
Software Qual J (2018) 26:585–605
DOI 10.1007/s11219-017-9362-x

Stability prediction of the software requirements
specification

José del Sagrado1 · Isabel M. del Águila1

Published online: 8 April 2017
© Springer Science+Business Media New York 2017

Abstract Complex decision-making is a prominent aspect of Requirements Engineering.
This work presents the Bayesian network Requisites that predicts whether the requirements
specification documents have to be revised. We test Requisites’ suitability by means of met-
rics obtained from a large complex software project. Furthermore, this Bayesian network
has been integrated into a software tool by defining a communication interface inside a
multilayered architecture. In this way, we add a new decision-making functionality that pro-
vides requirements engineers with a feature to explore software requirement specification
by combining requirement metrics and the probability values estimated by the Bayesian
network.

Keywords Requirements engineering · Software requirements specification · CASE
tools · Bayesian network

1 Introduction

Since the appearance of the first intelligent editors 20 years ago, the challenge has been to
support software development using artificial intelligence (AI) techniques. In spite of the
success of some occasional results and certain progress made over these years, the intel-
ligent environment for software development is still very much under construction. This
might be because software engineers are typically focused on prosaic, practical engineering
concerns rather than on building smart algorithms (Harman 2012).

� Isabel M. del Águila
imaguila@ual.es

José del Sagrado
jsagrado@ual.es

1 Department of Informatics, University of Almerı́a, Ctra. Sacramento s/n, 04120, Almerı́a, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9362-x&domain=pdf
http://orcid.org/0000-0001-9896-7196
mailto:imaguila@ual.es
mailto:jsagrado@ual.es


586 Software Qual J (2018) 26:585–605

Expert knowledge is fundamental to every software development project since devel-
opers must make expertise-based decisions throughout all the development stages, from
requirements to maintenance (Meziane and Vadera 2010). Consequently, software engi-
neering (SE) can be considered a knowledge-intensive process and can therefore be framed
within the AI domain (Harman 2012). In fact, the SE community has used many algorithms,
methods, and techniques that have emerged from AI (Shirabad and Menzies 2005; Zhang
et al. 2012). Furthermore, if a portion of expert knowledge could be modeled and then incor-
porated into the SE life-cycle (as well as into the tools that support it), then any development
process would be greatly benefited.

Our work presents a BN model called Requisites (del Sagrado and del Águila 2010),
which allows assessment of the software requirements specification (SRS) and demonstrates
how this BN model has been embedded into a previously constructed software tool. We
also provide some evidence of Requisites validity by testing the suitability of BN using
data measured according to a dataset of a specific software development project. The model
was designed to be used as a predictor to tell us whether the software requirements spec-
ification (SRS) possesses sufficient quality to be considered as a baseline. Once several
measurements are computed or obtained, their values will be introduced as evidence. Then,
belief propagation will be used to determine if the process should stop because the require-
ments specification has sufficient stability. In addition, we present a successful solution that
instantiates an architecture for the seamless integration of a computer-aided requirements
engineering (CARE) tool so one is able to manage requirements with certain AI techniques
(del Sagrado et al. 2011). In particular, we present Bayesian network integration in an aca-
demic CARE tool, InSCo-Requisite (Orellana et al. 2008). This tool has been extended with
a new feature that adapts the requirements metrics to the variables used in the Bayesian
network, allowing the application of this AI technique in the requirements specification stage.

The rest of the paper is structured as follows: after describing the basic requirements
workflow, Section 2 describes the related works dealing with the benefits of using AI in
software development. Section 3 includes a description of the Bayesian network Requisites
and how it has been tested using a real world large-scale dataset. Section 4 is devoted to
defining the process followed to integrate BN Requisites inside the InSCo-Requisite tool;
this is done to define a software project baseline. The section also gives some examples of
its use on a specific software development project. The threats that could affect the validity
of this research are discussed in the Section 5. Finally, Section 6 includes the conclusions.

1.1 Background: requirements workflow

Requirements express the needs and constraints established for a software product that
contribute to the solution of some real world problem (Kotonya and Sommerville 1998).
Requirements development is considered a good domain for applying AI techniques because
requirements are imprecise, incomplete, and ambiguous by nature (Meziane and Vadera
2010; Harman 2012). This area of SE is quite different from others because requirements
belong to problem space whereas other artefacts, which are also managed in a software
project, reside in the solution space (Cheng and Atlee 2007). If requirement-related tasks
are poorly executed, usually the software product obtained becomes unsatisfactory from a
software factory point of view (Sommerville 2011; Standish Group 2008).

Requirements are critical to the success of a software project as they collect the needs
or conditions that have to be met by the product; that is to say, they are the basis for the
rest of the development process, even more so when agile methods are applied. Changes in
requirements are always welcome in these methods. Their highest priority is to satisfy



Software Qual J (2018) 26:585–605 587

the customer through early and continuous delivery of valuable software. Therefore, any
improvements in the requirements development stage will favorably affect the whole
production life-cycle.

Work related to requirements is articulated by the execution of several activities and
has been divided into processes with small variations by various authors (Kotonya and
Sommerville 1998; Abran et al. 2004; Wiegers and Beatty 2013). The simplest set of
activities for creating requirements (Alexander and Beus-Dukic 2009) comprises discov-
ery, documentation, and validation. The discovering-documenting-validating cycle (DDV)
is carried out over several iterations in order to complete the requirements specification and
then it moves toward the next development task. When an agile method is applied, these
activities have to be taken into account at the beginning of each iteration or sprint.

Discovering requirements is the task which determines, through communication with
customers and users, what their requirements actually are. Requirements are elicited (or
gathered) by interviews and other techniques such as stakeholder workshops or inspections.
This is where the problem has to be understood, and which software is then going to solve it.
It is usually a complex task because it requires efficient communication between software
users and software engineers. Requirements have to be conceived without ambiguities so as
to define what the system is expected to do.

Documenting requirements is about capturing software requirements. These require-
ments are captured in a document or its electronic equivalent, known as a software
requirements specification (SRS). Software requirement documents play a crucial role in
SE (Nicolás and Toval 2009). Early approaches developed to perform this activity worked
with word processors but such a method for supporting SRS was error prone and tedious.
CARE tools offered a solution to these problems, providing environments that made use
of databases, allowing effective requirements management of any software project over its
entire life-cycle. These tools also allow the use of modeling languages (e.g., use cases,
UML) or informal languages (storyboards) for describing requirements.

Validating requirements checks if requirements present any inconsistencies, ambigui-
ties, or errors. It is concerned with the process of analyzing requirements to detect or resolve
conflicts, and to properly define the limits of the software system.

2 Related works

Existing works have already demonstrated that there is considerable potential for software
engineers to take advantage of AI. The algorithms, methods, and techniques that emerged
from the AI community then merged with the SE community. They can be arranged into
three main areas: ‘search-based software engineering’(SBSE), ‘classification, learning, and
prediction for software engineering,’ and ‘probabilistic software engineering’ (Harman
2012). SBSE reformulates SE problems as optimization problems; this has proven a widely
applicable and successful approach from the requirements to test stages (Harman et al.
2012). In classification, learning and prediction, some authors propose models for the pre-
diction of risky issues in SE (Menzies and Shepperd 2012), either related to the study of
defects (Kastro and Bener 2008) or the process of predicting the effort required to develop a
software system (Wen et al. 2012). A probabilistic AI technique that is highly applicable in
SE is Bayesian probabilistic reasoning. This models different software topics (Misirli and



588 Software Qual J (2018) 26:585–605

Bener 2014) such as quality management (Tosun et al. 2015) or defect prediction (Mısırlı
et al. 2011). The boundary is blurred between the three main areas so some of these works
can be included in more than one.

When focusing on the requirements stage, Requirements Engineering (RE) is the least
covered by the AI approaches. SBSE focuses on requirements in only 3% of the works,
(Harman et al. 2012; de Freitas and de Souza 2011), and few papers deal with how to apply
Bayesian networks to requirements (del Águila and del Sagrado 2015). AI can provide a new
dimension to the requirements development stage by defining methods and tools that will
assist the engineer in enhancing the execution of the entire software development project.

The discovering requirements task can be assisted by machine learning techniques to
organize stakeholder collaboration. These use clustering techniques to manage discussion
forums on requirements (Castro-Herrera et al. 2009) or automatic clustering of product fea-
tures for a given domain (Dumitru et al. 2011). Requirements are the bricks that build the
different stages in software project development. Consequently, if we have a risky require-
ments process, we will probably have a risky project. In order to mitigate the risks, we
need to identify and assess what the requirements risks are. Bayesian network classifiers
can also assist the process of predicting the risk level of a given requirement (del Águila
and del Sagrado 2011). Resource constraints usually appear in earlier development stages
and prevent the development of all the defined requirements, forcing developers to negoti-
ate requirements. Therefore, a basic action is to select the set of requirements to be included
in the subsequent steps of the development project. This problem, known as the next release
problem (Bagnall et al. 2001), has come to the attention of AI researchers and is considered
an optimization problem (Bagnall et al. 2001; Karlsson and Ryan 1997; Greer and Ruhe
2004; del Sagrado et al. 2015).

Probabilistic approaches have been used less in RE, maybe because RE decision making
is not sufficiently mature, and decision problems in RE are an unclosed set that hinder them
being solved using probabilistic models. Furthermore, there are several major challenges
about how to apply BN to RE, such as how to deal with network validation, or how to
embed the models obtained in computer-aided software engineering tools (del Águila and
del Sagrado 2015). This is the reason why, in this paper, we include not only the probabilistic
model and some evidence of its validity but also the integration of the model in an academic
CARE tool, InSCo-Requisite (Orellana et al. 2008), expanding it with new probabilistic
functionality.

3 A probabilistic requirements engineering solution

Bayesian networks (Jensen 2007; Kjaerulff and Madsen 2007) allow us to graphically and
concisely represent knowledge regarding an uncertain domain. A Bayesian network has:

– a qualitative component, G = (U,A), which is a directed acyclic graph (DAG), where
the set of nodes, U = {V1, V2, · · · , Vn}, represents the system variables, and the set of
directed edges, A, represents the existence of dependences between variables.

– a quantitative component, P , which is a joint probability distribution over U that can
be factorized according to:

P(V1, V2, · · · , Vn) = �n
i=1P(Vi |Pa(Vi)) (1)

where P(Vi |Pa(Vi)) is the conditional probability for each variable Vi in U given its
set of parents Pa(Vi) in the DAG.



Software Qual J (2018) 26:585–605 589

The structure of the associated DAG determines the dependent and independent rela-
tionships among the variables. In addition, the local conditional probability distributions
measure the strength of the direct connections between variables.

A BN can be used as a predictor simply by considering one variable as the class and the
others as features that describe the object that has to be classified. The posterior probability
of the class is computed given the features observed. The value assigned to the class is that
which reaches the highest posterior probability value. A predictor based on a BN model pro-
vides more benefits than traditional predictors for decision support because it can perform
powerful what-if problem analysis.

3.1 Bayesian network Requisites

BNs are very useful in SE, since the representation of causal relationships among variables
is meaningful to software practitioners (Harman 2012; Misirli and Bener 2014). A specific
case of this AI technique in requirements workflow is the Bayesian network Requisites
(del Sagrado and del Águila 2010). This was built through interactions with experts and
using several information sources. Its aim is to provide developers with assistance, in the
form of probabilistic advice, to help them make decisions about the stability of a particular
requirements specification. Requisites provides an estimation of the degree of revision for
a given requirements specification (i.e., SRS). Thus, it helps when identifying whether a
requirements specification is sufficiently stable and needs no further revision (i.e. whether
it is necessary to perform a new DDV cycle or not).

In order to build Requisites, the general BN construction process (Korb and Nicholson
2010) was applied manually, assisted by two software engineers in an interview-evaluation
cycle (for more details, see (del Sagrado and del Águila 2010)). The steps followed were:

1. Structure elicitation. The network topology has to capture the relationships between
variables (i.e., two variables should be connected by an arc if one affects the other).
In general, any independence suggested by a lack of an arc should correspond to real
independence in the knowledge domain. Table 1 shows the variables identified by the
experts and the structure of Requisites (see Fig. 1) reflects the dependencies identified
by experts in order to assess the goodness of the SRS.

2. Parameter elicitation. Once the DAG structure had been set up, experts defined the
strength of the relationships between variables by specifying the conditional probabili-
ties in the network.

3. Validation and testing. This step checks if the model meets the criteria for use (see
Section 3.2).

Once Requisites was built, it could be used to determine whether the requirements speci-
fication should, or should not, be revised. The values of the known variables are considered
as evidence and are taken as the BN inputs in order to carry out the inference process.
Specifically, variable elimination (Jensen 2007), a simple and general exact inference algo-
rithm, is used for inferring the maximum a posteriori state of the unknown variables subset.
As a result of this process, the marginal probability distribution of the variable’s ‘degree of
revision’ is also obtained and, consequently, the value assigned to the ‘degree of revision’
is that which achieves the maximum probability.

It is worth noting some of the relationships between variables. If the ‘degree of com-
mitment’ (i.e., the number of requirements that have to be agreed) increases, then the level
of ‘specificity’ will drop. If stakeholders have little ‘experience’ in RE processes, one is



590 Software Qual J (2018) 26:585–605

Table 1 Variables in Requisites (del Sagrado and del Águila 2010)

Variable Description and value meanings

Stakeholders
expertise

Represents the degree of familiarity that stakeholders have in respect to RE pro-
cesses. (High: stakeholders have already collaborated in several projects using
RE techniques. Medium: stakeholders have collaborated in few projects using
RE techniques. Low: stakeholders are not familiar with RE approaches)

Domain
expertise

Expresses the level of knowledge that the development team has about the
project domain. (High: Developers use the same concepts as stakeholders.
Medium: Developers use similar concepts as stakeholders. Low: Developers do
not share concepts with stakeholders)

Reused
requirement

Checks if there are reused requirements. The reuse is an attempt to reduce the
development cost by enhancing the productivity of the development team. Thus,
if the number of requirements that comes from reusable libraries is high, the
requirements specification does not generally need new iterations. (Many, Few,
None)

Unexpected
dependencies

In some cases, unexpected dependencies or relationships can appear between
requirements or groups of them. This usually involves a new revision of the
requirements specification. (Yes, No)

Specificity Represents the number of requirements that have the same meaning for all stake-
holders. (High: Most of the requirements are similarly interpreted. Medium:
Several requirements present different interpretations. Low: Most of the require-
ments need to be clarified because their interpretation is confused)

Unclear
cost/benefit

Represents stakeholders or developers including requirements that do not have
direct quantifiable benefits for the business, or the organization, in which the
software to be developed will operate. (High: Cost/benefit for most of the
requirements has been rated. Medium: Several requirements have no clear
benefit. Low: Most of the requirements do not have a cost/benefit rate)

Degree of
commitment

Represents the number of requirements that need a negotiation to be accepted.
The requirements for a project are a complex combination of requirements from
different stakeholders, and some of these can generate conflicts that unbalance
the specification. (High, Medium, Low)

Homogeneity of
the description

A good SRS must be described at the same level of detail. If some requirements
have been described in a detailed way, all the requirements should be described
at the same level of detail (Yes, No). If there is not homogeneity, the SRS will
need to be revised.

Requirement
completeness

Indicates if all significant requirements have been elicited and/or specified.
(High, Medium, Low)

Requirement
variability

Represents the number of requirements that were changed. If the specification of
a requirement changes, it is quite possible that this modification will affect the
whole SRS, and an additional revision is likely to be needed. (High, Medium,
Low)

Degree of
revision

Is the value predicted by Requisites and this indicates that a SRS is sufficiently
accurate as to not require further revisions. (Yes, No)

more likely to get ‘unclear’ requirements in terms of cost/benefits. The ‘requirement com-
pleteness’ and the ‘homogeneity of the description’ are influenced by the ‘experience of the
software engineers’ in the project domain and by the ‘stakeholders’ expertise’ in the RE pro-
cesses or tasks. If experience is high, the specification will be ‘complete and homogeneous’
because developers have been able to describe the requirements with the same level of detail
and all requirements have been discovered. Finally, ‘requirement variability’ represents the
number of requirements that have been changed. A change will likely occur if ‘unexpected



Software Qual J (2018) 26:585–605 591

Fig. 1 Bayesian network Requisites

dependencies’ are discovered or if there are requirements that do not add any value to the
software; or if there are missing requirements; or if requirements have to be negotiated.

There are free software packages available to build and use Bayesian networks. In our
work, we used Elvira (Elvira Consortium 2002), a package that allows the implementation
of a BN model using Java classes to support the model itself and the inference processes.
That is to say, through Elvira’s application programming interface (API), we gain access to
model specification facilities and to the variable elimination inference algorithm. However,
from a practical point of view, the integration of a built network within a specific software
application is not trivial, because it is necessary to define the communication paths between
both components by matching variables and results.

3.2 Testing Requisites validity

Requisites makes a prediction indicating whether a requirements specification can be con-
sidered as the next baseline or whether it needs further revision. The inference process uses
the evidence established by the metrics, worked out from the current SRS version, which is
usually stored in the CARE tool database; this calculates the marginal probability distribu-
tion of the ‘degree of revision’ variable. The aim of this subsection is to test the suitability
of the BN model for doing the job it is designed for and also to understand how the network
can be used in a real project to perform inference processes.

A real-world large-scale dataset was adopted to evaluate the Requisites approach.
RALIC is the acronym for replacement access, library and ID cards. This was a large-
scale software project to replace the existing access control system at University College,
London and to consolidate the new system with library access and borrowing (Lim and
Finkelstein 2012). The RALIC objectives include replacing existing access card readers,
printing reliable access cards, managing cardholders’ information, providing access con-
trol, and automating the provision and suspension of access and library borrowing rights.
The stakeholders involved in the project had different and sometimes conflicting requirements.
The project duration was two and a half years, and the system has already been deployed at



592 Software Qual J (2018) 26:585–605

University College, London. By measuring this dataset, we obtain the evidence values and
the metrics are inserted into the BN to analyze inference through the probabilistic model.

RALIC requirements were organized into three hierarchical levels: project objectives,
features, and specific requirements. A feature that contributed toward a project objective
was placed under the project objective, and a specific requirement that contributed toward
the feature was placed under features. This requirements organization indicates the level of
detail at which requirements are described, i.e., the ‘homogeneity of the description.’ The
level reached by project objectives can be studied in order to set the homogeneity of the
description value.

We study the proportion of the requirements linked to a project objective that have been
described in terms of specific requirements. Figure 2 shows the percentage of detail distri-
bution applied to describe project objectives in a box plot. 75% of project objectives were
described in terms of specific requirements in a percentage above 50.96. This indicates that
the branches in the hierarchical structure of the project have a similar depth, which trans-
lates as a homogeneous description. Thus, the ‘homogeneity of the description’ value is set
to ‘yes’ in Requisites.

Stakeholders are asked to rate requirements rather than rank them all, because previous
work has shown that large projects can have hundreds of requirements, and stakeholders
experienced difficulty providing a rank order of requirements when so many existed (Lim
and Finkelstein 2012). Each stakeholder assigns ratings to the identified requirements. A
rating is a number on an ordinal scale (0 − 5, see Fig. 3), reflecting the importance of
the requirement to the stakeholder (e.g., 0 means that the requirement is not considered
important to the stakeholder; 1 means that the requirement is not very important to the
stakeholder; and 5 means that the requirement is very important).

‘Specificity’ deals with the meaning of the requirements for the stakeholders. Thus, the
higher the number of stakeholders who agree, the lower the degree of revision needed. In
order to measure the specificity value, a consensus measure has been used, which is the
average of the ratings assigned to a given project objective; that is to say, the higher the aver-
age rating of a project objective, the higher the specificity. Figure 4.a shows the distribution
of the average rating of each project objective, while Fig. 4.b shows the distribution of the
specificity of each project objective. The specificity value for each project objective has
been computed directly from its average rating by adapting the range from {0, 1, 2, 3, 4, 5}
to {1(low), 2(medium), 3(high)}. As a result of this process, the specificity value is set
to ‘high’ in Requisites because 90% of the project objectives map to a ‘high’ specificity
value.

Fig. 2 Percentage of detail distribution applied to describe project objectives



Software Qual J (2018) 26:585–605 593

Fig. 3 Ratings assigned by stakeholders to project objectives

The stakeholders’ priority data for RALIC was also collected (Lim and Finkelstein
2012). The stakeholders were asked to recommend people whom they think should be stake-
holders in the project. Their recommendations were then used to build a social network,
where the stakeholders were nodes and their recommendations were links. The output was
a prioritized list of stakeholders and their requirements preferences.

Fig. 4 Distribution of the project objectives rating and the specificity



594 Software Qual J (2018) 26:585–605

Stakeholders were requested, through the OpenR questionnaire, to make recommenda-
tions on the salience (i.e., level of influence on the system) of other stakeholders. The
salience of a stakeholder is assigned as an ordinal variable whose domain is the set
{1, 2, 3, 4, 5, 6, 7, 8}. Salience and expertise have a straight relationship as the influence on
a system that each stakeholder has. Thus, it can be considered a measure of the level of
expertise. In order to get an overall estimation of the stakeholders’ expertise, the recom-
mendations received by each stakeholder are first summarized as the average (Fig. 5a shows
the stakeholders’ salience distribution computed in this way). Then, the expertise of each
stakeholder is obtained mapping her/his salience to the set {1(low), 2(medium), 3(high).}.
Figure 5b shows the stakeholders’ expertise distribution computed thus. One can observe
that 92% of stakeholders receive a ‘low’ expertise recommendation, thus the value of
stakeholders’ expertise is set to ‘low’ in Requisites.

Subsequently, we need to study the behavior of the BN when the data extracted from the
RALIC dataset are incorporated into the model (see the gray highlighted nodes shown in
Fig. 6). The a priori probabilities are shown in Fig. 1. If the value of the variable ‘homogene-
ity of the description’ is set to ‘yes,’ the probability of the value ‘no’ to the degree of revision
will rise to 0.54; that is, the more homogeneous the overall description of the requirements,
the less revision is needed. This trend is reinforced when the evidence value for ‘specificity’
was included, the ‘degree of revision’ becomes 0.45, 0.55 for ‘yes’ and ‘no,’ respectively.
Nevertheless, because the ‘expertise for stakeholders’ had a ‘low’ value, the final prediction
shown in Fig. 6 is to review the SRS. The final values become 0.52 for ‘yes’ and 0.48 for ‘no.’

4 Integrating Requisites into a CARE tool

One of the biggest breakthroughs in requirements management workflow was produced
when we stopped focusing on documents and started focusing on information. Therefore,
developers had to resort to databases to handle this information; specifically to documen-
tary databases that have evolved as part of the current CARE tools. Nowadays, there are
many CARE tools available (de Gea et al. 2012). Among these, the most well known are
IRqA (Visure Solutions 2012), Telelogic DOORS (IBM 2012) and Borland Caliber (Bor-
land Software Corporation 2016). InSCo-Requisite is an academic web CARE tool that was
developed by the DKSE (Data Knowledge and Software Engineering) group at the Univer-
sity of Almerı́a. It partially supports the requirements development stage (Orellana et al.
2008) and also provides a basic functionality where groups of stakeholders collaboratively

Fig. 5 Distribution of stakeholders’ salience and expertise



Software Qual J (2018) 26:585–605 595

Fig. 6 Requisites state after including the evidence (gray highlighted nodes) obtained from RALIC

work via the Internet to define the SRS. Because of the ease in making changes to this tool,
we have an exceptional opportunity to try to integrate AI techniques into this CARE tool.
Furthermore, this solution successfully instantiates an architecture for the seamless integra-
tion of a CARE tool with certain AI techniques (del Sagrado et al. 2011); it also offers a
solution to the problem of embedding the BN into CARE tools (del Águila and del Sagrado
2015).

4.1 InSCo-Requisite

Commercial CARE tools offer powerful solutions for capturing the requirements of a soft-
ware development project and also include methods for analyzing the requirements, or to
monitor the changes on each requirement. The purpose of InSCo-Requisite is not to com-
pete against these commercial tools. It has been developed within an academic setting to
deal with the problem of software project management, which includes components that are
based, or not based, on knowledge (del Águila et al. 2010; Cañadas et al. 2009). Its main
goal is to offer an intuitive and easy-to-use tool that manages requirements in a distributed
environment.

Requirements are more than a list of ‘the system shalls.’ In a broad sense, require-
ments are a network of interrelated elements or artefacts. These artefacts (e.g., objectives,
constraints or priorities) must be modified and managed during the discovering require-
ments task. Our tool guides requirements management by using templates, which can be
classified into two groups—functional requirements: objectives, which specify business-
related information and user requirements, which are related to customer needs. At the
lowest level of refinement, templates are fulfilled using natural language and scenarios.
Non-functional requirements have their own template to collect the quality attributes and
the constraints. Figure 7 shows the InSCo-Requisite artefact model. Users can be assigned
to various projects, which are organized into folders that permit a hierarchical structuring
of the requirements. A user can participate in a project by proposing new requirements,
changes in requirements or comments on them.



596 Software Qual J (2018) 26:585–605

The tool can represent relationships between requirements, as those defined between
objectives and users’ requirements. It maintains a hierarchical structure of templates, which
offers a global perspective of the project content and displays parent/child relationships in
an explorer window.

InSCo-Requisite offers some facilities for informal collaboration through rich contex-
tual discussions about requirements. Users can start discussions about any of the existing
requirements in order to propose changes, improvements, or discuss the template contents.
The tool provides access to a change log for each requirement, stakeholder or project. There
are unlimited events, changes, or stakeholder comments associated to any requirement.

Java EE (Java Enterprise Edition) is the platform chosen for developing and deploying
InSCo-Requisite. It has a multi-layered architecture based on Struts, an open-source multi-
platform framework created by the Apache Software Foundation. The architecture adopted
in the current version of the tool separates presentation logic from business logic and per-
sistent storage. The interface layer represents the client side; that is to say, web browsers
that send requests to the application server at the service layer, using the hypertext trans-
fer protocol (HTTP). This layer is also in charge of representing the data received from the
service layer, basically under the form of HyperText Markup Language (HTML), cascading
style sheet (CSS), and Javascript code. The service layer is composed by an Apache Tom-
cat server that gives support to the Java EE Platform for the InSCo-Requisite application.
The server processes the incoming requests, executes the appropriated Java servlets, and
exchanges data with the data layer by means of a Java database connection (JDBC). Finally,
the data layer is in charge of maintaining data persistence; this is composed by an Oracle
database server.

Fig. 7 Conceptual model of InSCo-Requisite



Software Qual J (2018) 26:585–605 597

4.2 Connection between Requisites and InSCo-Requisite

It would be of considerable help to any development team to have AI techniques available
inside a CARE tool (del Sagrado et al. 2012). Since the requirements management task is
performed by means of a CARE tool (e.g., InSCo-Requisite), this tool should provide the
information required by the BN Requisite (evidence) in order to obtain the value for the
variable (e.g., degree of revision) that the development team wants to predict.

However, AI techniques and CARE tools must evolve independently of each other.
Therefore, it is necessary to define a communication interface between them, preserving
the independence of both areas and achieving a synergetic profit (del Sagrado et al. 2011).
The CARE tool is in charge of all the information management related to the development
project (requirements, customers, etc.) which is stored in a database. Next, the communica-
tion interface connects the CARE tool and the Bayesian network, interchanging the required
information needed to execute the appropriated processes and adapt the languages used by
each tool (see Fig. 8). Thus, the validating requirements task receives metrics from the SRS
and returns a degree of revision estimation for the SRS; that is say, the knowledge-based
tool helps the requirements validation task based on the DDV cycle.

The BN Requisites makes a prediction for the degree of SRS revision. The evidence (i.e.,
the observed variables) is provided by the InSCo-Requisite CARE tool, which is in charge
of obtaining the variable values from: the data regarding projects, the requirements, the
users’ activity, and so on. Table 2 shows the data gathered by InSCo-Requisite to obtain this
evidence. Once these data have been collected, the evidence is computed in the following
way:

– Stakeholders’ expertise. Firstly, for each stakeholder in the current project, the propor-
tion of projects in which she/he was previously involved is computed (i.e., the value
obtained when we divide the number of previous projects in which the stakeholder was
involved by the total number of previous projects managed in InSCo-Requisite). More-
over, we analyze how the stakeholder behaves within the current project as a way of
giving weight to the previous proportion; that is to say, the number of requirements

Fig. 8 Generic Architecture



598 Software Qual J (2018) 26:585–605

Table 2 Connections between measures in InSCo-Requisite and Requisites

Requisite variables Measures in InSCo-Requisite

Stakeholders’ For every stakeholder in the project counts: High

expertise • Projects to which stakeholders have been assigned Medium

• Requirements with stakeholders’ participation Low

Domain expertise Manual assignment. High
Medium
Low

Reused requirement InSCo-Requisite does not support it Many
Few
None

Unexpected
dependencies

InSCo-Requisite does not support it Yes, No

Specificity Number of ACCEPTED requirements in which: High,

Several stakeholders have participated Medium
Low

Unclear cost/benefit Number of requirements whose: High

Status has changed (ACCEPTED-REJECTED) Medium

Comments have been sent by several stakeholders Low

Degree of Number of requirements in which: High

commitment • Several stakeholders have sent comments Medium

• Several stakeholders have performed changes Low

Homogeneity of the
description

All the branches in the hierarchical structure
of the project have a similar depth

Yes, No

Requirement
completeness

Level of fulfilment of template fields of all
the requirements

High,
Medium
Low

Requirement
variability

Number of changes registered on requirements High
Medium
Low

where each stakeholder is involved is computed (i.e., we divide the number of require-
ments in which the stakeholder was involved by the total number of requirements in
the current project). Finally, as a measure of the stakeholder’s expertise, we give the
average of these values. If the weighted mean is below 1/3, the stakeholder’s expertise
is set to ‘Low.’ If the weighted mean is below 2/3, the stakeholder’s expertise is set
to ‘Medium.’ Otherwise, the stakeholder’s expertise is set to ‘High.’ Then, the global
value of the variable Stakeholders’ expertise is computed as the weighted mean of the
individual stakeholder’s expertise values, using as weights their assigned importance
inside the project that is under study.

– Specificity. Within a InSCo-Requisite project, this is measured as the proportion of
accepted requirements in which several stakeholders were involved (i.e., the number
of accepted requirements in which several stakeholders were involved divided by the
number of accepted requirements). Once again (as in the stakeholders’ expertise situ-
ation), the values ‘Low,’ ‘Medium,’ and ‘High’ are used to set the value of specificity,
taking 1/3 and 2/3 as thresholds, respectively.



Software Qual J (2018) 26:585–605 599

– Unclear cost/benefit. In InSCo-Requisite, this variable is measured as the proportion
of requirements that have been commented on and that have also changed status from
accepted to rejected over the total number of requirements inside a project. Once more,
the values of the variable are set to ‘Low,’ ‘Medium,’ or ‘High’ using 1/3 and 2/3 as
thresholds, respectively.

– Degree of commitment. InSCo-Requisite measures the degree of commitment as the
proportion of requirements that have been commented on or modified over the total
number of requirements in a project, when these changes were made by different stake-
holders. The values ‘Low,’ ‘Medium,’ and ‘High’ are assigned to the variable using 1/3
and 2/3 as thresholds, respectively.

– Homogeneity of the description. In InSCo-Requisite, a description is considered homo-
geneous if the standard deviation of the depth of the branches in the hierarchical
structure is less than or equal to 1.

– Requirement completeness. This is measured as the average level of fulfilment of the
template fields of all requirements in the project. Here, the template’s level of fulfill-
ment for a requirement is defined as the number of fields that are filled in the template
divided by the total number of template fields. The values of requirement completeness
are set to ‘Low,’ ‘Medium,’ and ‘High’ using 1/3 and 2/3 as thresholds, respectively.

– Requirement variability. InSCo-Requisite measures this as the proportion of require-
ments that have been modified over the total number of requirements in the project.
Thus, a proportion less than 1/3 corresponds to a ‘Low’ requirement variability. If
the proportion is less than 2/3, then the requirement variability is set to ‘Medium.’
Otherwise, the requirement variability is set to ‘High.’

Note that some variables cannot be obtained from the InSCo-Requisite tool, and must be
estimated by users, such as ‘domain expertise’ or ‘reused requirement.’ But our architecture
allows these metrics to be included in Requisites when InSCo-Requisite would be able to
measure them (see Table 2).

4.3 A use case

Requirements engineers execute the DDV cycle several times until they get a complete
requirements specification. The complete process is shown in Fig. 9, and the enhancement,
obtained by the integration of Requisites in InSCo-Requisite, is specifically concerned with
the task of validating requirements. The BN can be employed using two approaches or
modes: analytic or exploratory. The analytic mode (see Fig. 10) is used when the user wants
to obtain the posterior probability distribution of any target variable, given some evidence
(i.e., an assignment of the values for some of the other variables). In exploratory mode (see
Fig. 11), the user can choose a target variable and the system returns the variables list thus
isolating it from the rest of the variables in the network (i.e., the set of nodes composed by
the variable’s parents, its children, and the other parents of its children) together with the
measurements (see Table 2) obtained by InSCo-Requisite. From this, the posterior proba-
bility of the target variable is obtained, given the fixed evidence for the relevant variables.
Both modes compute the posterior probability distribution of the ‘degree of revision’ which
indicates if the current SRS needs further revision.

The analytic mode is suitable for situations where the requirements engineer wants to
check whether the current SRS can be considered as a baseline for a software project. In
this mode, the list of variables in Requisites is displayed and InSCo-Requisite can extract
and get the variable values by applying the process to obtain evidence (see Section 4.2 and



600 Software Qual J (2018) 26:585–605

Fig. 9 A processes model for requirements engineering

Table 2). The engineer can consider these values as evidence and can also set them manually
in the column Evidence (see Fig. 10). The posterior probability of any target variable, given
the assignment of evidence, can be obtained by clicking on Propagate to the network button.
In the case depicted in Fig. 10, the probability value of 0.775, associated to the ‘degree of
revision’ variable, indicates that the current SRS has to be reviewed; and the value 0.609
given to the ‘domain expertise’ variable tells the engineer of low the knowledge level that
the development team possesses about the project domain.

The exploratory mode is indicated when requirements engineers are interested in guess-
ing which topics can be enhanced to improve the SRS. Consider a situation where the
engineer wants to investigate ‘requirements completeness.’ In this mode, the engineer
chooses this variable as the target. Automatically, the list of variables that shield it from
the influence of the rest of the variables in the network is displayed in the column Relevant
variables (see Fig. 11). The evidence values for each of these can be selected by means of a
drop-down list of values. Finally, the a posteriori ‘degree of revision’ probability, the target
variable and all the variables in the column Relevant variables that have not received evi-
dence are obtained by clicking on the Propagate to the network option. For the case depicted
in Fig. 11, the probability value of 0.661, associated to the ‘degree of revision’ variable,
indicates that the current SRS has not to be reviewed; the value 0.458 for the ‘requirement
completeness’ variable tells the engineer that a large number of the significant requirements
have been elicited and shows that the ‘domain of expertise’ is high (reaching a probability
value of 0.583).

These two modes complement each other. The analytic mode allows one to find out the
aspects of the project which the developer should focus on to improve the requirements
specification and to afford the next phases of software development a greater chance of success.



Software Qual J (2018) 26:585–605 601

Fig. 10 Analytic mode of InSCo-Requisite

Consequently, after setting the ‘degree of revision,’ the developer can compare the values of
the variables obtained by BN propagation, with the values obtained by direct measurement
in the CARE tool. Based on this comparison, the developer will take corrective actions.
Moreover, the exploratory mode allows the engineer to focus on a single variable. In this
way, the improvements to be made in project management can be focused on actions that
directly affect the set of measurements that influence this variable in order to keep it at a

Fig. 11 Exploratory mode of InSCo-Requisite



602 Software Qual J (2018) 26:585–605

specific quality level. At the end of a DDV cycle, engineers can use the analytic mode to
assess whether the SRS is sufficiently accurate to not need further revision. If a Requisites
suggests the need for revision, the team should apply the exploratory mode to guess which
SRS concerns (represented by the variables in the BN) might be candidates for enhancement
in order to improve SRS stability. This enhancement usually involves carrying out another
DDV cycle (see Fig. 9).

5 Threats to validity

This section discusses the threats that could affect the validity of our study in order to
provide a complete understanding of limitations and extent that the work has. Construct
validity concerns the relation between the theory and the observations. Internal validity
concerns possible bias with the results obtained by the proposal. External validity is related
to the generalization of observed results outside the sample instances used.

The most important threat to construct validity to be discussed is derived from the fact
that the BN model presented in this work has been built following a completely manual
process, not based on any empirical data, based on experts’ knowledge. In other words, the
process does not ensure neither all relevant variables are included in the model nor all the
included variables are relevant for the assessment of the SRS, beyond the knowledge of
the experts involved. That is why the Section 3.2 deals with giving some evidence of Req-
uisites validity by testing the suitability of the model using data measured according to a
dataset that is totally independent of this research work.

Threats to internal validity concern mapping processes between model variables and
metrics gathered from projects. These mapping processes were managed in Section 3.2 and
when the connection betweenRequisites and InSCo-Requisite was defined in Section 4.2. In the
first case, to prevent any bias when the data extracted from the RALIC dataset that will be
incorporated into the BN model, a detailed study of the statistical distribution of raw data has
been applied. For instance, in order to measure the specificity value, a consensus measure
has been used. The value has been computed directly from its average rating, getting a ‘high’
value because 90% of the project objectives map to a ‘high’ specificity value (see Fig. 4).

The second threat in the mapping process takes place when an adaptation of the require-
ments metrics from InSCo-Requisite to the variables used in the Requisites is needed. The
BN model receives the evidences that the CARE-tool obtains by measuring the SRS and
from usage data. Then, after making an exact inference process (i.e., variable elimination)
based on the evidence gathered, it is computed an estimation of the degree of revision for the
SRS. The communication interface has been defined based on specific methods and algo-
rithms that manage the numerical representation of each element of the conceptual model
in InSCo-Requisite. The assumption made in the communication interface is that variables
are random and follow an uniform distribution, due to the manual nature of the model and
the lack of data.

Threats to external validity are those related to the generalization of the results. In order
to test the suitability of the BN model for doing the job it is designed for, only one dataset
has been used because it is extremely difficult to obtain reliable data with which we could
generalize our work. This is the reason why Requisite must be embedded in a CARE tool, in
our case by extending InSCo-Requisite. The easy availability of the BN model will promote
the widespread use of it that will also facilitate the task for checking whether the results are
general enough.



Software Qual J (2018) 26:585–605 603

6 Conclusions

Complex decision-making is a prominent aspect of Requirements Engineering since it is
mainly a human activity with the least technical load of the entire software project. In this
work, we have defined how to enhance requirements specification development through the
integration of a Bayesian network in a requirements management tool. The approach we
have taken does not consist of solving a particular problem. Instead, we have instantiated
an architecture that can be adapted to other reasoning models and other software tools. This
has been achieved by establishing a communication interface, between the academic CARE
tool, InSCo-Requisite, and the Bayesian network Requisites within a multilayered architec-
ture. Furthermore, we have provided evidence of the validity of Requisites, not only by its
integration within InSCo-Requisite but also by using the evidence extracted from a large-
scale project, RALIC. The metrics calculated using this project data allow us to successfully
predict the need for SRS revision. The integration between Requisites and InSCo-Requisite
provides the decision-maker with a way of exploring the state of the requirements work
carried out using both analytic and exploratory modes to improve the overall results of this stage.

In the near future, we plan to carry out an empirical evaluation of the enhanced InSCo-
Requisite tool. We also want to refine the Bayesian Network Requisites using the data
recorded by this tool, and to perform a study of its applicability to a subset of requirements
instead of to the whole SRS; this will involve a change in the way the requirements metrics
are computed. In this setting, the exploration of alternative mappings in the communication
interface also deserves special attention.

Acknowledgements This research has been financed by the Spanish Ministry of Economy and Competi-
tiveness under projects TIN2013-46638-C3-1-P, TIN2015-71841-REDT and partially supported by the Data,
Knowledge and Software Engineering (DKSE) research group (TIC-181) of the University of Almerı́a.

References

Abran, A., Moore, J., Bourque, P., Dupuis, R., & Tripp, L. (2004). Guide to the Software Engineering Body
of Knowledge. Los Alamitos: IEEE Computer Society.

del Águila, I.M., & del Sagrado, J. (2011). Requirement risk level forecast using Bayesian networks
classifiers. International Journal of Software Engineering and Knowledge Engineering, 21(2), 167–190.

del Águila, I.M., & del Sagrado, J. (2015). Bayesian networks for enhancement of requirements engineering,
a literature review. Requirements Engineering, 1–20.

del Águila, I.M., del Sagrado, J., Túnez, S., & Orellana, F.J. (2010). Seamless software development for
systems based on Bayesian networks - an agricultural pest control system example. In 5th International
Conference on Software and Data Technologies, (ICSOFT), (Vol. 2 pp. 456–461). Athens.

Alexander, I., & Beus-Dukic, L. (2009). How to specify products and services. Discovering requirements.
New York: Wiley.

Bagnall, A.J., Rayward-Smith, V.J., & Whittley, I. (2001). The next release problem. Information & Software
Technology, 43(14), 883–890.

Borland Software Corporation (2016). Caliber. Manage Agile requirements through visualization and col-
laboration. http://www.borland.com/en-GB/Products/Requirements-Management/Caliber/. Accessed 1
Mars 2016.

Cañadas, J., Orellana, F.J., del Águila, I., Palma, J., & Túnez, S. (2009). A tool suite for hybrid intelligence
information systems. In Proceedings of Conferencia de la Asociación Española para la Inteligencia
Artificial (CAEPIA’09) (pp. 9–13). Sevilla.

Castro-Herrera, C., Cleland-Huang, J., & Mobasher, B. (2009). Enhancing stakeholder profiles to improve
recommendations in online requirements elicitation. atlanta, georgia, usa. In 17th IEEE International
Requirements Engineering Conference, (RE ’09) (pp. 37–46). Atlanta.

http://www.borland.com/en-GB/Products/Requirements-Management/Caliber/


604 Software Qual J (2018) 26:585–605

Cheng, B.H.C., & Atlee, J.M. (2007). Research directions in requirements engineering. In Future of Software
engineering, (FOSE) (pp. 285–303). Minneapolis.

Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J., Mobasher, B., Castro-Herrera, C., & Mirakhorli, M.
(2011). On-demand feature recommendations derived from mining public product descriptions. In 33rd
International Conference on Software Engineering (ICSE) (pp. 181–190). Waikiki, Honolulu.

Elvira Consortium (2002). Elvira, An environment for probabilistic graphical models. In 1st International
Workshop on Probabilistic Graphical Models (PGM02) (pp. 222–230). Cuenca.

de Freitas, F.G., & de Souza, J.T. (2011). Ten years of search based software engineering, A bibliometric
analysis. Search Based Software Engineering Lecture Notes in Computer Science, 6956, 18–32.

de Gea, J.M.C., Nicolás, J., Alemán, J.L.F., Toval, A., Ebert, C., & Vizcaı́no, A. (2012). Requirements
engineering tools, Capabilities, survey and assessment. Information and Software Technology, 54(10),
1142–1157.

Greer, D., & Ruhe, G. (2004). Software release planning, an evolutionary and iterative approach. Information
& Software Technology, 46(4), 243–253.

Harman, M. (2012). The role of artificial intelligence in software engineering. In Proceedings of the 1st
International Workshop on Realizing AI Synergies in Software Engineering (pp. 1–6): IEEE.

Harman, M., Mansouri, S.A., & Zhang, Y. (2012). Search-based software engineering: Trends, techniques
and applications. ACM Computing Surveys (CSUR), 45(1), 11.

IBM (2012). Rational DOORS. http://www-03.ibm.com/software/products/es/ratidoor. Accessed 1 mars
2016.

Jensen, F.V. (2007). Information Science and Statistics. Bayesian Networks and Decision Graphs: Springer.
corrected edition.

Karlsson, J., & Ryan, K. (1997). A cost-value approach for prioritizing requirements. IEEE Software, 14(5),
67–74.

Kastro, Y., & Bener, A.B. (2008). A defect prediction method for software versioning. Software Quality
Journal, 16(4), 543–562.

Kjaerulff, U.B., & Madsen, A.L. (2007). Bayesian Networks and Influence Diagrams: A Guide to Construc-
tion and Analysis, 1st edn: Springer.

Korb, K.B., & Nicholson, A.E. (2010). Bayesian Artificial Intelligence: CRC Press.
Kotonya, G., & Sommerville, I. (1998). Requirements engineering: Processes and techniques. New York:

Wiley.
Lim, S.L., & Finkelstein, A. (2012). Stakerare: using social networks and collaborative filtering for large-

scale requirements elicitation. IEEE Transactions on Software Engineering, 38(3), 707–735.
Menzies, T., & Shepperd, M. (2012). Special issue on repeatable results in software engineering prediction.

Empirical Software Engineering, 17(1), 1–17.
Meziane, F., & Vadera, S. (2010). Artificial intelligence applications for improved software engineering

development: New prospects. New York: IGI Global.
Misirli, A.T., & Bener, A.B. (2014). Bayesian networks for evidence-based decision-making in software

engineering. IEEE Transactions on Software Engineering, 40(6), 533–554.
Mısırlı, A.T., Bener, A.B., & Turhan, B. (2011). An industrial case study of classifier ensembles for locating

software defects. Software Quality Journal, 19(3), 515–536.
Nicolás, J., & Toval, A. (2009). On the generation of requirements specifications from software engineering

models: A systematic literature review. Information and Software Technology, 51(9), 1291–1307.
Orellana, F.J., Cañadas, J., del Águila, I.M., & Túnez, S. (2008). InSCo requisite - a web-based RM-tool

to support hybrid software development. In 10th International Conference on Enterprise Information
Systems (ICEIS) (3-1) (pp. 326–329). Barcelona.

del Sagrado, J., & del Águila, I.M. (2010). Artificial intelligence applications for improved software engi-
neering development, new prospects. In Meziane, F., & Vadera, S. (Eds.) A Bayesian network for
predicting the need for a requirements review, (pp. 106–128). New York: IGI Global.

del Sagrado, J., del Águila, I.M., & Orellana, F.J. (2011). Architecture for the use of synergies between
knowledge engineering and requirements engineering. Lecture Notes in Computer Science, 7023, 213–
222.

del Sagrado, J., del Águila, I.M., & Orellana, F.J. (2012). Metaheuristic aided software features assembly. In
20th European Conference on Artificial Intelligence (ECAI 2012), Including Prestigious Applications of
Artificial Intelligence (PAIS-2012) System Demonstrations Track (pp. 1009–1010). Montpellier.

del Sagrado, J., del Águila, I.M., & Orellana, F.J. (2015). Multi-objective ant colony optimization for
requirements selection. Empirical Software Engineering, 20(3), 577–610.

Shirabad, J.S., & Menzies, T. (2005). Predictor models in software engineering (promise). In 27th interna-
tional conference on Software engineering, (ICSE ’05) (pp. 692–692). New York: ACM.

http://www-03.ibm.com/software /products/es/ratidoor


Software Qual J (2018) 26:585–605 605

Sommerville, I. (2011). Software engineering, 9 edn. Boston: Pearson Education.
Standish Group (2008). Chaos report. (2002).
Tosun, A., Bener, A., & Akbarinasaji, S. (2015). A systematic literature review on the applications of

bayesian networks to predict software quality. Software Quality Journal, 1–33. cited By 0; Article in
Press.

Visure Solutions (2012). Visure Requirements. Software for Requirements Engineering. http://www.
visuresolutions.com/visure-requirements-software. Accessed 1 mars 2016.

Wen, J., Li, S., Lin, Z., Hu, Y., & Huang, C. (2012). Systematic literature review of machine learning based
software development effort estimation models. Information and Software Technology, 54(1), 41–59.

Wiegers, K., & Beatty, J. (2013). Software requirements: Pearson Education.
Zhang, Y., Harman, M., & Mansouri, A. (2012). The SBSE repository: A repository and analysis of authors

and research articles on search based software engineering. crestweb. cs. ucl. ac. uk/resources/sbse
repository.

José del Sagrado is currently a Professor of Computer Science in the Department of Informatics at the
University of Almerı́a. He obtained his PhD in Computer Science from the University of Granada in 2000. He
is a member of the Spanish Association for Artificial Intelligence (AEPIA). His current research interests are
mainly focused on probabilistic graphical models, specially combination of models, and probabilistic decision
graphs, and also include the application of metaheuristic optimization in software engineering problems.

Isabel M. del Águila is currently a Professor of Computer Science at Almerı́a University. She received her
Ph.D. degree in Computer Science from the University of Almerı́a in 2010. She is specialized in Software
Engineering, UML, information systems, and search based Software Engineering. Her research interests
include Software engineering and Knowledge engineering methods, particularly the unification of these
engineering approaches.

http://www.visuresolutions.com/visure-requirements-software
http://www.visuresolutions.com/visure-requirements-software

	Stability prediction of the software requirements specification
	Abstract
	Introduction
	Background: requirements workflow
	Discovering requirements
	Documenting requirements
	Validating requirements



	Related works
	A probabilistic requirements engineering solution
	Bayesian network Requisites*.5pt
	Testing Requisites validity

	Integrating Requisites into a CARE tool
	InSCo-Requisite
	Connection between Requisites and InSCo-Requisite*1pt
	A use case

	Threats to validity
	Conclusions
	Acknowledgements
	References


