
Software Qual J (2018) 26:1063–1096
DOI 10.1007/s11219-017-9370-x

A multi-aspect online tuning framework for HPC
applications

Michael Gerndt1 ·Siegfried Benkner2 ·Eduardo César3 ·
Carmen Navarrete4 ·Enes Bajrovic2 ·Jiri Dokulil2 ·Carla Guillén4 ·
Robert Mijakovic1 ·Anna Sikora3

Published online: 16 May 2017
© Springer Science+Business Media New York 2017

Abstract Developing software applications for high-performance computing (HPC)
requires careful optimizations targeting a myriad of increasingly complex, highly inter-
related software, hardware and system components. The demands placed on minimizing
energy consumption on extreme-scale HPC systems and the associated shift towards hete

� Eduardo César
eduardo.cesar@uab.cat

Michael Gerndt
gerndt@in.tum.de

Siegfried Benkner
siegfried.benkner@univie.ac.at

Carmen Navarrete
carmen.navarrete@lrz.de

Enes Bajrovic
enes.bajrovic@univie.ac.at

Jiri Dokulil
jiri.dokulil@univie.ac.at

Carla Guillén
carla.guillen@lrz.de

Robert Mijakovic
mijakovic@in.tum.de

Anna Sikora
anna.sikora@uab.cat

1 Technical University of Munich, Munich, Germany

2 University of Vienna, Vienna, Austria

3 Autonomous University of Barcelona, Barcelona, Spain

4 Leibniz Supercomputing Centre, Garching bei München, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9370-x&domain=pdf
http://orcid.org/0000-0002-9729-8557
mailto:eduardo.cesar@uab.cat
mailto:gerndt@in.tum.de
mailto:siegfried.benkner@univie.ac.at
mailto:carmen.navarrete@lrz.de
mailto:enes.bajrovic@univie.ac.at
mailto:jiri.dokulil@univie.ac.at
mailto:carla.guillen@lrz.de
mailto:mijakovic@in.tum.de
mailto:anna.sikora@uab.cat


1064 Software Qual J (2018) 26:1063–1096

rogeneous architectures add yet another level of complexity to program development and
optimization. As a result, the software optimization process is often seen as daunting,
cumbersome and time-consuming by software developers wishing to fully exploit HPC
resources. To address these challenges, we have developed the Periscope Tuning Framework
(PTF), an online automatic integrated tuning framework that combines both performance
analysis and performance tuning with respect to the myriad of tuning parameters available
to today’s software developer on modern HPC systems. This work introduces the architec-
ture, tuning model and main infrastructure components of PTF as well as the main tuning
plugins of PTF and their evaluation.

Keywords Automatic performance tuning · High-performance computing · Performance
optimization · Parallel architectures · Energy tuning · OpenCL

1 Introduction

The majority of today’s computer systems expose several levels of hardware parallelism
for the application developer to exploit. Servers consist of multiple multicore processors
organized in a shared non-uniform memory access (NUMA) architecture. The server archi-
tecture can be extended via graphics processing units (GPUs) attached to the main processor,
with such GPUs having their own graphics memory offering high memory bandwidth to
feed data to the high number of cores. HPC systems couple hundreds of thousands of nodes,
each possibly equipped with accelerators (GPUs or Intel Xeon Phi), via a high-performance
network in a distributed memory architecture.

Developing efficient applications for such complex and highly parallel systems requires
careful and increasingly sophisticated optimizations. To achieve good overall performance,
the individual core compute capabilities need to be exploited in the best possible way. For
example, many modern processors provide some form of vector units (e.g., Intel x86’s
MMX, SSE and AVX instructions), which need to be exploited as efficiently as possi-
ble. In addition, careful optimization of memory access patterns is required to make best
use of the processor caches or software managed memories as on GPUs and to avoid
that processors stall while waiting for data to arrive. Reduction of the communication
volume as well as carefully mapping the processes onto the processors to best exploit
the physical network topology are important for overall scalability of applications. The
distribution of load has to be optimized so that none of the processes is idle at any
time.

Energy reduction has become increasingly important for HPC architectures since the
power bill for such machines is high relative to the costs for the machine over its entire life
time. Careful application-specific tuning can help reducing the energy consumption without
sacrificing application performance.

Achieving the best performance for applications on such systems is an increasingly com-
plex, cumbersome and time-consuming task. In order to facilitate the study of complex
application behaviors and associated optimization techniques, different suites of mini-
apps or proxy-apps have been proposed (e.g., CESAR (https://cesar.mcs.anl.gov/content/
software); CORAL (https://asc.llnl.gov/CORAL-benchmarks)). In addition, insights pro-
vided by various cost-models (e.g., the roofline model (Williams et al. 2009)) assist users
in reasoning about the performance potential and limitations of their algorithms on certain
types of architectures.

https://cesar.mcs.anl.gov/content/software
https://cesar.mcs.anl.gov/content/software
https://asc.llnl.gov/CORAL-benchmarks


Software Qual J (2018) 26:1063–1096 1065

In a typical work cycle, application developers first analyze the performance of the
application to identify regions of the application that can potentially be improved, and sub-
sequently perform experiments with different code transformations or parameter settings of
the execution environment to find an optimal solution with respect to either time or energy
(and in ideal cases, both). This process is guided by the experience of the developer and the
results of the performance analysis. However, due to the complexity of the optimizations,
the developer often needs to implement and evaluate a large number of versions of the appli-
cation before finding the optimal version. Upon implementing the optimal version of the
application for a representative input data set, a verification step with alternative input data
sets and runtime configurations typically follows.

Both the research community and HPC vendors have developed a number of performance
analysis (PA) tools that support and partially automate the first step of the process described
above. But none of the current PA tools also supports the application developer in the sub-
sequent tuning step. The most sophisticated tools are able to automatically identify the root
cause of a performance bottleneck, but they do not provide the application developer with
any hints on how to tune their code. As a result, much research has been dedicated in recent
years to the development of auto-tuning strategies and tools. A key point is to automati-
cally and efficiently search for the best combination of code transformations and parameter
settings of the execution environment.

In this paper, we present the Periscope Tuning Framework (PTF), which is among the
first tools to support the application developer not only in the performance analysis but
also in providing the developer with hints on how to subsequently tune the application to
improve performance. PTF has been developed in the context of the European AutoTune
project and is publicly available at the PTF website.1 PTF is an open and extensible frame-
work that supports the tuning of different aspects of parallel programs based on the concept
of tuning plugins. PTF identifies tuning alternatives based on codified expert knowledge,
and evaluates the alternatives within the same execution run of the application (online),
dramatically reducing the overall search time for a tuned code version. The application is
executed under the control of the framework either in interactive or batch mode, where the
performance and energy measurements are forwarded to tuning plugins that then determine
application alternatives and evaluate different tuned versions of the application during the
application’s execution. At the end of the application run, detailed recommendations are
provided to the code developer on how to improve the code with respect to performance and
energy consumption.

Six major tuning plugins have been developed within the AutoTune project: the Com-
piler Flag Selection (CFS) and the MPI Parameters plugins both target the improvement
of the performance of applications by choosing the best combination of flags or param-
eters used either by the compiler in the build process, or by the MPI library at runtime,
respectively. The Parallel Pattern and the Master-Worker plugins address performance opti-
mization at the programming paradigm level. The Parallel Pattern plugin tunes high-level
pipeline patterns for accelerated parallel systems, while the Master-Worker plugin tunes the
computational load and the number of workers for applications using this common paral-
lel programming model. The Dynamic Voltage Frequency Scaling (DVFS) plugin is unique
within this set of plugins as it addresses more than one tuning objective, namely energy and
power consumption. Finally, the OpenCL plugin addresses software applications targeting

1PTF web site: http://periscope.in.tum.de.

http://periscope.in.tum.de


1066 Software Qual J (2018) 26:1063–1096

heterogeneous many-core or “accelerator”-based applications with automatic optimization
of a kernel specific execution parameter.

The major contributions of this paper include the development of a novel automatic tun-
ing framework (PTF) for HPC systems that tightly integrates performance analysis and
autotuning via expert knowledge. PTF is a plugin-based system providing extensibility with
respect to different aspects of performance and energy tuning. This paper focuses on novel
tuning plugins for selection of compiler flags, for tuning of MPI parameters, for energy tun-
ing and for tuning of OpenCL applications on GPUs and Xeon Phi coprocessors. Each of
these plugins is described in detail and has been evaluated using several benchmarks and
real applications. The obtained results show that significant improvements in the applica-
tions’ execution time and power consumption can be automatically achieved applying the
suggestions given by PTF plugins.

The rest of this paper is organized as follows. In Section 2, we provide an overview
of related work in auto-tuning. Section 3 outlines the architecture, tuning model and main
infrastructure components of PTF. Section 4 presents selected tuning plugins of PTF and
their evaluation. Section 5 presents a summary and an outlook to future work.

2 Related work

Much research has been dedicated to the area of auto-tuning in the past few years and many
different ideas have been gathered, including (1) self-tuning libraries for linear algebra and
signal processing like ATLAS (Whaley et al. 2001; Demmel et al. 2005), FFTW (Frigo and
Johnson 1998; 2005), OSKI (Vuduc et al. 2005) and SPIRAL (Püschel et al. 2004); (2)
tools that automatically analyze alternative compiler optimizations and search for their opti-
mal combination (Triantafyllis et al. 2003; Haneda et al. 2005; Pan and Eigenmann 2006;
Leather et al. 2009; Fursin et al. 2011); (3) auto-tuners that search a space of application-
level parameters that are believed to impact the performance of an application (Chung and
Hollingsworth 2004; Nelson et al. 2008; Morajko et al. 2005); (4) frameworks that try to
combine ideas from all the other groups (Tiwari et al. 2009; Ribler et al. 1998).

2.1 Self-tuning libraries

The first category contains special-purpose libraries that are highly optimized for one spe-
cific area. Automatically Tuned Linear Algebra Software (ATLAS) supports the developers
in creating numerical programs. It automatically generates and optimizes the popular Basic
Linear Algebra Subroutines (BLAS) kernels for the currently used architecture. Similarly,
FFTW is a library for computing the discrete Fourier transformation on different systems.
Due to the FFTW design, an application using it will perform well on most architectures
without modification.

2.2 Automatic compiler optimization tools

The growing diversity of parallel application areas requires a more general auto-tuning
strategy. Thus, a substantial research has been done in a different application-independent
approach of auto-tuning. This is based on the automatic search for the right compiler opti-
mizations on the specific platform. Such tools can be separated into two groups according
to their methodology: iterative search tools and those using machine learning techniques.
There has been much work in the first category as described in Triantafyllis et al. (2003) and



Software Qual J (2018) 26:1063–1096 1067

Haneda et al. (2005). All these tools share the idea of iteratively enabling certain optimiza-
tions. They run the compiled program and monitor its performance. Based on the outcome,
they decide on the new tuning combination. Due to the huge size of the search space,
these tools are relatively slow. An algorithm called combined elimination (CE) (Pan and
Eigenmann 2006) has been developed, which greatly improves on the former search-based
methods.

The second branch of compiler-based auto-tuners applies a different strategy to look
for the best optimization settings. They use knowledge about the program’s behavior and
machine learning techniques to select the optimal combination (Leather et al. 2009). This
approach is based on an automatically built per-system model that maps performance
counters to good optimization options. This model can then be used with different appli-
cations to guide their tuning. Current research work is also targeting the creation of a
self-optimizing compiler that automatically learns the best optimization heuristics based
on the behavior of the underlying platform (Fursin et al. 2011). Zhelong Pan did pio-
neering work on tuning compiler flags. He developed several algorithms for walking the
large search space of gcc compiler optimization flags (Pan and Eigenmann 2006). Com-
bined elimination iteratively identifies negative combinations and eliminates these in a
one by one greedy fashion. The paper confirms that the tuning result is very applica-
tion dependent. Improvements from only a few up to 60% were shown. The Milepost
project investigated machine learning-based compilation for gcc for Intel, AMD, and ARC
CPUs (Fursin et al. 2011). Tuning results are forwarded into a public tuning database to
improve machine learning results across multiple codes. The developed machine learning
plugins are based on probabilistic and transductive approaches to predict good combina-
tions of over 100 optimization flags. Pedro Bruel et.al. uses OpenTuner to tune compiler
parameters of the CUDA compiler generating PTX code (Bruel et al. 2015). The experi-
ments showed speedups compared to standard optimization flags from a few up to 30%.
The results are highly application dependent. The PTF compiler flags tuning plugin pre-
sented here uses an overall tuning infrastructure similar to the work of Bruel et.al. using
OpenTuner. It provides specialized search algorithms as in the work of Pan, and machine
learning as in the Milepost project. It integrates these techniques into PTF’s online tuning
approach.

Much work has also been done in the area of autotuning stencil operations, which are at
the heart of many numerical methods. A prominent example is the Berkeley autotuner (Datta
et al. 2008), which focuses on optimizing the performance of stencil kernels by automat-
ically selecting optimization strategies and corresponding tuning parameters. The Pochoir
compiler (Tang et al. 2011) is a compiler and runtime system for implementing stencil
computations formulated in a domain-specific language on multicore processors.

2.3 Autotuners

Among the tools in the third category is the Active Harmony system (Chung and
Hollingsworth 2004; Tiwari and Hollingsworth 2011). It is a runtime parameter optimiza-
tion tool that helps focus on the application-dependent parameters that are performance
critical. The system tries to improve performance during a single execution based on the
observed historical performance data. It can be used to tune parameters such as the size of a
read-ahead buffer or what algorithm is being used (e.g., heap sort vs. quick sort). As com-
pared with Active Harmony, the work from Nelson et al. (2008) uses a different approach
that interacts with the programmer to get high-level models of the impact of parameter
values. These models are then used by the system to guide the search for optimization



1068 Software Qual J (2018) 26:1063–1096

parameters. This approach is called model-guided empirical optimization where models and
empirical techniques are used in a hybrid approach.

MATE (Monitoring, Analysis and Tuning Environment) is a tuning environment for
MPI parallel applications (Morajko et al. 2005) developed by one of the AutoTune part-
ners, Universitat Autònoma de Barcelona. MATE automatically instruments the running
application at runtime in order to gather information about the application’s behavior. The
analysis phase receives events, searches for bottlenecks by applying a performance model
and determines solutions for overcoming such performance bottlenecks. Finally, the appli-
cation is dynamically tuned by setting appropriate runtime parameters. All these steps are
performed automatically and continuously during application execution by using dynamic
instrumentation provided by the Dyninst library (Buck and Hollingsworth 2000; Ravipati
et al. 2007). MATE was designed and tested for cluster (Morajko et al. 2007) and grid
environments (Costa et al. 2008; Costa et al. 2014).

2.4 Hybrid frameworks

Popular examples for the last group of auto-tuning tools are the Parallel Active Harmony
and the Autopilot framework. Parallel Active Harmony (Tiwari et al. 2009) is a combina-
tion of the Harmony system and the CHiLL compiler framework (Chen et al. 2008). It is
an auto-tuner for scientific codes that applies a search-based auto-tuning approach. While
monitoring the program performance, the system investigates multiple dynamically gener-
ated versions of the detected hot loop nests. The performance of these code segments is
then evaluated in parallel on the target architecture and the results are processed by a paral-
lel search algorithm. The best candidate is integrated into the application. Autopilot (Ribler
et al. 1998; Ribler et al. 2001) is an integrated toolkit for performance monitoring and
dynamical tuning of heterogeneous computational grids based on closed loop control. It
uses distributed sensors to extract qualitative and quantitative performance data from the
executing applications. This data is processed by distributed actuators and the preliminary
performance benchmark is reported to the application developer.

Recent trends in ongoing tuning projects show an interest in refining the search space and
search approach for auto-tuning. The X-TUNE project (X-TUNE http://ctop.cs.utah.edu/
x-tune/) aims at seamlessly integrating programmer-directed and compiler-directed auto-
tuning. Domain specific knowledge should herewith also be considered. Results from the
SUPER project (Balaprakash et al. 2013) show that multi-objective tuning is a feasible
approach to trade off power, performance, energy, and resilience.

With most related approaches mentioned above, performance analysis and tuning of dif-
ferent performance problems is usually done with separate tools. In contrast, AutoTune
aims at bridging this gap and integrating support for both steps, analysis and tuning, in a
single framework. PTF supports a wide set of different performance aspects targeting dif-
ferent programming models and parallel architectures. The plugin-based structure enables
the user to experiment with different configurations of tuning plugins (e.g., using different
search strategies) and makes PTF easily extensible to other performance aspects.

3 PTF architecture and infrastructure

Figure 1 provides a high-level overview of the PTF infrastructure. On the top level, there is
Periscope, the online performance analysis tool (Benedict et al. 2010). Its main functional

http://ctop.cs.utah.edu/x-tune/
http://ctop.cs.utah.edu/x-tune/


Software Qual J (2018) 26:1063–1096 1069

Fig. 1 The plugin infrastructure of PTF

components with respect to tuning are Analysis, Search Algorithms, Experiments Engine,
and Monitor (see Section 3.2 for detailed descriptions). On the bottom level, there are
the tuning plugins (described further in Section 4). Only the plugins developed within the
AutoTune project are represented here, but the set of plugins is extensible.

The bidirectional arrows between the plugins and Periscope represent the two aspects of
their interaction: on the one hand, Periscope is responsible for steering the tuning process
and thus controls the execution flow of the plugins; on the other hand, the plugins define
the tuning strategy, based on which they request specific performance analysis and tuning
actions to be gathered and performed by Periscope.

The entire infrastructure was designed to cover a wide range of tuning strategies. In
order to support this flexibility, the tool components exhibit rather complex functionali-
ties and rich interaction interfaces. The AutoTune book (Gerndt et al. 2015) presents all
this matter in great detail. Here, we will only focus on the main aspects of the auto-tuning
approach. Particular usage examples are then illustrated by the plugins covered in the
sections hereafter.

3.1 Tuning model

Every common tuning process generally follows the same algorithm, as presented in Fig. 2.
The tuning model of the PTF tuning infrastructure is an implementation of this algorithm,
enriched with support for extensions and specializations characteristic to performance opti-
mization of applications. The correct flow of the process is rendered by Periscope and is
exposed via the Tuning Plugin Interface (TPI) to the plugins. Any needed tuning infor-
mation is exchanged between Periscope and the plugins by means of specialized data
structures, which are communicated within the TPI calls. Figure 3 presents a diagram of the
tuning model within PTF.

The first step in the PTF tuning model covers steps 1–3 of the general tuning algorithm.
Each plugin optimizes an application for a specific tuning aspect, thus implicitly defin-
ing the tuning objective. Most common tuning objectives are execution time and energy
consumption.

Plugins also enclose the expert knowledge with respect to the tuning mechanisms they
utilize of and the appropriate strategy to follow—steps 2 and 3 of the general algorithm.
The particular adjustments or tweaks handled by the plugins are called tuning parameters



1070 Software Qual J (2018) 26:1063–1096

Fig. 2 Tuning algorithm within common tuning processes

and are defined along with their appropriate values. The set of all acceptable combinations
of tuning parameters for a given tuning process is called the tuning space and is created at
the initialization of the plugin.

The Tuning Step, marked in green in Fig. 3, covers step 4 of the algorithm, including
all its substeps, 4a and 4b. The first two boxes here are extensions specific to performance
tuning with PTF. In the Pre-Analysis step, Periscope can execute particular performance
analysis of applications, as required by some plugins. This step is managed by the analysis
component (see Fig. 1).

The variant space is a subspace of the tuning space, defined by a subset of the tuning
parameters and corresponding subsets values. When generating the variant space, the plug-
ins can use the information from the pre-analysis step in order to filter out the appropriate
tuning parameters and values.

The Search Step, marked in gray in Fig. 3, is repeated several times within one tuning
step. Due to the automatic nature of tuning, if the tuning scenarios are independent from
each other, then it is more suitable to create an entire pool of tuning scenarios within one
single search step. The creation of scenarios is handled by the Search Algorithms component
(see Fig. 1), using instructions from the plugins.

Specialized for application tuning, one distinguishes in step 4(b)ii two main types of tun-
ing actions: pre-execution and runtime. For example, altering the command line that starts
the application is a pre-execution action and changing the CPU frequency while the appli-
cation is executing is a runtime action. The first type of actions is covered in the Prepare
Scenarios step, while the second one in Run Experiment.

Since PTF is tuning the performance of applications, specific measurements and analysis
are carried out when running the experiments. Three components are involved within this
task: Analysis, Experiments Engine and Monitor (see Fig. 1).

After having looped through all necessary tuning scenarios and tuning steps, the tuning
model concludes with the tuning advice corresponding to the last step in the general algo-
rithm (step 5). The advice is in XML format and provides the tuning scenario that achieved
the best evaluation of the tuning objective.

3.2 PTF infrastructure components

In the following, we provide a brief overview of the common infrastructure components
available to all the different tuning plugins.



Software Qual J (2018) 26:1063–1096 1071

Fig. 3 The tuning model of the
PTF tuning infrastructure

3.2.1 Analysis

The analysis component of Periscope is used in the pre-analysis and scenario analysis steps
of the tuning model. Its functionality is based on the performance property concept used by
Periscope to characterize the performance behavior of applications. The plugins can request
a list of properties to be evaluated within the specially designed configurable analysis strat-
egy of Periscope. Some examples of performance properties are ExecTimeImportance
(see Section 4.1), for determining the most time consuming routines of an application;
ExecTime (see Section 4.1), for determining the execution time of the whole application;
and EagerLimitDependent (see Section 4.2), for determining if the execution time of
the application could be significantly affected by the value of the MPI eager limit parameter.

3.2.2 Search algorithms

The core of every tuning technique is represented by some type of a search algo-
rithm. For generating the scenarios and the corresponding search path, PTF provides
different search algorithms including Exhaustive search, Probabilistic random search, Indi-
vidual search (Bajrovic et al. 2016), GDE3 multi-objective genetic search (Kukkonen and
Lampinen 2005), Active Harmony’s Nelder-Mead Simplex algorithm (Ţăpuş et al. 2002),



1072 Software Qual J (2018) 26:1063–1096

and Machine Learning Based Random Search (see Section 4.1). A single run of a search
algorithm can perform one or more search steps. In each search step, a number of new sce-
narios is created. If there are multiple search steps, then the newly created scenarios usually
depend on the results obtained in the previous search steps. PTF supports the introduction
of new search algorithms, either as binaries loaded in the PTF tuning infrastructure, or as
implementations in the plugins. For a discussion of the available search algorithms, we refer
the reader to (Gerndt et al. 2015).

While heuristic search strategies constitute one way of coping with large search spaces,
the other approach is to include expert knowledge in the plugin and to use pre-analysis
strategies.

3.2.3 Experiments engine

The Experiments Engine component is mainly responsible for handling the tuning actions,
both in pre-execution and at runtime. It manages the execution of the application, suspend-
ing or restarting if necessary, all in tight collaboration with the Monitor component.

3.2.4 Monitor

The Monitor component is configurable via the Monitor Request Interface (MRI) and is the
component closest to the tuned application. It attaches to the application process(es) and
gathers performance data, as configured via the MRI. It then communicates the results to
the other Periscope components.

For performance measurements, applications are usually first instrumented with specific
annotations and then they are built and linked against the measurement library. Most impor-
tant and frequently used instrumentation in PTF is the declaration of code regions. The
measurements, analysis and tuning are carried out with respect to code regions, files, or the
entire application.

4 Tuning plugins

4.1 Compiler flag selection plugin

The Compiler Flag Selection (CFS) plugin searches automatically for the best combination
of compiler flags to be used for a given application.

In practice, manually choosing the right flags for the compilation process turns out to
be very complicated. On the one hand, there is a very large number of flags to choose
from. On the other hand, one needs solid background knowledge to be able to reason about
which compiler operations would benefit the performance of a given application. Moreover,
the effects on application performance of one compiler option or the other are not easy
foreseeable, not even for compiler experts. The application developer is thus only left the
option to test some flags combinations and choose the best among those.

The CFS plugin provides an automated process that evaluates several compiler flag com-
binations based on a given search strategy. The assessment of the effects each combination
has on the performance of the given application is supported through the integration into
PTF. For each tested combination, the application is automatically recompiled and executed
within the PTF tuning flow, and its performance is measured and analyzed by Periscope.

Figure 4 gives an overview of the integration of the CFS plugin within PTF.



Software Qual J (2018) 26:1063–1096 1073

Fig. 4 Integration of the CFS plugin into PTF and specific aspects of the tuning flow

4.1.1 Compiler templates and plugin settings

The tuning objective addressed by the CFS plugin is the execution time of applications.
The mechanism through which the execution time is reduced is through compiler opti-
mization guided by selected compiler flags. These compiler flags thus represent the tuning
parameters, and the tuning space is given by all possible flag combinations.

The compiler templates are pre-defined sets of compiler flags provided as template files
in the standard installation of the CFS plugin. These templates can be loaded in any tuning
process and they offer the advantage that the set of tuning parameters and corresponding
values they define are known to work best for the target compiler.

Custom tuning parameters can also be defined in the configuration file, as represented in
the tuning preparation step in Fig. 4. Other settings that influence the execution of the tuning
flow are the search algorithm to be used, as well as the selective build feature addressed
next.

4.1.2 Significant routines and selective build

The analysis component in Fig. 4 provides significant routines to the CFS plugin in the
Tuning preparation step. More precisely, this is the pre-analysis step of the tuning model.
The CFS plugin uses this step to refine the compilation process of the given application. It
uses the Importance performance analysis strategy of Periscope to determine, based on the
ExecTimeImportance performance property, which of the routines of the application
have an execution time above a certain percentage of the total considered execution time.
Only these files are then considered and recompiled during the tuning process.

It is often the case for real-world applications that they have a considerable large compila-
tion time. As the CFS plugin needs to recompile the application for each tested combination



1074 Software Qual J (2018) 26:1063–1096

of compiler flags, reducing the number of files to be recompiled also reduces the total time
needed for tuning.

The list of files for the selective build process can be either determined in the pre-analysis
step or it can be provided directly by the plugin user.

4.1.3 Search refinements

The CFS plugin relies on the Search Algorithm component of PTF to generate the com-
piler flags combinations in the Scenario creation step. The plugin feeds the component with
the tuning parameters, i.e., the compiler flags, and the Search Algorithm component gener-
ates the tuning scenarios, i.e., the desired combinations of flags. The search algorithm also
guides the search path and delivers in the end the best scenario along with the traversed
search path.

There are two characteristics specific to the optimization based on compiler flags and
which are exploited by the CFS plugin in the search process. First of all, some compiler
flags are expected to have a higher impact on the performance of applications than other
flags. Hence, sorting the list of tuning flags based on their expected impact and using the
greedy-like algorithm Individual Search has the potential to deliver close to optimal results
while also speeding up the entire tuning time. The second characteristic is that the compiler
flags tend to be consistent with the program signature. The program signature is a collec-
tion of Performance Application Programming Interface (PAPI) counter values measured
for the given application (see (Gerndt et al. 2015) for details). The consistency between
compiler flags and program signature makes it possible for the CFS plugin to use the
machine learning-based search strategy, also provided by PTF. In Fig. 4, one can see the
Tuning Database, which is fed with new program signatures and tuning results. In response,
appropriate flags combinations are delivered to the plugin.

4.1.4 Application compilation and execution

The last steps of the tuning model refer to applying the tuning actions and evaluating their
impact. The CFS plugin has a pre-execution type of tuning action, namely the recompilation
of the application using the currently tested combination of compiler flags. The Experiment
Engine first triggers recompilation and then starts the execution of the application. During
execution the Monitor measures the ExecTime performance property, needed for evalu-
ating the effects of the scenario. The execution time for the tuned region and, if selected,
the significant routines are then delivered back to the CFS plugin. The plugin analyzes
the returned execution times and recommends a globally best flag combination as well as
individual best flag combinations for the selected significant routines.

4.1.5 Extensions for tuning OpenCL kernels

Performance of OpenCL kernels can be significantly influenced by selecting proper opti-
mizations for the backend compiler. The CFS plugin also supports the tuning of OpenCL
kernels for various target accelerators based on compiler flags for offline compilers. Figure 5
outlines these extensions. The plugin comes with scripts for offline compilation of OpenCL
kernels.

The CFS plugin supports target devices of two OpenCL vendors, Intel and NVIDIA.
Intel provides a kernel builder and an LLVM-based optimizer (The LLVM Compiler Infras-
tructure http://llvm.org/) while NVIDIA does not provide an offline compiler. The script

http://llvm.org/


Software Qual J (2018) 26:1063–1096 1075

Fig. 5 Integration of the CFS plugin for OpenCL tuning into PTF and specific aspects of the tuning flow

provided with the CFS plugin for Intel targets, i.e., standard processors and Xeon Phi, first
generates the Standard Portable Intermediate Representation (SPIR) file with the ioc tool
for the selected OpenCL compiler flags. This intermediate version is input to the OCLOpt
optimizer, which generates an optimized version based on a large number of standard
compiler optimization flags. ioc/ioc64 (OpenCL SDK User-guide https://software.intel.
com/sites/default/files/m/e/7/0/3/1/33857-Intel 28R 29 OpenCL SDK User Guide.eps) is
an offline compiler for OpenCL available in Intel OpenCL SDK, while OCLOpt is an
LLVM-based optimizer that provide more than 250 optimization options.

The script developed for offline compilation for NVIDIA GPUs wraps NVIDIA’s online
compiler and uses besides the OpenCL standard optimizations additional optimizations
defined by NVIDIA.

OpenCL tuning with the CFS plugin depends on the MRI monitor to measure the kernel
execution time. The monitor performs the measurements for each of the kernels with the
help of an OCL Wrapper library. The kernel times are reported back in the form of perfor-
mance properties that are then used in the plugin to evaluate the different tuning scenarios
with respect to the execution time objective. The plugin reports for each kernel the best flags
combination.

4.1.6 Evaluation

Automatic tuning with the CFS plugin was applied to a wide range of applications on the
SuperMUC2 system at Munich: nine applications from the AutoTune application repository,
three applications from CESAR (https://cesar.mcs.anl.gov/content/software) and two appli-
cations from the CORAL (https://asc.llnl.gov/CORAL-benchmarks) benchmarks suite. The
results are very much dependent on the applications themselves. Nevertheless, CFS was

2The software environment on SuperMUC comprised the Intel Compiler 14, Parallel Environment 1.3, and
OS SLE11 SP3. Details on SuperMUC can be found at: https://www.lrz.de/services/compute/supermuc/
systemdescription

https://software.intel.com/sites/default/files/m/e/7/0/3/1/33857-Intel_28R_29_OpenCL_SDK_User_Guide.eps
https://software.intel.com/sites/default/files/m/e/7/0/3/1/33857-Intel_28R_29_OpenCL_SDK_User_Guide.eps
https://cesar.mcs.anl.gov/content/software
https://asc.llnl.gov/CORAL-benchmarks
https://www.lrz.de/services/compute/supermuc/systemdescription
https://www.lrz.de/services/compute/supermuc/systemdescription


1076 Software Qual J (2018) 26:1063–1096

Table 1 Tuning parameters used for evaluation of compiler flag selection plugin

able to provide speedups ranging from 1–4% for codes from the AutoTune repository like
Convolution, Primes and HydroC, to 6–15% for NPB benchmarks BT, LU, and SP, and even
16–38% for SeisSol and Fssim.

The OpenCL extension of the CFS plugin was evaluated with three different benchmarks
applications on Intel Xeon CPUs and Intel Xeon Phi. The best flags combinations are highly
dependent on the target architecture and improvements from 11 to 56% were achieved. This
indicates that the Intel OpenCL compiler did not yet achieve the maturity of the FORTRAN
and C++ compilers as well as the importance for OpenCL tuning via carefully choosing the
compiler flags.

4.1.7 Evaluation of search strategies

In order to evaluate different search strategies, we experimented with three proxy exas-
cale applications (MOCFE, NEKBONE and RSBench) from CESAR (cesar.mcs.anl.gov)
(CESAR https://cesar.mcs.anl.gov/content/software), which are designed to explore the
design space of exascale machines and resembling future exascale applications.

The following search strategies have been evaluated:3 (RS) Random Search where the
plugin randomly selects combinations of flags; (IS) Individual Search, which includes the
compiler flags one after the other from the tuning parameter list in the order used in the
specification file; (GS) Genetic Search, which searches for the combination of compiler
flags based on the GDE3 genetic algorithm; and (MLRS) Machine learning-based Ran-
dom Search, which uses the Tuning Database of PTF with a collection of CFS tuning
results for the NAS parallel benchmarks to model and predict suitable compiler flags for the
application to tune.

In the following, we present an evaluation of these search strategies for each of the three
proxy applications using the compiler flags and possible values according to Table 1. PTF
exploits that these codes have a progress loop where the same computation is executed
in each iteration. Each iteration is called a phase and the loop body is the phase region.
Due to the similarities of the phases, the measurements are performed for a single phase
only. Figures 6, 7, 8, 9, and 10 thus show the phase execution times by different search
algorithms after a given number of experiments.

3Due to the large number of flags, exhaustive search has not been used. It would have required over 27000
experiments.

cesar.mcs.anl.gov
https://cesar.mcs.anl.gov/content/software


Software Qual J (2018) 26:1063–1096 1077

0,38

0,39

0,4

0,41

0,42

0,43

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

)s(
e

mit
noitucexE

Experiments

Gene�c

Individual

Random

Fig. 6 Comparison of IS, GS, and RS for NEKBONE

NEKBONE The NEKBONE proxy application is a thermal hydraulics simulation code
for reactor simulations that solves Poisson, Helmholtz, and other equations. The computa-
tional domain is partitioned into high-order quadrilateral elements. This is an MPI-based
FORTRAN application consisting of 13 files. It was executed with 8 processes and 50 ele-
ments per process, a polynomial order of 10, and without the multi-grid preconditioner,
i.e., Example 3 in the source code provided at CESAR (https://cesar.mcs.anl.gov/content/
software).

Figure 6 compares the different search algorithms for the NEKBONE application. The
x-axis represents the experiments executed for the different configurations and the y-axis
the execution time of a phase. All three search algorithms converged to almost the same
execution time of 0.38 seconds. While IS found the best execution time already after 5
experiments, RS took 22 experiments and GS 80 experiments. The line for GS only starts at
20 experiments since the initial population is 20 configurations, and a result is only available
after the whole population was evaluated. RS was configured to execute 100 experiments,
while GS took overall 200 experiments until the search algorithm stopped due to conver-
gence detection. The figure also confirms that the order of the flags evaluated by IS as given
by the configuration relates very well to the potential improvement.

0,38

0,39

0,4

0,41

0,42

0,43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

)s(
e

mit
noitucexE

Experiments

Individual

Random

Machine Learning

Fig. 7 Comparison of IS, RS, and MLRS for NEKBONE

https://cesar.mcs.anl.gov/content/software
https://cesar.mcs.anl.gov/content/software


1078 Software Qual J (2018) 26:1063–1096

As a further experiment, we executed MLRS based on the tuning results for the NAS
Parallel Benchmarks. MLRS was configured to use only 20 experiments. The results are
shown in Fig. 7. It can be seen that random search guided by machine learning converged
much faster than pure RS and even IS. On the other hand, IS found a slightly better solution.

Figure 8 presents the quality of the whole population of 10 individuals created by GS.
Since the GDE3 algorithm is suited for multi-objective tuning (Xiujuan and Zhongke 2004),
it keeps a pre-configured number of best individuals in the populations determining the
Pareto curve. The figure presents the range of the quality of individuals in the current pop-
ulation. The x-axis is the population number and the y-axis is the phase execution time.
This diagram also explains why GS took 20 populations. The result improved over these
populations continuously with respect to the overall quality of the individuals.

RSBENCH This proxy application models the multi-pole cross section look up algorithm.
It is implemented in C and uses OpenMP. For the evaluation, we executed it with 8 threads
using the following application arguments:

−t 8 − s small − l 1000000 − p 1000 − w 100

where, -t represents the number of OpenMP threads, -s represents the size of the benchmark
to run, -l represents the number of cross section lookups, -p represents the average number
of poles per nuclide, and -w represents the number of windows per nuclide. The cross-
section parallel lookup simulation part of the application, which is iterative in nature, is
instrumented as the phase region for PTF timing evaluation.

Figure 9 shows the results of the different search algorithms. The best value is found by
GS after 80 experiments but it took GS up to 129 experiments to detect convergence. The
second best result was found by IS after 29 experiments. We can also see from this graph
that MLRS again improved on the convergence of RS, although better solutions are finally
found by RS after 30 more evaluations. The reason is probably that the training for machine
learning did not include all of the flags used for during this experiment.

MOCFE MOCFE-Bone is a mini-application that simulates the main procedures in a 3D
method of characteristics (MOC) code for the numerical solution of the steady state neutron

0,37

0,38

0,39

0,4

0,41

0,42

0,43

0,44

0,45

0,46

0,47

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

)s(
e

mit
noitucexE

Genera�ons

GS-Maximum

GS-Minimum

Fig. 8 Quality of the whole population of GS with 10 individuals for NEKBONE



Software Qual J (2018) 26:1063–1096 1079

8,6
8,65

8,7
8,75

8,8
8,85

8,9
8,95

9
9,05

9,1

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

)s(
e

mit
noitucexE

Experiments

Gene�c

Individual

Random

Machine Learning

Fig. 9 Comparison of IS, GS, RS, and MLRS for RSBENCH

transport equation. 3D-MOC features heterogeneous geometry capability, high degree of
accuracy, and potential for scalability. It is a FORTRAN 90 MPI application consisting of
36 files.

We have measured the phase, i.e., the inner loop of Method FGMRES.F90 of the
application. The application was executed with 16 processes and a Krylov iteration size of
60.

Figure 10 shows the results of the different search algorithms. For this application, IS,
GS, and RS found the same best execution time. While IS was again faster than GS and
RS, GS found the same value almost as fast as IS but went through many more experiments
to detect convergence. In contrast to RSBENCH and NEKBONE, RS already starts with
good values in this experiment. MLRS started with worse results than RS but found the best
execution much faster than RS.

Overall, it can be seen for these three proxy applications that, in most cases, GS found
the best combination of compiler flags and MLRS converged within a few number of flag
combinations, which is much faster than RS. Nevertheless, in all cases, IS was able to find
a near optimal solution, which is much faster than all other algorithms. In addition, it can
also be seen that tuning the compiler flags is leading in all these cases to an improvement in
the applications execution time.

8,5

8,55

8,6

8,65

8,7

8,75

8,8

8,85

8,9

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

)s(
e

mit
noitucexE

Experiments

Gene�c

Individual

Random

Machine Learning

Fig. 10 Comparison of IS, GS, RS, and MLRS for MOCFE



1080 Software Qual J (2018) 26:1063–1096

4.2 MPI parameters plugin

MPI is the “de facto” standard for interprocess communication in distributed-memory
environments and thus the optimization of MPI aspects represents a key factor in the opti-
mization of large-scale parallel applications. However, the setups of libraries are usually
specific to the environment where the libraries are installed, and often they do not achieve
the same performance in another environment. In order to overcome this portability issue,
most MPI implementations provide multiple runtime parameters that can be changed by the
user. For example, IBM MPI, Intel MPI, and OpenMPI provide 50–150 runtime parameters
from which ten to several tens can significantly influence the application performance.

The MPI Parameters plugin aims to automatically optimize the values of a user selected
subset of MPI runtime parameters. The integration with PTF (see Fig. 11) provides the
plugin with on-line measurements in the form of high-level properties, allowing it to make
tuning decisions based on the actual performance of the application. The plugin generates
the scenarios to represent specific MPI configurations in the form of tuples of parameter-
value pairs (i.e., specific combinations of values for the selected subset of MPI parameters).
These scenarios are executed as experiments via PTF and evaluated using the resulting
properties.

4.2.1 Parameter templates for MPI flavors

In the tuning preparation step, a set of MPI parameters and their possible values are obtained
from a configuration file. These are the tuning parameters and the search space is then
generated with one scenario for each possible combination of parameter-value pairs.

The plugin provides three default configuration files, for IBM MPI, Intel MPI and Open-
MPI, the MPI flavors that are directly supported. Each such template file includes the

Fig. 11 Integration of the MPI parameters plugin into PTF and specific aspects of the tuning flow



Software Qual J (2018) 26:1063–1096 1081

parameters that usually have more impact on performance for each implementation, and it
can be the starting point for the automatic tuning process.

4.2.2 Model-based search space reduction

Depending on the number of parameters to be tuned and the range of values they can take,
the potential size of the search space can be huge. In addition, given the number of MPI
parameters that can influence the performance of the applications, and the dependence of the
parameters on the library implementations, it is extremely difficult to find general models
to guide the tuning.

The MPI parameter plugin provides a prediction model only for a reduced set of specific
parameters, consisting of the eager limit and the buffer mem parameters. The two parame-
ters are especially relevant because of their high potential influence on the performance of
applications.

The goal is thus to shrink the search space for the tuning process. In order to do so,
one pre-analysis step is required. The plugin uses the configurable analysis strategy of
Periscope, asking for the EagerLimitDependent property. This property returns the propor-
tion of point to point messages in the valid range of the eager limit, over the total number
of messages. It also classifies these messages in buckets within the valid range of the eager
limit.

With the information acquired in the pre-analysis step, the plugin first decides if it is
worth tuning the eager limit parameter. The parameter will be included in the tuning space
only if the proportion of bytes in the valid range of the eager limit is more than 30% of the
total number of bytes sent by the application. If this is the case, the plugin then analyzes the
number of messages in each bucket and sets the search space according to the limits of the
smallest group of consecutive buckets that includes a major proportion of the total number
of messages.

Finally, the memory buffer parameter is set based on the values obtained for the eager
limit parameter. A detailed description of the approach for computing the parameter values
can be found in Gerndt et al. (2015).

4.2.3 Heuristic search

As already mentioned, the total number of possible tuning parameters remains very large
and thus, in most cases, an exhaustive search over the entire search space would be imprac-
tical. The plugin gives users the possibility of using one of the PTF’s heuristic algorithms
(GDE3, Individual, or Random) to guide the search, drastically reducing the number of
experiments to be executed. The appropriate search strategy can be chosen in the scenario
creation step.

4.2.4 Execution of the tuning experiments

In the last step of the tuning flow, the plugin starts to experiment with the scenarios accord-
ing to the selected search strategy. It evaluates each of them using execution time as the
tuning objective.

The application must be restarted for each set of options, because MPI parameters cannot
be changed during the execution of an application. For each experiment, the plugin builds
the new command-line string to re-launch the application with the new configuration. This
is then executed by the Experiments Engine component as a pre-execution tuning action.



1082 Software Qual J (2018) 26:1063–1096

The plugin finishes when all the selected scenarios are explored or a time limit is reached,
and the scenario that yields the best performance (lower execution time) is used as the tuning
advice to the user.

4.2.5 Evaluation

The plugin was evaluated on five applications from the AutoTune applications repository
(Fssim, SeisSol, NPB, modp and Pmatmul) and one extra application developed at the UAB
group (XFire), using different MPI flavors (IBM MPI and Intel MPI) and different search
strategies (exhaustive, GDE3, Individual, and Random), as well as automatically determin-
ing the range for the eager limit and buffer mem parameters. As expected, results depend
on the application, some applications were almost unaffected because the weight of com-
munication is not relevant for them. For others, moderate improvements of up to 10% were
obtained. For applications with significant communication activity, an improvement of up
to 60% was achieved, e.g., for the Fssim application, which is a biological simulator that
models the behavior of large fish schools.

Figures 12 and 13 show the results obtained by PTF for Fssim on the SuperMUC using
a medium workload of 64K individuals and 64 MPI processes, distributed over 4 Super-
MUC Phase 1 thin nodes (16 cores per node). Again reported execution times (seconds)
refer to a phase. In the first case (Fig. 12), an exhaustive search was performed on five IBM
MPI parameters (including the eager limit one) obtaining a speedup of 1.56 (2.77 seconds
for the best scenario vs. 4.32 seconds for the execution with the parameters’ default val-
ues). However, this search took almost 7.5 hours for running 1024 scenarios. In the second
case (Fig. 13), an individual search is performed on ten IBM MPI parameters (including the
eager limit and buffer mem ones), obtaining a speedup of 1.51 (2.86 seconds vs. 4.32 sec-
onds) testing only 119 scenarios in 52 minutes. These results show the advantage of using a
heuristic instead of exhaustive search.

In addition, in both cases, the eager limit parameter had the highest impact on the
application performance, which is reinforced when applying the model-based search space
reduction strategy explained in Section 4.2.2. Using this strategy, the plugin determines that

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

0 200 400 600 800 1000

ex
ec

tim
e
(s
)

scenario

FSSIM 64K exhaustive (IBM MPI)

Fig. 12 Execution of Fssim using the MPI parameters plugin with exhaustive search



Software Qual J (2018) 26:1063–1096 1083

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

20 40 60 80 100 120

scenario

FSSIM 64K 64P Individual

ex
ec

-t
im

e
(s
)

Fig. 13 Execution of Fssim using the MPI parameters plugin with individual search

more than 90% of the bytes communicated by the application were sent in messages of less
than 64KB (the upper limit for the IBM MPI eager limit parameter) and that most of these
messages were concentrated in the 16 to 32 KB range.

4.3 DVFS plugin

Energy and power related costs dominate the expenditures needed to run HPC systems.
Typical power requirements of large HPC systems are in the range of several megawatts,
which means several million euros each year. The main goal of the DVFS plugin is to tune
HPC applications with respect to energy and power related metrics.

The tuning mechanism is based on the dynamic voltage frequency scaling (DVFS) fea-
ture of modern processors. The plugin currently supports Intel Sandy Bridge-EP processors
and it uses the userspace governor4 to ensure that a given CPU frequency is not altered
by the operating system unless explicitly requested by the user. The DVFS plugin depends
on the architecture because it uses Running Average Power Limit (RAPL) hardware coun-
ters and a model with coefficients calculated for a particular architecture. Consequently, for
using the plugin on a different type of processor, the names of the RAPL counters should
be changed in the appropriated header files and the model coefficients recalculated for the
new architecture. Figure 14 shows the main components of the plugin as well as the main
workflow.

4.3.1 Specialized tuning objectives

The DVFS plugin is unique in that it focuses on different tuning objectives: energy con-
sumption, power capping, total cost of ownership (TCO), and energy delay product (EDP).
Besides these four tuning objectives, the DVFS plugin also provides three policies for
energy and power tuning with respect to the allowed performance degradation.

4Governors are processor policies to change frequency.



1084 Software Qual J (2018) 26:1063–1096

Fig. 14 Integration of the DVFS plugin into PTF and specific aspects of the tuning flow

The energy consumption objective deals with energy savings, which have a direct impact
on the costs for running HPC systems. Power capping strives to keep power demand below
a given limit, in order to avoid penalties imposed when power spikes occur. High power
oscillations can also damage the infrastructure, making costs rise unexpectedly. EDP and
TCO take into account the costs associated with time and thus address the productivity of
HPC centers.

Within one run of the plugin, the application is tuned with respect to only one of these
tuning objectives, which needs to be specified by means of an environment variable.

4.3.2 Region-level tuning

Another particularity of the DVFS plugin is the fine-grained tuning approach. While there is
only one tuning parameter, the CPU frequency, the plugin does not tune the entire applica-
tion with only one value of the tuning parameter, but it optimizes specific code regions. The
code regions eligible for tuning, called suited regions, are determined in the pre-analysis
step by executing the application at a nominal frequency.

Moreover, the frequency can be set either at the core level or at the node level. In HPC
systems, one computing node usually consists of one or more multicore CPUs. By default,
the plugin sets the frequency from every task to the core where the task is running. The
DVFS plugin works with MPI, OpenMP, and hybrid codes and the frequencies are changed
on the cores where the threads or the processes run. Alternatively, the frequency can also be
set from a master task to the entire node.

4.3.3 Model-based search space reduction

The DVFS plugin relies on three main models, an energy model, a time model, and power
model in order to reduce the search space. All tuning objectives use either one of the three
main models, or/and some derived models to predict the corresponding best frequency
setting (see Gerndt et al. (2015) for more information).



Software Qual J (2018) 26:1063–1096 1085

In the pre-analysis step, along with the suited regions, the application performance char-
acteristics are determined and used as an input to predict the value of the tuning objective
for each available frequency. Based on the value of the tuning objective, the global fre-
quency is then set. The global frequency represents the best frequency to be used for the
main code region. What exactly best frequency means, depends on the chosen tuning objec-
tive. For example, the best frequency when tuning energy consumption is at the minimum
of this metric. For power capping, the best frequency is the highest frequency to not surpass
a given power limit. We then construct a limited search space comprising the global fre-
quency and the next lower and the next higher frequency and explore this search space by
means of exhaustive search.

4.3.4 Kernel-level tuning actions

After the experiments engine creates and dispatches all the needed experiments, there are
two tuning actions that need to be performed at runtime: setting the governor and setting
the frequency. Since these are privileged operations that cannot be executed by common
processes, PTF uses a specialized library, the enopt library (Navarette et al. 2014), to access
the energy measurements and to set the frequencies of the cores on which the application
runs.

The same library has to be used also afterwards, when applying the tuning advice pro-
vided by the DVFS plugin. The application needs to be linked to the enopt library and the
proper frequency settings have to be provided by means of an environment variable.

4.3.5 Evaluation

The DVFS plugin was applied to a wide range of applications with several tuning objectives.
As much as 20 automatic tunings were performed in less than a month that optimized six
applications for energy, power capping, TCO, and/or EDP. Figure 15 shows a summary of
these results. The energy savings for the energy tuning objective are also shown.

4.4 OpenCL plugin

OpenCL is an explicitly parallel programming language designed for achieving portabil-
ity across different kinds of multicore and many-core architectures. OpenCL requires the

Fig. 15 Results of DVFS pluging for different applications and tuning objectives



1086 Software Qual J (2018) 26:1063–1096

programmer to specify how the parallel execution of computational kernels should be orga-
nized by defining a so-called NDRange, which defines how work items are to be executed
in parallel by multiple threads organized into threads groups. The NDRange configuration
has a profound influence on performance and the best configuration usually depends on the
parallelism available in a computational kernel as well as on low-level architectural details
of the target devices and may widely vary between CPUs, GPUs and other types of accel-
erators. The OpenCL plugin targets automatic optimization of the NDRange parameter for
kernel execution for a specific application on a specific parallel architecture such that overall
execution time is minimized.

The NDRange parameter controls the number of work items to be processed by the kernel
and the way these work items are divided into work groups. It specifies the number of times
the kernel is executed (in parallel), processing a different work item each time, but also how
parallel execution is organized and how threads are mapped to the available compute units.
Each work item corresponds to a point either in 1D, 2D, or 3D space. When launching the
kernel, it is necessary to specify a range in each dimension, which defines the space that is
to be processed by the kernel. The work items are partitioned into smaller chunks—the 1,
2, or 3-dimensional space is divided into equally sized 1, 2, or 3-dimensional work groups.
The size of the work groups is also defined by the NDRange parameter and it is called local
work size. The global work size in any dimension must be divisible by the local work size
in that dimension.

Usually, the global work size is defined by the problem size, with small adjustments
due to issues like padding or alignment. The local work size may also be dictated by the
algorithm and the problem size, but in many cases, the local size can be selected from a
range of options. The exact range of options may depend on the actual kernel and the device.
The local work size may also affect the amount of resources (local memory, registers, etc.)
needed to process a work group. In some cases, the kernel is written in such a way that it
can run (it adapts) with any valid (remember that it has to evenly divide the global work
size) local work size or it is completely independent of the local work size. In these cases,
the local work size can still significantly affect the performance of the kernel.

Fig. 16 Integration of the OpenCL plugin into PTF and specific aspects of the tuning flow



Software Qual J (2018) 26:1063–1096 1087

The OpenCL plugin automatically searches for the best local work size for each kernel
in an OpenCL application so that the application or kernel execution time is minimized.

4.4.1 PTF integration and tuning specification

The integration of the OpenCL plugin, along with the general tuning flow is shown in
Fig. 16. Each OpenCL kernel may have up to three tuning parameters, i.e., one for each
dimension of the NDRange. The plugin requires an XML configuration file containing a
user-provided NDRange tuning specification of feasible local work sizes for all OpenCL
kernels that should be tuned. Feasible local work sizes may be specified either via a range
expression or explicitly enumerated. Furthermore, the user can choose between a local and a
global tuning strategy (see below). The plugin relies on PTF’s OpenCL performance analy-
sis facilities to obtain the execution time of the individual kernels and the whole application.
The OpenCL API is used in the pre-analysis phase of the plugin to query device limitations
and limits for a specific kernel, which may result in the removal of some values from the
configuration file.

4.4.2 Search space and tuning strategy

The OpenCL plugin processes the user provided NDRange tuning specification and con-
structs a search space. The way how the search space is constructed and explored depends
on whether the local or global tuning strategy is used.

With the local tuning strategy, each OpenCL kernel in the application is tuned separately.
For each kernel, a kernel-specific search space is constructed according to the tuning speci-
fication and then explored with a search strategy in order to find the NDRange configuration
that minimizes the execution time of the kernel. The same process is repeated for all other
kernels in the application.

With the global tuning strategy, a global search space is determined by the cross product
of all kernel-specific search spaces. This global search space is then explored by a search
strategy with the objective of minimizing overall application execution time. Provided that
the user specified tuning specification covers all feasible NDRange configurations for all
kernels, the global tuning strategy in combination with exhaustive search will find the sce-
nario with minimal execution time. However, if the application contains many kernels, the
search space might become prohibitively large. With the local search strategy, the number

default (0.00600 s)

fastest (0.00596 s)

12481632641282565121024 x workgroup size

1
2

4
8
16

32
64
128

256
512
1024

y workgroup size

0

0.02

0.04

0.06

0.08

0.1

0.12

tim
e 

(s
) default (0.0152 s)

fastest (0.0151 s)

12481632641282565121024 x workgroup size

1
2

4
8
16

32
64
128

256
512
1024

y workgroup size

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

tim
e 

(s
)

Fig. 17 Execution times of Coulomb summation benchmark on Xeon Phi 5110P (left) and Xeon E5-2650
(right) for different NDRange configurations as explored by the tuning plugin



1088 Software Qual J (2018) 26:1063–1096

default (0.00108 s)

fastest (0.00099 s)

12481632641282565121024 x workgroup size

1
2

4
8
16

32
64
128

256
512
1024

y workgroup size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

tim
e 

(s
) default (0.0268 s)

fastest (0.0172 s)

1248163264128256512 x workgroup size

1
2

4
8
16

32
64
128

256
512

y workgroup size

0

0.05

0.1

0.15

0.2

0.25

0.3

tim
e 

(s
)

Fig. 18 Execution times of Coulomb summation benchmark on NVIDIA K20m (left) and Intel HD 4000
(right) for different NDRange configurations as explored by the tuning plugin

of scenarios to explore is given by the sum of kernel-specific scenarios, which in most cases
will be much smaller. If the kernels in an application are independent of each other, the local
tuning strategy usually will deliver the same results as the global strategy.

Both strategies rely on Periscope’s OpenCL performance analysis facilities to obtain the
execution time of the individual kernels and the whole application. The OpenCL NDRange
plugin currently can use either the exhaustive search strategy or the individual search strategy.

4.4.3 Evaluation

Evaluation of the NDRange tuning with the OpenCL plugin has been performed with the
Needleman-Wunsch benchmark from Rodinia Benchmark Suite (using the dataset with
2880 element-long sequences) and a Direct Coulomb summation benchmark (with grid size
1024 × 1024). The plugin was tested using the exhaustive search as well as the individual
search strategy.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

8 12 16 20 24 32 36 40 48 60 64

tim
e 

(s
)

local workgroup size

NVIDIA Tesla K20m
Intel Xeon PHI 5100P

Intel Xeon CPU E5-2650

Fig. 19 Execution times of the Needleman-Wunsch application on different OpenCL devices with different
local workgroup sizes



Software Qual J (2018) 26:1063–1096 1089

The execution times obtained for the two benchmarks on different architectures with
different NDRange configurations are shown in Figs. 17, 18 and 19. The results show a
significant performance impact of the NDRange configuration and a clear dependence on
the target architecture (Bajrovic et al. 2016). We observed improvements of up to 56% for
the Direct Coulomb summation, and up to 30% for the Needleman-Wunsch application with
respect to default configurations.

5 Conclusion and future work

The main goal of the European AutoTune project has been to simplify the software opti-
mization process by automating the tuning of software for HPC systems. The project has
developed the Periscope Tuning Framework (PTF), an online automatic tuning frame-
work, which combines both performance analysis and performance tuning with respect to
the myriad of tuning parameters available to today’s software developer on modern HPC
systems.

PTF is an open and extensible framework that supports tuning of different performance
aspects of parallel applications through a set of tuning plugins. To facilitate the devel-
opment of tuning plugins, the framework provides common infrastructure components
(Analysis, Search Algorithms, Experiments Engine and Monitor) and defines a flexible tun-
ing model for steering the execution of individual plugins. Each of the associated tuning
plugins focuses on one or more specific performance aspects and relies on codified expert
knowledge to steer automatic performance analysis and tuning.

In this paper, we presented the Compiler Flag Selection (CFS) plugin for finding the best
selection of compiler flags including support for OpenCL compilers, the MPI parameters
plugin for tuning parameters of the MPI library, the DVFS plugin for optimizing power
and energy consumption of applications through selective dynamic voltage and frequency
scaling, and the OpenCL plugin for optimizing the organization of multi-threaded execution
of OpenCL-based applications on heterogeneous manycore architectures.

As reported in this paper, all of the applications tuned with PTF exhibit improved per-
formance as well as improved energy efficiency. Evaluation of PTF also demonstrates
that using the tuning plugin achieves not only significant performance improvements of
the applications but also a significant increase of the productivity of application tuning as
compared to manual tuning.

Future work on PTF includes the development of meta-plugins that combine individ-
ual plugins (Gerndt et al. 2015). Currently two meta-plugins are available. The first one
is a static sequence of plugins while the second one is adaptive. The current adaptive ver-
sion takes simple characteristics of the application to decide whether to apply a plugin. A
future version will rely on a machine learning approach based on a sensitivity analysis of an
application for a certain plugin.

In addition, this work is currently being extended towards dynamic tuning of the
energy efficiency of applications in the European Horizon 2020 project READEX (Run-
time Exploitation of application Dynamism for energy-effcient eXascale computing -
www.readex.eu). PTF is used to precompute a tuning model that is then forwarded to a
runtime tuning library that switches hardware configurations dynamically (Oleynik et al. 2015).

Acknowledgments This work was supported by the European Commission FP7 project AutoTune under
grant no. 288038.



1090 Software Qual J (2018) 26:1063–1096

References

Bajrovic, E., Mijakovic, R., Dokulil, J., Benkner, S., & Gerndt, M. (2016). Tuning OpenCL applica-
tions with the periscope tuning framework. In Hawaii international conference on system sciences.
IEEE.

Balaprakash, P., Tiwari, A., & Wild, S.M. (2013). Multi-objective optimization of hpc kernels for perfor-
mance, power, and energy. In 4th international workshop on performance modeling, benchmarking, and
simulation of HPC systems (PMBS12), 11/2013.

Benedict, S., Petkov, V., & Gerndt, M. (2010). Periscope: An online-based distributed performance analy-
sis tool. In Müller, M.S., Resch, M.M., Schulz, A., & Nagel, W.E. (Eds.) Tools for high performance
computing 2009 (pp. 1–16). Berlin Heidelberg: Springer.

Bruel, P., Gonzalez, M., & Goldman, A. (2015). Autotuning gpu compiler parameters using opentuner. XXII
Symposium of Systems of High Performance Computing.

Buck, B., & Hollingsworth, J.K. (2000). An api for runtime code patching. International Journal of High
Performance Computing Applications, 14(4), 317–329.

CESAR. Proxy-apps. https://cesar.mcs.anl.gov/content/software.
Chen, C., Chame, J., & Hall, M. (2008). Chill: A framework for composing high-level loop transformations.

Technical report University of Southern California.
Chung, I.-H., & Hollingsworth, J.K. (2004). Using information from prior runs to improve automated tun-

ing systems. In Proceedings of the 2004 ACM/IEEE conference on supercomputing, SC ’04 (p. 30).
Washington: IEEE Computer Society.

CORAL. benchmarks. https://asc.llnl.gov/coral-benchmarks.
Costa, G., Jorba, J., Morajko, A., Margalef, T., & Luque, E. (2008). Performance models for dynamic tun-

ing of parallel applications on computational grids. In 2008 IEEE international conference on cluster
computing (pp. 376–385).

Costa, G., Sikora, A., Jorba, J., & Gmate, T.M. (2014). Dynamic tuning of parallel applications in grid
environment. Journal of Grid Computing, 12(2), 371–398.

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D., Shalf, J., & Yelick, K.
(2008). Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. In
Proceedings of the 2008 ACM/IEEE conference on supercomputing, SC ’08 (pp. 4:1–4:12). Piscataway:
IEEE Press.

Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A., Vuduc, R., Whaley, R.C., & Yelick, K. (2005).
Self-adapting linear algebra algorithms and software. Proceedings of the IEEE, 93(2), 293–312.

Frigo, M., & Johnson, S.G. (1998). Fftw: an adaptive software architecture for the fft. In Proceedings of the
1998 IEEE international conference on acoustics, speech and signal processing, 1998 (Vol. 3, pp. 1381–1384).

Frigo, M., & Johnson, S.G. (2005). The design and implementation of fftw3. Proceedings of the IEEE, 93(2),
216–231.

Fursin, G., Kashnikov, Y., Memon, A.W., Chamski, Z., Temam, O., Namolaru, M., Yom-Tov, E., Mendelson,
B., Zaks, A., Courtois, E., Bodin, F., Barnard, P., Ashton, E., Bonilla, E., Thomson, J., Williams, C.K.I.,
& O’Boyle, M. (2011). Milepost gcc Machine learning enabled self-tuning compiler. International
Journal of Parallel Programming, 39(3), 296–327.

Gerndt, M., César, E., & Benkner, S. (eds.) (2015). Automatic tuning of HPC applications - the periscope
tuning framework. Shaker Verlag.

Haneda, M., Knijnenburg, P.M.W., & Wijshoff, H.A.G. (2005). Automatic selection of compiler options
using non-parametric inferential statistics. In 14th International conference on parallel architectures and
compilation techniques, 2005. PACT 2005 (pp. 123–132).

Kukkonen, S., & Lampinen, J. (2005). Gde3: The third evolution step of generalized differential evolution.
In The 2005 IEEE congress on evolutionary computation, 2005 (Vol. 1, pp. 443–450). IEEE.

Leather, H., Bonilla, E., & O’Boyle, M. (2009). Automatic feature generation for machine learning based
optimizing compilation. In Proceedings of the 7th Annual IEEE/ACM international symposium on code
generation and optimization, CGO ’09 (pp. 81–91). Washington: IEEE Computer Society.

Morajko, A., Caymes-Scutari, P., Margalef, T., & Mate, E.Luque. (2007). Monitoring, analysis and tun-
ing environment for parallel/distributed applications. Concurrency and Computation: Practice and
Experience, 19(11), 1517–1531.

Morajko, A., César, E., Caymes-Scutari, P., Margalef, T., Sorribes, J., & Luque, E. (2005). Automatic tuning
of Master/Worker applications. In Proceedings of Euro-Par 2005 parallel processing: 11th international
euro-par conference (pp. 95–103).

Navarette, C., Guillen, C., Hesse, W., & Brehm, M. (2014). Autotuning the energy consumption. In Bader,
M. et al. (Eds.) Parallel computing accelerating computational science and engineering. IOS Press.

https://cesar.mcs.anl.gov/content/software
https://asc.llnl.gov/coral-benchmarks


Software Qual J (2018) 26:1063–1096 1091

Nelson, Y.L., Bansal, B., Hall, M., Nakano, A., & Lerman, K. (2008). Model-guided performance tuning of
parameter values A case study with molecular dynamics visualization. In IEEE international symposium
on parallel and distributed processing, 2008. IPDPS 2008 (pp. 1–8).

Oleynik, Y., Gerndt, M., Schuchart, J., Kjeldsberg, P.G., & Nagel, W.E. (2015). Run-time exploitation of
application dynamism for energy-efficient exascale computing (READEX). In IEEE 18th international
conference on computational science and engineering (CSE), 2015 (pp. 347–350). IEEE.

OpenCL SDK User-guide. https://software.intel.com/sites/default/files/m/e/7/0/3/1/33857-Intel 28R 29
OpenCL SDK User Guide.eps.

Pan, Z., & Eigenmann, R. (2006). Fast and effective orchestration of compiler optimizations for auto-
matic performance tuning. In Proceedings of the international symposium on code generation and
optimization, CGO ’06 (pp. 319–332). Washington: IEEE Computer Society.

Püschel, M., Moura, J.M.F., Singer, B., Xiong, J., Johnson, J., Padua, D., Veloso, M., & Johnson, R.W.
(2004). Spiral: a generator for platform-adapted libraries of signal processing algorithms. International
Journal of High Performance Computing Applications, 18(1), 21–45.

Ravipati, G., Bernat, A.R., Miller, B.P., & Hollingsworth, J.K. (2007). Towards the deconstruction of dyninst.
Technical report. University of Wisconsin.

Ribler, R.L., Simitci, H., & Reed, D.A. (2001). The autopilot performance-directed adaptive control system.
Future Generation Computer Systems, 18(1), 175–187.

Ribler, R.L., Vetter, J.S., Simitci, H., & Reed, D.A. (1998). Autopilot: adaptive control of distributed appli-
cations. In Proceedings of the 7th international symposium on high performance distributed computing,
1998 (pp. 172–179).

Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.-K., & Leiserson, C.E. (2011). The pochoir stencil com-
piler. In Proceedings of the 23rd annual ACM symposium on parallelism in algorithms and architectures,
SPAA ’11 (pp. 117–128). New York: ACM.

Tiwari, A., Chen, C., Chame, J., Hall, M., & Hollingsworth, J.K. (2009). A scalable auto-tuning framework
for compiler optimization. In IEEE International symposium on parallel distributed processing, 2009.
IPDPS 2009 (pp. 1–12).

Tiwari, A., & Hollingsworth, J.K. (2011). Online adaptive code generation and tuning. In 2011 IEEE
international parallel distributed processing symposium (IPDPS) (pp. 879–892).

Ţăpuş, C., Chung, I.-H., & Hollingsworth, J.K. (2002). Active harmony: Towards automated performance
tuning. In Proceedings of the 2002 ACM/IEEE conference on supercomputing, SC ’02 (pp. 1–11). Los
Alamitos: IEEE Computer Society Press.

The LLVM Compiler Infrastructure. http://llvm.org/.
Triantafyllis, S., Vachharajani, M., Vachharajani, N., & August, D.I. (2003). Compiler optimization-space

exploration. In Proceedings of the international symposium on code generation and optimization:
feedback-directed and runtime optimization, CGO ’03 (pp. 204–215). Washington: IEEE Computer Society.

Vuduc, R., Demmel, J.W., & Yelick, K.A. (2005). Oski: A library of automatically tuned sparse matrix
kernels. Journal of Physics: Conference Series, 16(1), 521.

Whaley, R.C., Petitet, A., & Dongarra, J.J. (2001). Automated empirical optimizations of software and the
ATLAS project. Parallel Computing, 27(12), 3–35. New Trends in High Performance Computing.

Williams, S., Waterman, A., & Patterson, D. (2009). Roofline: An insightful visual performance model for
multicore architectures. Communications of the ACM, 52(4), 65–76.

X-TUNE. Autotuning for exascale: self-tuning software to manage heterogeneity. http://ctop.cs.utah.edu/
x-tune/.

Xiujuan, L., & Zhongke, S. (2004). Overview of multi-objective optimization methods. Journal of Systems
Engineering and Electronics, 15(2), 142–146.

https://software.intel.com/sites/default/files/m/e/7/0/3/1/33857-Intel_28R_29_OpenCL_SDK_User_Guide.eps
https://software.intel.com/sites/default/files/m/e/7/0/3/1/33857-Intel_28R_29_OpenCL_SDK_User_Guide.eps
http://llvm.org/
http://ctop.cs.utah.edu/x-tune/
http://ctop.cs.utah.edu/x-tune/


1092 Software Qual J (2018) 26:1063–1096

Michael Gerndt He received his Ph.D. in Computer Science in 1989 from the University of Bonn. He
developed SUPERB the first automatic parallelizer for distributed memory parallel machines. For 2 years, in
1990 and 1991, he held a postdoc position at the University of Vienna and joined Research Centre Juelich in
1992 where he concentrated on programming and implementation issues of shared virtual memory systems.
This research led to his habilitation in 1998 at the Technische Universität München (TUM). Since 2000, he
is a professor for architecture of parallel and distributed systems at TUM. His current research focuses on
programming models and tools for scalable parallel architectures.

Siegfried Benkner He is a professor of Computer Science and the head of the Scientific Computing Research
Group at the University of Vienna, Austria. His research interests include parallel and distributed comput-
ing, service-oriented software architectures, Grid and Cloud computing as well as languages, compilers and
runtime systems for parallel and distributed systems. A major current research focus is on programming and
runtime support for heterogeneous many-core systems.

He coordinated the European PEPPHER Project (Programmability and Performance Portability of Het-
erogeneous Many-Core Systems) and was involved in the European Autotune project (Automatic Online
Tuning). He helped organizing several international conferences and was program chair of ICPP 2009 and
EuroMPI 2012. Siegfried Benkner has published more than 100 peer-reviewed publications and is a member
of the ACM, the IEEE, and the HiPEAC Network of Excellence.



Software Qual J (2018) 26:1063–1096 1093

Eduardo César He received his BS degree in computer science in 1992 from Universidad Simón Bolı́var.
He received his MSc in computer science in 1994, and in 2006 his Ph.D. in computer science, both from
Universitat Autònoma de Barcelona. Since 1998, his research has been related to parallel and distributed
computing. He is currently involved in national projects in Spain and participated in the European project
Autotune. His main interests focus on parallel applications and automatic performance analysis and tuning.
He has been involved in the definition of performance models for automatic and dynamic performance tuning
in cluster environments.

Carmen Navarrete She studied Computer Science and Engineering and received her Ph.D. in Comput-
ing and Telecommunication engineering in 2011 with her dissertation about automatic reconfiguration of
farms of computers in HPC. Currently, she is working at the Leibniz Computer Center (LRZ) of the Bavar-
ian Academy of Science (BAdW) as a researcher in the application support group. Her research topics
include energy mathematical models, energy efficiency of applications in HPC and performance monitoring
of applications.



1094 Software Qual J (2018) 26:1063–1096

Enes Bajrovic He received his B.Sc. and M.Sc. degrees in computer science from the University of Vienna,
Austria. He is currently with the Research Group Scientific Computing at the University of Vienna. His
recent research activities involve programming models and runtime systems for parallel and heterogeneous
computing, as well as automatic performance tuning.

Jiri Dokulil He is a postdoctoral researcher at the University of Vienna, Austria. He received his M.Sc.
and Ph.D. in computer science from the Charles University in Prague, Czech Republic. His research inter-
ests are in practical aspects of parallel and distributed computing, focusing on task-based runtime systems,
programming models, and dynamic adaptation.



Software Qual J (2018) 26:1063–1096 1095

Carla Guillén She is part of the Application Support Group at the Leibniz Supercomputing Centre of the
Bavarian Academy of Sciences. Her focus is on application and system-wide performance of high perfor-
mance computers. Carla received a Doctor rer. Nat. in informatics from the Technische Universität München.
Her areas of interest include energy optimization, performance monitoring, performance analysis and tuning
in the context of high performance computing.

Robert Mijakovic He received the diploma engineer degree (Dipl.-Ing) in Electrical Engineering in 2008
from the University of Osijek, Osijek, Croatia. Robert’s diploma thesis was carried out at the Faculty of
Electrical Engineering, University of Osijek. His thesis was on Parallel Image Processing using FPGA
systems.

In 2011, he joined the Institute for Informatics, Technische Universität München, Munich, Germany, as a
research assistant and a Ph.D. student. His current research focuses on automatic performance analysis and
tuning tools, programming models and machine learning with application to automatic analysis and tuning.



1096 Software Qual J (2018) 26:1063–1096

Anna Sikora She received her BS degree in computer science in 1999 from Technical University of Wroclaw
(Poland). She received her MSc in computer science in 2001 and in 2004 the Ph.D. in computer science,
both from Universitat Autònoma de Barcelona (Spain). Since 1999, her research has been related to parallel
and distributed computing. She is currently involved in national projects in Spain, and participated in the
European project Autotune. Her main interests focus on high performance parallel applications, automatic
performance analysis and dynamic tuning. She has been involved in programming tools for automatic and
dynamic performance tuning in cluster and Grid environments.


	A multi-aspect online tuning framework for HPC applications
	Abstract
	Introduction
	Related work
	Self-tuning libraries
	Automatic compiler optimization tools 
	Autotuners
	Hybrid frameworks

	PTF architecture and infrastructure
	Tuning model
	PTF infrastructure components
	Analysis
	Search algorithms
	Experiments engine
	Monitor


	Tuning plugins
	Compiler flag selection plugin
	Compiler templates and plugin settings
	Significant routines and selective build
	Search refinements
	Application compilation and execution
	Extensions for tuning OpenCL kernels
	Evaluation
	Evaluation of search strategies
	NEKBONE
	RSBENCH
	MOCFE


	MPI parameters plugin
	Parameter templates for MPI flavors
	Model-based search space reduction
	Heuristic search
	Execution of the tuning experiments
	Evaluation

	DVFS plugin
	Specialized tuning objectives
	Region-level tuning
	Model-based search space reduction
	Kernel-level tuning actions
	Evaluation

	OpenCL plugin
	PTF integration and tuning specification
	Search space and tuning strategy
	Evaluation


	Conclusion and future work
	Acknowledgments
	References


