
Software Qual J (2018) 26:553–584
DOI 10.1007/s11219-017-9361-y

An empirical study of crash-inducing commits in Mozilla
Firefox

Le An1 ·Foutse Khomh1 ·Yann-Gaël Guéhéneuc2

Published online: 9 March 2017
© Springer Science+Business Media New York 2017

Abstract Software crashes are dreaded by both software organisations and end-users. Many
software organisations have automatic crash reporting tools embedded in their software sys-
tems to help quality-assurance teams track and fix crash-related bugs. Previous approaches,
which focused on the triaging of crash-types and crash-related bugs, can help software
organisations increase their debugging efficiency of crashes. However, these approaches can
only be applied after the software systems have been crashing for a certain period of time. To
help software organisations detect and fix crash-prone code earlier, we examine the charac-
teristics of commits that lead to crashes, which we call crash-inducing commits, in Mozilla
Firefox. We observe that crash-inducing commits are often submitted by developers with
less experience and that developers perform more addition and deletion of lines of code in
crash-inducing commits but also that they need less effort to fix the bugs caused by these
commits. We also characterise commits that would lead to frequent crashes, which impact a
large user base, which we call highly impactful crash-inducing commits. Compared to other
crash-related bugs, we observe that bugs due to highly impactful crash-inducing commits
were less reopened by developers and tend to be fixed by a single commit. We build predic-
tive models to help software organisations detect and fix crash-prone bugs early, when their
developers commit code. Our predictive models achieve a precision of 61.2% and a recall
of 94.5% to predict crash-inducing commits and a precision of 60.9% and a recall of 91.1%
to predict highly impactful crash-inducing commits. Software organisations could use our

� Le An
le.an@polymtl.ca

Foutse Khomh
foutse.khomh@polymtl.ca

Yann-Gaël Guéhéneuc
yann-gael.gueheneuc@polymtl.ca

1 SWAT Lab, DGIGL, Polytechnique Montréal, Montréal, QC, Canada

2 PTIDEJ Team, DGIGL, Polytechnique Montréal, Montréal, QC, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9361-y&domain=pdf
http://orcid.org/0000-0003-1246-864X
mailto:le.an@polymtl.ca
mailto:foutse.khomh@polymtl.ca
mailto:yann-gael.gueheneuc@polymtl.ca

554 Software Qual J (2018) 26:553–584

models and approach to track and fix crash-prone commits early, before they negatively
impact users, thus increasing bug fixing efficiency and user-perceived quality.

Keywords Crash analysis · Bug triaging · Prediction model · Mining software repositories

1 Introduction

Software crashes refer to unexpected interruptions of software systems in users’ environ-
ments. Frequent crashes can significantly decrease the overall user-perceived quality and
even affect the reputation of a software organisation. Therefore, nowadays, many software
organisations (e.g. Mozilla, Microsoft, and Google) are deploying crash reporting tools in
their software systems. When and if the system crashes, the automatic crash reporting tool
collects information on the crash event and sends a detailed crash report to the software
organisation. Crash reports are stored in a crash collecting system, where crashes with the
same crashing signature (i.e. the stack trace of the failing thread) are grouped into a crash-
type. The crash collecting system analyses the impact of different crash-types and selects
the top crash-types, which will be filed as faults into bug tracking systems (e.g. Bugzilla
or Jira) to enable quality-assurance teams to focus their limited resources on fixing these
important faults.

Khomh et al. (2011) proposed an entropy-based crash triaging technique that computes
the distribution of crash occurrences among users and assigns a higher priority to the bugs
related to crashes that occur frequently and affect a large number of users. However, this
approach can only identify crashes with high impact after the crash collecting system has
gathered enough crashes. Until enough crashes are received, the crashes may have affected
a large number of users. Moreover, while time passes, the faulty code becomes unfamiliar
to developers, making it harder to correct.

To reduce the triaging period of crash-related bugs, in our previous study (An and Khomh
2015c), we built statistical models to predict crash-related bugs that lead to frequent crashes
and which impact a large user base. Although these models can be applied at an early stage
of development to detect crash-related bugs with a serious negative impact on users, soft-
ware organisations still must wait for a period of time during which crashes are collected,
triaged, and filed into bug reports, before they can be fixed.

We argue that, if software organisations could detect crash-prone code even earlier, at the
time of commits, i.e. before the software is built and released, they could address the faults
faster and prevent the unpleasant experience of crashes to their users. Such an approach is
referred to as ‘Just-In-Time Quality Assurance’ (Kamei et al. 2013), and it enables fine-
grained fault predictions and allows quality-assurance teams to identify error-prone code at
commit time. By identifying error-prone commits sooner, quality-assurance teams are also
likely to make better decisions in choosing developers that can fix these bugs.

In this paper, we investigate statistical models to predict commits that may introduce
crashes in Mozilla Firefox. We study Mozilla Firefox’ crash reports between January 2012
and December 2012, as well as its commit logs from March 2007 until December 2012, and
answer the following research questions:

RQ1: What is the proportion of crash-inducing commits in Firefox?

We analyse Firefox’ crash reports and link them to the corresponding crash-related
bugs. We then use the SZZ algorithm (Śliwerski et al. 2005) to map these bugs to their

Software Qual J (2018) 26:553–584 555

fixing commits, and then identify the commits that introduced the bugs responsible for
crashes. We found that crash-inducing commits account for 25.5% of all commits in
the studied version control system and that 37.1% of the commits that change C/C++
code would lead to crashes.

RQ2: What characteristics do crash-inducing commits possess?

By investigating the characteristics of crash-inducing commits and other commits, we
found that, in general, crash-inducing commits are submitted by developers with less
experience than the average. Also, they are more often committed by developers from
Mozilla than from outside. Developers change more files and add and delete more
lines in crash-inducing commits. Compared to other commits, crash-inducing com-
mits fix more previous bugs but, often, they lead to other bugs. In terms of changed
types, crash-inducing commits contain more unique changed types, and the changed
statements tend to be scattered in more changed types. In addition, we observed
that the bugs caused by crash-inducing commits require less supplementary fixes
than other bugs and they are reopened less often. Also, 43.7% of crash-related bugs
are without any resolution, implying that developers do not specifically target these
(severe) bugs during bug fixing activities, which is a bit surprising.

We also investigated commits that lead to frequent crashes impacting a large user
base, referred to as highly impactful crash-inducing commits, and compared to other
crash-related bugs, the fixes of highly impactful bugs require less reworking (i.e. sup-
plementary fixes) than other bugs: developers seem to be very careful when fixing
these bugs.

RQ3: How well can we predict crash-inducing commits?

Previous studies, which used statistical models to predict faults from bug reports, are
effective to some extent. However, before a certain type of crash is filed into the
crash collecting system, a large number of users might have already suffered it. More-
over, during this period, developers may become less familiar with the code and thus
may have to spend more time identifying the faulty lines to fix the faults. Therefore,
statistical models that can predict fault-prone code just-in-time have the potential to
help developers detect crash-inducing commits as soon as they are introduced and
effectively fix them early. We use generalized linear model (GLM), naive Bayes,
C5.0, and random forest algorithms to predict whether or not a commit will induce
future crashes. Our predictive models can reach a precision of 61.2% and a recall of
94.5%.

RQ4: How well can we predict commits that lead to frequent crashes that impact a large
user base?

Crash-related bugs have different impact on end-users. Mozilla prioritises these bugs
by their crash frequency. Though frequency is an important metric, it does not capture
the full picture of the severity of a crash-related bug. Khomh et al. (2011) have pro-
posed a combination of frequency and entropy measurements to capture the severity of
crash-related bugs. We leverage their proposed entropy-based classification (Khomh
et al. 2011) and apply the best statistical algorithm from RQ3 (i.e. random forest) to
predict commits that can lead to bugs with high crashing frequency and impacting
a large user base, i.e. highly impactful crash-inducing commits. Despite the low per-
centage of highly impactful crash-inducing commits (23.7% in commits that change
C/C++ code) in the studied dataset, our model can still achieve a precision of 60.9%

556 Software Qual J (2018) 26:553–584

and a recall of 91.1%. Software organisations could apply our model to improve their
fault triaging process and their users’ satisfaction.

RQ5: What are the characteristics of commits that are misclassified by our prediction
models?

Sometimes, our models misclassify some clean commits as crash-inducing commits
(false positives) and some crash-inducing commits as clean commits (false negatives).
We studied these misclassified faults, and we observed that our models tend to clas-
sify commits with less developers’ experience, higher numbers of changed files, and
lines of code as ‘crash-inducing commits’. In addition, we observed that false pos-
itive commits contain more complex code and more changed types. These commits
changed more lines of code and files, and were often submitted by less-experienced
developers which is why they are misclassified by our models.

Moreover, we observed that 22.8% of commits do not lead to crashes but still
caused bugs. Hence, developers still must carefully check the code contained in these
commits before integrating it into the version control system.

Finally, we observed that developers performed a high proportion of renaming oper-
ations on the code of these commits. Inappropriate or incomplete renaming operations
can lead to missing runtime variable and/or mismatching errors, which can crash a software
system.

Hence, it seems that renaming operations are risky and that developers should be
careful when performing renaming operations in the code.

We are limited in this study to Firefox because, at the time of writing, no other software
organisation provides access to its crash reporting system. Software organisations could
apply our proposed approach internally to detect crash-prone code early and address the
faulty code as soon as possible, before it affects a large number of users.

This paper is an extension of an earlier conference paper (An and Khomh 2015b). Our
original work:

1. calculated the percentage of crash-inducing commits in Mozilla Firefox,
2. compared crash-inducing commits against other commits in various aspects,
3. predicted crash-inducing commits using statistical models, and identified the most

important predictors,

which we extend as follows:

1. We have readjusted the classification of changed types and rebuilt our predictive models.
2. We have examined whether bugs caused by crash-inducing commits require supple-

mentary bug fixes more often than other bugs and whether they are reopened more
frequently than other bugs.

3. We have proposed models to predict commits that lead to frequent crashes that impact
a large user base.

4. We have also examined the reason behind the false positives and false negatives of our
prediction models.

The remainder of the paper is organised as follows. Section 2 provides background infor-
mation on Mozilla crash collecting system. Section 3 explains the identification technique
of crash-inducing commits. Section 4 describes data collection and processing for the empir-
ical study. Section 5.4 presents and discusses the results of our five research questions.

Software Qual J (2018) 26:553–584 557

Section 6 discusses threats to the validity of our results. Section 7 summaries related work.
Section 8 draws conclusions and suggests future work.

2 Mozilla crash collecting system

Mozilla delivers software with a built-in automatic crash reporting tool, i.e. the Mozilla
Crash Reporter. When a Mozilla product, such as Firefox, terminates unexpectedly, Mozilla
Crash Reporter will generate and send a detailed crash report to the Socorro crash report
server (Socorro 2015). The crash report provides a stack trace for the failing thread and
information about the user’s environment. A stack trace is an ordered set of frames where
each frame refers to a method signature and provides a link to the corresponding source
code. Different stakeholders, quality managers and developers, can use crash reports to
identify and fix faults in the system. They can also use information from crash reports to
allocate development resources. Figure 1 presents a sample crash report from Mozilla Firefox.

Socorro collects crash reports from end-users and groups similar crash reports together
by the top method signatures in their stack traces. Such a group of crash reports where all
the stack traces possess the common top frames is termed as a crash-type. However, the
subsequent frames in the stack traces might be different. Figure 2 shows a sample crash-type
from Firefox.

Socorro server’s data are open and provide a rich Web interface for software practition-
ers to analyse crash-types. In the Socorro server, crash-types are automatically ranked based
on the frequency of their occurrences. Developers and quality assurance teams can file
crash-types with high crashing frequency into Bugzilla, i.e. Mozilla’s bug tracking system.
Different crash-types can be linked to the same bug, while different bugs can also be linked
to the same crash-type (An and Khomh 2015a). Socorro provides a list of bugs for each
crash report whose crash-type has been filed into Bugzilla. The Socorro server and Bugzilla
are integrated, i.e. developers can directly navigate to the corresponding bugs (in Bugzilla)

Fig. 1 A sample crash report from Firefox

558 Software Qual J (2018) 26:553–584

Fig. 2 A sample crash-type from Firefox

from a crash-type’s summary in Socorro’s Web interface. Developers use the information
contained in crash reports to debug and fix bugs. Mozilla quality assurance teams triage bug
reports and assign severity levels to the bugs (Anvik et al. 2006). Developers port patches
to fix a bug. Once approved, the patches will be integrated into the source code.

3 Identification of crash-inducing commits

In this section, we describe the identification procedure for crash-inducing commits. All our
data and analytic scripts are available at: https://github.com/swatlab/crash-inducing.

Applying the SZZ algorithm (Śliwerski et al. 2005), we identify crash-inducing commits
in two steps: identification of crash-related bugs and identification of commits that induce
those bugs. The remainder of this section elaborates on each of these steps.

3.1 Identification of crash-related bugs

We extract the bug list from each of the studied crash reports. For each of the crash-related
bug, we use regular expressions to identify the crashed stack trace from the bug’s title and
comments, and then extract crash-related files or methods from the stack trace. We record
the identified files or methods as fault locations of the crash-related bugs, which will be
used to identify crash-inducing commits in the next step. Each crash-related bug may be
linked to multiple crash occurrences. We sort these crashes by time and record the dates of
the first and the last crash occurrences before the bug was opened.

3.2 Identification of crash-inducing commits

Since Śliwerski et al. (2005) introduced the SZZ algorithm, a plethora of studies (such as
Kim et al. 2006; Romo et al. 2014; and Williams and Spacco 2008) have leveraged this
approach to identify the commits that induce subsequent commits, especially bug fixes, in

https://github.com/swatlab/crash-inducing

Software Qual J (2018) 26:553–584 559

version control systems. In this paper, we use the SZZ algorithm to identify the commits
that lead to crash-related bugs as follows.

3.2.1 Extraction of crash-related changed files

We use heuristics proposed by Fischer et al. (2003) to map the crash-related bug IDs to their
corresponding bug fixes. We use regular expressions to detect bug IDs from the message of
each commit.

Some commits that fixed a previous bug fix (called supplementary bug fixes (An et al.
2014)) often lack information about the fixed bug in their message, i.e. only a commit ID
(i.e. a SHA1 string) of a previous fix is provided. In this case, we track the commit IDs
back to their original commits and check whether these original commits could be mapped
to a bug report. Hence, we ensure that every crash-related bug can be mapped to all possible
corresponding commits. As Mozilla’s revision history is managed by Mercurial, for each of
the identified bug fixes, we run a Mercurial command to extract its modified and deleted
files:

hg log --template {rev}, {file mods}, {file dels}
Here, we do not take added files into account, because only modified and deleted files could
be changed by preceding commits.

3.2.2 Identification of the previous commits of the changed files

The changed files identified in Section 3.2.1 (i.e. modified and deleted files) are considered
as files that address the crash-related bugs. For each of the changed files in a certain commit
C to the bug Bcrash, if its previous commit C′ is dated before the bug’s first crash occurrence
date, C′ would be considered as a ‘crash-inducing commit’. Concretely, to seek out the
previous commits of each changed file contained in a specific commit, we use Mercurial’s
annotate command to track the previous commit ID of each line in this file. Among the
identified commit IDs, we first remove those related to white spaces and comment lines.
The remaining commit IDs are candidates of crash-inducing commits. Then, for each of the
IDs, we record its committed date as Dcandidate. We also find out the first crash date Dfirst
of the bug Bcrash and the last crash date Dlast before the opening of the bug. We decide
crash-inducing commits using the following rules:

– Rule 1: If Dcandidate is earlier than Dfirst, this candidate commit is identified as a ‘crash-
inducing commit’.

– Rule 2: If Dcandidate is later than Dfirst but earlier than the last crash date Dlast, we
consider this candidate commit as a ‘crash-inducing commit’ if it changed any of the
files appearing in the crashed stack trace of Bcrash.

In the original SZZ algorithm (Śliwerski et al. 2005), Śliwerski et al. filtered bug-
inducing commits by bug opening date, which however cannot be directly applied to filter
crash-inducing commits. We use Rule 1 to select commit candidates submitted prior to
the first crash occurrence. But this rule may omit some crash-inducing commits. Because
a crash-related bug may derive from different crash-types. A crash-type contains crashes
that have the same top method signatures (in their stack traces). However, their subsequent
method signatures could be different. So, crashes with different stack traces which were
induced by different commits can be filed into the same bug report. Figure 3 illustrates an
example: Commit1, whose submission date is D1, induced Crash1; Commit2, whose sub-
mission date is D2, induced Crash2, where D2 is later than D1. Crash1 and Crash2 have

560 Software Qual J (2018) 26:553–584

signature 1
signature 2
signature 3
signature 4

signature x
signature y
signature z

signature 1
signature 2
signature 3
signature 4

signature
signature
signature

Crash1 Crash2

Bugcrash

grouped into
the same bug

Commit1 Commit2
crash-inducing commits

Fig. 3 Different crashes can be classified into the same bug report

common top method signatures, but have different method signatures in the rest of their
crashing stack traces. The Socorro server will file both crashes into the bug Bcrash. But if we
apply only Rule 1 on this bug, Commit2 would be omitted. Therefore, we also apply Rule
2 to discover all commits that introduced crashes related to Bcrash.

All of the above steps have been implemented in Python scripts. Future researchers can
use our scripts to validate our data analysis process or conduct replication studies.

4 Case study design

This section describes the data collection and processing for our case study to answer the
following five research questions:

1. What is the proportion of crash-inducing commits in Firefox?
2. What characteristics do crash-inducing commits possess?
3. How well can we predict crash-inducing commits?
4. How well can we predict commits that lead to frequent crashes that impact a large user

base?
5. What are the characteristics of commits that are misclassified by our prediction models?

4.1 Data collection

Firefox is a large-scale open-source project. There are hundreds of core contributors work-
ing on this project (Mozilla’s community statistics 2016). The most recent release of Firefox
contains more than 15 thousand files and more than 4 million lines of executable code
(Mozilla’s code quality statistics 2016).

We analyse the crash reports of Mozilla Firefox filed between January 2012 and Decem-
ber 2012 (12 months). A crash-inducing commit cannot be submitted later than any of its
related crashes, so we selected the revision history of Mozilla Firefox from March 2007 (i.e.
start date of the project) until December 2012. There are in total 132,484,824 crash reports
(grouped into 2,210,126 crash-types) and 127,212 commits selected in this period of time.
These crash reports were filed into 6636 crash-related bugs. We extract four characteristics
from these data as summarised in Table 1.

Software Qual J (2018) 26:553–584 561

Table 1 Characteristics of
Firefox based on the selected
studied period

Characteristic Value

commits 127,212

crash reports 132,484,824

crash-types 2,210,126

crash-related bugs 6636

4.2 Data processing

Figure 4 shows an overview of our data processing steps for the case study. The correspond-
ing data and Python scripts are available at: https://github.com/swatlab/crash-inducing.

4.2.1 Mining crash reports

To identify crash-inducing commits and investigate the characteristics of these commits,
we extract the following metrics from each crash reports: bug list, crash date, and release
number. We use the bug IDs in the bug list to map a crash report to its bug reports. We then
use crash dates to find the earliest and the latest crash occurrence dates before the opening
of each bug (see Section 3.1). We use the source code of all detected releases to compute
code complexity metrics and social network analysis metrics.

4.2.2 Computing code complexity metrics

For each studied commit, we use the Mercurial log command to extract all of its changed
files. Then, as in our previous work (An and Khomh 2015c), we apply the source code analy-
sis tool Understand (Understand static code analysis tool 2015) to compute the code-related
metrics of the analysed files and identify the relationship among these files. Developers can
either use Understand’s graphical interface or its command line tool1 to generate an Under-
stand database (UDB), from which we program against the Understand Python API2 to
extract five metrics on code complexity for the files in each subject commit: lines of code
(LOC), average cyclomatic complexity, number of functions, maximum nesting, and ratio
of comment lines over all lines in a file. Because more than 90% of Firefox’ code is writ-
ten in C or C++ (An and Khomh 2015c), in this step, we only take C and C++ files into
consideration. Details of the selected code complexity metrics are discussed in Section 5.4.

4.2.3 Computing social network analysis metrics

From the Understand database generated in Section 4.2.2, we identify dependencies among
different files in Firefox to compute social network analysis (SNA) metrics for each file.
Concretely, from the studied C and C++ files, we combine each .c or .cpp file and its
corresponding .h file into a class node. We then build an adjacency matrix to represent
the relationship among these nodes. We use the network analysis tool igraph (Csardi and
Nepusz 2006) to convert the adjacency matrix into a call graph, by which we compute the

1https://scitools.com/feature/automation-using-the-command-line.
2https://scitools.com/new-python-api/.

https://github.com/swatlab/crash-inducing
https://scitools.com/feature/automation-using-the-command-line
https://scitools.com/new-python-api/

562 Software Qual J (2018) 26:553–584

Crash Database
(Socorro)

Data analysis

RQ1

RQ2

RQ3

Bug Repository
(Bugzilla)

Extraction of crashed
stack traces

crash-related bugs

Version Control
System

(Mercurial)
Extraction of commit

metrics & code-
related metrics

crash-inducing
commits

Crash reports

Bug reports

Commit logs

RQ4

RQ5

Fig. 4 Overview of our approach to identify crash-inducing commits and extract their characteristic metrics

following social network analysis metrics: PageRank, betweenness, closeness, indegree, and
outdegree. Details of the selected SNA metrics are discussed in Section 5.4.

In Sections 4.2.2 and 4.2.3, we compute the code-related metrics for each of the releases
detected from Section 4.2.1. For a given commit C whose commit date is Dc, we search the
latest release R whose release date Dr is satisfied: Dr < Dc. We map all the files in the
commit C to the release R, and record the code complexity and SNA metrics for each of the
successfully mapped files.

4.2.4 Identifying changed types

In a commit, different types of changes affect a software system to different extents in terms
of crashes. We assume that changes on comments and refactorings may have little probabil-
ity to trigger subsequent crashes. Yet, if parameters or function calls are not appropriately
modified (or added/deleted) in a commit, crashes would probably happen when the commit
is integrated into the version control system. We use the source code analysis tool srcML
(SrcML 2015) to convert C or C++ code into XML files where each syntactic statement
will be converted into an XML node, in which an XML tag labels its type. For a given
changed file F in a certain commit C, we use the following Mercurial command to check it
out:

hg cat -r C F

Then, we also check out the file with the same name F ′ in the previous commit C′. After
converting F and F ′ into XML format, we use a Python script to recursively compare the
difference on each of the corresponding srcML tags.3 As we detected more than 80 unique
srcML tags from the studied changed files, we group the srcML tags with similar semantic
functions into a changed type, while ignoring trivial srcML tags, such as ‘@format’. Table 2
shows all of changed types and their corresponding srcML tags.

Besides counting the number of changed types in a commit, we also investigate the dis-
tribution of the changed types in the commit. We compute the value of the normalised
Shannon entropy (Shannon 2001), defined as follows:

Hn(C) = −
n∑

i=1

pi × logn(pi), (1)

3For all srcML tags, please refer to: http://www.srcml.org/doc/srcMLGrammar.html.

http://www.srcml.org/doc/srcMLGrammar.html

Software Qual J (2018) 26:553–584 563

Table 2 Changed types identified from Firefox’ source code

Changed type srcML tag(s)

Access modifier super, public, private, protected, extern

C++ template template, typename

Class class, class decl, member list, constructor, constructor decl,
destructor, destructor decl

Code block block, expr, expr stmt

Comment comment

Control flow while, do, if, else, break, goto, label, for, foreach, continue,
then, switch, case, return, condition, incr, default

Data structure enum, struct, struct decl, typedef, union, union decl

Declaration asm, decl, decl stmt, using, namespace, range, specifier

Function function, function decl

Initialisation init

Invocation call

Operator escape, index, sizeof

Parameter param, parameter list, argument, argument list

Preprocessor cpp:define, cpp:elif, cpp:else, cpp:endif, cpp:error,
cpp:file, cpp:if, cpp:ifdef, cpp:ifndef, cpp:include, cpp:line,
cpp:pragma, cpp:undef, cpp:value, cpp:derective, macro

Renaming renaming, name

Variable type type

where C is a commit, pi is the probability of C possessing a specific changed type CTi

(pi ≥ 0, and
∑n

i=1 pi = 1), and n is the total number of unique changed types listed in
Table 2. So, for a commit, if all changed types have the same occurrences, i.e. the changed
types are equally distributed, the entropy is maximal (i.e. 1). On the contrary, if a commit
has only one changed type, the entropy is minimal (i.e. 0).

4.2.5 Identifying bugs requiring supplementary fixes and reopened bugs

In our previous research (An et al. 2014), we studied two kind of bugs that need additional
effort to get fixed than other bugs:

– Bugs requiring supplementary fixes: bugs are fixed by not only one commit, but by
multiple commits.

– Reopened bugs: bugs that have been reopened.

We used the approach described in An et al. (2014) to identify these bugs. Concretely, we
apply regular expressions to parse Mozilla commit messages, if a bug ID is mentioned in
the messages of more than one commit, we consider it as a bug that requires supplementary
fixes. Next, we parse Mozilla bug reports, if we find a ‘REOPENED’ tag in a bug’s history,
we consider it as a reopened bug.

5 Case study results

This section presents and discusses the results of our five research questions. For each question,
we discuss the motivation, the approach designed to answer the question, and the findings.

564 Software Qual J (2018) 26:553–584

5.1 RQ1: what is the proportion of crash-inducing commits in Firefox?

Motivation This question is preliminary to the other questions. It provides quantitative
data on the prevalence of commits that induce subsequent crashes in Mozilla Firefox. The
results of this question will help software managers realise the prevalence of the crash-
inducing commits and adjust their bug triaging strategy to focus their limited resources to
resolve faults causing the crashes as soon as possible.

Approach We identify crash-inducing commits using the technique presented in Section 3,
then calculate their percentage over the total number of studied commits.

Finding Among the 127,212 analysed commits, 32,463 are identified as crash-inducing
commits. Figure 5 illustrates the proportion of crash-inducing commits and other commits
(referred to as crash-free commits in the rest of this paper). If we consider commits that
changed at least one C/C++ file, crash-inducing commits account for 37.1% of all the
commits (with changes on C/C++ code).

One out of every four commits would cause subsequent crashes, which are considered to
be severe faults (Wu 2014), because crashes can unexpectedly stop users’ running processes,
leading to negative user experience and even decrease the reputation of a software organ-
isation. Therefore, software practitioners should capture crash-inducing commits quickly,
i.e. when they are submitted into the version control system in order to fix them as soon as
possible. In the rest of this section, we will investigate the characteristics of crash-inducing
commits and examine how to effectively predict them early on.

Crash-inducing commits account for more than 25 % of the total number of studied
commits in Firefox.

5.2 RQ2: what characteristics do crash-inducing commits possess?

Motivation Crash-inducing commits can lead to a dreadful user experience. Moreover, if
a crash-related bug is not fixed promptly and properly, and re-appear later on, developers
may have a hard time finding the source of the bug since they would have to re-understand
the context of some past code changes. Understanding the characteristics of crash-inducing

Fig. 5 Proportion of
crash-inducing commits and
crash-free commits in Firefox

74.5%

25.5%

Crash free
Crash inducing

Software Qual J (2018) 26:553–584 565

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Frequency

E
nt

ro
py

Highly-
impactful

Moderately-
impactful

Isolated Skewed

Fig. 6 Categories of bugs based on crashing frequency and entropy

commits can help software practitioners be aware of factors that lead to crashes of a software
system, and build predictive models to identify crash-prone code just-in-time.

In addition, different crashes can affect end-users to different extent. Mozilla uses crash-
ing frequency to prioritise their crash-related bugs. Khomh et al. (2011) proposed an
entropy-based approach to classify crash-types along two dimensions: crashing frequency
and entropy, where the latter represents the distribution of a crash-type in the user base. In
our previous work, we applied this idea to classify crash-related bugs into four categories,
as shown in Fig. 6. We refer to bugs that crash frequently and affect a large number of users
as highly impactful bugs. In this research question, we will also compare the characteristics
of commits that lead to highly impactful bugs (refer to as highly impactful crash-inducing
commits) against other commits.

Approach For each of the commits identified either as crash-inducing commit or crash-
free commit, we parse the commit log to extract the metrics presented in Table 3. We test the
following eight null hypotheses to statistically compare the characteristics between crash-
inducing commits and crash-free commits.

Table 3 Metrics used to compare the characteristics between crash-inducing commits and crash-free
commits in hypothesis tests

Metric Description and rationale

Committer’s experience Number of prior submitted commits

Message size Number of words in a commit message

Changed files Number of changed files (including added, deleted, and
modified files) in a commit

Added lines Number of added lines of code in a commit

Deleted lines Number of deleted lines of code in a commit

Entropy of changes Measurement of the dispersion of changed code among
files in a commit (Hassan and Holt 2003)

Number of changed types Number of unique changed types in a commit

Entropy of changed types Measurement of the dispersion of different changed types
in a commit (see Section 4.2.4)

566 Software Qual J (2018) 26:553–584

Comparing the extents of changes in crash-inducing commits vs. crash-free
commits

H 1
01: the number of words in a commit message is the same for crash-inducing commits
and crash-free commits.

H 2
01: the number of changed files is the same for crash-inducing commits and crash-free
commits.

H 3
01: the number of added lines is the same for crash-inducing commits and crash-free
commits.

H 4
01: the number of deleted lines is the same for crash-inducing commits and crash-free
commits.

H 5
01: the entropy of changes is the same for crash-inducing commits and crash-free
commits.

Comparing the changed types of crash-inducing commits vs. crash-free commits

H 1
02: the number of unique changed types is the same for crash-inducing commits and
crash-free commits.

H 2
02: the entropy value of changed types is the same for crash-inducing commits and
crash-free commits.

Comparing the people factor of crash-inducing commits vs. crash-free commits

H 1
03: committers’ experience is the same for crash-inducing commits and for crash-free
commits.

We use the Wilcoxon rank sum test (Hollander et al. 2013) to accept or reject the eight
null hypotheses. This test is a non-parametric statistical test, which is used for measuring
whether two independent distributions have equally large values. We use a 95% confidence
level (i.e. p value < 0.05) to decide whether to reject a null hypothesis. Since we will
conduct eight null hypothesis tests, to counteract the problem of multiple comparisons, we
apply the Bonferroni correction (Dmitrienko et al. 2005), which consists in dividing the
threshold p value by the number of tests. Thus, our threshold to decide whether a result is
statistically significant is as follows: p value < 0.05/8 = 0.006.

We will also compare crash-inducing commits and other commits in terms of the
following aspects:

1. Percentage of Mozilla committers
2. Percentage of bug fixing commits

In addition, different bugs require different effort to get fixed. We use the approach
described in Section 4.2.5 to investigate whether bugs caused by crash-inducing com-
mits and bugs caused by other commits required the same effort from developers. More
specifically, we will investigate the following aspects:

1. Percentage of bugs that require supplementary fixes (i.e. bugs that were fixes by more
than one commit) (An et al. 2014).

2. Percentage of reopened bugs (i.e. bugs that have been reopened).

To identify highly impactful crash-inducing commits, we applied the approach described
in An and Khomh (2015c), to compute the crashing entropy value (from 0 to 1) of each
crash-related bug. A high entropy value means a high distribution of the crash-type in the
user base (i.e. the bug impacts a large population of users), and vice versa.

Software Qual J (2018) 26:553–584 567

Based on our previous study (An and Khomh 2015c), we use the median value of fre-
quency and entropy to decide whether a crash-related bug has high crashing frequency and
entropy values, as illustrated in Fig. 6. Then, we classify all crash-related bugs into the
following categories, which are sorted by their priority in descending order:

– Highly impactful bugs: bugs with frequency and entropy values above or equal to the
median. These bugs impact a large number of users.

– Skewed bugs: bugs with a high frequency value (i.e. above or equal to the median)
but a low entropy (i.e. below the median). These bugs only seriously affect a small
proportion of users and are more likely to be specific to the users’ systems.

– Moderately impactful bugs: bugs that are widely distributed in the user base (i.e.
entropy value above or equal to the median) but do not occur very often (i.e. frequency
value below the median).

– Isolated bugs: bugs with frequency and entropy values below the median. These bugs
rarely occur and affect a small number of users.

We will perform the same (hypothesis and proportional) analyses to compare highly
impactful crash-inducing commits against other commits. Moreover, we will also compare
highly impactful crash-inducing commits against other crash-inducing commits (i.e. crash-
inducing commits with less impact).

Finding

Hypothesis tests Table 4 shows the median values of crash-inducing commits and crash-
free commits for the metrics listed in Table 3, as well as the p values of the Wilcoxon rank
sum tests. According to the results, crash-inducing commits are submitted by developers
with less experience, suggesting that novice developers tend to write error-prone code. The
message size of crash-inducing commits is significantly longer than that of crash-free com-
mits. It is possible that crash-inducing commits are more complex, and hence, developers
need longer comments to describe these changes. In crash-inducing commits, developers
change significantly more files, and add and delete more lines than crash-free commits.
This result is consistent with previous studies (Moser et al. 2008; Nagappan and Ball 2005)
where researchers found that relative code churn measures can indicate faults in modules. In
addition, crash-inducing commits have higher entropy of changes values, i.e. their changed
code tend to be equally distributed among the changed files (mean and median values of
0.45, and 0.58, respectively); while in the case of crash-free commits, mean and median
values of the entropy of change metric are respectively 0.36 and 0. In terms of changed

Table 4 Median value of
hypothesis testing metrics for
crash-inducing commits and
crash-free commits, as well as
the p value of the Wilcoxon rank
sum test

Metric Crash-inducing Crash-free p value

Committer’s experience 190 246 < 2.2e-16

Message size 12 11 < 2.2e-16

Changed files 3 2 < 2.2e-16

Added lines 9 5 < 2.2e-16

Deleted lines 34 13 < 2.2e-16

Entropy of changes 0.58 0 < 2.2e-16

Number of changed types 4 3 < 2.2e-16

Entropy of changed types 0.43 0.35 < 2.2e-16

568 Software Qual J (2018) 26:553–584

Table 5 Median value of
hypothesis testing metrics for
highly impactful crash-inducing
(HICI) commits and other
commits, as well as the p value
of the Wilcoxon rank sum test

Metric HICI Other p value

Committer’s experience 177 243 < 2.2e-16

Message size 12 11 < 2.2e-16

Changed files 3 2 < 2.2e-16

Added lines 11 5 < 2.2e-16

Deleted lines 39 14 < 2.2e-16

Entropy of changes 0.63 0.21 < 2.2e-16

Number of changed types 5 3 < 2.2e-16

Entropy of changed types 0.45 0.37 < 2.2e-16

types, crash-inducing commits possess more unique changed types, and their changed types’
entropy is higher than that of crash-free commits. In other words, the changed statements
are distributed across more changed types in crash-inducing commits than those in crash-
free commits. This observation suggests that it is preferable to make semantically coherent
changes (i.e. changes of the same type) in commits. When developers modify the code with
a lot of changed types (with the modifications equally distributed across the changed types),
these modifications have a higher probability to induce subsequent crashes.

In light of results from Table 4, we reject null hypotheses H 1
01 ∼ H 5

01, H 1
02 ∼ H 2

02,
and H 1

03. In other words, for all metrics listed in Table 3, there exist statistically significant
differences between crash-inducing commits and crash-free commits.

Table 5 compares highly impactful crash-inducing commits with other commits. We
observe the similar results as in Table 4, i.e. highly impactful crash-inducing commits were
submitted by less-experienced developers with longer commit messages. These commits
changed significantly more lines of code and contain more changed types.

Table 6 shows the comparison between highly impactful crash-inducing commits and
other crash-inducing commits. Developers who submitted highly impactful crash-inducing
commits have significantly lower experience. More lines of code were changed (and these
changes tend to equally distributed in multiple files) in highly impactful crash-inducing
commits, which possess more changed types.

In general, our results imply that commits that are submitted by developers with lower experi-
ence, with more changed lines of code, and with more changed types tend to introduce crashes.
These characteristics help us choose independent variables for the predictive models.

Table 6 Median value of
hypothesis testing metrics for
highly impactful crash-inducing
(HICI) commits and other
crash-inducing commits (OCIC),
as well as the p value of the
Wilcoxon rank sum test

Metric HICI OCIC p value

Committer’s experience 177 218 < 2.2e-16

Message size 12 12 0.06

Changed files 3 3 < 2.2e-16

Added lines 11 7 < 2.2e-16

Deleted lines 39 27 < 2.2e-16

Entropy of changes 0.63 0.45 < 2.2e-16

Number of changed types 5 4 < 2.2e-16

Entropy of changed types 0.45 0.39 < 2.2e-16

Software Qual J (2018) 26:553–584 569

Proportional analysis Table 7 summarises the results of our proportion analysis between
crash-inducing commits and crash-free commits. Interestingly, we observe that crash-
inducing commits are mostly submitted by developers using Mozilla email accounts. We
believe that commits from outside contributors receive more scrutiny (through code review
sessions) than those from core Mozilla developers. Also, it may be that Mozilla developers
handle more complex aspects of the software than outside contributors (Kononenko et al.
2016). In addition, most of our studied commits (either crash-inducing or crash-free) are
bug fixing attempts. This finding confirms that bug fixing has become the major activity in
software development (National Institute of Standards & Technology 2002).

A higher proportion of crash-inducing commits are aimed at fixing bugs, meaning that
modifying code to fix an existing bug is a risky task that can induce other bugs, confirming
arguments from previous studies, such as Parnas (1994), that legacy code becomes difficult
to maintain.

We analysed the fixes of bugs in Firefox and found that developers tend to use a single
commit to fix crash-related bugs. We also observed that crash-related bugs are reopened
less often, in comparison to bugs that do not crash the system, which may be an indication
that developers are more careful when fixing crash-related bugs. Bugs that require supple-
mentary fixes and/or bugs that are reopened are costly for software organisations. To get
a deeper insight of the bug correction process of Firefox, we parsed all the bug reports
that were submitted in Mozilla Bugzilla between January 2012 and December 2012. For
each of these bugs, we checked the resolution status. Figure 7 shows the resolution fre-
quency of crash-related bugs and other bugs during the studied period. We observe that
46.4% of crash-related bugs have no resolution, and only 25.5% of crash-related bugs have
been resolved. Regarding crash-free bugs, 34% have no resolution, and 43.7% of these bugs
have been resolved. Moreover, 9.4% of crash-related bugs were resolved as ‘worksforme’,
whereas only 4.1% of crash-free bugs have this resolution. In a previous study, Joorabchi
et al. (2014) found that 66% of ‘closed’ non-reproducible reports (i.e. bugs resolved with
‘worksforme’) can be eventually reproduced and fixed. In our previous work, we also found
that some bugs are prematurely closed with the ‘worksforme’ resolution. Therefore, the
‘worksforme’ resolution may be a mislabelling and could reflect developers’ negative atti-
tude towards a difficult problem. The above statistics suggest that developers do not resolve
many crash-related bugs even though they work on them carefully when they choose to fix
them. This outcome is surprising given the fact that crash-related bugs can lead to users’
frustration and affect a software organisation’s reputation. We explain this surprising result
by the fact that Firefox being an open-source software system, developers can choose the
bugs that they wish to fix. This flexibility may result in a majority of developers choosing
easy bugs, that are not crashing the system.

Table 8 shows the comparison between highly impactful crash-inducing commits and
other commits. We observe the similar results as in Table 7, i.e. highly impactful crash-

Table 7 Median value of
proportional metrics for
crash-inducing commits and
other commits

Metric Crash-inducing (%) Crash-free (%)

Using Mozilla email 41.8 36.7

Is bug fix 91.4 83.5

Supplementary fixes 15.5 38.3

Bug reopening 3.8 6.7

570 Software Qual J (2018) 26:553–584

0%

10%

20%

30%

40%

fi
x
e
d

d
u
p
lic

a
te

w
o
rk

s
fo

rm
e

in
v
a
lid

in
c
o
m

p
le
te

w
o
n
tf
ix

n
o
 r
e
s
o
lu
ti
o
n

0%

10%

20%

30%

40%

fi
x
e
d

d
u
p
lic

a
te

w
o
rk

s
fo

rm
e

in
v
a
lid

in
c
o
m

p
le
te

w
o
n
tf
ix

n
o
 r
e
s
o
lu
ti
o
n

Fig. 7 Frequency of resolutions of crash-related bugs and other bugs

inducing commits tend to be submitted by Mozilla developers. A higher percentage of these
commits aim to fix bugs than those of other commits. The bugs caused by these commits
are also reopened less often and fixed in fewer commits (in general, a single commit) in
comparison to other bugs (including crash-inducing commits that crash less frequently and
affect less users). This result suggests that when developers fix a highly impactful bug, they
are very careful to ensure that their fix is correct. Moreover, we found that only 26.2% of
highly impactful bugs have been fixed. This result is similar to the ‘fixed’ proportion of
other crash-related bugs.

In general, crash-inducing commits are submitted by less experienced developers.
They contain longer commit messages, change more files and more lines of code
than crash-free commits. Crash-inducing commits contain more changed types, their
changed statements tend to be scattered across different changed types. Many crash-
inducing commits are aimed at fixing a previous bug. Crash-inducing commits are
often submitted by developers usingMozilla email accounts (i.e., Mozilla developers).
Developers are careful when fixing crash-related bugs; fixes of crash-related bugs
require less reworking (i.e., supplementary fixes) in comparison to the fixes of other
bugs.

Software Qual J (2018) 26:553–584 571

Table 8 Median value of
proportional metrics for highly
impactful crash-inducing (HICI)
commits and other commits

Metric HICI (%) Other (%)

Using Mozilla email 42.8 37.2

Is bug fix 89.7 84.8

Supplementary fixes 4.7 38.3

Bug reopening 1.1 6.7

5.3 RQ3: how well can we predict crash-inducing commits?

Motivation Crash-inducing commits may negatively impact users’ experience, decrease
the overall software quality and even the reputation of the software organisation. If we can
predict these faulty commits early on, we will not only increase the satisfaction of users but
also shorten the period between the introduction of these crash-related bugs in the system
and their detection and correction. In fact, if the detection of a bug is done long time after
its introduction in the system, developers are likely to have a hard time identifying the root
cause of the bug since their knowledge of the code tends to decrease overtime. Hence, a
delayed detection of bugs is likely to augment maintenance overhead. In our previous work
(An and Khomh 2015c), we extracted metrics from bug reports to predict highly impactful
crash-related bugs. Although this approach can shorten bug triaging time to some extent,
developers still have to wait for a certain period, during which crashes are collected, triaged,
and filed into bug reports, before they can carry out their bug fixing activities. During this
period, end users (possibly in large numbers) may have suffered unexpected aborts of the
software. A just-in-time detection of crash-inducing commits will enable developers to act
immediately on crash-prone commits before they can negatively impact users.

Approach We extract 25 metrics along four dimensions from respectively the studied com-
mit logs and the corresponding source code of Firefox. Tables 9, 10, 11, and 12 show our
selected metrics (i.e. independent variables for the prediction models) and their rationales.
Since we compute code complexity, SNA, and changed type metrics only for C/C++ code,
we only consider commits that change C/C++ code in the prediction.

To predict whether or not a commit will cause subsequent crashes, we apply multiple
regression and machine learning algorithms: generalised linear model (GLM), naive Bayes,
decision tree, and random forest. GLM is an extension of multiple linear regression for a sin-
gle dependent variable. It is extensively used in regression analyses. Naive Bayes are a set of
logistic regression algorithms based on applying Bayes’ theorem with strong independence
assumptions between the features. Although independence is normally a poor assumption,
in practice, this algorithm often performs well (Rish 2001). In a previous bug prediction
study, Shihab et al. (2013) used the C4.5 decision tree algorithm to predict reopened bugs
and obtained good prediction results. In this research, we use C5.0 model, the improved ver-
sion of C4.5, which can obtain a higher accuracy. It runs faster and uses less memory than
C4.5 (C5.0 algorithm 2015). Developed by Leo Breiman and Adele Cutler, random forest
(Breiman 2001) uses a majority voting of decision trees to generate classification (predicting
often binary class labels) or regression (predicting numerical values) results. This algorithm
yields an ensemble that can achieve both low bias and low variance (Dı́az-Uriarte and De
Andres 2006). In this study, we build 100 trees, each of which with five randomly selected
metrics.

572 Software Qual J (2018) 26:553–584

Table 9 Commit log metrics

Attribute Explanation and rationale

Hour Hour (0–24). Code committed at certain hours may lead to crashes
(e.g. hours around quitting time)

Week day Day of week (from Mon to Sun). Code committed on certain week
days may be less carefully written (e.g. Friday) (Śliwerski et al.
2005; Anbalagan and Vouk 2009) and would lead to crashes

Month day Day in month (1–31). Code committed on certain days may be less
carefully written (e.g. before and during public holidays), resulting
into subsequent crashes

Month Month of year (1–12). Code committed in some seasons may be
less carefully written; resulting into crashes (e.g. December, during
Christmas holidays)

Day of year* Day of year (1–366). Combined the rationales of day and month

Message size Number of words in a commit message. In RQ2, we found that
crash-inducing commits are correlated with longer commit mes-
sages

Experience Number of prior submitted commits. In RQ2, we found that
crash-inducing commits tend to be submitted by less-experienced
developers

From Mozilla Whether a committer uses a Mozilla email address. In RQ2,
we found that crash-inducing commits are often submitted by
Mozilla’s developers

Number of changed files Number of changed files in a commit. In RQ2, we found that
commits with more changed files tend to cause subsequent crashes

Entropy of changes Measurement of the dispersion of changes among files in a commit.
In RQ2, we found that commits with higher entropy value tend to
induce crashes

Is bug fix Whether a commit aimed to fix a bug. In RQ2, we found that crash-
inducing commits are correlated with bug fixing code

Is supplementary fix Whether a commit is to fix a prior (fixed) bug. Supplementary fixes
may enhance previous fixes and may be less likely to cause crashes

Before crashed files Percentage of a commit’s files that caused crashes in prior com-
mits. Crashed code may be difficult to fix, and still lead to future
crashes

Table 10 Code complexity metrics

Attribute Explanation and rationale

LOC Median lines of code in all classes in a commit. In RQ2, we
found that crash-inducing commits have higher code churn (i.e.
added/deleted lines)

Number of functions Median number of classes’ functions in a commit. A huge class
may be difficult to understand or modify, and lead to crashes

Cyclomatic complexity Median cyclomatic complexity of the functions in all classes in a
commit. Complex code is hard to maintain and may cause crashes

Max nesting* Median maximum level of nested functions in all classes in a com-
mit. A high level of nesting increases the conditional complexity
and may increase the crashing probability

Comment ratio Median ratio of the lines of comments over the total lines of code
in all classes in a commit. Codes with lower ratio of comments may
not be easy to understand, and may result in crashes

Software Qual J (2018) 26:553–584 573

Table 11 Social network analysis metrics (other metrics in this dimension share the same rationale with
PageRank. We compute median value of each metric for all classes in a commit.)

Attribute Explanation and rationale

PageRank Time fraction spent to ‘visit’ a class in a random walk in the call
graph. If an SNA metric of a class is high, this class may be triggered
through multiple paths. An inappropriate change to the class may lead
to malfunctions in the dependent classes, resulting into crashes

Betweenness Number of classes passing through a class among all the shortest paths

Closeness Sum of lengths of the shortest call paths between a class and all other
classes

Indegree Numbers of callers of a class

Outdegree Numbers of callees of a class

To deal with collinearity in the data, before building the predictive models, we apply the
variance inflation factor (VIF) analysis to eliminate correlated metrics. As recommended in
Rogerson (2010), we set the threshold to 5, i.e. metrics with VIF values over this threshold
are considered as correlated and will be removed from the predictive models. In Tables 9,
10, 11, and 12, removed metrics are marked with *.

We use tenfold cross validation (Efron 1983) to compute the accuracy, precision, recall,
and F-measure for crash-inducing commits and crash-free commits. In the cross validation,
we randomly split the subject commits into ten disjoint sets. Nine sets are used as training
data and the remaining set as testing data. We repeat the process for ten times and report
median results for accuracy, precision, recall, and F-measure. Because crash-inducing com-
mits and crash-free commits are imbalanced in our dataset, we under-sample the majority
class instances, i.e. we randomly deleted instances from the dataset of crash-free commits
to make the datasets of crash-inducing commits and crash-free commits to have the same
number of instances. We do this under-sampling only during the training phase. We rank the
importance of the independent variables (prediction metrics) to identify the top predictors
for the algorithm with the best prediction results.

Finding Table 13 shows the median accuracy, precision, recall, and F-measure for the four
algorithms used to predict whether a commit will cause crashes in Firefox. According to the
results, our models can predict crash-inducing commits with a precision up to 61.2% and a
recall up to 94.5%. Random forest is the best prediction algorithm, which obtains the best F-
measure when predicting either crash-inducing commits or crash-free commits. Among the
22 selected metrics, the SNA metric closeness is ranked as the most important predictor in
all the ten phases of the cross validation. This metric evaluates the degree of centrality of a
class in the whole project. Our obtained result suggests that when many other classes depend

Table 12 Changed type metrics

Attribute Explanation and rationale

Number of changed types Number of unique changed types in a commit. In RQ2, we found that
crash-inducing commits tend to contain more changed types

Entropy of changed types Distribution of changed types in a commit (see Section 4.2.4). In RQ2,
we found that crash-inducing commits tend to have higher entropy of
changed types

574 Software Qual J (2018) 26:553–584

Table 13 Accuracy, precision,
recall, and F-measure (in %)
obtained from GLM, Naive
Bayes, C5.0, and random forest
when predicting crash-inducing
commits and crash-free commits

Metric GLM Bayes C5.0 Random forest

Accuracy 67.4 43.3 70.0 73.5

Crash-inducing precision 58.9 38.9 57.2 61.2

Crash-inducing recall 38.8 94.5 76.8 76.7

Crash-inducing F-measure 46.8 55.0 65.5 68.0

Crash-free precision 70.1 78.8 83.0 83.8

Crash-free recall 84.1 13.2 66.2 71.7

Crash-free F-measure 76.6 22.6 73.4 77.3
Highlighted parts indicate the
best prediction algorithm for
each measurement

on a class, a change to this (central) class is likely to induce crashes. Moreover, message
size, number of changed files, outdegree, and percentage of before crashed files are ranked
as the second important predictors, meaning that the length of comments in a commit, the
number of changed files, the number of callees of classes modified by a commit, and the
crashing history of files modified in a commit are good indicators of the risk of crashes
related to the integration of a commit in the code repository.

Our predictive models can achieve a precision of 61.2 %, and a recall of 94.5 %.
The Random Forest algorithm achieves the best prediction performance. Closeness
is ranked as the best predictor in this algorithm. Software organisations can make
use of the proposed predictive models to track crash-prone commits as soon as they
are submitted for integration in the code repository, for example, during code review
sessions.

5.4 RQ4: how well can we predict commits that lead to frequent crashes
that impact a large user base?

Motivation In RQ2, we characterised commits that would lead to frequent crashes,
impacting a large user base. These commits can tarnish the brand of a software organisa-
tion since they result in many users experiencing frequent crashes. In this research question,
we intend to build statistical models that can enable an early detection of highly impactful
crash-inducing commits.

Approach We use the same predictive algorithms as in RQ3 to build our statistical models.
As we found that only 23.7% of commits (that changed C/C++ files) would lead to highly
impactful bugs, when under-sampling our dataset of commits that are not highly impactful,
we adjust the probability value from 0.5 to 0.3 to balance our training dataset. Indeed, if
we balance the data using the probability value of 0.5, the recall is low in comparison to
the value of precision. If we change the value to 0.3, precision and recall values are better
balanced. Hence, we chose a value of 0.3 to balance precision and recall.

Finding Table 14 shows prediction results for highly impactful bugs. In general, our mod-
els can predict commits that induce highly impactful bugs with with a precision of 60.9%
and a recall of 91.1%. As in RQ3, Random forest also outperforms the other algorithms and
the closeness metric is still the best predictor.

Software Qual J (2018) 26:553–584 575

Our models can achieve a precision of 60.9 %, and a recall of 91.1 % when predicting
highly-impactful crash-inducing commits. The Random Forest algorithm achieves the
best prediction performance. The closeness metric is ranked as the best predictor by
this algorithm (i.e., Random Forest).

5.5 RQ5: what are the characteristics of commits that are misclassified
by our prediction models?

Motivation Although our statistical models achieve a good performance in RQ3 and in
RQ4, we intend to investigate the reasons why some clean commits are misclassified as
faulty (false positives), and some faulty commits are misclassified as clean (false negatives).
A good understanding of the characteristics of false positives and false negatives can help
improve our statistical models.

Approach We extract false positive and false negative commits from the results of our
random forest classifier (built in RQ3 and RQ4), and conduct the following analyses:

False positive We statistically compare false positive commits against other studied com-
mits in terms of the metrics described in Table 3 as well as closeness (our best predictor) and
LOC (a popularly metric used to assess software maintenance effort, e.g. Jorgensen 1995).
We also analyse bug reports created between January 2012 and December 2013, to examine
whether false positive commits lead to other kinds of bugs (other than crash-related bugs).
As in RQ2, we also use a 95% confidence level and the Bonferroni correction to decide
whether a result is statistically significant, i.e. p value < 0.05/10 = 0.005.

False negative First of all, we apply the aforementioned statistical approach to compare
false negative commits against other studied commits. Then, we examine the characteristics
of crash-inducing commits that are misclassify by our predictions models by comparing
their changed types with those of other commits. For each studied changed type listed in
Table 2, we will report the percentage of its occurrences in false negative commits and in
other commits.

Finding

False positive Table 15 shows median metric values for false positive and other commits
when predicting crash-inducing commits. For all the studied metrics, false positive commits

Table 14 Accuracy, precision,
recall, and F-measure (in %)
obtained from GLM, naive
Bayes, C5.0, and random forest
when predicting highly impactful
crash-inducing commits

Metric GLM Bayes C5.0 Random forest

Accuracy 76.7 36.9 79.1 81.1

Crash-inducing precision 58.0 26.5 56.8 60.9

Crash-inducing recall 7.1 91.1 48.5 54.9

Crash-inducing F-measure 12.7 40.9 52.4 57.6

Crash-free precision 77.1 87.2 84.6 86.4

Crash-free recall 98.5 19.3 88.4 89.0

Crash-free F-measure 86.6 31.7 86.6 87.6
Highlighted parts indicate the
best prediction algorithm for
each measurement

576 Software Qual J (2018) 26:553–584

Table 15 Median metric values
of false positive commits and
other commits

Metric False positive Other p value

Committer’s experience 197 238 < 2.2e-16

Message size 12 11 < 2.2e-16

Changed files 3 2 < 2.2e-16

Inserted lines 15 9 < 2.2e-16

Deleted lines 28 25 0.003

Entropy of changes 0.6 0.4 < 2.2e-16

Number of changed types 4 3 < 2.2e-16

Entropy of changed types 0.4 0.4 < 2.2e-16

Closeness 3.5 3.5 < 2.2e-16

LOC 822 694 8.0e-09

are significantly different than other commits. In general, false positive commits are often
submitted by less-experienced developers, they have higher complexity in term of lines of
code, and changed more lines of code. Their changed code tends to equally distributed
among multiple files. This is the reason why these commits are misclassified. In fact, we
observed that the random forest model tends to classify commits with less developers’
experience, higher number of changed files and lines of code as ‘crash-inducing commits’.

In addition, 2988 out of 13,093 false positive commits (22.8%) led to other bugs (that did
not crashed the system). Therefore, although our random forest model wrongly classified
them as crash-inducing commits, developers should still pay attention to them because they
are likely to introduce a fault in the system, even though the fault does not crash the system.
Developers should double-check these commits (e.g. during code review sessions) before
integrating them into the version control system.

False negative Table 16 shows median metric values of false negative and other commits. False
negative commits are misclassified, because they were submitted by more-experienced
developers, changed less files and less lines of code. Their entropy of changes is also lower
than other commits. Table 17 shows the percentage of changed type occurrences in false
negative commits and in other commits. These two kinds of commits have a very close per-
centage (less than 2%) of all changed types except renaming, where false negative commits

Table 16 Median metric values
of false negative commits and
other commits

Metric False negative Other p value

Committer’s experience 261 226 < 2.2e-16

Message size 11 11 < 2.2e-16

Changed files 2 3 < 2.2e-16

Inserted lines 6 10 < 2.2e-16

Deleted lines 21 26 0.003

Entropy of changes 0.1 0.4 3.795e-10

Number of changed types 3 4 < 2.2e-16

Entropy of changed types 0.3 0.4 < 2.2e-16

Closeness 3.4 3.5 < 2.2e-16

LOC 497 730 < 2.2e-16

Software Qual J (2018) 26:553–584 577

Table 17 Percentage (%) of
changed type occurrences in
false negative commits and other
commits

Changed type False negative Other

Renaming 46.2 39.3

Code block 23.6 22.2

Parameter 8.5 10.4

Comment 6.1 7.3

Preprocessor 5.4 7.7

Declaration 2.8 3.7

Control flow 2.8 3.6

Function 1.8 2.3

Invocation 1.5 1.9

Type 0.6 0.6

Data type 0.3 0.4

Class 0.2 0.3

Initialisation 0.1 0.1

Access 0.1 0.1

Operator 0 0

C++ template 0 0

have higher percentage. Surprisingly, renaming is the most frequent changed type that leads
to crashes, implying that inappropriate or incomplete renaming can lead to runtime variable
missing or mismatching errors (e.g. ‘variable does not exist’), which crash a software sys-
tem. Especially, when developers use a tool to perform a renaming operation, the tool may
not rename all variables in all related files. This finding suggests that developers should
be careful when performing this apparently ‘simple’ operation. Nowadays, although some
IDEs support automatic renaming, they cannot guarantee that all related or dependent vari-
ables (functions or classes) are correctly renamed (Kim et al. 2012). In the future, we will
empirically evaluate whether renaming or refactoring-related metrics can help improve the
recall of our models. We also plan to study the relationship between code refactorings and
fault-proneness.

In addition, we found similar results of the false positive and false negative commits
yielded by our random forest model in RQ4. Software researchers and practitioners can
refer to our detailed results at: https://github.com/swatlab/crash-inducing.

It is worthy to spend time examining false positive commits because although they do
not lead to crashes, some of them cause other types of bugs. False negative commits
have higher percentage of renaming operations than other commits; suggesting that
developers should be careful when performing renaming operations.

6 Threats to validity

In this section, we discuss the threats to validity of our study following the guidelines for
case study research (Yin 2002).

Construct validity threats concern the relation between theory and observation. In our
study, threats to the construct validity are mainly due to measurement errors. We used the
source code before a commit to compute complexity and SNA metrics: for a given file F in

https://github.com/swatlab/crash-inducing

578 Software Qual J (2018) 26:553–584

a commit C, we sought the previous release R of C and computed the code complexity and
SNA metrics of F in the context of the release R. However, it could be that a new commit
C affects the values of these metrics. We performed an observational study and can report
that, for most commits, there is no noticeable differences.

Another source of measurement errors comes from the original SZZ algorithm (Śliwerski
et al. 2005), which assumes that bug-inducing commits were submitted before a bug’s open-
ing date. We cannot make the same assumption to identify crash-inducing commits, because
a bug may derive from different crashes, which have some method calls in common in their
signatures but may differ from each other in the remaining method calls. Thus, we must
take both the first crash occurrence date and bug opening date into account and match a
possible related commit with the crash-related bug’s crash-signatures. In addition, comput-
ing code complexity and SNA metrics every time a new commit is submitted would delay
the detection of the crash-inducing commits because the computation of these metrics takes
some time. As a compromise, we used the files in the previous release to estimate the code
complexity and SNA metrics values of a commit. In future work, we will design a parallel
algorithm to compute these metrics in real time.

Internal validity threats concern factors that may affect a dependent variable and were
not considered in a study. In Section 3.2.2, although we removed all crash-inducing commits
that only changed comments and/or white space lines, the sets of crash-inducing commits
that we used in our study may still contain some false positives. Indeed, in the fix of a
crash-related bug, not all of the changes aim to address the bug. Some lines may be added
because of a refactoring or the addition of a new feature. These changes are difficult to iden-
tify with an automatic approach. In future work, we plan to manually examine a sample of
crash-inducing commits identified in this study, report its precision and recall, and explore
its characteristics. In addition, unlike Microsoft crash reports (Dang et al. 2012), the crash
reports that we studied were automatically grouped by the Mozilla Socorro server based on
the top methods in their stack traces. This automated grouping is an intrinsic characteristic
of our data, which might influence our study’s outcome by the identification of crash-related
bugs, because the first occurred crash may vary due to different crash grouping algorithms,
which could lead to different crash-inducing commits to be associated to crashes. We fol-
lowed Mozilla’s crash grouping algorithm in our assumption that crashes and crash-inducing
commits are well ordered but future work should study in details this assumption.

Conclusion validity threats concern the relation between the treatment and the outcome.
We paid attention not to violate the assumptions of the used statistical models. In RQ2,
we used non-parametric tests that do not require assumptions about the distribution of the
dataset. Compared to our previous work (An and Khomh 2015b), we also adjusted the data
obtained from srcML to group the reported tags into the correct change types. Moreover, we
investigated the reasons behind false positives and false negatives returned by the prediction
models.

External validity threats concern the possibility to generalise our results. We analysed
only Mozilla Firefox because, although many software organisations use crash collecting
systems, to the best of our knowledge, only Mozilla has opened its crash reports to the public
(Wang et al. 2014). In our previous work (An and Khomh 2015c), we used another Mozilla
project, Fennec for Android, as a subject system to study crash-related bugs. However, the
codes of Firefox and Fennec are both managed by a Mercurial central branch, in which the
two systems share some common components, in particular their Core component, making
it hard to separate the two systems at the level of commits. Indeed, we used Fennec to
conduct our experiment (RQ1 to RQ5), but Fennec obtained results similar to those with
Firefox. Therefore, we decided to only report the results from Firefox. We look forward to

Software Qual J (2018) 26:553–584 579

generalise our proposed approach to more software systems. We share our data and scripts
at https://github.com/swatlab/crash-inducing. Researchers and software organisations can
use these data and scripts to validate our results and replicate our study on other systems
and apply our approach on their own systems.

7 Related work

In this section, we describe some previous studies on crash analysis, traditional fault
prediction techniques, and just-in-time fault prediction techniques.

7.1 Crash analysis

Crashes stop a software system unexpectedly, possibly causing data loss and certainly users’
frustration. Today, many software organisations have deployed automatic crash collecting
systems to gather and triage crash occurrences. Researchers studied crash reports from these
systems to facilitate the debugging and bug fixing process for software practitioners.

Podgurski et al. (2003) proposed an automated failure clustering approach for the clas-
sification of crash reports to facilitate their prioritisation and the diagnostic of their root
causes. Khomh et al. (2011) mined crash reports in Mozilla Firefox and proposed an
entropy-based approach that can be used to identify crash-types with high impact, i.e. crash-
types that occur frequently and impact a large number of users. Based on the approach
proposed by Khomh et al., Wang et al. (2014) studied crash information in Firefox and
Eclipse and proposed an algorithm that can locate and rank faulty files as well as a method
that can identify duplicate and related bug reports. Kim et al. (2011) analysed crash reports
and related source code in Firefox and Thunderbird to predict top crashes before new
releases of these software systems.

None of these previous studies identified commits that can lead to crashes just when they
are submitted into the version control system. In addition, Kim et al. (2011) and Khomh
et al. (2011) only studied crash reports during respectively 5-month and 7-month periods.
In this paper, we studied crash reports during a period of 12 months, i.e. from January 2012
to December 2012.

7.2 Traditional fault prediction techniques

Traditional fault prediction techniques used coarse-grained metrics, such as bug report met-
rics, to identify fault-prone modules or specific types of bugs. By using social factors,
technical factors, coordination factors, and prior-certifications factors, Hassan et al. (Has-
san and Zhang 2006) created decision trees to predict ahead of time the certification result
of a build for a large software project at IBM Toronto Lab. Shihab et al. (2013) extracted
metrics from bug reports and built models using C4.5, Zero-R, naive Bayes, and logistic
regression algorithms to predict bug reopening in three open-source software systems. In
their study, the decision tree model, C4.5, yielded the best prediction results. In a comple-
mentary study, Zimmermann et al. (2012) used logistic regression models to predict bug
reopening in Windows. Kim et al. (2011) proposed approaches to deal with noises in pre-
diction data. They found that prediction accuracy is improved after eliminating noises from
the data. In our previous work (An and Khomh 2015c), we used GLM, C5.0 (the improved
version of C4.5), ctree, randomForest, and cforest to predict crash-related bugs with high
crashing frequency and which impact a large population of users.

https://github.com/swatlab/crash-inducing

580 Software Qual J (2018) 26:553–584

7.3 Just-in-time fault prediction techniques

Traditional fault prediction techniques can help software organisations prevent faults only
to some extent because developers can only identify error-prone modules responsible for
these faults after the faults have been filed into bug reports. During the period between the
integration of the faulty code into the version control system and the opening of the bug
report, a faulty commit could have negatively impacted a large user base. Just-in-time fault
prediction techniques are designed to predict faults in commits to allow developers to track
and fix faults as soon as they are submitted for integration in version control systems.

Kamei et al. (2013) used a wide range of source code metrics to predict fault-prone
commits in six open-source systems and five commercial systems. Fukushima et al. (2014)
applied just-in-time fault prediction techniques to cross-project fault predictions and found
them viable for projects with little historical data. Using a number of code and process
factors extracted at change level, Misirli et al. (2015) built statistical models to predict high-
impact fix-inducing changes. Kim et al. (2008) extracted metrics from commit history to
predict whether a future commit would be buggy or clean.

All of these previous studies concern the prediction of general bugs. In this paper, we
borrowed ideas from these studies to extract change-level metrics to predict crash-inducing
commits. Compared to general bugs, crash-related bugs have higher impact on end users
and possess different characteristics. For example, we know the precise crash date of any
crash-related bug as well as its stack trace. This precise data help to improve the results of
the SZZ algorithm.

In addition, we predict commits that lead to highly impactful crashes, i.e. crashes that
frequently occur and affect a large population of users. Moreover, we studied the false posi-
tive and false negative commits predicted by our models and found that though false positive
commits do not lead to crash-related bugs, some of these false positive commits lead to
other bugs, implying latent problems due to low developers’ experience or large numbers of
changed lines and files. Furthermore, if we compare developers’ experience between crash-
inducing commits and general bug-inducing commits with the Wilcoxon rank sum test, the
two sets have statistically significant differences (p value < 0.05). The median of develop-
ers’ experience for crash-inducing commits and bug-inducing commits are respectively 95
and 105. These results imply that, compared to other bug-inducing commits, crash-inducing
commits are caused by less-experienced developers.

Finally, we also observed that renaming changes are often related with crash-inducing
commits, and hence, we suggest that software practitioners handle this ‘simple’ operation
carefully.

8 Conclusion

Crashes, which are unexpected terminations of software systems, are one of the major
sources of frustration for users. The frequent crashes of software systems can significantly
decrease user-perceived quality and even affect the overall reputation of a software organi-
sation. To help software practitioners identify crash-prone code early on, we conduct a study
of crash-inducing commits in Mozilla Firefox to answer five research questions pertaining
the proportion of crash-inducing commits in Firefox (RQ1), the characteristics of crash-
inducing commits (RQ2), the prediction of crash-inducing commits (RQ3), the prediction of
commits that lead to frequent crashes and that impact a large user base (RQ4), and, finally,
the characteristics of commits that are misclassified by our prediction models (RQ5).

Software Qual J (2018) 26:553–584 581

In summary, we found that crash-inducing commits account for more than 25% of all the
commits that we studied in Firefox. We also found that, compared to other commits, crash-
inducing commits are often submitted by developers with less experience, and that they
contain longer comments, more changed files, and changed lines as well as more change
types. In addition, compared to other crash-related bugs, bugs that yield to frequent crashes
and that impact a large user base were less reopened and tended to be fixed by a single commit.

To help software practitioners track and fix crash-inducing commits as soon as possible,
we built predictive models using various regression and machine learning algorithms. These
predictive models achieved a precision up to 61.2% and a recall up to 94.5% to predict crash-
inducing commits and achieved a precision up to 60.9% and a recall up to 91.1% to predict
commits that lead to highly impactful bugs, i.e. bugs that yield to frequent crashes impacting
a large user base. By analysing the prediction errors, we observed that renaming is the most
frequent change type in Firefox and that crash-inducing commits have a higher percentage
of renaming changes. This observation suggests that developers are not fully aware of the
latent risks of their renaming operations and should double-check their renaming operations
for correctness and completeness.

Software organisations can use our predictive models to identify crash-prone code as
soon as it is committed in the source code repository and, more generally, our approach to
build models adapted to their context. They could then correct their code quickly to avoid
that users suffer from crashes and, thus, to reduce users’ frustrations.

In the future, we plan to generalise our approach to other software systems when and
if they open their crash collecting systems to researchers. We also want to implement our
models into tools for different programming languages and integrate them into interactive
development environments to warn developers as soon as they commit potential crash-prone
code. Integrating our models will require to design a parallel algorithm to compute the code
complexity and SNA metrics in real time. It would also benefit from a manual analysis
of crash-inducing commits to identify their fine-grain characteristics. Finally, we want to
study in more details the code and developers’ characteristics related to crashes to propose
mitigating measures even before the code is committed by developers.

Acknowledgements This work is partially supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and by Fonds de Recherche du Québec – Nature et Technologies (FRQNT).

References

An, L., & Khomh, F. (2015a). Challenges and issues of mining crash reports. In Proceedings of the 1st
international workshop on software analytics (SWAN) (pp. 5–8). IEEE.

An, L., & Khomh, F. (2015b). An empirical study of crash-inducing commits in Mozilla Firefox. In Proceed-
ings of the 11th international conference on predictive models and data analytics in software engineering
(p. 5). ACM.

An, L., & Khomh, F. (2015c). An empirical study of highly-impactful bugs in Mozilla projects. In Proceedings
of 2015 IEEE international conference on software quality, reliability and security (QRS). IEEE.

An, L., Khomh, F., & Adams, B. (2014). Supplementary bug fixes vs. re-opened bugs. In Proceedings of
the 14th international working conference on source code analysis and manipulation (SCAM) (pp. 205–
214). IEEE.

Anbalagan, P., & Vouk, M. (2009). Days of the week effect in predicting the time taken to fix defects. In
Proceedings of the 2nd international workshop on defects in large software systems: Held in conjunction
with the ACM SIGSOFT international symposium on software testing and analysis (ISSTA 2009) (pp. 29–
30). ACM.

582 Software Qual J (2018) 26:553–584

Anvik, J., Hiew, L., & Murphy, G.C. (2006). Who should fix this bug? In Proceedings of the 28th interna-
tional conference on software engineering, ser. ICSE ’06 (pp. 361–370). New York, NY, USA: ACM.
doi:10.1145/1134285.1134336.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal

Complex Systems, 1695(5), 1–9.
C5.0 algorithm (2015). http://www.rulequest.com/see5-comparison.html, online; accessed June 13th, 2015.
Dang, Y., Wu, R., Zhang, H., Zhang, D., & Nobel, P. (2012). Rebucket: a method for clustering duplicate

crash reports based on call stack similarity. In Proceedings of the 34th international conference on
software engineering (pp. 1084–1093). IEEE Press.

Dı́az-Uriarte, R., & De Andres, S.A. (2006). Gene selection and classification of microarray data using
random forest. BMC Bioinformatics, 7(1), 3.

Dmitrienko, A., Molenberghs, G., Chuang-Stein, C., & Offen, W. (2005). Analysis of clinical trials using SAS:
a practical guide. SAS Institute. [Online]. Available: http://www.google.ca/books?id=G5ElnZDDm8gC.

Efron, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of
the American Statistical Association, 78(382), 316–331.

Joorabchi, M.E., Mirzaaghaei, M., & Mesbah, A. (2014). Works for me! characterizing non-reproducible bug
reports. In Proceedings of the 11th working conference on mining software repositories (MSR) (pp. 62–
71). ACM.

Fischer, M., Pinzger, M., & Gall, H. (2003). Populating a release history database from version control and
bug tracking systems. In Proceedings of the 19th international conference on software maintenance
(ICSM) (pp. 23–32). IEEE.

Fukushima, T., Kamei, Y., McIntosh, S., Yamashita, K., & Ubayashi, N. (2014). An empirical study of just-
in-time defect prediction using cross-project models. In Proceedings of the 11th working conference on
mining software repositories (MSR) (pp. 172–181). ACM.

Hassan, A.E., & Holt, R.C. (2003). Studying the chaos of code development. In Null (p. 123). IEEE.
Hassan, A.E., & Zhang, K. (2006). Using decision trees to predict the certification result of a build. In Proceedings

of the 21st international conference on automated software engineering (ASE) (pp. 189–198). IEEE.
Hollander, M., Wolfe, D.A., & Chicken, E. (2013). Nonparametric statistical methods, 3rd edn. Wiley.
Jorgensen, M. (1995). Experience with the accuracy of software maintenance task effort prediction models.

IEEE Transactions on Software Engineering, 21(8), 674–681.
Kamei, Y., Shihab, E., Adams, B., Hassan, A.E., Mockus, A., Sinha, A., & Ubayashi, N. (2013). A large-scale

empirical study of just-in-time quality assurance. IEEE Transactions on Software Engineering, 39(6), 757–773.
Khomh, F., Chan, B., Zou, Y., & Hassan, A.E. (2011). An entropy evaluation approach for triaging field

crashes: a case study of Mozilla Firefox. In Proceedings of the 18th working conference on reverse
engineering (WCRE) (pp. 261–270). IEEE.

Kim, D., Wang, X., Kim, S., Zeller, A., Cheung, S.-C., & Park, S. (2011). Which crashes should I fix first?:
predicting top crashes at an early stage to prioritize debugging efforts. IEEE Transactions on Software
Engineering, 37(3), 430–447.

Kim, M., Zimmermann, T., & Nagappan, N. (2012). A field study of refactoring challenges and benefits.
In Proceedings of the ACM SIGSOFT 20th international symposium on the foundations of software
engineering (p. 50). ACM.

Kim, S., Whitehead, E.J. .Jr., & Zhang, Y. (2008). Classifying software changes: clean or buggy? IEEE
Transactions on Software Engineering, 34(2), 181–196.

Kim, S., Zhang, H., Wu, R., & Gong, L. (2011). Dealing with noise in defect prediction. In Proceedings of
the 33rd international conference on software engineering (ICSE) (pp. 481–490). IEEE.

Kim, S., Zimmermann, T., Pan, K., & Whitehead, E.J. .Jr. (2006). Automatic identification of bug-introducing
changes. In Proceedings of the 21st international conference on automated software engineering (ASE)
(pp. 81–90). IEEE.

Kononenko, O., Baysal, O., & Godfrey, M.W. (2016). Code review quality: how developers see it. In Proceedings
of the 38th international conference on software engineering (ICSE) (pp. 1028–1038). ACM.

Misirli, A.T., Shihab, E., & Kamei, Y. (2015). Studying high impact fix-inducing changes. Empirical
Software Engineering, 1–37.

Moser, R., Pedrycz, W., & Succi, G. (2008). A comparative analysis of the efficiency of change metrics
and static code attributes for defect prediction. In Proceedings of the 30th international conference on
software engineering (ICSE) (pp. 181–190). IEEE.

Mozilla’s code quality statistics (2016). https://metrics.mozilla.com/code-quality/#all, online; accessed
September 12th, 2016.

Mozilla’s community statistics (2016). https://wiki.mozilla.org/Community, online; accessed September
12th, 2016.

http://dx.doi.org/10.1145/1134285.1134336
http://www.rulequest.com/see5-comparison.html
http://www.google.ca/books?id=G5ElnZDDm8gC
https://metrics.mozilla.com/code-quality/#all
https://wiki.mozilla.org/Community

Software Qual J (2018) 26:553–584 583

Nagappan, N., & Ball, T. (2005). Use of relative code churn measures to predict system defect density. In
Proceedings of the 27th international conference on software engineering (ICSE) (pp. 284–292). IEEE.

National Institute of Standards & Technology (2002). The economic impacts of inadequate infrastructure for
software testing. US Dept of Commerce.

Parnas, D.L. (1994). Software aging. In Proceedings of the 16th international conference on software
engineering (ICSE) (pp. 279–287). IEEE Computer Society Press.

Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., & Wang, B. (2003). Automated support
for classifying software failure reports. In Proceedings of the 25th international conference on software
engineering (ICSE) (pp. 465–475). IEEE.

Rish, I. (2001). An empirical study of the naive bayes classifier. In IJCAI 2001 workshop on empirical
methods in artificial intelligence, no. 22 (pp. 41–46). IBM.

Rogerson, P.A. (2010). Statistical methods for geography: a student’s guide. Sage Publications.
Romo, B.A., Capiluppi, A., & Hall, T. (2014). Filling the gaps of development logs and bug issue data. In

Proceedings of the international symposium on open collaboration (p. 8). ACM.
Shannon, C.E. (2001). A mathematical theory of communication. SIGMOBILEMob. Comput. Commun. Rev.,

5, 3–55. doi:10.1145/584091.584093.
Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W.M., Ohira, M., Adams, B., Hassan, A.E., & Matsumoto, K.-i.

(2013). Studying re-opened bugs in open source software. EmpiricalSoftware Engineering, 18(5), 1005–1042.
Śliwerski, J., Zimmermann, T., & Zeller, A. (2005). When do changes induce fixes? In ACM sigsoft software

engineering notes, no. 4 (pp. 1–5). ACM.
Socorro (2015). Mozilla’s crash reporting system, https://crash-stats.mozilla.com/home/products/Firefox,

online; accessed June 13th, 2015.
SrcML (2015). http://www.srcml.org, online; accessed June 13th, 2015.
Understand static code analysis tool (2015). https://scitools.com, online; accessed June 13th, 2015.
Wang, S., Khomh, F., & Zou, Y. (2014). Improving bug management using correlations in crash reports.

Empirical Software Engineering, 1–31.
Williams, C., & Spacco, J. (2008). SZZ revisited: verifying when changes induce fixes. In Proceedings of

the 2008 workshop on defects in large software systems (pp. 32–36). ACM.
Wu, R. (2014). Diagnose crashing faults on production software. In Proceedings of the 22nd ACM SIGSOFT

international symposium on foundations of software engineering (pp. 771–774). ACM.
Yin, R.K. (2002). Case study research: design and methods, 3rd edn., SAGE Publications,
Zimmermann, T., Nagappan, N., Guo, P.J., & Murphy, B. (2012). Characterizing and predicting which

bugs get reopened. In Proceedings of the 34th international conference on software engineering (ICSE)
(pp. 1074–1083). IEEE.

Le An is a Ph.D. student in the Computer Engineering department at Polytechnique Montréal, Canada. He
received his Bachelor of Engineering at Beijing University of Technology, and his Master of Applied Science
at Polytechnique Montréal. His research interests lie in the areas of empirical software engineering including
mining software repositories, data analytics, cloud computing, and software reliability.

http://dx.doi.org/10.1145/584091.584093
https://crash-stats.mozilla.com/home/products/Firefox
http://www.srcml.org
https://scitools.com

584 Software Qual J (2018) 26:553–584

Foutse Khomh is an assistant professor at Polytechnique Montréal, where he heads the SWAT Lab on soft-
ware analytics and cloud engineering research (http://swat.polymtl.ca/). He received a Ph.D. in Software
Engineering from the University of Montréal in 2010, with the Award of Excellence. His research inter-
ests include software maintenance and evolution, cloud engineering, service-centric software engineering,
empirical software engineering, and software analytic. He has published several papers in international con-
ferences and journals, including ICSM(E), MSR, SANER, ICWS, HPCC, IPCCC, JSS, JSEP, and EMSE.
His work has received two Best Paper Awards and many nominations. He has served on the program com-
mittees of several international conferences including ICSM(E), SANER, MSR, ICPC, SCAM, and ESEM
and has reviewed for top international journals such as SQJ, EMSE, TSE, and TOSEM. He is on the Review
Board of EMSE. He is program chair for Satellite Events at SANER 2015 and program co-chair for SCAM
2015. He is one of the organizers of the RELENG workshop series (http://releng.polymtl.ca) and has been
guest editor for special issues in the IEEE Software magazine and JSEP.

Yann-Gaël Guéhéneuc received the engineering diploma from the École des Mines of Nantes in 1998 and
the Ph.D. degree in software engineering from the University of Nantes, France (under professor Pierre
Cointe’s supervision) in 2003. He is a full professor in the Department of Computer and Software Engineering
of the École Polytechnique de Montréal, where he leads the Ptidej team on evaluating and enhancing the
quality of object-oriented programs by promoting the use of patterns, at the language, design, or architectural
levels. In 2009, he was awarded the NSERC Research Chair Tier II on Software Patterns and Patterns of
Software. His Ph.D. thesis was funded by the Object Technology International, Inc. (now IBM OTI Labs),
where he worked in 1999 and 2000. He has published papers in international conferences and journals,
including IEEE TSE, Springer EMSE, ACM/IEEE ICSE, and IEEE ICSM. He is a senior member of the
IEEE.

http://swat.polymtl.ca/
http://releng.polymtl.ca

	An empirical study of crash-inducing commits in Mozilla Firefox
	Abstract
	Introduction
	Mozilla crash collecting system
	Identification of crash-inducing commits
	Identification of crash-related bugs
	Identification of crash-inducing commits
	Extraction of crash-related changed files
	Identification of the previous commits of the changed files

	Case study design
	Data collection
	Data processing
	Mining crash reports
	Computing code complexity metrics
	Computing social network analysis metrics
	Identifying changed types
	Identifying bugs requiring supplementary fixes and reopened bugs

	Case study results
	RQ1: what is the proportion of crash-inducing commits in Firefox?
	Motivation
	Approach
	Finding

	RQ2: what characteristics do crash-inducing commits possess?
	Motivation
	Approach
	Comparing the extents of changes in crash-inducing commits vs. crash-free commits
	Comparing the changed types of crash-inducing commits vs. crash-free commits
	Comparing the people factor of crash-inducing commits vs. crash-free commits
	Finding
	Hypothesis tests
	Proportional analysis

	RQ3: how well can we predict crash-inducing commits?
	Motivation
	Approach
	Finding

	RQ4: how well can we predict commits that lead to frequent crashes that impact a large user base?
	Motivation
	Approach
	Finding

	RQ5: what are the characteristics of commits that are misclassified by our prediction models?
	Motivation
	Approach
	False positive
	False negative
	Finding
	False positive
	False negative

	Threats to validity
	Related work
	Crash analysis
	Traditional fault prediction techniques
	Just-in-time fault prediction techniques

	Conclusion
	Acknowledgements
	References

