it
should be based on data analysis from a representative set of systems (benchmark); (ii) it
should be a strong dependence on the number of entities; (iii) it should be a weak dependence
on the number of systems; (iv) it should calculate upper and lower thresholds; (v) it should
derive thresholds in a step-wise format; (vi) it should respect the statistical properties of the
metric; and (vii) it should be systematic, repeatable, transparent, and straightforward to
execute. These guidelines are mainly based on the desirable points described in a previous
work (Vale et al. 2015). Figure 2 summarizes the steps of the proposed method, called Vale’s
method from now on.

Vale’s method steps are described as follows.

1. Measurement: metrics are collected from a benchmark of software systems (input). We
record a metric value, for each system and for each entity (e.g., class) belonging to the
system. Hence, if we think in a spreadsheet, each row indicates an entity metric value and
each column indicates a metric (e.g., LOC, CBO, and so on).

Fig. 2 Summary of Vale’s method steps

Software Qual J (2019) 27:275–306 283

2. Entity segregation: for each entity, we compute its percentage with respect to the total
number of entities, i.e., we divide 100 by the total number of entities. That is, every entity
represents the same amount of the benchmark in our method. In other words, each entity
has the same weight. The sum of all entities must be 100%. For instance, if one
benchmark has 10,000 entities, each entity represents 0.01% of the overall (0.01%×
10,000 = 100%).

3. Sorting measures: we order the metric values in ascending order and take the maximal
metric value that represents 1, 2, up to 100%, of the weight. This step is equivalent to
computing a density function, in which the x-axis represents the weight ratio (0–100%)
and the y-axis the metric scale. For instance, all entities with WMC value that is 4 must
come before all metrics in which WMC value is 5.

4. Entity aggregation: we aggregate all entities per metric value, which is equivalent to
computing a weighted histogram (the sum of all bins must be 100%). For example, if we
have four entities with WMC value equal to 4 and each entity representing 0.01%, the
aggregated entities correspond to 0.04% of all code.

5. Upper Bound Threshold Derivation: upper bound thresholds are derived by choosing the
90 and 95% percentages of the overall metric values we want to represent. We propose the
use of 90% to identify Bhigh^ metric values and 95% to identify Bvery high^ metric
values. Let us suppose that to represent 90% of the overall code for the WMC metric, the
derived threshold is 18. This threshold is meaningful, since not only does it mean that 90%
of the code of a benchmark of systems is below 18, but it also can be used to identify the
top 10% of the worst code in terms of WMC (greater than 18).

6. Lower bound threshold derivation: a unique characteristic of the proposed method
compared to the most related work (see Sect. 2.5) is that it can extract lower bound
thresholds, in addition to upper bound thresholds. To extract lower bound thresholds, we
propose the percentiles of 3% (very low) and 15% (low). We decided to create four
different labels to give more power to the user. For instance, these labels allow identifying
metrics value to be fixed in long term, medium term, and short term.

In summary, the percentiles used in the proposed method can be used to characterize metric
values according to five categories (which are not mutually exclusive): very low values
(between 0 and 3%), low values (0–15%), moderate values (15–90%), high values (90–
100%), and very high values (95–100%). In Sect. 8.4, we discuss why we chose these
percentages and labels.

4 TDTool: threshold derivation tool

This section presents the TDTool (threshold derivation tool), which supports Vale’s method.
The tool expects as input a set of CSV files in which each file must represent the measures of
the entities of a system. In addition, it expects files in the following format: each column must
represent a metric and each row must represent an entity. For a benchmark with 100 systems,
100 CSV files are expected. The results of TDTool are displayed on the screen, and they can be
exported to CSV format (Veado et al. 2016). Figure 3 also presents the main three modules of
TDTool. The modules are three listed as follows: configuration, processing, and presentation.
In the configuration module, the user must select the files in which composes the benchmark,
and after, he should select metrics he wants to derive thresholds. The processing module is

Software Qual J (2019) 27:275–306284

responsible for deriving the thresholds, as described by the proposed method in Sect. 3. The
presentation module shows the results as a table that summarizes the derived thresholds.

Table 1 represents an example of an expected file to derive thresholds for four metrics
(LOC, CBO, WMC, and NCR) in part of the TankWar source code. TankWar is a game
developed by students at German University of Magdeburg as a software product line (SPL) to
adhere to portability requirements common to mobile devices (Schulze et al. 2010). In this
case, the entities represent the classes of the system. TDTool does not depend on the way the
metrics have been calculated. Instead, it only needs to receive as input the file in the expected
CSV format for deriving the metric thresholds.

Figure 4 presents the selection metrics view. In this illustration, TDTool identified
component, LOC, CBO, WMC, and NCR as metrics. Despite that, the first column
represents the entities’ name. Therefore, we did not want to derive thresholds for this
column. Hence, we selected only LOC, CBO, WMC, and NCR. For each derivation step,
the user can close the tool, return to the previous step, or go to the next one. In the final
step, the user can export the results by clicking on the Save button. The results are
arranged in a CSV file containing all the entities with their respective percentage. To
evaluate the thresholds provided by TDTool, we compared the thresholds obtained

Fig. 3 TDTool architecture

Table 1 Example of input for TDTool

Component LOC CBO WMC NCR

Maler.jak 8 2 1 0
Option.jak 27 2 3 0
Maler.jak 300 12 63 16
TankManager.jak 11 2 4 0
Menu.jak 254 7 66 0
KeyMonitor.jak 63 4 28 0
GameManager.jak 2 1 0 0
Missile.jak 6 2 1 0
Tank.jak 6 2 1 0
ExplodierenEffekt.jak 126 3 18 0
TankManajer.jak 6 2 2 0
Maler.jak 321 8 104 0
Tank.jak 15 3 3 0
Missile.jak 13 4 3 0
Tank.jak 41 4 13 0
TankManager.jak 18 4 5 0
SoundPlayer.jak 51 5 11 0
Tank.jak 49 3 16 0
Sprach.jak 18 1 0 0
Sprach.jak 18 1 0 0

Software Qual J (2019) 27:275–306 285

manually with the thresholds obtained by the tool; the thresholds are the same. There-
fore, we believe that TDTool works correctly.

5 Example of use

Vale’s method can be applied in different ways, such as using SIG quality model (Heitlager
et al. 2007), analyzing metrics individually, or using a metric-based detection strategy. The SIG
quality model combines metrics that capture source code properties until those metrics
represent some characteristics of International Standards Organizations (ISO), such as ISO/
IEC 9126 and ISO/IEC 25000. In this section, we illustrate the use of Vale’s method by
analyzing individually the derived thresholds of four metrics.

Before applying the method, it is necessary to follow three previous steps: (i) to have
a benchmark composed of software systems, (ii) to choose a set of metrics to derive
thresholds, and (iii) to choose a tool able to extract these metric values from each system
of the target benchmark. Section 5.1 explains how we built three SPL benchmarks. We
selected four metrics (LOC, CBO, WMC, and NCR), described in Sect. 2.1 to derive
metric thresholds. We then extracted the value for these four metrics for each class of
each system from these three SPL benchmarks using VSD tool (Abilio et al. 2014).
Section 5.2 presents the derived thresholds for the chosen set of metrics obtained by
using Vale’s method (Sect. 3).

Fig. 4 Metric selection in TDTool

Software Qual J (2019) 27:275–306286

5.1 Software product line benchmarks

This section presents three benchmarks of software product lines (SPLs) shown in Table 2. An
SPL is a configurable set of systems that share a common, managed set of features in a
particular market segment (SEI 2016). Features can be defined as modules of an application
with consistent, well-defined, independent, and combinable functions (Apel et al. 2009). We
decided to build SPL benchmarks because SPLs have been increasingly adopted in the
software industry to support coarse-grained reuse of software assets (Dumke and Winkler
1997). To build these benchmarks, we focused on SPLs developed using FOP (Batory and
O’Malley 1992). The main reason for choosing FOP is because this technique aims to support
modularization of features, i.e., the building blocks of an SPL. In addition, we have already
developed a tool, named variability smell detection (VSD) (Abilio et al. 2014), which is able to
measure FOP code (step one of the proposed method).

We selected 47 SPLs from repositories, such as SPL2GO (2015) and FeatureIDE
(2017) examples, and 17 SPLs from research papers, summing up to 64 SPLs in total. In
order to have access to the source code of each SPL, we either e-mail the paper authors

Table 2 Software product lines benchmarks

Id SPL Tech. LOC

Benchmarks 1, 2, and 3 1 BerkeleyDB (SPL2GO 2015) FH-Java 37,247
2 AHEAD-Java (Abilio et al. 2014) AHEAD 16,719
3 AHEAD-guidsl (Abilio et al. 2014) AHEAD 8738
4 TankWar (FeatureIDE 2017; SPL2GO 2015) AHEAD 4670
5 AHEAD-Bali (Abilio et al. 2014) AHEAD 3988
6 Devolution (FeatureIDE 2017) AHEAD 3913
7 MobileMedia v.7 (Ferreira et al. 2014) AHEAD 2691
8 WebStore v.6 (Ferreira et al. 2014) AHEAD 2082
9 DesktopSearcher (FeatureIDE 2017; SPL2GO 2015) AHEAD 1858
10 GPL (FeatureIDE 2017) AHEAD 1824
11 Notepad v.2 (SPL2GO 2015) FH-Java 1667
12 Vistex (SPL2GO 2015) FH-Java 1480
13 GameOfLife (SPL2GO 2015) FH-Java 1047
14 Prop4J (SPL2GO 2015) FH-Java 1047

Benchmarks 1 and 2 15 Elevator (SPL2GO 2015) FH-Java 728
16 ExamDB (SPL2GO 2015) FH-JML 568
17 PokerSPL (SPL2GO 2015) FH-JML 461
18 EmailSystem (SPL2GO 2015) FH-Java 460
19 GPLscratch (SPL2GO 2015) FH-JML 405
20 Digraph (SPL2GO 2015) FH-JML 374
21 MinePump (SPL2GO 2015) FH-JML 367
22 Paycard (SPL2GO 2015) FH-JML 319

Benchmark 1 23 IntegerSet (SPL2GO 2015) FH-JML 225
24 UnionFind (SPL2GO 2015) FH-JML 194
25 NumberContractOverrinding (SPL2GO 2015) FH-JML 165
26 NumberConsecutiveContractRef (SPL2GO 2015) FH-JML 148
27 NumberExplicitContractRef (SPL2GO 2015) FH-JML 143
28 BankAccount (SPL2GO 2015) FH-JML 122
29 EPL (FeatureIDE 2017) AHEAD 98
30 IntList (SPL2GO 2015) FH-JML 94
31 StringMatcher (SPL2GO 2015) FH-JML 45
32 Stack (SPL2GO 2015) FH-Java 22
33 HelloWorld (FeatureIDE 2017) AHEAD 22

Software Qual J (2019) 27:275–306 287

or search on the Web. In the case of SPL repositories, the source code was available.
When different versions of the same SPL were found, we picked up the most recent one.
Some SPLs were developed in different languages or technologies. For instance, GPL
(FeatureIDE 2017) has four different versions implemented in AHEAD, FH-C#, FH-
Java, and FH-JML. FH stands for FeatureHouse and FH-Java means that the SPL is
implemented in Java using FeatureHouse as a composer. In cases where the SPL was
implemented in more than one technique, we preferred to select the AHEAD or
FeatureHouse implementation based on a tool support constraint (see Sect. 9). After
filtering our original dataset by selecting only one version and one programming
language for each SPL, we end up with 33 SPLs listed in Table 2. The source code of
all SPLs of our benchmark and the step-to-step filtering is further explained on the
supplementary website (LabSoft 2017).

In order to generate different benchmarks for comparison, we split the 33 SPLs into
three benchmarks according to their size in terms of Lines of Code (LOC). Table 2
presents the 33 SPLs ordered by their values of LOC. This table also shows imple-
mentation technology (Tech.) per SPL and groups the SPLs by the respective bench-
marks. Benchmark 1 includes all 33 SPLs. Benchmark 2 includes 22 SPLs with more
than 300 LOC. Finally, benchmark 3 is composed of 14 SPLs with more than 1000
LOC. The goal of creating three different benchmarks is to analyze the results with
varying levels of thresholds.

5.2 Derived thresholds

This section presents the thresholds derived by Vale’s method per benchmark presented in the
previous section for LOC, CBO, WMC, and NCR metrics. Vale’s method presents five labels,
but these labels are established in four percentages. Hence, Table 3 shows the values that
represent the percentages (key values). This table should be read as follows: the first column
represents the benchmarks, the second column indicates the different labels, and the other
columns determine the thresholds of LOC, CBO, WMC, and NCR metrics, respectively. For
example, the labels are defined as: very low (0–3%), low (3–15%), moderate (15–90%), high
(90–95%), and very high (95–100%). They are represented in benchmark 1 by the intervals 0–
2, 3–4, 5–77, 78–138, and > 139 LOC, respectively.

Table 3 Threshold values from the proposed method

Benchmark % LOC CBO WMC NCR

1 3 2 1 0 0
15 4 1 1 0
90 77 11 17 3
95 138 16 31 7

2 3 2 1 0 0
15 4 1 1 0
90 78 11 17 3
95 142 16 32 8

3 3 2 1 0 0
15 4 1 1 0
90 79 12 18 3
95 146 19 34 8

Software Qual J (2019) 27:275–306288

It should be observed that there is a difference between the thresholds varying the
benchmark for the same label, although it is a minor difference in most cases. The thresholds
by the same metric from benchmarks 1, 2, and 3 (in this order) increased. It makes sense
because small SPLs were removed and both constants and refinements from SPLs whose
compose benchmark 1 are generally smaller than constants and refinements from SPLs whose
compose benchmarks 2 and 3. In addition, evidence can be seen that the proposed method is
concerned with the entity values to derive thresholds because, in theory, the quality of the
benchmarks increases.

6 Evaluation using the SPL benchmarks

This section evaluates the derived thresholds from Vale’s, Lanza’s (Lanza and Marinescu
2006), and Alves’ (Alves et al. 2010) methods. We selected these two methods to evaluate
Vale’s method because both are benchmark-based methods, have well-defined steps, and
present thresholds in a step-wise format like our method. In addition, we selected Lanza’s
method, because it is the only benchmark-based method found in the literature which derives
lower bound thresholds and we intend to analyze if the metric distribution really influences a
method based just on mean and standard deviation—disrespecting the third key point (see
Sect. 2.6 for details).

To perform such evaluation, we derive thresholds using Lanza’s method (Sect. 6.1) and
Alves’ method (Sect. 6.2), choose two metric-based detection strategies for two code smells
(Sect. 6.3), choose a target SPL and define a reference list of code smells (Sect. 6.4), and
perform the comparison of effectiveness of these methods (Sect. 6.5).

6.1 Derived thresholds using Lanza’s method

As described in Sect. 2.3, Lanza’s method uses μ− σ, μ, μ+ σ, μ+ σ× 1.5 to the labels low,
mean, high, and very high, respectively, where μ is the mean and σ is the standard deviation.
Table 4 presents the thresholds necessary to represent Lanza’s method. This table should be
read as follows: the first column represents the benchmarks, and the second column indicates
the different labels. The other columns determine the thresholds of LOC, CBO, WMC, and
NCR, respectively. For example, the labels defined as low, mean, high, and very high are

Table 4 Thresholds values from Lanza’s method

Benchmark Label LOC CBO WMC NCR

1 Low 0 0 0 0
Mean 36.80 5.33 8.14 1.07
High 126 11.70 28.90 4.05
Very high 189 17.55 43.35 6.075

2 Low 0 0 0 0
Mean 37.40 5.44 8.30 1.07
High 128 11.8 29.40 4.08
Very high 192 17.7 44.10 6.12

3 Low 0 0 0 0
Mean 37.80 5.59 8.40 1.14
High 130 12.1 29.90 4.27
Very high 195 18.15 44.85 6.405

Software Qual J (2019) 27:275–306 289

represented by the values 0, 5.33, 11.7, and 17.55, respectively, for CBO in benchmark 1.
Lanza’s method may provide negative thresholds to metrics, given the use of standard
deviation to derive thresholds. Considering the chosen software metrics for this study, a
negative value does not make sense and it requires a special treatment. Hence, we converted
these negative values to zero.

6.2 Derived thresholds using Alves’ method

As described in Sect. 2.5, Alves’ method uses the percentages 70, 80, and 90 to represent the
labels moderate, high, and very high, respectively. We should remember that Alves’ method
weights by LOC all other analyzed metrics. Table 5 presents the derived thresholds for this
method to the three SPL benchmarks. This table should be read like Table 4. As an example,
for benchmark 1, the values 151, 13, 31, and 2 are considered high (80%) for LOC, CBO,
WMC, and NCR, respectively.

6.3 Metric-based detection strategies

Despite the extensive use of metrics, they are often too fine-grained to comprehensively
quantify deviations from good design principles (Lanza and Marinescu 2006). In order to
overcome this limitation, metric-based detection strategies have been proposed (Marinescu
2004). A detection strategy is a composed logical condition, based on metrics and threshold
values, which detects design fragments with specific code smells (Lanza and Marinescu 2006).

Fig. 5 Code smells detection strategy

Table 5 Thresholds values from Alves’ method

Benchmark Percentage LOC CBO WMC NCR

1 70 92 9 14 1
80 151 13 31 2
90 252 21 58 4

2 70 127 13 25 1
80 221 19 45 1
90 328 24 75 5

3 70 192 18 40 1
80 293 22 58 1
90 442 29 84 7

Software Qual J (2019) 27:275–306290

Code smells describe a situation where there are hints that suggest a flaw in the source code
(Riel 1996). This section illustrates the detection strategies of two code smells: god class and
lazy class.

The literature defines god class as a class with excessive knowledge and responsibilities in
the software system (Fowler 1999). We select this code smell because it is one of the most
relevant and studied in the context of software maintenance (Fernandes et al. 2016; Padilha
et al. 2014). In addition, we should mention that god class is a strong indicator that a software
component is accumulating the implementation of many other ones (captured by NCR metric).
On the other hand, lazy class is a class that has just a few responsibilities and holds little
knowledge on the software system (Fowler 1999). As can be seen, lazy class is the opposite of
god class.

In this work, we selected detection strategies in the literature to identify god classes and lazy
classes for the following reasons. First, they have been evaluated in other studies and presented
good results for the detection of god class and lazy class (Abilio et al. 2014; Vale et al. 2015).
Second, these detection strategies use a straightforward way for identifying instances of god
class and lazy class using four different metrics. We also believe that these strategies are better
than traditional ones because they were adapted for SPL by using NCR (an FOP-specific
metric), for example. This metric fits complexity properties of SPLs that traditional metrics
cannot fit.

Figure 5 shows the god class and lazy class detection strategies adapted from previous work
(Abilio et al. 2014; Munro 2005). LOC, CBO, WMC, and NCR refer to the metrics used in
these detection strategies (presented in Sect. 2.1). The original detection strategies rely on
absolute values, but we substitute these values by labels, such as low and high, to provide
strategies more dependent on the derived thresholds.

6.4 Choosing the target SPL and creating a reference list of code smells

We choose an SPL called MobileMedia for this evaluation. It is an SPL for manipulating
photos, music, and videos on mobile devices (Figueiredo et al. 2008). It is an open-source SPL
implemented in several programming languages, such as Java, AspectJ, and AHEAD. We
selected MobileMedia version 7 - AHEAD implementation (Ferreira et al. 2014). This SPL
was chosen because (i) it was successfully used in other previous empirical studies (Fernandes
et al. 2017; Ferreira et al. 2014; Figueiredo et al. 2008), (ii) it is part of the three benchmarks of
this study, and (iii) we have access to its software developers. Table 6 presents the reference list

Table 6 Code smell reference list for MobileMedia

Code
smell

Classes in the reference list

God class MainUIMidlet (Base), MediaAccessor (Base), MediaController (MediaManagement),
MediaListController (MediaManagement), MediaListScreen (MediaManagement), AlbumData
(AlbumManagement), and SmsMessaging (SMSTransfer)

Lazy class Constants (AlbumManagement), MediaData (SetFavourites), ControllerCommandInterface (Base),
ControllerInterface (Base), Constants (Base), PhotoViewController (CaptureVideo), Constants
(CreateAlbum), Constants (CreateMedia), Constants (DeleteAlbum), and Constants
(MediaManagement)

The first word refers to constant or refinement and the word in parenthesis is the name of the feature in which this
constant or refinement is

Software Qual J (2019) 27:275–306 291

of code smells for the MobileMedia SPL. This list includes seven god class instances and ten
lazy class instances.

The reference list of code smells can be understood as the list of the actual code smells
found in the MobileMedia SPL. The reference list is used for comparison of methods to derive
thresholds, and it is the basis for determining whether the derived thresholds (computed by
each method) are effective on the identification of code smells in a specific SPL. Aiming to
provide a reliable reference list, we analyzed the source code and defined some god class and
lazy class instances. This preliminary reference list has been later validated by experts, i.e., the
MobileMedia developers. The final version of the reference list was produced as a joint
decision.

6.5 Evaluation of the derived thresholds

This section presents the results of the evaluation of recall and precision applied to the derived
thresholds of Vale’s, Lanza’s, and Alves’methods. These results of recall and precision refer to
the MobileMedia reference list of code smells, presented in Sect. 6.4. It is important to mention
that the thresholds of each method were used with the same detection strategy for each code
smell (Sect. 6.3), and it was applied to the three SPL benchmarks (Sect. 5.1). As Alves’
method does not provide lower bound thresholds, we analyzed just god class for this method.
Hence, we defined as Bnot applicable (n/a)^ all measures regarding lazy class for this method.

Table 7 describes the results per method, summarizing the true positives (TPs), false
positives (FPs), and false negatives (FNs). TP and FP quantify the number of correctly
and wrongly identified code smell instances by the detection strategy. FN, on the other
hand, quantifies the number of code smell instances that the detection strategy missed
out. Additionally, the derived thresholds were applied for benchmarks 1, 2, and 3. For
instance, by using the thresholds derived by Vale’s method in benchmarks 1, 2, and 3,
the number of TP, FP, and FN for god class candidates was 7, 1, and 0. The derived
thresholds for both Lanza’s and Vale’s methods find the same values for FP. Differently
of Vale’s and Lanza’s, Alves’ method present different values of TP, FP, and FN for
benchmark 1 and the other two benchmarks. For example, for benchmark 1, we found six
TPs and for benchmarks 2 and 3, we found five TPs. Although some values of TP, FP,
and FN are equal for different benchmarks and same method, the thresholds are different.
For instance, for benchmarks 1 and 3, Lanza’s method finds 126 and 130 to LOC,
respectively (see Table 4).

Table 7 Identification of the selected code smells based on thresholds derived from each method

Code smell No. Vale’s method Lanza’s method Alves’ method

Benchmarks Benchmarks Benchmarks

1 2 3 1 2 3 1 2 3

God class TP 7 7 7 3 3 3 6 5 5
FP 1 1 1 1 1 1 3 8 8
FN 0 0 0 4 4 4 1 2 2

Lazy class TP 9 9 9 1 1 1 n/a n/a n/a
FP 0 0 0 0 0 0 n/a n/a n/a
FN 1 1 1 9 9 9 n/a n/a n/a

Software Qual J (2019) 27:275–306292

Aiming to provide an additional perspective on the effectiveness on the identification of
code smells, we also analyzed precision and recall measures. Recall (R) quantifies the rate of
TP by the number of existing code anomalies (TP + FN). Precision (P) quantifies the rate of TP
by the number of detected code anomalies (TP + FP). Precision and recall are represented by
Eqs. 1 and 2, respectively:

Precision ¼ TP
TP þ FP

ð1Þ

Recall ¼ TP
TP þ FN

ð2Þ

Table 8 presents recall (R) and precision (P) of the detection strategies applied to
MobileMedia using the derived thresholds for the three methods. We can observe that for
the detection strategy to identify god class instances, the precision and recall are 87.50 and
100% to Vale’s method and 75 and 42.86% in the case of Lanza’s method for the three
benchmarks. In the case of Alves’ method, we found 66.70 and 85.70% for benchmark 1 and
38.50 and 71.40% for benchmarks 2 and 3. For the detection strategy that aims to identify lazy
class instances, the values of precision are equals for Vale’s and Lanza’s methods (100%).
Nevertheless, Vale’s method has higher values of recall (90%) when compared with Lanza’s
method (10%). As we mentioned above, we did not compute precision and recall for Alves’
method in the lazy class evaluation.

The recall is considered more useful than precision in the context of identification of code
smells because recall is a measure of completeness. That is, high recall means that the
detection strategy was able to identify a high number of code smells in software. In other
words, it is better to get more anomalous components (high recall) even with non-anomalous
components also captured (low precision) than to get a small number of anomalous compo-
nents (high precision) and miss many others (low recall). As general conclusions, Vale’s
method fared better in the evaluation for both code smells.

7 Generalizability study

We also conducted a generalizability study aimed at applying Vale’s method to another
benchmark type. This benchmark is composed of larger systems and by a larger set of systems.
Hence, with this section, Vale’s method has derived thresholds from different program

Table 8 Recall and precision based on thresholds derived from each method

Code smell No. Vale’s method Lanza’s method Alves’ method

Benchmarks Benchmarks Benchmarks

1 2 3 1 2 3 1 2 3

God class P 87.50 87.50 87.50 75.00 75.00 75.00 66.70 38.50 38.50
R 100.00 100.00 100.00 42.86 42.86 42.86 85.70 71.40 71.40

Lazy class P 100.00 100.00 100.00 100.00 100.00 100.00 n/a n/a n/a
R 90.00 90.00 90.00 10.00 10.00 10.00 n/a n/a n/a

Software Qual J (2019) 27:275–306 293

languages, domains, and sizes, making it more universal and comprehensive. The main goal of
this section is to show that Vale’s method is applicable for different benchmark types, as well
as Lanza’s and Alves’ methods. In addition, this section supports discussions, such as the
comparison of Sect. 8.6.

To conduct this generalizability study, we chose Qualitas Corpus1 (Tempero et al. 2010), a
well-known benchmark composed of industry-strength Java systems. JavaCC, JBoss,
ArgoUML, and Hibernate are examples of systems that compose Qualitas Corpus. This
benchmark has more than 100 systems, and most of these systems are larger and more
complex than the product lines of the SPL benchmarks. In addition, the systems from Qualitas
Corpus were developed in another programming language (Java, not AHEAD or
FeatureHouse, like the SPL benchmarks). We used the release 20,101,126, composed of 106
Java open-source software systems. For each system, the corpus presents a set of 21 software
metrics; 20 of them are numeric values. The corpus also provides a metric in nominal scale,
namely inherited methods. In this study, we aim to derive thresholds for a subset of seven
metrics, described in Sect. 3.1: CBO, DIT, LCOM, LOC, NOC, RFC, and WMC. From the
106 systems provided by Qualitas Corpus, only three of them do not have all these metrics
computed; therefore, we excluded them.

Table 9 shows the obtained threshold values for Vale’s, Lanza’s, and Alves’ methods. For
example, for LOC, Vale’s method derives 3, 11, 308, and 510 as thresholds to the labels 3%
(very low), 5% (low), 90% (high), and 95% (very high). Lanza’s method derives 0, 137, 490,
and 735 for LOC to the labels low, mean, high, and very high, respectively. Alves’ method for
the same metric derives 565, 901, and 1650 for the labels 70% (moderate), 80% (high), and
90% (very high). In general, we observe that Vale’s method provides lower thresholds when
compared with Lanza’s and Alves’ methods. For instance, with respect to LCOM, the highest
value is 186 (in the 95% label) for Vale’s method, against 3319 and 851 for Lanza’s (very high
label) and Alves’ (90%) methods. Despite existing a huge difference for the thresholds of some
metrics (e.g., LCOM), we have similar thresholds derived from the three methods for other
metrics (e.g., DIT and CBO). In these cases, the highest and lowest threshold values for each
method are almost the same.

Furthermore, all threshold values provided by Vale’s method and Alves’method are integer
values, against decimal values for most of the provided threshold values by the Lanza’s
method. We converted these decimal values to integer values because, usually, a decimal

1 www.qualitascorpus.com

Table 9 Threshold value from Vale’s, Lanza’s, and Alves’ methods

Method Label LOC CBO DIT LCOM NOC RFC WMC

Vale’s Method 3% 3 0 1 0 0 1 1
15% 11 2 1 0 0 3 2
90% 308 24 4 66 1 58 42
95% 510 33 5 186 2 85 70

Lanza’s method Low 0 0 1 0 0 0 0
Mean 137 11 2 93 1 26 20
High 490 24 3 2213 5 66 87
Very high 735 36 5 3319 8 99 130

Alves’ method 70% 565 29 2 90 0 84 75
80% 901 39 2 240 0 119 123
90% 1650 59 3 851 1 191 233

Software Qual J (2019) 27:275–306294

http://www.qualitascorpus.com

value of the analyzed metrics does not make sense. Finally, Lanza’s method may provide
negative thresholds to metrics, given the use of standard deviation to derive thresholds.
Considering the chosen software metrics for this study, a negative value did not make sense
and required a special treatment. We converted these negative values to zero like we did for the
SPL benchmarks. It is important to mention that this problem does not occur in Vale’s and
Aves’ methods because all thresholds are derived based on values of metrics present in the
benchmark. Therefore, in this case, both Vale’s and Alves’ methods are the ones which fit
better to the aforementioned characteristic.

8 Discussion

This section presents discussions related to some choices of our work. In a previous work (Vale
et al. 2015), we listed eight desirable points that methods to derive thresholds should follow: (i)
the method should be systematic, (ii) derived thresholds should be presented in a step-wise
format, (iii) it should be a weak dependence on the number of systems, (iv) it should be a
strong dependence on the number entities, (v) it should not correlate to metrics, (vi) it should
calculate upper and lower thresholds, (vii) it should provide representative thresholds inde-
pendent of metric distribution, and (viii) it should provide tool support. Based on these
desirable points, we listed seven requirements that Vale’s method follows (Sect. 4). Those
requirements and desirable points are explained in the following five sections. After, we
discuss the derived thresholds obtained by Vale’s, Lanza’s, and Alves’ methods for the
different benchmarks reported in this study. Finally, we provide a theoretical analysis of the
methods explored in this study with the other two methods presented in Sect. 2.5.

8.1 The method should be based on a benchmark

The first question that we want to discuss is why to use a benchmark-based method? Deriving
thresholds from a benchmark data gives more confidence than deriving thresholds from a
unique system. Doing an analogy, it is the same as asking for an expert the threshold of a
metric against asking for many experts the same thing. The second option should give more
confident results because we have more information and different opinions. This is the main
reason Vale’s method is based on benchmark data.

8.2 The method should have a strong dependence on the number of entities
and a weak dependence on the number of systems

We want to know thresholds of metrics that are represented by a set of entities. Hence, the
derived thresholds should be based on the number of entities and not by the number of systems
(or SPLs). Nevertheless, the number of systems is also important, because using the same
analogy at the last question, we want to know the answers from different experts and our
benchmark should be composed by different systems developed by different experts. In
addition, it is important to choose mature systems to increase the benchmark quality and
indirectly increase the threshold quality. Although the number of systems can be considered
important in terms of representativeness, we believe that the number of entities is more
important. For this reason, Vale’s method considers the number of entities explicitly and the
number of systems is a consequence (implicitly) of the number of entities. We believe that if

Software Qual J (2019) 27:275–306 295

we have a representative number of entities, we will have high probability that they are a
representative number of systems.

Our SPL benchmarks have at least 14 SPLs and 2450 entities. We assume that this number
of SPLs and entities are representative because there is few open-source code feature-oriented
SPLs that use a compositional approach in the literature. Nevertheless, in another context, it
can be a non-representative number of systems. For instance, for object-oriented systems, it is
easy to find more than 100 systems; hence, there is no constraint regarding the number of
systems. Anyway, this is a discussion of future work because more data is required to have
consistent findings.

8.3 The method should calculate upper and lower thresholds in a step-wise format

Thresholds are often used to filter upper bound outliers. However, in some cases, it may make
sense to identify lower bound outliers. For instance, the LOC,WMC, and CBOmetrics used in
the detection strategy of lazy class (see Fig. 5). For this reason, the proposed method derives
upper and lower thresholds. In addition, the step-wise format can help separate outliers, for
example, very high or high values. Of course, the highest threshold values, in the case of upper
thresholds, have more chance to be a problem and these values should be treated firstly.
However, we would like to discuss it with another perspective, in the case of detection
strategies; a metric can be more important than other ones and this metric should be
highlighted in the detection strategy. One way to do that is to evaluate such metric separately,
but we trust that a good choice is to define very high label threshold for this metric instead of
high. One example of that is the NCR metric in the detection strategy of god class presented in
Sect. 6.3. The threshold used is high, but we believe that very high could fit better, and it
would avoid some false positives.

Another point that we want to discuss here is the name of labels. Labels of the proposed
method are very low, low, moderate, high, and very high. We believe that a very low label can
be bad and a very high label can also be bad. It depends on the context, and it does not mean
that a very low label is always good or always bad. For this reason, we preferred not to call the
labels relating to risks or bad design.

8.4 The method should respect the statistical properties of metrics

Thresholds are derived to find outliers in a system; if the statistical properties of metrics are
changed, the derived thresholds probably find wrong outliers. Hence, we believe that a good
method should analyze the metric distributions without changing anything in their statistical
properties. It implies in not correlating metrics or weighting entities differently (all entities of
all systems should have the same importance). Therefore, the analysis of the metric distribu-
tions can be done by viewing the metrics distribution in different ways. For example, an
alternative way to examine a distribution of values is to plot the probability density function
(PDF) for each analyzed metric.

Figure 6 depicts the distribution of the CBO,WMC, and NCR values for SPL benchmark 3,
using a PDF. The x-axis represents the metric values; they range from 0 to 66 to CBO, from 0
to 383 to WMC, and from 0 to 9 to NCR. The y-axis represents the percentage of observations
(percentage of entities). The use of the PDF is justifiable because we want to determine
thresholds (the dependent variables, the metric values in this case) as a function of the
percentage of observations (independent variable). Furthermore, by using the percentage of

Software Qual J (2019) 27:275–306296

observations instead of the frequency, the scale becomes independent of the size of the
benchmark, making it possible to compare different distributions. For instance, we can observe
in Fig. 6a that 68.35% of entities have CBO ≤ 5. Similarly, in Fig. 6b and supported by Table 3,
we can observe that 90% of entities have WMC< 19. However, after these two points, the
measures come to increase quickly. For example, 95% of entities have WMC< 35. Looking at
the first time, the labels high (90%) and very high (95%) of Vale’s method look too rigid, but
as can be seen for WMC, CBO, and NCR, it is not.

On the other hand, if we listed low percentages of CBO values for SPL benchmark 3, the
values do not have a big difference. For instance, to 1, 3, 5, 10, 15, and 20%, the values are 1,
2, 2, 2, 2, and 3, respectively. Similarly, it happens with WMC values of SPL benchmark 3, the
values for such percentages are 1, 1, 1, 2, 2, and 2. We have a variation of two units in the first
case and one unit in the second case. This happens because following the distribution of
Weibull, these metrics are close to having or it has a heavy-tailed distribution (with shape
parameter equals to 1.2244 and 0.72041, respectively, to CBO and WMC). Analyzing these
data, we see that very low label should be stronger than a very high and distant to a low label.
We considered 1% very rigid; hence, we chose 3% for the very low label. On the other hand,
we chose 15% for the low label to be a greater percentage difference.

Another point that we want to highlight here is that Lanza’s method assumes that metrics
follow a normal distribution. As the examples of CBO andWMC showed, it is not always true.
The metric distributions do not follow a normal distribution impact in the low labels derived
from Lanza’s method (see Table 5) for all metrics and benchmarks where the values were 0.
This happened because the standard deviation is higher than the mean (low label is calculated
by mean minus standard deviation), and it does not make sense that the set of metrics chosen
have negative values. Additionally, several studies show that different software metrics follow
heavy-tailed distribution (Concas et al. 2007; Louridas et al. 2008). Hence, if a metric does not
follow a heavy-tailed distribution, are the derived thresholds from Vale’s method valid? The
proposed method takes into account the metric distributions focused onto identifying outliers.
Hence, if the metric follows a normal distribution, heavy-tailed, or a common distribution, for
example, the outliers are identified using the proposed labels.

As a concrete example, Fig. 7 presents the DIT (depth of inherence tree) metric from the
benchmark of Ferreira et al. (2012). This metric has a common distribution and the common
value is 1. Probably, with Vale’s method, the high and very high labels for this metric would be
2 or higher; that is, a value above the common (above 1). The low value would be 0 or 1; it is a

Fig. 6 Probably density function

Software Qual J (2019) 27:275–306 297

value below or equal to the common. In other words, we are only identifying discrepant values
(outliers) related to the provided data (benchmark).

For the reasons explained in this section, the proposed method uses the percentages 3, 15,
90, and 95 to represent the following labels: very low (0–3%), low (3–15%), moderate (15–
90%), high (90–95%), and very high (> 95%). Hence, we do not change anything in the metric
distributions, and we believe that Vale’s method is a good way to derive thresholds with
different metric distributions.

8.5 The method should be systematic, repeatable, transparent, and straightforward

These points are important characteristics for any method that derives thresholds. Vale’s
method is considered systematic because it has five well-defined steps. If the steps are
followed, the same results should be obtained. Although we give autonomy for the user to
define the percentages of each label, the same percentages should be defined to get the same
results. Hence, the method is repeatable and transparent. As explained above, we do not
change any statistical properties of the target metric to derive thresholds and all entities are
equally weighted. Therefore, this method is straightforward. In addition, we developed a tool
to support the steps of the proposed method (Sect. 4). The tool helps the user to derive
thresholds, and this task comes to be easier (less time-consuming and less error-prone).

8.6 Discussing the derived thresholds

In this study, we evaluate Vale’s method using three different SPL benchmarks. We also apply
Vale’s method to one Java-based benchmark to show that our method is as applicable for
different benchmark types as Lanza’s and Alves’ methods are. Figures 8 and 9 present the
derived thresholds side by side for the four benchmarks using the three subject methods in this
study. These figures focus on the high and very high labels for the metrics LOC, CBO, and
WMC. Benchmarks 1, 2, and 3 correspond to the three SPL benchmarks presented in Sect. 5.1
while benchmark 4 corresponds to the Java-based benchmark presented in Sect. 7.

When the thresholds of these four benchmarks are compared, we can see that benchmarks
composed of larger software systems present higher thresholds. Hence, as the size of the Java-
based benchmark systems is much larger than the SPL benchmark systems, the derived
thresholds are also larger. For instance, considering the label high for LOCmetric of benchmarks

Fig. 7 Probably density function (Ferreira et al. 2012)

Software Qual J (2019) 27:275–306298

1 and 4, we have a difference of 231, 364, and 750 for Vale’s, Lanza’s, and Alves’ methods,
respectively. As another example, considering the label very high for the same metric and
benchmarks, we have a difference around 372, 546, and 1398, for Vale’s, Lanza’s, and Alves’
methods, respectively. Therefore, we conclude that the derived thresholds are directly influenced
by the benchmark and, as consequence, low benchmark quality corresponds to low threshold
quality. Low benchmark quality may mean a benchmark composed of non-similar systems.

8.7 Theoretical analysis of benchmark-based methods

In the previous sections, we discussed desirable points of methods to derive metric thresholds.
As described in Sect. 2.5, we consider Vale’s method more related to three methods (Ferreira’s,
Oliveira’s, and Alves’ methods). And based on the reasons described in Sect. 6, we decided to
compare the thresholds derived using Vale’s method with the thresholds derived by Lanza’s
and Alves’ methods. Therefore, this section aims to compare these five benchmark-based
methods theoretically by relying on the key and desirable points described in this study.

Hence, Tables 10 highlight the main differences of Lanza’s, Ferreira’s, Oliveira’s, Alves’,
and Vale’s methods. Lanza’s and Oliveira’s methods are deterministic because these methods
present a set of formulas and the results are always the same. On the other hand, Vale’s and
Alves’ methods recommend percentages to derive thresholds, but the users must decide if they
use the recommended percentages or not and because of that, they are considered partially

Fig. 9 Metric thresholds side by side for very high label

Fig. 8 Metric thresholds side by side for high label

Software Qual J (2019) 27:275–306 299

deterministic. As Ferreira’s method does not explicitly describe how the groups of thresholds
are extracted, we classified it as non-deterministic.

Related to derive step-wise thresholds, only Oliveira’s method does not do that. Related to
the metric distribution, Lanza’s method uses just mean and standard deviation to derive
thresholds and, hence, this method is classified as a method that does not consider the metric
distribution. Related to the impact of the number of systems and entities, Vale’s, Lanza’s, and
Ferreira’s methods consider the number of entities more important than the number of systems,
differently of Oliveira’s and Alves’ methods. Alves’ method is the one that correlates metrics.
Lanza’s and Vale’s methods are the ones that calculate lower bound thresholds. Both Oliveira’s
and Vale’s method provide free and open-source tool support.

9 Threats to validity

Even with the careful planning, this research can be affected by different factors which, while
extraneous to the concerns of the research, can invalidate its main findings. Actions to mitigate
their impact on the research results are described, as follows.

& SPL repository— we followed a careful set of procedures to create the SPL repository and
build the benchmarks. As the number of open-source SPLs found is limited, we could not
have a repository with a higher number of SPLs. This limitation has implication in the
number of analyzed components, which is particularly relevant to the NCR metric. This
factor can influence the derived thresholds as the number of components for NCR analysis
is further reduced. Therefore, in order to mitigate this limitation, we created different
benchmarks for comparison of the derived thresholds.

& Measurement process— the SPL measurement process in our study was automated based
on the use of existing tooling support, named VSD (Abilio et al. 2014), to measure
AHEAD code. However, there was no existing tool defined to explicitly collect metrics
in FeatureHouse (FH) code. Therefore, the SPLs developed with this technology had to be
transformed into AHEAD code. This transformation was made by changing the composer
of FH to the composer of AHEAD. There are reports in the literature showing that this
transformation preserves all properties of FH (Apel et al. 2009). We also reduced possible

Table 10 Comparative evaluation of the method for calculating thresholds

Question Method

Lanza Ferreira Oliveira Alves Vale

Is it deterministic? Yes No Yes Partially Partially
Are step-wise outliers identified? Yes Yes No Yes Yes
Is the metric distribution considered? No Yes Yes Yes Yes
Does the number of systems impact? Weak Weak Strong Strong Weak
Does the number of entities impact? Strong Strong Weak Weak Strong
Does it correlate with other metrics? No No No Yes No
Lower bound thresholds? Yes No No No Yes
Provides tool support? No No Yes No Yes

Software Qual J (2019) 27:275–306300

threats by performing some tests with few SPLs. In fact, we observed all software
proprieties were preserved after the transformation.

& Metric labels— we define the labels very low (0–3%), low (3–15%), moderate (15–90%),
high (90–95%), and very high (> 95%), although the chosen percentages cannot be the best.
To try generalizing and providing default labels, we decide to use these percentages. In
addition, it can be seen that very low and low labels should be equal or similar values, in
spite of that, we prefer to keep both labels and increase their difference in terms of
percentages. High and very high labels have a small difference in terms of percentage than
very low and low labels. This small difference (5%) was chosen because at the end (tail), the
difference of the values is greater. In other words, these values (percentages) were defined
based in our experience analyzing some metric distributions, although if someone thinks
that these values do not fit well in their metric distribution, other values can be used.

& Code smells — we discuss only two types of code smells (i.e., god classes and lazy
classes). Fowler has cataloged a list with more than 20 code smells (Fowler 1999).
Therefore, these smells used to evaluate the effectiveness of both methods (Lanza’s and
Vale’s method) may not necessarily be a representative sample of code smells found in
certain SPL. In addition, we have to adapt the lazy class detection strategy changing the
absolute values to a low label of the target metric. It can be affected by the evaluation, but
this choice affected all subject methods. Hence, we assume that we were fair.

& Tooling support and scoping — the computation of metric values and metric thresholds
can be affected by the tooling support and by scope. Different tools implement different
variations of the same metrics. To overcome this problem, the same tool (i.e., VSD) was
used both to derive thresholds and to analyze systems. The tool configuration with respect
to which files to include in the analysis (scoping) also influences the computed thresholds.
For instance, the existence of test code, which contains very little complexity, may result in
lower threshold values. On the other hand, the existence of generated code, which
normally has high complexity, may result in higher threshold values. As previously stated,
for deriving thresholds, we removed manually all supplementary code from our analysis.
Regarding the Qualitas Corpus, we already got the measures from their website.

& Reference list generation — a reference list for each code smell had to be defined to
calculate recall and precision measures. Several precautions were taken. Despite that, we
can have omitted some code smell instances or chosen a code smell instance that does not
represent a design problem. In order to mitigate this threat, we rely on experts of the target
application in order to validate the final reference list.

& Tool evaluation — we compared the results calculated manually with the thresholds
calculated by TDTool (automatically). If some mistake occurred in both cases (manually
and automatically), we have presented wrong thresholds. To minimize it, we manually
calculate the thresholds for three SPL benchmarks. Therefore, if some mistake happened, it
happened in the three cases. We think that it is more improbable than if we had calculated
the thresholds for only one benchmark.

& Qualitas Corpus — we also chose a well-known open-source system benchmark, called
Qualitas Corpus, to apply all three threshold derivation methods, namely Vale’s, Lanza’s,
and Alves’ methods. Considering that some metrics used in this study were not available
for 3 of the 106 systems that compose the selected corpus, we decided to discard these 3
systems from our study. These systems (Eclipse, JRE, and NetBeans) are larger and more
complex than others from the corpus, and this discard can affect the threshold derivation.

Software Qual J (2019) 27:275–306 301

Although this discard is a threat, it does not invalidate the findings of our study because we
just reduced our system corpus; 103 systems still composed this benchmark.

10 Conclusion and future work

This paper describes the importance of software metrics, the use of a set of metrics to measure
quality attributes, and the calculation of representative thresholds. In order to focus on the last
point, we proposed a method to derive thresholds. The proposed method, called Vale’s method,
tries to get the best of previously proposed methods and follows an evolution of these kinds of
methods that we saw in a literature review. In addition, we demonstrated that Vale’s method
provides threshold values that can be used in different contexts, such as the SIG quality model
and software anomaly detection.

We evaluated Vale’s method comparing it with Lanza’s and Alves’ methods, two other
methods with the same purpose. The evaluation was conducted by deriving thresholds using
three SPL benchmarks for the three subject methods and analyzed the effectiveness of the
thresholds derived by these three methods in detecting software anomalies. As a complemen-
tary analysis, we derived thresholds for the same three methods but using another benchmark
of single systems and different characteristics. The three SPL benchmarks are based on one
repository we created containing SPLs developed using AHEAD and FeatureHouse. Our three
SPL benchmarks are composed of 33 (benchmark 1), 22 (benchmark 2), and 14 (benchmark 3)
SPLs. The fourth benchmark used in this paper was found in the literature and it is composed
of 103 Java systems. The main differences from the SPL benchmarks to the fourth one are (i)
the number of systems that compose the benchmark, (ii) the size of the systems, and (iii) the
programming language.

As results from the evaluation, we could see that Vale’s method fared better than did
Lanza’s and Alves’ methods in anomaly detection. Vale’s method achieved 87.5% and 100%
of precision and recall for god classes while Lanza’s method achieved 75% and 42.86% and
Alves’ method scored 66.70% and 85.70% in the best case for precision and recall, respec-
tively. Regarding the lazy class detection strategy, Vale’s method obtained 100% and 90% of
precision and recall while Lanza’s method obtained the same precision, but just 10% of recall.
As results of the complementary analysis (Sect. 7), we concluded that Vale’s method provides
more balanced (more realistic probably) and lower thresholds than the thresholds of Lanza’s
and Alves’ methods. As Lanza’s method is based on mean and standard deviation, it presents
decimal and negative values. Hence, as it does not make sense for the metrics we used in the
study, we converted the decimal values for integers and the negative values to zero.

With the results of the evaluation, generalizability study, and lessons learned of this study,
we provided discussions on different topics, such as the justification of the steps of Vale’s
method and why a method should be benchmark-based, respect metrics’ statistical properties,
and have a strong dependence on the number of entities. The topic related to statistical
properties (Sect. 8.4) helps us to justify many decisions we made in this study, such as the
percentages chosen and why we trust that Vale’s method can be applied on metrics with
different metric distributions. In addition, the generalizability study shows that Vale’s method
can be applied to different systems and benchmarks and it also supported a discussion
comparing the threshold values derived by all subject benchmarks presented in this study.

After all comparisons and analyses, we showed that Vale’s method fits the eight desirable
points: (i) it is based on data analysis from a representative set of systems (benchmark); (ii) it has

Software Qual J (2019) 27:275–306302

a strong dependence on the number of entities; (iii) it has a weak dependence on the number of
systems; (iv) it calculates upper and lower thresholds; (v) it derives thresholds in a step-wise
format; (vi) it respects the statistical properties of the metric; (vii) it is systematic, repeatable,
transparent, and straightforward to execute; and (viii) it provides tool support. Therefore, we
concluded that the provided thresholds, using Vale’s method, are considerably different between
benchmarks. It implies that thresholds should not be universal but dependent on a benchmark.
Consequently, the quality of the benchmark impacts on the quality of the thresholds.

As future work, we intend to explore how to build representative benchmarks. We plan to
do that because, as we saw in this paper, the derived thresholds are influenced by the
benchmark and we did not find any study showing which factors may influence the derived
thresholds most. Such a study can help software engineers to circumvent their limitations, such
as the number of systems to compose their benchmark. We also intend to provide an extension
of our tool to run other benchmark-based methods. Fulfilling that, we can make the threshold
calculation easier, and software engineers can choose the method that better fits their demands
for a specific context.

Acknowledgments This work was partially supported by CAPES, CNPq (grant 424340/2016-0 and 290136/
2015-6), and FAPEMIG (grant PPM-00651-17).

References

Abilio, R., Vale, G., Oliveira, J., Figueiredo, E., Costa, H. (2014). Code smell detection tool for compositional-
based software product lines. In Proceedings of the 5th Brazilian Conference on Software: Theory and
Practice (CBSoft), Tools Session (pp. 109–116).

Abilio, R., Padilha, J., Figueiredo, E., Costa, H. (2015). Detecting code smells in software product lines: An
exploratory study. In Proceedings of the 12th International Conference on Information Technology: New
Generations (ITNG) (pp. 433–438).

Abilio, R., Vale, G., Figueiredo, E., Costa, H. (2016). Metrics for feature-oriented programming. In Proceedings
of 7th International Workshop on Emerging Trends in Software Metrics (WETSoM) (pp. 36–42).

Alves, T., Ypma, C., Visser, J. (2010). Deriving metric thresholds from benchmark data. In Proceedings of the
26th International Conference on Software Maintenance (ICSM) (pp. 1–10).

Apel, S., Kästner, C., Lengauer, C. (2009). FeatureHouse: language-independent, automated software composi-
tion. In Proceedings of the 31st International Conference on Software Engineering (ICSE) (pp. 221–231).

Batory, D., & O’Malley, S. (1992). The design and implementation of hierarchical software systems with
reusable components. ACM Transactions on Software Engineering Methodology, 1(4), 335–398.

Brereton, P., Kitchenham, B., Budgen, D., Tumer, M., & Khalil, M. (2007). Lessons from applying the
systematic literature review process within the software engineering domain. Journal of Systems and
Software (JSS), 80(4), 571–583.

Chidamber, S., & Kemerer, C. (1994). A metrics suite for object oriented design. IEEE Transactions on Software
Engineering, 20(6), 476–493.

Coleman, D., Lowther, B., & Oman, P. (1995). The application of software maintainability models in industrial
software systems. Journal of Systems and Software, 29(1), 3–16.

Concas, G., Marchesi, M., Pinna, S., & Serra, N. (2007). Power-laws in a large object-oriented software system.
IEEE Transactions on Software Engineering, 33(10), 687–708.

Dumke, R., & Winkler, A. (1997). Managing the component-based software engineering with metrics. In
Proceedings of the 5th International Symposium on Assessment of Software Tools and Technologies
(SAST) (pp. 104–110).

Erni, K., & Lewerentz, C. (1996). Applying design-metrics to object-oriented frameworks. In Proceedings of the
3rd International Symposium on Software Metrics (METRICS) (pp. 64–72).

FeatureIDE. (2017). https://urldefense.proofpoint.com/v2/url?u=https-3A__featureide.github.io_&d=
DwIDaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=ao7Vv0uBvR-wgd0

Software Qual J (2019) 27:275–306 303

https://urldefense.proofpoint.com/v2/url?u=https-3A__featureide.github.io_&d=DwIDaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=ao7Vv0uBvR-wgd0ykVbHjMjeV7vz8HzQ1TmA0JYOvoNuKuAvWNpcltsySHnxfZLM&m=NXtTfn_yFTngAOYPIXUR6CiVMbeellwiOxvPQCx-ywc&s=7fD1VjMY-X8pVI_KRWFYU0ymJlMEQ-rXjpSLxafCo3A&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__featureide.github.io_&d=DwIDaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=ao7Vv0uBvR-wgd0ykVbHjMjeV7vz8HzQ1TmA0JYOvoNuKuAvWNpcltsySHnxfZLM&m=NXtTfn_yFTngAOYPIXUR6CiVMbeellwiOxvPQCx-ywc&s=7fD1VjMY-X8pVI_KRWFYU0ymJlMEQ-rXjpSLxafCo3A&e=

ykVbHjMjeV7vz8HzQ1TmA0JYOvoNuKuAvWNpcltsySHnxfZLM&m=NXtTfn_yFTngAOYPIXUR6
CiVMbeellwiOxvPQCx-ywc&s=7fD1VjMY-X8pVI_KRWFYU0ymJlMEQ-rXjpSLxafCo3A&e=.

Fenton, N. (1991). Software metrics: a rigorous Approach (pp. 28–37). London: Chapman-Hall.
Fernandes, E., Oliveira, J., Vale, G., Paiva, T., Figueiredo, E. (2016). A review-based comparative study of bad

smell detection tools. In Proceedings of the 20th International Conference on Evaluation and assessment in
software engineering (EASE). Limerick, 1–3 June 2016.

Fernandes, E., Vale, G., Sousa, L., Figueiredo, E., Garcia, A., Lee, J. (2017). No code anomaly is an island:
anomaly agglomeration as sign of product line instabilities. In Proceedings of the 16th International
Conference on Software Reuse (ICSR), pp. 48–64.

Ferreira, K., Bigonha, M., Bigonha, R., Mendes, L., & Almeida, H. (2012). Identifying thresholds for object-
oriented software metrics. Journal of Systems and Software, 85(2), 244–257.

Ferreira, G., Gaia, F., Figueiredo, E., & Maia, M. (2014). On the use of feature-oriented programming for
evolving software product lines: a comparative study. Science Computer Programming, 93(1), 65–85.

Figueiredo, E., Cacho, N., Sant’Anna, C, Monteiro M, Kulesza U, Garcia A, Soares S, Ferrari F, Khan S, Castor
Filho F, Dantas F (2008) Evolving software product lines with aspects: an empirical study on design stability.
In: Proceeding of the 30th iInternational Conference on Software Engineering (ICSE) (pp. 261–270).
Leipzig: IEEE Computer Society.

Fowler, M. (1999). Refactoring: improving the design of existing code. Reading: Addison Wesley.
French, V. (1999). Establishing software metric thresholds. In Proceedings of the 4th International Workshop on

Software Measurement (IWSM).
Gamma, G., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: elements of reusable object-oriented

software. Reading: Addison-Wesley.
Heitlager, I., Kuipers, T., & Visser, J. (2007). A practical model for measuring maintainability. In Proceedings of

the 6th International Conference on the Quality of Information and Communications Technology (QUATIC)
(pp. 30–39).

Herbold, S., Grabowki, J., & Waack, S. (2011). Calculation and optimization of thresholds for sets of software
metrics. Empirical Software Engineering, 16(6), 812–841.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software
engineering. EBSE Technical Report, Keele University.

LabSoft (2017). http://labsoft.dcc.ufmg.br/doku.php?id=%20about:spl_list.
Lanza, M., & Marinescu, R. (2006). Object-oriented metrics in practice: using software metrics to characterize,

evaluate, and improve the design of object-oriented systems. Berlin Heidelberg: Springer-Verlag.
Lima, E., Resende, A., & Lethbridge, T. (2016). The uncomfortable discrepancies of software metric thresholds

and reference values in literature. In Proceedings of the 6th International Conference on Software
Engineering Advances (ICSEA) (pp. 1–9).

Lorenz, M., & Kidd, J. (1994). Object-oriented software metrics. New York: Englewood Cliffs.
Louridas, P., Spinellis, D., & Vlachos, V. (2008). Power laws in software. ACM Transactions on Software

Engineering Methodology, 18(1), 1–26.
Marinescu, R. (2004). Detection strategies: metrics-based rules for detecting design flaws. In Proceedings of the

20th International Conference on Software Maintainability (ICSM) (pp. 350–359).
McCabe, T. (1976). A complexity measure. IEEE Transactions on Software Engineering, 2(4), 308–320.
Mori, A., Vale, G., Viggiato, M., Oliveira, J., Figueiredo, E., Cirilo, E., Jamshidi, P., Kastner, C. (2018)

Evaluating domain-specific metric thresholds: an empirical study. International Conference on Technical
Debt (TechDebt).

Munro, M. (2005). Product metrics for automatic identification of Bbad smell^ design problems in java source-
code. In Proceeding of the 11th international software METRICS symposium (METRICS) (pp. 1–9).

Nejmeh, B. (1988). NPATH: A measure of execution path complexity and its applications. Communications of
the ACM, 31(2), 188–200.

Oliveira, P., Valente, M., Lima, F. (2014). Extracting relative thresholds for source code metrics. In Proceedings
of the 18th International Conference on Software Maintenance and Reengineering (CSMR) (pp. 254–263).

Padilha, J., Pereira, J., Figueiredo, E., Almeida, J., Garcia, A., Sant'Anna, C.. (2014) On the effectiveness of
concern metrics to detect code smells: an empirical study. In Proceedings of the 26th International
Conference on Advanced Information Systems Engineering (CAiSE).

Perkusich, M., Medeiros, A., Silva, L., Gorgônio, K., Almeida, H., Perkusich, A. (2015). A Bayesian network
approach to assist on the interpretation of software metrics. In Proceedings of the 30th Symposium on
Applied Computing (SAC) (pp. 1498–1503).

Riel, J. (1996). Object-oriented design heuristics. Boston: Addison-Wesley.
Schulze, S., Apel, S., Kastner, C. (2010). Code clones in feature-oriented software product lines. In Proceedings

of the 9th International Conference on Generative Programming and Component Engineering (GPCE) (pp.
103–112).

Software Qual J (2019) 27:275–306304

https://urldefense.proofpoint.com/v2/url?u=https-3A__featureide.github.io_&d=DwIDaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=ao7Vv0uBvR-wgd0ykVbHjMjeV7vz8HzQ1TmA0JYOvoNuKuAvWNpcltsySHnxfZLM&m=NXtTfn_yFTngAOYPIXUR6CiVMbeellwiOxvPQCx-ywc&s=7fD1VjMY-X8pVI_KRWFYU0ymJlMEQ-rXjpSLxafCo3A&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__featureide.github.io_&d=DwIDaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=ao7Vv0uBvR-wgd0ykVbHjMjeV7vz8HzQ1TmA0JYOvoNuKuAvWNpcltsySHnxfZLM&m=NXtTfn_yFTngAOYPIXUR6CiVMbeellwiOxvPQCx-ywc&s=7fD1VjMY-X8pVI_KRWFYU0ymJlMEQ-rXjpSLxafCo3A&e=
http://labsoft.dcc.ufmg.br/doku.php?id=%20about:spl_list

Software Engineering Institute – SEI (2016). http://www.sei.cmu.edu/productlines/
Spinellis, D. (2008). A tale of four kernels. In Proceedings of the 30th International Conference on Software

Engineering (ICSE) (pp. 381–390).
SPL2GO (2015). http://spl2go.cs.ovgu.de.
Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., Noble, J. (2010). Qualitas Corpus:

A curated collection of Java code for empirical studies. In Proceedings of 17th the Asia-Pacific Software
Engineering Conference (APSEC) (pp. 336–345).

Vale, G., & Figueiredo, E. (2015). A method to derive metric thresholds for software product lines. In
Proceedings of the 29th Brazilian Symposium on Software Engineering (SBES) (pp. 110–119).

Vale, G., Albuquerque, D., Figueiredo, E., Garcia, A. (2015). Defining metric thresholds for software product
lines: a comparative study. In Proceedings of the 19th International Software Product Line Conference
(SPLC) (pp. 176–185).

Vasa, R., Lumpe, M., Branch, P., Nierstrasz, O. (2009). Comparative analysis of evolving software systems using
the Gini coefficient. In Proceedings of the 25th International Conference on Software Maintenance (ICSM)
(pp. 179–188).

Veado, L., Vale, G., Fernandes, E., Figueiredo, E. (2016). TDTool: threshold derivation tool. In Proceedings of
the 20th International Conference on Evaluation and Assessment in Software Engineering (EASE), Tools
Session (Article No. 24).

Gustavo do Vale is bacharel of Information Systems by Federal University of Lavras (UFLA) and Master in
Computer Science by Federal University of Minas Gerais (UFMG). He is a member at team PqES and LabSoft
from UFLA and UFMG, respectively. Furthermore, he is currently a PhD student of Computer Science in the
department of computing at University of Passau.

Eduardo Fernandes holds a degree in Computer Science from Federal University of Mato Grosso do Sul
(2014) and a Master's degree in Computer Science from Federal University of Minas Gerais (2017). He is

Software Qual J (2019) 27:275–306 305

http://www.sei.cmu.edu/productlines/
http://spl2go.cs.ovgu.de

currently a PhD student in Informatics at Pontifical Catholic University of Rio de Janeiro (PUC-Rio). He is also a
researcher in Software Engineering for Opus Research Group at PUCRio. His research interests include
refactoring, software metrics, empirical software engineering, and software reuse.

Eduardo Figueiredo is an assistant professor and head of the Software Engineering Laboratory (LabSoft) at the
Federal University of Minas Gerais (UFMG) since 2010. He received his PhD degree in Software Engineering
from Lancaster University (UK) in 2009 and also holds MSc degree in Software Engineering from the Pontifical
Catholic University of Rio de Janeiro (PUC-Rio), Brazil. His research interests include aspect-oriented program-
ming, software product lines, empirical software engineering, and software metrics. Website: http://www.dcc.
ufmg.br/~figueiredo.

Software Qual J (2019) 27:275–306306

http://www.dcc.ufmg.br/~figueiredo
http://www.dcc.ufmg.br/~figueiredo

	On the proposal and evaluation of a benchmark-based threshold derivation method
	Abstract
	Introduction
	Background and related work
	Software metrics
	Literature review protocol
	Thresholds derived from programming experience and metric analysis
	Methods for characterizing metric distributions
	Benchmark-based methods that consider the skewed metric distribution
	Literature review summary

	The proposed method to derive thresholds
	TDTool: threshold derivation tool
	Example of use
	Software product line benchmarks
	Derived thresholds

	Evaluation using the SPL benchmarks
	Derived thresholds using Lanza’s method
	Derived thresholds using Alves’ method
	Metric-based detection strategies
	Choosing the target SPL and creating a reference list of code smells
	Evaluation of the derived thresholds

	Generalizability study
	Discussion
	The method should be based on a benchmark
	The method should have a strong dependence on the number of entities and a weak dependence on the number of systems
	The method should calculate upper and lower thresholds in a step-wise format
	The method should respect the statistical properties of metrics
	The method should be systematic, repeatable, transparent, and straightforward
	Discussing the derived thresholds
	Theoretical analysis of benchmark-based methods

	Threats to validity
	Conclusion and future work
	References

