
Efficient and scalable omniscient debugging for model
transformations

Jonathan Corley1 • Brian P. Eddy2 • Eugene Syriani3 •

Jeff Gray1

Published online: 18 January 2016
� Springer Science+Business Media New York 2016

Abstract This paper discusses a technique for supporting omniscient debugging for

model transformations, which are used to define core operations on software and system

models. Similar to software systems developed using general-purpose languages, model

transformations are also subject to human error and may possess defects. Existing model-

driven engineering tools provide stepwise execution to aid developers in locating and

removing defects. In this paper, we describe our investigation into a technique and asso-

ciated algorithms that support omniscient debugging features for model transformations.

Omniscient debugging enables enhanced navigation and exploration features during a

debugging session beyond those possible in a strictly stepwise execution environment.

Finally, the execution time performance is comparatively evaluated against stepwise

execution, and the scalability (in terms of memory usage) is empirically investigated.

Keywords Omniscient debugging � Model-driven engineering � Model transformation �
Empirical evaluation

& Jonathan Corley
corle001@crimson.ua.edu

Brian P. Eddy
beddy@uwf.edu

Eugene Syriani
syriani@iro.umontreal.ca

Jeff Gray
gray@cs.ua.edu

1 Department of Computer Science, The University of Alabama, Tuscaloosa, AL, USA

2 Department of Computer Science, University of West Florida, Pensacola, FL, USA

3 Department of Computer Science, University of Montreal, Montreal, Canada

123

Software Qual J (2017) 25:7–48
DOI 10.1007/s11219-015-9304-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9304-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9304-4&domain=pdf

1 Introduction

Model-driven engineering (MDE) has emerged as a software development paradigm that

can assist in separating the issues of the problem space of a software system from the

accidental complexities of implementation in the solution space (Combemale et al. 2014).

MDE approaches often use customized domain-specific modeling languages that capture

the intent of a particular group of end users through abstractions and notations that fit a

specific domain of interest (Gray et al.2007). Thus, the domain-specific abstractions and

notations aid in eliminating the accidental complexities of implementation. In MDE, the

evolution, simulation, generation, and translation of models are commonly defined using

model transformation languages (MTLs), which can be used to specify the distinct needs of

a requirement or engineering change at the software modeling level (Lúcio et al. 2016).

Model transformations are also a type of software abstraction that can be subject to human

error, and traditional approaches to bug localization have also been applied to assist in

locating errors in model transformations (Schönböck et al. 2009). Despite the focus on

models and model transformations, traditional development concerns such as debugging

must still be undertaken by developers adopting MDE practices. Bran Selic (2003) com-

mented that if developers are not satisfied with the day-to-day application of MDE, then

MDE will be rejected in practice.

Debugging is a fundamental software engineering task. However, despite the common

need for debugging in software development, tool support for debugging has changed little

over the past half century (Seifert and Katscher 2008). Several novel approaches to

debugging have been introduced for general-purpose languages (GPLs), such as omniscient

debugging (Engblom 2012). However, stepwise execution is the most common debugging

technique provided in both GPL tools (e.g., Eclipse and Visual Studio) and MDE tools

[e.g., ATL (Jouault et al. 2008)]. Stepwise execution enables developers to control the

execution of the system and view normally hidden state information through a set of

execution traversal features enabling continuous execution, pausing or stopping execution,

and traversing execution in a stepwise manner. The only modeling tool we are aware of

that includes an advanced dynamic debugging technique for model transformation is

TROPIC (Schönböck et al. 2009), which provides support for query-based debugging using

OCL to pose queries against a Petri-net-based translation of the target system.

Omniscient debugging enables a developer to revert a software system to a prior state

dynamically at runtime. This allows developers to investigate a system starting from the

location where an error was identified and trace to the location of the fault (informally

referred to as the bug) that caused the failure. These three terms (error, failure, and fault)

each receive a distinct definition in the IEEE 610.12-1990 standard glossary of software

engineering terminology (IEEE 2002). This distinction highlights the fact that visible signs

of a defect may not manifest at the location of the defect. Omniscient debugging provides

facilities to help developers explore these complex errors. A survey of the existing liter-

ature suggests that there is a distinct lack of support for omniscient debugging in MDE

tools. However, other techniques such as model slicing (Ujhelyi et al. 2012; Androut-

sopoulos et al.2013) and query-based debugging (Schönböck et al. 2009) have been

explored in the context of models and transformations that could also aid in identifying

similar issues. Omniscient debugging provides a live exploratory approach where the

developer may freely traverse the execution history of a given system. Techniques such as

query-based debugging and model slicing would be complimentary to omniscient

8 Software Qual J (2017) 25:7–48

123

debugging by aiding the developer in selecting points of interest in the execution history to

explore via omniscient traversal.

Existing literature for omniscient debugging focuses on GPLs (e.g., Java and C??).

However, model transformations (MTs) are also subject to errors, and these errors may not

manifest at the location of the defect. If a developer were to misidentify the location of a

defect by targeting the location of an error, a traditional debugger would require restarting the

system. Restarting can be expensive, requiring a non-trivial amount of time to re-execute or a

significant delay due to manual input from the developer. Omniscient debugging avoids the

need to re-execute to reach a prior state. MTs also have concerns not traditionally found in

GPL systemswhichwould benefit fromomniscient debugging.DeclarativeMTLs commonly

provide non-deterministic rule scheduling. The non-determinism is commonly accepted

because the rules should not be dependent on ordering to produce correct results. However, it

is frequently possible to define transformations improperly such that the ordering of rule

executionmay vary the final result. In this scenario, it may be difficult to fully trace the source

of a defect because the bugmaymanifest in one execution, but not in a subsequent execution.

In these situations, an omniscient debugger enables the developer to fully explore the context

in which the bug may be observed.

As we consider support for omniscient debugging of MTs, we must also consider the

need for an efficient and scalable solution. The organizers of the scalability in model-

driven engineering workshop state that current modeling and MT environments are

being pushed to the limits of the capability, and further research and development is

imperative (Di Ruscio et al. 2013). Numerous works have been presented in recent years

discussing topics such as parallel processing of MTs (Burgueño et al. 2015), techniques

supporting incremental processing of model transformations (Szárnyas et al. 2014), and

cloud-based architectures for modeling and transformation (Szárnyas et al. 2014; Bas-

ciani et al. 2014; Corley et al. 2016). Therefore, we have undertaken to utilize a minimal

structure to store required information in support of omniscient debugging, and we have

developed a set of algorithms designed to support efficient omniscient traversal of MTs.

As models continue to grow in size, Kolovos et al. (2013) define large-scale models as

being on the order of millions of elements, the transformations and supporting trans-

formation tooling operating on such large models must be designed for efficiency and

scalability.

The major contributions of this paper focus on providing and evaluating an efficient and

scalable technique supporting basic omniscient debugging features for model transfor-

mations. The paper’s contributions can be summarized as:

• We define basic omniscient debugging features and extend traditional stepwise

execution features to support omniscient traversal (i.e., both executing a transformation

forward and reverting it back).

• We define a minimal structure to store history for a MT engine.

• We discuss how the minimal history structure can be used to provide efficient

omniscient traversal.

• Finally, we provide an empirical evaluation of an implementation of our technique as

compared to a traditional stepwise execution debugger within the same context. The

empirical evaluation includes evaluating execution time variance, memory consump-

tion, and re-executing a transformation as opposed to using omniscient traversal.

The remainder of the paper is structured as follows. Section 2 will overview related

work in the area of omniscient debugging. Section 3 will present an illustrative scenario of

a developer using omniscient debugging. Section 4 will describe our technique enabling

Software Qual J (2017) 25:7–48 9

123

omniscient debugging for model transformations, including theoretical analysis of exe-

cution time and space complexity bounds. Section 6 will discuss the design and results of

an empirical analysis of the performance and scaling of our technique. Finally, Sect. 7 will

provide concluding remarks and briefly discuss our ongoing research efforts in the area of

omniscient debugging for model transformations.

2 Background and related work

A wide variety of tools and techniques that aid developers in the process of debugging have

been created, studied, and evolved. A number of different approaches have been introduced

including the traditional combination of breakpoints and stepwise execution, as well as

more advanced approaches, such as omniscient (also referred to as back-in-time) debug-

ging and query-based debugging. However, before discussing debugging, we first intro-

duce basic concepts and terminology concerning MT and highlight differences between

MTs and GPLs.

2.1 Models and model transformations

Just as high-level languages provide abstractions to reduce accidental complexity from

low-level languages, MDE seeks to shift the focus of developers away from the solution

domain, and any accidental complexity inherent to the solution domain, to bring devel-

opment closer to the problem domain (Schönböck 2012). This goal is achieved in MDE by

focusing on models. Models conform to a given metamodel. A metamodel is a model that

formally defines the structure and static semantics of a set of models (Kühne 2006).

MTs are core operations that drive evolution and maintenance within the MDE para-

digm. A MT converts source model(s) to target model(s) by following a set of rules. The

rules may be purely imperative, such as in QVT-O (QVT 2015); purely declarative, such as

in a graph transformation (Czarnecki and Helsen 2006); or combine imperative and

declarative elements, such as in ATL (Jouault et al. 2008). An imperative language

functions similarly to traditional GPLs (e.g., Java or C??) by having a structured and rigid

control flow scheme. In an imperative approach, the conversion process is defined

explicitly, similar to a GPL (QVT 2015).

Declarative approaches do not express how a transformation is implemented, but

rather focus on what should occur during the transformation. A common declarative

approach is graph transformation, which includes a left-hand side (LHS), a model pattern

that is matched to a subset of the source model(s) to be transformed, and a right-hand side

(RHS), a model pattern that is matched to a portion of the target model(s) to be created or

updated (Czarnecki and Helsen 2006). The combination of LHS and RHS rules produces

pre- and post-condition definitions of what should occur during the transformation, but

the details of how are not specified. Additionally, some graph transformation environ-

ments enable the use of one or more negative application conditions (NAC). A NAC

specifies a constraint which, if true, prevents execution. Figure 1 presents a sample graph

transformation rule with a NAC. The LHS specifies two nodes (labeled 1 and 2) con-

nected by a link. The rule will only be applied if the LHS is properly matched, but may

be applied to any element set within the model that matches the LHS. The RHS then adds

a new node (labeled 3) which is linked to both of the existing nodes (1 and 2). However,

the NAC may prevent executing the rule if the two existing nodes (1 and 2) are already

10 Software Qual J (2017) 25:7–48

123

connected to another node (labeled 4). Thus, the rule will only be applied if two nodes

are connected by a link and the two nodes are not already connected to a shared third

node. Furthermore, graph transformation rules may be used in hybrid approaches (e.g.,

ATL or MoTif (Syriani and Vangheluwe 2011)) that focus on defining declarative rules

in combination with a mechanism to schedule and combine rules. In MoTif, the order of

rule execution is defined by a structure resembling an activity diagram. Each rule may

potentially call numerous graph transformation rules, and the selection and order of

graph transformation rules are potentially non-deterministic.

2.2 Non-determinism in model transformations

Non-determinism is a key feature of hybrid and declarative MTLs, but not found com-

monly in GPLs. Scheduling of rules (i.e., how the order of rule application is decided at

runtime) may be non-deterministic (Czarnecki and Helsen 2006). Non-deterministic rule

scheduling depends on the rules being defined in a way that prevents variations in order

from providing incorrect results. However, in practice it is possible to define transfor-

mations such that the order of rules can produce incorrectly varying results. In this sce-

nario, a traditional debugger that relies on restarting the transformation to revisit a past

state suffers from more than needing to re-execute the transformation. If the error is due to

a specific ordering of rule application, then non-deterministic rule scheduling prevents a

stepwise execution debugger from guaranteeing the ability to revisit an observed result.

This can be further expanded to situations where the rule order is not a factor in the error,

but presents a variation in the processing of intermediate events that may complicate the

process of bug localization. MTLs (particularly those using graph transformation rules)

also support non-deterministic selection of model elements when executing a transfor-

mation rule (Czarnecki and Helsen 2006). The LHS of a graph transformation may match

many distinct sets of elements, but the order in which these sets are chosen is often not

deterministic. Thus, a developer may re-execute a system to find the elements are changed

in a new way. In fact, the bug may even be due to the choice of elements made by this non-

deterministic system. Thus, while non-deterministic systems are central to many MTLs, the

use of non-determinism presents an obstacle to bug localization that is not adequately

managed by stepwise execution debuggers. However, an omniscient debugger provides an

ideal solution to this concern. The non-deterministic behavior is captured by an omniscient

debugger. Thus, within a given debugging session, the developer can revisit past states

exactly as they occurred during initial execution. This enables developers to track an error

to the initial failure without concern for the non-deterministic decisions made by the

underlying execution engine.

Fig. 1 Sample graph transformation rule

Software Qual J (2017) 25:7–48 11

123

2.3 Bidirectional transformations

An interesting feature of MT is the direction of the transformation flow. Typically,

transformations proceed from source(s) to target(s), but transformations may also be

bidirectional to accommodate translation both from source(s) to target(s) and target(s) to

source(s) (Stevens 2010). Bidirectional transformation rules provide an alternative to

storing trace information. For systems with bidirectional transformations, the assumption

that the bidirectional nature of the transformation is implemented properly may not hold

unless a strict bijective approach (which requires a single reversible operator) is used, and a

strict bijective approach is not always possible (Stevens 2010). Additionally, transforma-

tion rules are not always defined as bidirectional. Thus, we would require deriving an

inverse for each rule. However, an inverse rule is not always possible. Consider a model

transformation rule that deletes a model element. Since any information in the deleted

element is lost once deleted, an inverse rule would not be possible. Similarly, updates can

be ambiguous; e.g., setting an element to a specific value does not provide any clue to the

prior value. More complex scenarios also exist. An element might be updated based on the

value of a second element (e.g., e1.value ?= e2.value). If the second element is

then deleted, the inverse rule is no longer applicable because the value of e2 has been lost.

Thus, a key goal of our omniscient technique is to store a minimal complete trace of

execution history that will manage the ambiguities not possible with a bidirectional

transformation solution.

2.4 Stepwise execution

Stepwise execution is the most commonly implemented feature for debugging support.

Stepwise execution allows the developer to observe hidden state information dynami-

cally during execution and in many implementations to alter state information, or even

the behavior of the system. Some minor differences were observed between tools that

were largely derived from differing features of the transformation language (e.g., AToM3

(AToM3 2015) allows developers to manually control rule scheduling, which would

normally be scheduled using a non-deterministic method). A stepwise execution envi-

ronment generally possesses the following features: play, pause, stop, and step

features. Play allows for continuous execution; pause suspends execution at the

current step allowing the developer to closely examine and possibly alter details of the

current system state; stop terminates execution leaving the system in the current state

and closes the dynamic environment. Three step features (stepOver, stepIn, and
stepOut) allow developers to incrementally progress the execution environment in

distinct ways. Numerous MDE tools (e.g., TROPIC (Schönböck et al. 2009), GReAT

(Agrawal et al. 2006), ATL (Jouault and Kurtev 2006), TefKat (Steel and Lawley 2004),

AToM3 (AToM3 2015), VIATRA2 (Varró and Balogh 2007), AGG (Taentzer 2003), and

Fujaba (Henkler et al. 2010)) provide basic debugging support in the form of stepwise

execution facilities.

Mannadiar and Vangheluwe introduced a variety of basic techniques to aid debugging

domain-specific models including MTs (Mannadiar and Vangheluwe 2011). Their con-

tribution includes using language features such as stack traces, exceptions, assertions, as

well as the more formal technique of stepwise execution.

12 Software Qual J (2017) 25:7–48

123

2.5 Omniscient debugging for GPLs

Omniscient debugging is not a new technique in the realm of GPLs. Zelkowitz published

on the concept of reversible execution in the early 1970s (Zelkowitz 1973). Since this time,

significant work has been undertaken in the context of GPLs including several commercial

products (Engblom 2012). However, these techniques have focused on either utilizing low-

level machine implementations to support reverse and replay or utilizing traces designed to

capture information for a given GPL. In this work, we define a trace-based omniscient

debugger supporting hybrid MTLs. The debugger is defined at the level of the transfor-

mation engine. Thus, we support omniscient debugging at the level of CRUD (create, read,

update, and delete) operations in a modeling environment. The term originated from the

database community, but has been adopted by the modeling community to define the most

atomic set of operations on a model.

Omniscient debugging can be viewed as an extension of stepwise execution that enables

a developer to reverse the execution of the system and revisit previous steps. A key

challenge of omniscient debugging is minimizing memory consumption. Several potential

solutions have been presented in the GPL literature. Lienhard et al. and Lewis discussed a

strategy similar to garbage collection (Lewis 2003; Lienhard et al. 2008, 2009) removing

any elements from history that are no longer referenced. This technique seeks to minimize

data collected over time, but in some scenarios these elements may need to be regenerated,

thus reducing execution time efficiency. Lewis discussed limiting the portion of history

that can be navigated (Lewis 2003), providing a window effect. The advantages and

disadvantages of this solution are similar to utilizing garbage collection, but whereas

garbage collection would maintain the history of elements currently referenced, the win-

dow solution removes all information outside of the current window. Lewis also introduced

a third strategy that identifies a subset of the program’s elements as being of interest to the

debugging process (Lewis (2003) and only records information concerning these elements.

This solution can be applied in a static manner (e.g., select elements of interest before

playBack begins), but Pothier and Tanter (2009) also explored a dynamic variant (e.g.,

select elements no longer of interest during runtime). This technique creates the challenge

of discerning which elements will be of interest. This is particularly a concern for the static

approach, which requires foreknowledge of all interesting elements.

2.6 Omniscient debugging for MDE

Recently, there has been some work in the area of MDE toward the application of

omniscient debugging. Van Mierlo presented a proposal toward the debugging of exe-

cutable models defining simulation semantics (Van Mierlo 2014). A particular focus of the

work addressed handling simulated real time. The scope of our new contribution of this

paper concerns applying omniscient debugging to MTs. Our work does not concern han-

dling simulated real time or relating the model entities with generated code. Our prior work

has investigated applying omniscient debugging to model transformations toward a scal-

able and performant omniscient technique (Corley 2014; Corley et al. 2014). Furthermore,

in collaboration with researchers from IRISA/INRIA and University of Rennes, we have

explored applying omniscient debugging to an executable domain-specific modeling

(xDSML) environment (Bousse et al. 2015). The collaborative work utilized generated

domain-specific trace metamodels along with a generated domain-specific trace manager to

enable developers to utilize a generic omniscient debugger implementation with xDSMLs.

Software Qual J (2017) 25:7–48 13

123

This collaborative work also investigated multi-dimensional omniscient debugging

traversal features. These features enable a user to explore history through only steps

relevant to a given model element. Thus, the developer can minimize the time spent

reviewing steps not of interest. In this paper, we focus on evaluating the changes to the

underlying model transformation engine to support omniscient debugging. Because the

multi-dimensional features are defined using a subset of omniscient debugging features

(primarily jump), we do not include those features in this paper. We are not aware of any

other literature concerning omniscient debugging in the context of MDE.

2.7 AToMPM

Our omniscient debugger prototype is implemented within the context of AToMPM

(Syriani et al. 2013), which is a cloud-based modeling solution with an associated

graphical, browser-based user interface. The back-end structure of AToMPM is intended to

provide a scalable solution to modern modeling concerns. AToMPM provides two basic

transformation languages: MoTif and T-Core. MoTif provides basic support for rule

scheduling and control flow with graph transformation rules defining the primitive oper-

ations. As discussed by Syriani et al., T-Core provides a set of primitives derived from

studying existing MTLs (Syriani et al. 2015).

3 An omniscient debugging scenario

This section describes an illustrative scenario of a developer using our technique to locate a

defect in a MT. For this scenario, we will describe the efforts of a developer (who we will

refer to as James) attempting to find a defect using omniscient features. For the purposes of

this illustrative scenario, we use a model transformation solution for the 2014 Transfor-

mation Tool Contest (TTC) Movie Database Case (Movie DB Case) (Horn et al. 2014)

originally presented in (Ergin and Syriani 2014). The transformation pairs actors with

movies and records the ratings for those movies in which they appear. The main task of the

model transformation is to identify all actor couples that appear in at least three movies

together and to compute the average rating of those movies. This task can be broken into

three subtasks: generating the data, identifying couples, and averaging the ratings of the

movies. We will focus on the second subtask, identifying couples. The solution was

developed in MoTif (Syriani and Vangheluwe 2011) and executed in AToMPM (Syriani

et al. 2013). For the sake of simplicity, this scenario focuses primarily on a specific rule,

but the transformation contains many rules. See Horn et al. (2014) for the full details of this

transformation, and (Ergin and Syriani 2014) for a solution created in AToMPM. Here,

focusing on a single transformation rule can be likened to focusing on a single method of a

Java program.

3.1 Transformation details

The transformation presented in Fig. 2 identifies pairs of actors/actresses who have at least

threemovies in common, links the two actors/actresses to a shared couple node, and then links

the couple node to each movie shared by the two actors/actresses comprising the couple. The

transformation contains two graph transformation rules, findStarsAndCreateCouple
and referenceToCoupleMovies. The first, findStarsAndCreateCouple,

14 Software Qual J (2017) 25:7–48

123

identifies a pair of actors/actresses which are both linked to at least three movies with each

other and creates a new couple node that is connected to both actors/actresses. The first rule

also uses two NACs to ensure the two actors/actresses are not already attached to a shared

couple node. The second, referenceToCoupleMovies, identifies a couple transitively
linked to a movie through both actors/actresses comprising the couple, and then refer-
enceToCoupleMovies links the couple directly to the movie. A NAC ensures that

couples are not linked to the same movie more than once. Finally, a MoTif transformation

seen to the right of findStarsAndCreateCouple defines the control flow for the

transformation. The transformation starts by executing findStarsAndCreateCouple.
After creating a new couple, the transformation repeatedly executes referenceToCou-
pleMovies to link the new couple to eachmovie linked to both actors/actresses comprising

the couple. The transformation exits successfully if findStarsAndCreateCouple fails,

indicating no further actor/actress couples exist. The transformation exitswith failure status if

referenceToCoupleMovies fails to apply at least once.

Consider the scenario where our developer must fix a defective implementation of

findStarsAndCreateCouple, as presented in Fig. 3. The defective rule may identify

a pair of actors/actresses that only share two movies. The defective rule then creates a new

link such that the pair of actors now appears to be linked to three movies. Alternatively, the

Fig. 2 Solution to Task 2 of the 2014 TTC Movie DB Case as presented by Ergin and Syriani (2014)

Fig. 3 Defective variant of findStarsAndCreateCouple

Software Qual J (2017) 25:7–48 15

123

defective rule might identify a correct couple, but then link one of the actors/actresses to a

new movie. After the rule has been executed, the model appears to be in a correct state.

However, the model has been subtly corrupted and the transformation will not produce

correct results.

3.2 An omniscient debugging scenario

Our developer, James, might execute a set of test cases where the resulting couples and

couple averages (average of all shared movie ratings for a given couple) are known. In the

process of executing the tests, James notices that in a specific test case the average for a

certain couple has been computed incorrectly. He executes the transformation using an

omniscient debugger and initially traverses to Task 3 to observe the couple’s average being

computed. After stepping through and locating the step which computed the couple’s

average, James notices that the couple’s average has been correctly computed based on the

existing links. Further investigation identifies that the couple has been computed with an

additional movie incorrectly included. He jumps back to Task 1 to observe the actors,

movies, and linking edges being generated. However, he immediately finds that the two

actors have been correctly generated with the expected movie links. James now continues

re-executing the system to see the couple being created and the movies linked to the

couple. He then steps through the defective findStarsAndCreateCouple rule. From

this navigation sequence, he is able to observe that the rule has incorrectly matched a

movie only connected to a single actor, and he can even back up the system and re-execute

to confirm his initial observation. He observes the extra link being created and understands

that this rule is the defect causing the error. James investigates the rule definition, identifies

the missing edge, and is able to correct the defect. Further testing verifies the change is

correct and the issue is resolved.

In the scenario, James is able to freely traverse the execution history of the system

enabling him to directly follow the trail of clues to eventually identify the defective rule.

When James first observes the defective behavior, he is even able to immediately revert

and re-execute the rule to verify the defective behavior. James uses the jump feature to

quickly move through the system’s execution history to an interesting point (where the

actors, movies, and linking edges are created). The omniscient features enabled a simple,

intuitive exploration of the system’s execution to identify the defect. James made use of

numerous basic features (e.g., jump, back, step) to explore the system. If James had been

using a stepwise debugger, he would have needed to restart the system at least twice. The

first time, he would need to restart when moving from Task 3 (where the couple average is

computed) to Task 1 (where the actors, movies, and linking edges are generated). The

second time, he would restart when he re-executed the defective rule to verify the rule was

producing incorrect results.

In this scenario, re-executing costs time. Depending on the transformation, the time to

re-execute can be significant. We have observed rules involving complex searches of large

models that can take 5–10 min. In particular, a transformation that generates a

model(s) (e.g., generating test cases for mutation testing) or simulates a complex

model(s) (e.g., a physics simulation of the interaction of stellar objects) can take significant

time to execute. Additionally, the size of input for a transformation directly impacts the

execution time (especially concerning rules that must search the model). Kolovos et al.

(2013) describe large models as containing on the order of millions of elements. However,

in some cases, re-executing may also cause the developer to lose the context where the

defect occurs. The defect may be lost because some defects do not appear in all executions

16 Software Qual J (2017) 25:7–48

123

given the same input conditions. This is due to the non-deterministic behavior of MTs as

discussed in Sect. 2.2. Consider the sample model presented in Fig. 4. When processing

this sample model, the transformation should couple the two actors and provide a couple

average of 100. However, due to the non-deterministic selection of model elements when

multiple matches are present for a rule’s LHS, the defective rule may match either movies

A, B, and C or some triple containing movie D. In the case where the rule matches movies

A, B, and C, the result will be calculated correctly, but if the movie D is matched the result

will be calculated incorrectly to be 75. This is because the defective rule would create a

link between both the right actor and movie D, increasing the number of movies associated

with the couple, and decreasing the couple’s average movie score. Omniscient debugging

preserves the context in which the defect occurs (such as connecting the couple to movies

A, B, and D in Fig. 3). Thus, James may fully explore the context where the defect is

presented initially, and avoid applying to a different set of elements which may not present

the defective behavior. Thus, the omniscient debugger prevents James from re-executing

the system, which may result in not identifying the observed error (due to a different set of

elements being selected by the rule).

4 Omniscient debugging for model transformations

Omniscient debugging is a natural extension of stepwise execution that enables reverse

execution. The AToMPM Omniscient Debugger (AODB) was developed as a prototype

omniscient debugger within AToMPM (Corley 2014; Corley et al. 2014). The AODB

prototype continues evolving to better support omniscient debugging for MTs. AODB

implements our technique to support omniscient debugging for MTs. Our technique pro-

vides the common features of stepwise execution (i.e., play, pause, stepIn, step-
Out, stepOver, and stop) (Corley et al. 2014). The stepwise features have been

modified to leverage an execution trace history supporting omniscient traversal that avoids

the need to re-execute transformation rules in many cases. A rule is only executed the first

time a particular step in the transformation is reached. If the developer moves back through

history and then steps forward again, changes are applied from the stored history. Our

technique also provides a set of features that mimic stepwise execution, but revert exe-

cution. The omniscient features are playBack, backIn, backOver, and backOut. In
this section, we first define the supported traversal features (both stepwise execution and

Fig. 4 Sample model for Movie DB Case

Software Qual J (2017) 25:7–48 17

123

omniscient) as illustrated in Figs. 5 and 6 and then discuss how history is collected and

stored. This section also presents an algorithm for more efficient traversal of history.

4.1 Execution traversal features for omniscient debugging

The following are the definitions that we will use for standard stepwise execution traversal

features that are found in a typical debugging environment:

• Play: Continuously execute the system.

• Pause: Suspend execution until restarted using another traversal feature.

• Stop: Cease execution and clear any intermediate data stored during execution.

• StepIn: Execute a single atomic step of the system, entering into any contained

scopes.

• StepOut: Execute the system until the first atomic step outside of the current step is

reached.

• StepOver: Execute the system until the next atomic step in the current scope is

reached.

In an omniscient environment, we must consider executing the same stepwise execution

environments in two contexts. The debugging session may be at the most current step of

history, in which case the execution engine will execute the next step as a typical case of a

stepwise execution debugger. However, if the user is not at the most current step, then the

omniscient portion of the debugger will replay the rule from history. Consider a user

executing a transformation rule that scans the model to identify a specific pattern of model

elements to be modified by a subsequent series of transformation rules. This exact scenario

can be seen in the Sierpinski Triangles (described in Sect. 5.2) where all sets of triangles

currently existing are found, and then, a subsequent set of rules operates on these triangles.

In this scenario, replaying from history may save substantial time in only a single rule

application. Additionally, in scenarios where we can reduce multiple rule applications to a

Fig. 5 Stepwise and omniscient continuous execution features

Fig. 6 Stepwise and omniscient step features

18 Software Qual J (2017) 25:7–48

123

single set of changes, we can also reduce traversal time. In each of these scenarios, we

utilize the stored history of execution rather than the execution engine as typical for

stepwise execution features. Thus, our implementation considers both of these scenarios as

summarized in the following definitions.

4.1.1 Stepwise execution traversal features modified for omniscient traversal

• Play: If at the most current step of history, continuously execute the system. If not at

the most current step of history, continuously replay the system.

• StepIn: If at the most current step of history, execute a single atomic step of the

system execution, entering into any contained scopes. If not at the most current step of

history, replay a single atomic step of the system execution, entering into any contained

scopes.

• StepOut: If at the most current step of history, execute the system until the first

atomic step outside of the current step is reached. If not at the most current step of

history, replay the system until the first atomic step outside of the current step is

reached.

• StepOver: If at the most current step of history, execute the system until the next

atomic step in the current scope is reached. If not at the most current step of history,

replay the system until the next atomic step in the current scope is reached.

Finally, we provide a set of additional features to enable traversal back through the

history of execution. These features are designed to mirror the traditional stepwise exe-

cution environment to provide an intuitive extension to the most common debugging

environment (stepwise execution).

4.1.2 Omniscient execution traversal features

• PlayBack: Continuously revert the system.

• BackIn: Revert a single atomic step of the system execution, entering into any

contained scopes.

• BackOut: Revert the system until the first atomic step outside of the current step is

reached.

• BackOver: Revert the system until the next atomic step in current scope is reached.

• Jump: If the target step of the jump is located in history before the current step, revert

the system until the target step is reached. If the target step of the jump is located after

the current step, replay the system until the target step is reached.

Further advanced navigation facilities (as seen in Bousse et al. (2015)) could be

introduced to the environment, but these features would be defined using a set of the

features defined above. The goal of this paper is to evaluate the efficiency and scalability of

the model transformation engine modified to handle omniscient debugging. Thus, here we

do not define advanced traversal features, such as traversing history by navigating through

only the steps relevant to a specified element or transformation rule.

4.2 Collecting a history of execution

Our technique to support omniscient debugging collects a history of execution to enable

traversal without re-executing rules. Figure 7 presents the structure of our trace of

Software Qual J (2017) 25:7–48 19

123

execution, hereafter referred to as history. We define history using the following termi-

nology and structures.

Change—A single atomic change operation.

• CRUD type—Type of change made. Changes can be create, update, or delete. Reads

are not stored, because they are not necessary to recreate the model state at a given

state, but we recognize that this information might be useful to developers (e.g.,

identify elements matched by LHS, but not altered by the transformation rule). Future

studies could evaluate the impact of recording reads, but this paper is focused on

efficiency of execution time and memory consumption.

• Element—ID of the element that was changed. An element is defined at the most

atomic level. If two attributes of an object were changed, we would store two changes

for distinct elements because each attribute is treated as an atomic element.

• Before data—Value of the element before the change.

• After data—Value of the element after the change.

Step—A step stores the full history of changes related to a single invocation of an

atomic transformation rule; i.e., a rule that does not contain any other rules. In practice, this

means that we must maintain placeholder steps for any rule that is defined using contained

rules. The placeholder is used to maintain a proper history of scope transitions.

• Changes—A set of all changes that occurred during this step.

• Rule—ID of the model transformation rule related to this step.

• MT engine state—A general storage bucket for any auxiliary storage necessary for the

MT engine (e.g., T-Core introduced by Syriani et al. (2015) maintains a packet that is

passed between all transformation rules and is altered during each step).

• Scope stack—Maintains any scoping information. The scope stack stores the ID of the

last step at the containing scope (nil if there is no containing scope). The transformation

rule referenced by the last step of the previous scope contains the current step’s

transformation rule. Thus, each step only stores a single reference, but has access to the

full scope stack at every step.

History—The complete record of all changes that have occurred during the

transformation.

• Steps—Sequentially ordered series of all step entities in history.

• Current step—Index indicating the current step being observed.

• Window size—Size of the active window of history. History stores up to this limit in

memory, and the remainder of history is serialized to permanent storage. This provides

an upper limit to the memory consumption of history. By default, the window size is set

to infinite (i.e., memory size of history is not limited).

Fig. 7 Structure of history

20 Software Qual J (2017) 25:7–48

123

• Revisions cache—A cache that stores a mapping of each element that has been

changed to the set of steps where that element has been changed. This is used to quickly

identify where a given element has been changed in history.

4.2.1 Evaluating the memory consumption of history

The space complexity upper bound of history, O(As ? Bc), is influenced by two key

factors, the number of steps s and the number of changes stored in history c. A is a constant

referring to the transformation state information, and B is the average size of a change

(influenced by the type of data stored in the associated model element). Because we define

the change at the smallest unit (e.g., the tokens attribute of a Petri-net place), B will vary

minimally. Thus, for transformations affecting a large number of elements and containing a

large number of steps, the structure performs poorly. However, the scaling concerns are

due to the need for a complete trace of execution as assumed by our technique.

The current space complexity, O(As ? Bc), ignores the impact of the revisions cache

stored in history, because we can amortize the cost of the lookup table across the set of

changes stored in history. For each change in history, there will be a single entry in the

lookup table. For each change in history, we add a constant amount of increase to the

overall size of history. Therefore, we can redefine B to be the sum of the average memory

consumption of a single change and the overage memory consumption of a single reference

added to the lookup table.

Despite storing minimal information, history may eventually exceed the bounds of

memory if the system is very large or the transformation involves enough changes. To

address this concern, our technique maintains a window of active history. As mentioned in

Sect. 2, this technique has been explored previously by Lewis (2003). However, as

opposed to prior work, history outside of the current window is stored in permanent

storage. Thus, the full history of execution is always available, but accessing some portions

of history may require loading a new window from disk. Loading and storing portions of

history impacts the execution time of the system, but the window ensures that the system

remains within memory bounds for large-scale scenarios while maintaining access to the

full history of execution.

4.3 Traversing a history of execution

The goal of the majority of existing literature in the area of omniscient debugging is to

provide a scalable technique, in terms of memory usage, that enables reversing the exe-

cution of a software system. However, we have also explored a technique to efficiently, in

terms of execution time performance, revert execution by identifying and executing a

minimal set of changes. Our technique utilizes the execution history to create a macrostep

that avoids unnecessary CRUD operations. A macrostep contains changes from potentially

many traditional steps (i.e., those associated with a single rule). Changes store a complete

state for the associated element. Thus, if a model element is found in several changes, then

the macrostep would use only the most recent change and all other changes can be ignored

with one exception. If the element has been deleted, we must recreate the element and then

reset the state because the creation of an element always assumes default values within

AToMPM. This technique is designed for a jump feature, where the user could provide a

target step and then move to the target step by executing a minimal set of changes.

However, backOut, backOver, stepOut, and stepOver can also utilize the

Software Qual J (2017) 25:7–48 21

123

technique when reverting/replaying previously executed portions of the transformation.

For these steps, the target step for the jump is implied by the type of step and the scope.

When executing a stepOver, the target step is the next step in the same scope or a

containing scope. Thus, these features each have the potential for iterating over an inde-

terminately large number of steps and changes.

4.4 Recognizing patterns of change

Our technique increases the efficiency of traversing history by identifying a minimal set

of changes to execute. The set of changes executed avoids redundant incremental updates

and executes direct state changes. To identify a minimal set of changes, we have

developed an algorithm that recognizes a set of special cases where it can ignore changes.

We handle five patterns to discern required versus redundant changes. All patterns

consider only changes between the current step (i.e., the step being observed before the

traversal) and a target step (i.e., the step being observed after the traversal). An indi-

vidual change may be either create (C), update (U), or delete (D). The five patterns are

defined as sequences of these three change types. The five patterns, as illustrated in

Fig. 8, are as follows:

1. If only a single change (create, update, or delete) is identified for a given element, then

the change is considered required and included in the minimal set of changes.

2. If multiple updates are identified for a given element, then only the update most local

to the target step is included in the minimal set of changes. This pattern is particularly

significant, because it may occur during the three remaining patterns. We only include

the update most local to the target step and ignore all other updates.

Fig. 8 Patterns to identify
required changes between the
current step and a target step

22 Software Qual J (2017) 25:7–48

123

3. If we identify a create and an update for a given element, both the create and update

are included in the minimal set of changes. We need the create operation to recreate

the element and the update to reset the element to the appropriate state.

4. If we identify an update and delete for a given element, only the delete is included in

the set of changes. We can ignore any updates, because the element will not exist after

the set of operations.

5. If we identify a create and delete for a given element, no changes are included for this

element. We can ignore all changes, because the element does not currently exist and

will not exist afterward. Thus, taking no action will result in the model being in the

correct state.

These patterns are described assuming the target step is after the current step in history

(i.e., forward traversal). However, the patterns can still be applied when the target step is

before the current step (i.e., backward traversal). When reverting execution, a create

change is treated as a delete, and a delete change is treated as a create with an associated

update to revert the element to its state before the recorded delete change.

4.5 Efficient omniscient traversal using MacroSteps

Thus far, we have defined traversal of execution using Steps, where a Step relates to

executing a single transformation rule. However, when we traverse through history, it is

not necessary to re-execute every CRUD operation. We take advantage of this fact by

constructing and using MacroSteps to traverse history. As illustrated in Fig. 7, a Macro-

Step is similar to a Step in that it contains a set of changes, but a MacroStep contains a

subset of the changes contained by a sequence of Steps. Furthermore, history uses, but does

not store, MacroSteps.

Consider the following scenario: a developer is debugging a model transformation.

Over the course of the transformation, a given element might be updated numerous times

incrementally reducing the value of the element (e.g., a timer or resource indicator).

However, if the developer wanted to jump back to the beginning of the transformation,

the transformation engine could ignore most of these changes and revert the place

directly to the appropriate state. To accomplish this, the debugger builds a MacroStep by

identifying the change that will revert the place to the correct state (ignoring all other

changes). Then, the MacroStep is used in place of a Step to revert the system. The

changes contained by the MacroStep represent the minimal set of CRUD operations

necessary to traverse from the current step to a given target step. When building a

MacroStep, we use the patterns described in Sect. 4.4 to identify unnecessary changes

that are then omitted from the MacroStep.

4.5.1 Algorithms to construct a MacroStep

In our technique, the debugger stores history using a structure that provides efficient access

to the most recent change. Furthermore, the debugger maintains a revisions cache for each

element containing a record of every step where the associated element was altered. The

history stores all steps in increasing order within a dynamic array structure, and each step

provides similar facilities for storing changes. Therefore, once the appropriate change is

identified using the revisions cache, we can guarantee constant time access to the asso-

ciated change in history. The IterateElements algorithm, provided in Listing 1, uses

Software Qual J (2017) 25:7–48 23

123

these facilities to construct a minimal set of changes for a MacroStep to traverse from the

current step to the target step.

Assuming an element is changed between the current and target steps, the Iter-
ateElements algorithm finds the first change and last change within the interval and

then applies each of the five patterns discussed in Sect. 4.4. The first pattern and second

patterns are fairly straightforward. First, if there is only one change for the element, then

we must keep that change. Second, if there are only updates, then we keep the update

closest to the target step. Here, we can be sure there are no creates or deletes, because any

create must be the first change, and any delete must be the last change. The third and fourth

patterns rely on the direction of traversal. If we are moving backward, create and delete

changes are treated as their opposite. Thus, if we recognize a create and an update when

moving forward, we apply pattern 3. If we recognize a delete and an update when moving

backward, we also apply pattern 3. Similarly, an update and a delete moving forward

applies pattern 4, and a create and an update moving backward applies pattern 4. Finally, if

we identify a create and a delete, then (as pattern 5 states) the element is both created and

destroyed during the intervening steps and the related changes can be ignored.

The algorithm in Listing 1 is designed assuming that when building the macrostep,

iterating over the changes contained in the sequence of steps from current to target is more

costly than iterating over every element in the model to find the required set of changes.

When the size of the steps or number of the steps being traversed is large enough, this

assertion does hold true. However, if the size and number of steps are relatively small or

the size of the model is relatively large, the cost of iterating over all model elements may

exceed the cost of iterating over all the steps. Thus, the debugger compares the number of

24 Software Qual J (2017) 25:7–48

123

changes that must be iterated over to the number of elements in the model and then decides

if iterating over the changes is more or less costly. However, we still ensure that a minimal

set of changes is identified for the MacroStep. The upper bound of overall execution time

remains the same, because we ensure that iterating over the changes will have similar

lower bound or we iterate over the model elements. History maintains a count of the total

number of previous changes in history at each step. The debugger then uses these counts to

determine whether to iterate over the model elements or the full set of changes. The

algorithm in Listing 2 provides the details of how a macrostep is generated when iterating

over the intervening steps (from current step to target step).

The IterateSteps algorithm also identifies each of the five patterns discussed in

Sect. 4.4 to provide a minimal set of changes. Unlike the IterateElements algo-

rithm, the IterateSteps algorithm does not have access to all of the changes for a

given element at a time. Therefore, we store the changes in a set of caches that can be

referenced later to identify cumulative effects. We will recognize each pattern bit by bit

until we have identified the full pattern. Whenever we identify the first change for a given

element, we assume pattern 1 and store the change in the relevant cache. If we do not

identify any further changes, then we were correct to assume pattern 1. If we identify

multiple updates, then we recognize pattern 2 and keep only the update closest to the

target step. There are two conditions where we can identify pattern 3 (one for each

direction of traversal): first, if we are traversing forward and identify an update after

having identified a create; second, if we are traversing backward and identify an update

after having identified a delete. Similarly, there are two conditions where the debugger

identifies pattern 4: first, if we are traversing forward and identify a delete after having

identified an update; second, if we are traversing backward and identify a create after

Software Qual J (2017) 25:7–48 25

123

having identified an update. Finally, if we identify a delete and have already identified a

create, then we recognize pattern 5.

4.5.2 Evaluating the MacroStep construction algorithms

The IterateElements algorithm (Listing 1) has O(n*lg(n) ? n*lg(m)) execu-

tion time complexity, which can be simplified to O(n*lg(n)) for large-scale models

(i.e., cases where the scaling becomes notable). Here, n is the number of elements in the

model that have been altered (only elements that have been altered are stored in history)

and m is the number of steps where a given element is altered. The upper bound assumes

we provide a structure with constant time access for the relevant change and at least

O(lg(m)) access to change locations stored in the cache. Listing 1 displays the basic

algorithm used to build a macrostep. To make the simplification, we recognize that to

maintain O(n*lg(m)), the history must have as many or more changes per element as

there are elements stored in history (previously stated to be only those elements that are

changed). As n reaches levels where scale is a concern, and even for small-scale scenarios

with thousands of elements in history, the number of changes required becomes unrea-

sonable for most transformations. We expect the number of changes for a given element to

be small, and the execution time complexity upper bound to approach O(n*lg(n)) in

practice.

The upper bound of execution time complexity for the IterateSteps algorithm,

when iterating over the steps from current step to target step, is determined by the total

number of changes that must be evaluated for inclusion in the macrostep. Thus, the

algorithm (Listing 2) has an O(abs(mc -- mt)), where mc is the sum total number of

changes for all steps up to and including the current step, and mt is the sum total number of

changes for all steps up to and including the target step. Therefore, the theoretical tipping

point for choosing iterating over changes (Listing 2) rather than iterating over all elements

(Listing 1) is when the number of changes, abs(mc -- mt), is less than n * lg(n).

4.6 Maintaining scope in history

As mentioned previously, our omniscient technique is an extension of stepwise execution.

As such, we provide scope-based operations (i.e., stepIn, stepOver, stepOut,
backIn, backOver, and backOut). To support these operations while traversing

through history, scope information must be provided. The ideal solution is to provide a full

scope stack at any given step. By providing the full stack, we may provide stack traces

similar to those provided by exceptions in GPLs (e.g., Python, C??, or Java). These stack

traces provide developers with additional information regarding the current state of the

system. However, providing a full copy of the stack trace for each element can create a

state space explosion by replicating scope information between multiple steps. To address

this concern, we developed a technique similar to a cactus stack (or spaghetti stack)

(Clinger and Ost 1988). Every step stores a pointer to a step where the current (relative to

the step) top of the stack is stored. We store a given scope’s information only a single time

for each traversal through the scope. When a scope is entered, the current step has the

scope information added, and each subsequent step which is directly contained in the same

scope stores a link to the initial step for the scope. Each scope node then stores a link to its

containing (or parent) scope. Thus, we store a single node for each time a scope is

encountered. A flyleaf pattern could be applied to our technique. The flyleaf variant would

present a minimal trace of scope stack information through eliminating redundancy of

26 Software Qual J (2017) 25:7–48

123

changes and values. Consider if we had a string value that is repeated through the program

that could be replaced with a single object referenced in each location rather than repeating

the string value.

4.7 Supporting omniscient debugging in other modeling platforms

Although our context for exploration of omniscient debugging is AToMPM, we believe

that the algorithms and general technique of our omniscient debugger can be ported to

other modeling tools. Our technique at the most primitive level is based upon capturing and

replaying CRUD-level operations resulting from applying model transformation rules. As

such, the history structure presented is generic and does not rely on any specific trans-

formation features. The technique requires only the ability to capture and replay CRUD-

level operations during execution. However, some transformation environments may need

to be modified to emit the CRUD operations during execution to enable the collection of

history. We expect this modification will not cause a significant difference in transfor-

mation execution, but the details may vary with implementation specifics. The omniscient

traversal methods do not require modifying the transformation engine because they entail

only executing CRUD operations on the model. Furthermore, supporting the algorithms as

presented here requires only the ability to support constant time access array-like structures

and support for a cache structure that maps elements to a listing of the steps where the

element is changed. As these describe basic data structures, we expect the implementation

environment of any model execution engine should be able to meet these requirements.

Beyond the mechanical requirements, the environment would need to be attuned to

any differences between the languages. The most significant concern here is regarding

the selection of the granularity at which to define a Step. We define a Step in MoTif as a

single non-composite MoTif transformation rule and in T-Core as a single T-Core

primitive. However, in other languages the rules may be defined using a set of lower-

level operations, similar to a method in Java. Here the implementation will need to

decide on the precise level of granularity that defines a Step. Additionally, the imple-

mentation will need to precisely define scope to employ the scope stack (assuming the

concept of scope is relevant to the target transformation language). Our structure for

storing the scope stack is generic in assuming a layered scoping mechanism common

throughout many GPLs and MTLs (e.g., helper functions in ATL1), but the recognition of

scoping will need to be tailored to the specific MTL. We expect this recognition to be a

constant time addition to the initial execution time as it is in our implementation within

the AToMPM environment. Thus, we do not anticipate any significant differences in

runtime, but the implementation in other modeling tools must be customized to match the

relevant MTL structure and semantics.

5 Empirical evaluation study design

We conducted an empirical study to evaluate the performance and scalability of our

omniscient debugging technique on two model transformations. In this section, we describe

the design of the empirical study as well as a discussion of the threats to the validity of the

results.

1 http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language#ATL_Helpers.

Software Qual J (2017) 25:7–48 27

123

http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language%23ATL_Helpers

5.1 Research questions

The primary goal of the study is to understand the execution time performance and scal-

ability (in terms of memory consumption) of our omniscient debugging technique on two

model transformations designed in two different MTLs.

The focus of the case study is to address the following questions:

RQ1. Is there a significant difference in execution time between executing a model

transformation with omniscient debugging versus stepwise execution?

RQ2. Is there a significant difference in execution time between executing a model

transformation with or without macrosteps?

RQ3. Is there a significant difference in execution time between the iterateSteps
and iterateElements algorithms?

RQ4. At what point does omniscient debugging outperform restarting a model

transformation in terms of total execution time?

RQ5. What is the effect of the changes and steps on memory consumption in history?

RQ6. What is the impact of history on total memory consumption?

We perform Wilcoxon signed-rank tests for RQ 1, RQ 2, and RQ 3. For each

hypothesis test, we do not presuppose the directionality of the difference during testing.

Therefore, each hypothesis test is two-tailed. For each test, we formulate a null

hypothesis to evaluate whether there is a significant difference between the two sets

under comparison. If, after testing the null hypothesis, we find we can reject it with a high

confidence (p = 0.05), we accept an alternative hypothesis. Accepting the alternative

hypothesis corresponds to there being a significant difference between the two sets.

Below we provide an example null hypothesis (H0) followed by the corresponded

alternative hypothesis (HA).

H0: timewithomniscience = timewithoutomniscience
HA: timewithomniscience = timewithoutomniscience

The null hypothesis asserts that omniscient debugging does not significantly affect the

execution time of the model transformation, and the alternative hypothesis states the

opposing view that omniscient debugging does significantly affect the execution time of

the model transformation.

Omniscient debugging does significantly affect the execution time of the model

transformation.

5.2 Debuggers and model transformations used in evaluation

In this study, we ran two model transformations using both AODB and the standard

stepwise debugger provided in AToMPM v0.5.4. AODB is provided within an extended

version of AToMPM v0.5.4 where the transformation engine has been extended to support

omniscient traversal features. Thus, the omniscient debugger and stepwise debugger within

AToMPM can provide a direct comparison. For the AODB omniscient debugger, we

executed play until the end of the transformation was reached. We then called BackIn
repeatedly until we returned to the initial step. After returning to the beginning, we re-

executed each step of the transformation using StepIn until we reached the end again. By

using BackIn and StepIn to proceed backwards and forwards through the transfor-

mation, we were able to collect execution time and memory usage statistics for the history

28 Software Qual J (2017) 25:7–48

123

of the transformation. After finishing the StepIn task, we divided the collected history

into ten partitions resulting in eleven boundary steps. We used the boundary steps as jump

points and proceeded to jump from every jump point to every other jump point.

For the stepwise execution, we performed play until the end. Because history does not

exist and the omniscient traversal features are not supported for stepwise execution, this

was the only task we performed. However, we captured incremental step times throughout

the play operation enabling us to compare directly with the data collected from the

omniscient debugger.

The two model transformations selected for this study were acquired from the 2014

TTC. The first of these transformations is the Movie DB Case described in Sect. 3. For this

study, we chose to use element sizes of 116, 580, and 1160 elements. For details of the

Movie DB Case transformation implementation, please refer to the solution from the 2014

TTC by Ergin and Syriani (2014). In this study, we modified the transformation only to

connect the three primary tasks within a single transformation.

The second transformation constructs a Sierpinski Triangle (metamodel provided in

Fig. 9a), which is a fractal where each generation creates an additional level of depth.

The triangle is created by starting with an initial equilateral triangle with a horizontal

base. The next step shrinks the triangle in half, makes two copies, and positions the three

smaller triangles so that each triangle touches the two other triangles at a corner,

effectively splitting each triangle into three smaller triangles (Fig. 9b). The second step is

then repeated to create each new generation. Table 1 lists the generations used in this

study and the number of model elements created by AToMPM at each generation. The

number of model elements in Table 1 is higher than in the conceptual problem. This

variance is due to the underlying model representation of AToMPM where an edge is

represented as a specially typed node with two edges connecting the edge node to the two

traditional nodes connected by the edge. The additional complexity is necessary to

Fig. 9 Sierpinski Triangles TTC details. aMetamodel, b graph transformation rule, cMoTif transformation

Software Qual J (2017) 25:7–48 29

123

represent typed edges, because the underlying low-level representations allow only

generic edges.

The two transformations possess distinct properties that impact the results of various

tests for the analysis tasks described in Sect. 5.6. The Sierpinski Triangle is able to perform

a single search for all triangles that must be split to create the next generation. Figure 9c

displays the T-Core transformation that generates the next generation of a Sierpinski

Triangle (splits all triangles) by executing the pattern matching and graph rewriting defined

in a graph transformation rule. The Matcher (FindTriangles) identifies all triangles in
the current generation, and then, the Iterator (SelectTriangle) repeatedly selects a

triangle for the Rewriter (SplitTriangle) to split until no matches from the previous

generation remain. Thus, the Sierpinski Triangle transformation is able to perform a single

search over the entire graph for each generation. However, the Movie DB Case transfor-

mation must search again after identifying each couple. This is due to the update state-

ments making previous matches invalid for the rule. Thus, the Movie DB Case

transformation spends a significant amount of additional time searching over the model

than the Sierpinski Triangle. This difference is especially interesting given that executing

in history does not require repeating these computationally expensive searches. Addi-

tionally, both transformations generate their own sample models with the Sierpinski Tri-

angle always starting with the same initial model for all target generations (i.e., a single

triangle representing generation 0).

5.3 Measures used in the evaluation

The goal of omniscient debugging is to reduce the time it takes for a developer to return to

a previous state in execution. Omniscient debugging makes this easier by allowing for

bidirectional execution through the history of an execution. Without omniscient debug-

ging, the developer must re-execute the transformation starting from the beginning. To

understand how time can be saved using our omniscient debugger, we recorded the exe-

cution time for each step and jumped through history in milliseconds and compared it to

the time required for a normal execution. Additionally, we record which rule is executed at

each step. This added information allows us to refer back to the transformation when we

need to determine the types of operations that were applied during the step.

In addition to the execution time required for moving through history, we collect the

added memory usage required to store the changes that occur at each step. Because

changes during the model transformation can be ambiguous (as discussed in Sect. 2.3),

Table 1 Number of model ele-
ments for each generation of
Sierpinski Triangle

Generation Model elements

0 12

1 33

2 96

3 285

4 852

5 2553

6 7656

7 22,956

8 68,892

30 Software Qual J (2017) 25:7–48

123

this additional memory usage is required to recreate the exact changes. For this reason,

we would like to know the impact that history has on memory usage. To understand this

impact, we collect the memory usage in bytes at each step for the overall system, the

revisions cache, state information for the most recent step, and the changes in the most

recent step. This information is also recorded for each macrostep built during a jump.

Each of these measures is used to give an overall understanding of the impact on the

system.

5.4 Configuration of experimental platform

To conduct our study, we used a 64-bit Windows 8 machine with an Intel dual-core

3.33 GHz processor with 4 GB of RAM. The tool used for the study was AToMPM which

had a model transformation engine written in 32-bit Python. Due to using the 32-bit version

of Python, AToMPM is limited in the amount of memory it can address. AToMPM uses

Python-igraph for holding and manipulating the low-level graph representation of the

model. The tool is capable of executing model transformations in both the T-Core and

MoTif hybrid MTLs. In this context, hybrid refers to the combination of graph rewriting

rules, which are purely declarative and imperative control flow.

AToMPM is a cloud-based modeling tool that sends communications between the

model transformation engine and the front-end client across a network. The client is

written in HTML5 and JavaScript with the Chrome browser as the main development

environment. For the purposes of this study, we disabled communications to the client.

This allowed us to isolate execution time on the model transformation engine and remove

the additional overhead of any added message passing.

5.5 Data collection and analysis

We instrumented the model transformation engine to collect information during the exe-

cution of the model transformation. For each step, we collected the time it took to execute

the step, the number of changes in the step, the number of elements in the step, and the

number of creates, deletes, and updates involved in the step. We then executed the model

transformation in the forward direction, backward through history, forward through his-

tory, and jumping through history after splitting the history into ten partitions. Afterward,

we re-executed each model transformation while forcing the macrostep to be built using

either the iterateSteps or iterateElements portions of the algorithm. We then

used this for comparison of the two techniques.

For RQ 1, RQ 2, and RQ 3, we conducted Wilcoxon signed-rank tests to determine

whether a significant difference is found. The Wilcoxon signed-rank test is the nonpara-

metric analog of the t test. We did not assume directionality of the difference.

For RQ 1, we compared different step types and levels of the model transformations, as

well as all steps across all types and all levels. The types of steps that we considered were

search, scope, and change. The levels we used were the 1 iteration, 5 iterations and 10

iterations of the Movie DB Case model transformation, as well as the combination of all

iterations. We also included 8 iterations of the Sierpinski Triangle. For RQ 2 and RQ 3, we

used 7 different levels across the two model transformations. We used the same iterations

of the Movie DB Case model transformation as the RQ 1 and then included 3, 5, 6, and 8

iterations of the Sierpinski Triangle. We then combined all iterations of both model

Software Qual J (2017) 25:7–48 31

123

transformations to form a combined Movie DB Case and Sierpinski Triangle. Finally, we

also combined all levels of both model transformations.

For RQ 4, we identify cases that highlight the different circumstances that can make

traversing through history either faster or slower than re-executing the code. We use these

cases to give a high-level view of how characteristics of the model transformation can

impact the effectiveness of history.

Finally, in RQ 5 and RQ 6, we captured the memory consumption of the system as we

progress through the model transformation. We compared this information to the amount

of information contained in history, as well as to the number of changes and number of

steps currently in history. Through these questions, we have obtained a better under-

standing of the impact of omniscient debugging on the memory usage of the model

transformation engine.

5.6 Threats to validity

The study has limitations that may affect the validity of our findings. In this section, we

describe some of the limitations as well as our attempts to mitigate them.

Threats to conclusion validity concern the degree to which the conclusions we reach

about the relationships in our data are reasonable. In order to mitigate these concerns, we

limited the comparisons we made to execution time on the model transformation system

and attempted to limit the effects of other variables, such as communication time to the

client. In addition, we used nonparametric statistical tests and did not make any assump-

tions about the distributions of the data.

Threats to construct validity concern how well the measurements used in the study

describe the concept being studied. Possible threats to construct validity include the effects

other processes on the host machine have on the time required to execute the steps in the

transformation. In order to limit these issues, we ensured that a minimal set of processes

were running on the host.

Threats to internal validity include possible errors in executing the study procedure or

defects in the tools used. To mitigate these issues, the model transformation engine was

instrumented to automatically log execution time performance and memory usage along

with which debugger generated the log, which transformation was run, what size model

was used during the run, and which traversal feature (e.g., stepIn or stepOut) was used to

generate the log. The instrumentation of the system may have affected the execution time

performance. In order to account for this possibility, we instrumented logging outside of

the measured tasks to limit the total impact whenever possible. When it was not possible to

instrument logging outside the measured tasks, we attempted to keep all runs similar and to

record any impact of the instrumentation in order to remove the impact from recorded

observations.

Threats to external validity concern the extent to which we can generalize the results.

We chose two model transformations with varying factors to gain a more complete

understanding of how the omniscient debugger will work on other model transformations

written in these languages. We used model transformations written in two MTLs. To

understand how our technique would be affected by other transformation languages, we

would need to rerun our experiments in those languages. However, our results should be

similar for other model transformations written in T-Core and MoTif, and languages with a

similar set of features.

32 Software Qual J (2017) 25:7–48

123

6 Results obtained from performance and scalability study

In this section, we present quantitative data from statistical tests and descriptive statistics.

This section is organized by research question. Section 7 will discuss the implications and

provide qualitative analysis.

6.1 Is there a significant difference in execution time between executing
a model transformation with omniscient debugging versus stepwise
execution? (RQ 1)

To answer this question, we recorded the elapsed time while running each model trans-

formation. Between the two transformations, we recorded the elapsed time for four dif-

ferent levels: 1, 5, and 10 iterations of the Movie DB Case and 8 generations of the

Sierpinski Triangle. We can limit the evaluation to only a single case of the Sierpinski

Triangle transformation, because each subsequent generation executes the same steps as

the previous step plus an additional generation. We also recorded the elapsed time for three

different types of step: change, scope, and search. Change steps are only concerned with

executing some change (e.g., creating new nodes). Scope steps refer to a subprocess and do

not make any direct changes. Search steps may include some changes, but also include a

significant find operation. An example of a search operation is the findTriangles step

of the Sierpinski Triangles transformation, which searches over the entire model and

identifies all triangles.

The results of all steps for each of the four levels are represented by the boxplots in

Fig. 10. From these boxplots, it can be seen that the times for each step are similar. The

biggest difference is visible for the Sierpinski Triangles. To determine whether a signifi-

cant difference exists between omniscience and stepwise debugging for any level, any step

type, for any step of any level, or for all steps of all levels and step types combined, we

conducted a series of Wilcoxon signed-rank tests.

The results of the Wilcoxon tests failed to show any significant difference with the

exception of the change step type for 10 iterations of the Movie DB Case model trans-

formation. For this level, building the changes in history for omniscient debugging showed

a slight increase in execution time over the stepwise debugging. All 23 other cases failed to

display a statistically significant difference in execution time.

6.2 Is there a significant difference in execution time between executing
a model transformation with or without macrosteps? (RQ 2)

The intent of RQ 2 is to determine whether there was a significant difference between

traversing history via executing all intermediate changes (i.e., using back or

stepForward) versus jumping through history. When jumping, we compute MacroSteps

to define the precise set of changes that will be executed to traverse to the target location in

history. Jumping through history uses MacroSteps, and stepping through history does not.

For each model transformation, we divided the history into ten partitions of steps. This

resulted in eleven distinct endpoints for moving through history. We then recorded the

elapsed execution time for jumping from each endpoint to each other endpoint in both the

forward and backward directions. We replicated this experiment for seven distinct levels

across the two model transformations. We looked at 1, 5, and 10 iterations for the Movie

DB Case transformation. We looked at 3, 5, 7, and 8 generations for the Sierpinski

Software Qual J (2017) 25:7–48 33

123

Triangles transformation. We also analyzed the combined result sets for each model

transformation at all levels and the combination of all levels across both transformations.

Figure 11a contains boxplots representing the steps for all iteration levels (1, 5, and 10)

of the Movie DB Case model transformation. We see that for moving forward through

Fig. 10 Measuring differences in execution time: omniscient versus stepwise. aMovie DB Case 1 iteration,
b Movie DB Case 5 iterations, c Movie DB Case 10 iterations, d Sierpinski Triangles

Fig. 11 Measuring differences in execution time: jump versus stepping

34 Software Qual J (2017) 25:7–48

123

history, the spread increases for stepping forward over jumping forward, while the median

for stepping forward goes down. While moving backward, there is an increase in the entire

spread for moving back through history versus jumping backward. Also worth noting, we

observe that moving backward through history results in higher execution times than

stepping forward through history.

Figure 11b contains boxplots for the Sierpinski Triangle. Unlike the results in Fig. 11a,

where we observed an increase in the spreads for moving (i.e., either stepping or jumping)

forward and backward through history, in Fig. 11b we also observe a decrease in the spread

for both stepping forward and stepping backward in history versus jumping.

We conducted Wilcoxon signed-rank tests for each of the different levels and combi-

nations. We also investigated whether there exists a significant difference between jumping

of any type and the combination of stepping forward and moving back. For the Movie DB

Case, no significant difference was found between jumping through history and stepping

through history. However, for the Sierpinski Triangle, a significant difference was found

for all comparisons except for stepping forward at the 3 iteration level. No significant

differences were found when looking at the combination of the two model transformations.

6.3 Is there a significant difference in execution time between the
iterateSteps and iterateElements algorithms? (RQ 3)

There are two possible paths for building a MacroStep during the execution of the model

transformation. The first is iterateSteps, which in our MacroStep building algorithm

occurs when the number of steps is less than the number of elements in the system. The second

is iterateElements, which occurs in the opposing situation. To better understand the

impact of the differences in how these two methods build the MacroStep, this research

question focuses on whether there is a significant difference in the execution time between the

two. For this question, we looked at what would happen if we forcedMacroSteps to be built in

one of the two paths and then compared the outcome. We used the same levels as RQ 2.

Figure 12a shows the spread of building each step for all iterations of the Movie DB

Case model transformation. From this graph, there appears to be a slight decrease in

iterateElements versus iterateSteps. Figure 12b shows the spreads for all

iterations of the Sierpinski Triangle. In the case of the Sierpinski Triangle transformation,

Fig. 12 Measuring differences in execution time: IterateSteps algorithm versus IterateElements algorithm.
a Movie DB Case all levels, b Sierpinski Triangles all levels

Software Qual J (2017) 25:7–48 35

123

the iterateElements was observed to have a large increase in spread versus

iterateSteps.
Again, we conducted Wilcoxon signed-rank tests to determine whether there was a

significant difference between iterateSteps and iterateElements at any level.

For the Movie DB Case, we did not identify a significant difference at any level. However,

for the Sierpinski Triangle and for the combination of the two systems, we identified a

significant difference for every level.

6.4 At what point does omniscient debugging outperform restarting a model
transformation in terms of total execution time? (RQ 4)

We believe that there exists a point for which re-executing a given model transformation is

faster than executing a jump through the history for a given transformation. To gain a

better understanding of this situation, we recorded the elapsed time from beginning to end

of the model transformation and the elapsed time of jumping back to different points in

history. We then took the case of jumping from the end of the model transformation to a

previous point.

Figure 13 shows the point in which re-execution becomes better than omniscient.

This graph shows the percentage of the model transformation that may be re-executed

before it would be better to jump back from the end. For all levels of the Movie DB

Case, and for 3 iterations of the Sierpinski Triangle, it was always better to jump back

from the end than to re-execute the transformation. For 5 iterations of the Sierpinski

Triangle, 70 % of the model transformation may be re-executed before jumping back

becomes better. For 7 iterations, this value is 80 %. The performance focus of this

discussion also does not consider the importance of non-determinism as described in

Sect. 2.2

Multiple factors and characteristics influence these results (discussed further in Sect. 7).

Fig. 13 From the end of execution, what percentage of the system can be re-executed before omniscient
traversal is more efficient

36 Software Qual J (2017) 25:7–48

123

6.5 What is the effect of changes and steps on memory consumption
in history? (RQ 5)

To determine whether the changes or the steps have a greater overall influence on the

memory consumption of our history structure (see Sect. 4.2), we recorded the total amount

of memory used by the history as well as the amount of memory used by the changes and

the amount of memory used by the steps. When recording the memory used by a given

step, we omit the changes included in the step and focus on the other features of a step

(e.g., scope information and transformation rule information). We then calculated after the

system executed each subsequent step of the transformation, the percentage of memory

composed of changes and the percentage composed of steps. The results of this analysis for

7 generations for the Sierpinski Triangle are shown in Fig. 14. The results of this analysis

on the Movie DB Case with 10 iterations are shown in Fig. 15.

Fig. 14 History memory usage Sierpinski Triangles 7 generations

Fig. 15 History memory usage Movie DB Case 10 iterations

Software Qual J (2017) 25:7–48 37

123

For both model transformations, the percentage of memory usage by steps is signifi-

cantly lower than the percentage of memory usage by changes. For the Sierpinski Triangle,

sudden drops are observed in the memory usage of changes with each new generation of

the transformation.

6.6 What is the impact of history on total memory consumption? (RQ 6)

In addition to the amount of memory used by changes and steps in history, we sought to

understand the percentage of memory used by history for the entire model transformation

engine. To calculate this value, we recorded the total amount of memory usage by history

as well as the total memory usage of the model transformation engine. Figure 16 presents

the results of this analysis for 7 generations of the Sierpinski Triangle. Figure 17 presents

the results of this analysis for the Movie DB Case with 10 iterations.

Fig. 16 Movie DB—percentage of total memory usage for the transformation engine due to history

Fig. 17 Sierpinski—percentage of total memory usage for the transformation engine due to history

38 Software Qual J (2017) 25:7–48

123

It is worth noting that these figures use a y-axis with a maximum value of 25 %. The

reduced scale on the y-axis (25 % rather than 100 %) is because the total usage of history

in the most extreme case observed is less than 15 % of the total amount of memory usage

of the entire model transformation engine. For the Movie DB Case model transformation,

the total memory usage for history is always below 5 %, while the total memory usage for

the history of the Sierpinski Triangle is always below 15 %.

7 Discussion of empirical study and lessons learned

In this section, we address each research question providing a discussion about the

implication of the results presented in Sect. 6. This section is organized according to the

research question being addressed.

7.1 Is there a significant difference in execution time between executing
a model transformation with omniscient debugging versus stepwise
execution? (RQ 1)

The goal of this question was to show that there is not a significant difference between

running the model transformation using normal stepwise execution and omniscient

debugging. Because adding changes to history requires time, it may affect the performance

of the technique if the debugger results in a significant change of the execution time

performance. Therefore, when studying this question, the desired result would be to find no

significant differences.

We chose three different step types to investigate as we conducted this study: scope,

search, and change. Each of these steps has a different effect on what the model trans-

formation engine does at that step. Search steps are meant to identify elements in the model

based on some pattern. This type of step does not typically generate any changes, and the

time spent for the searching operation typically vastly outweighs time spent changing the

model. Thus, the omniscient debugger performs a minimal set of operations (i.e., only

creating a new empty step) in addition to basic execution concerns common to both

debugging approaches. Therefore, we did not expect to find a significant difference in

observed execution times except for those produced from noise. Similarly, the scope steps

are used to enter and exit different levels of scope in the transformation and do not result in

changes to the model. We also did not expect to see a significant difference in this case.

However, for the change step types, changes must be added to the trace in history. We

expect that with enough changes, there might be a significant difference in the execution

time of steps of this type. This assumption was supported by the results of the study. For

smaller cases, no significant difference was found for the change type. However, for the

largest level of 10 iterations of the Movie DB Case model transformation, a significant

difference was identified.

Though a significant difference was found for the change type of the 10 iteration Movie

DB Case level, no significant differences were identified for any level when considering all

step types together. This is an important result as it indicates that building the history

should not significantly decrease execution time performance of a model transformation

engine.

Software Qual J (2017) 25:7–48 39

123

7.2 Is there a significant difference in execution time between executing
a model transformation with or without macrosteps? (RQ 2)

One of the benefits of having history is that it allows the developer to jump to any step that

has already been executed. In order to facilitate such a traversal, we implemented an

algorithm that builds a macrostep with all changes from the current step to the target step

(see Sect. 4.4). Additionally, while building the macrostep we may exclude redundant

changes from execution. However, a consequence of building the macrostep is that it

requires additional computation that is not required in other steps. If this additional

computation is more costly than moving through history, the benefits of the macrostep are

diminished.

The purpose of RQ 2 is to understand how building the macrostep compares to moving

through execution (either forward or backward) via a more traditional stepping algorithm in

which we execute all changes for each step iteratively until the traversal is complete. We

partitioned the steps in history into ten different sets. The partitioning resulted in eleven

endpoints. For each of the eleven endpoints, we jumped from each point to every other point

in both the forward and the backward directions. For each direction, we also computed the

elapsed time for traversing using back and stepForward through history. We then

compared the times for each of these moves. We found that for the Movie DB Case model

transformation, there was a decrease in the overall time required to move through history by

using steps; however, no significant difference was detected. For the Sierpinski Triangle,

there was a significant difference detected between the jumps and stepForward and back.

The main cause of this difference is due to the difference in performance between iter-
ateSteps and iterateElements. We believe that we can increase the performance of

jump by changing the cutoff point between iterateSteps and iterateElements.
An additional finding during this question is that for both model transformations, there is a

significant difference between moving forward and moving backward in history. There are

two reasons for this. The first is that we found a large increase in changes for moving

backward versus moving forward resulting in added computation in the backward direction.

The second reason is due to the need to reverse the changes that were added in the mac-

rostep. In the current implementation of the debugger, changes must be added to the step in

the forward direction and then the resulting set is reversed to move in the backward direction.

This added to the time required for both stepping backward and jumping backward.

7.3 Is there a significant difference in execution time between the
iterateSteps and iterateElements algorithms? (RQ 3)

Depending on the number of changes and elements in the system, macrosteps will either be

built by iterating over all elements in history or by iterating over all steps. The purpose of

this question is to gain a better understanding of the efficiency of the two techniques and

whether one significantly outperforms the other.

The results of this study found that for the Movie DB Case model transformation the two

techniques did not have a significant difference and are roughly the same in terms of

execution time performance. However, for the Sierpinski Triangle, there was a significant

difference at all levels. The iterateElements algorithm has a few shortcomings that

make it a bad choice to use when there are a lot of elements and few changes per element.

One concern is the need to identify the mostLocal and mostRecent changes for each

element in the system. If the number of steps is large and the element is changed frequently,

40 Software Qual J (2017) 25:7–48

123

then identifying mostLocal and mostRecent changes becomes an issue because the

process must search through a cache of revisions to identify the mostLocal and

mostRecent changes. In the case of the Sierpinski Triangle, there exist a large number of

elements in history, but few changes per element. Another potential concern is the need to

reorder the changes for a MacroStep. In the iterateElements algorithm, the changes

are not identified based on when the change occurred during the initial execution (as they are

in the iterateSteps algorithm). However, as the changes must be completed in a set

order to prevent conflicts (attempting to update an attribute before an element has been

created), we must ensure the resulting set has the appropriate order. This results in a need to

reorder elements. This difference in performance also affects the results of the jumps in RQ

2. Because of the difference in performance in certain cases, we believe that changing when

the algorithm determines whether to use iterateSteps versus iterateElements
will result in a significant increase in performance of the MacroStep building algorithm.

7.4 At what point does omniscient debugging outperform restarting a model
transformation in terms of total execution time? (RQ 4)

One of the arguments presented in favor of omniscient debugging was to reduce the cost of

reaching a desired state by removing the need to re-execute the system. However,

depending on the transformation and the amount of changes in the system, there are times

when using omniscient traversal may be more expensive than re-executing the system from

the beginning. There are a number of factors that affect the boundary points for when re-

executing should be selected over reverting execution through omniscient features. If the

number of steps between moving from the current point in history to the target point is

greater than the number of steps that would need to be executed from the beginning of the

transformation, then it may be better to re-execute the transformation. However, if these

steps are computationally expensive to execute and trivial to revert using logged infor-

mation, the larger number of steps may take less time to revert than executing the smaller

number of computationally expensive steps.

We studied these boundary points for all levels of the two model transformations to

identify when it would be better to select re-execution over omniscient traversal. To study

this, we divided the execution histories into 10 partitions and compared re-executing from

the first step with reverting from the last step to reach each intermediate partition boundary.

For all levels of the Movie DB Case transformation, omniscient traversal was observed to

be more efficient. This is due to the costly search steps that are a part of this transfor-

mation. The amount of time required for identifying couples that match the search criteria

is costly, and this cost is incurred repeatedly during the transformation. Thus, avoiding the

search process with omniscient traversals after the initial execution is preferable.

For the Sierpinski Triangle transformation, it is better to use omniscient traversal when

the number of iterations is low. The omniscient traversal was only preferable for small

jumps back through the system. We note that improving the MacroStep building algorithm

as discussed in Sect. 7.3 may alter these results. The Sierpinski Triangle model transfor-

mation does have a costly search step, but the search step (findTriangles) is only

executed at the beginning of each generation. As the generations increase, the number of

change steps compared to search steps grows significantly in favor of the change steps.

Therefore, traversing through the latter generations of the model transformation is less

efficient than in the earlier generations of the transformation. If the current execution has

reached the end of the transformation, omniscience traversal only provides a benefit when

moving back to the point where 70 % of the execution has been executed for generation 5.

Software Qual J (2017) 25:7–48 41

123

Re-executing is faster at any earlier point. For generation 7, the boundary shifts to 80 %.

Again, this is due to the high growth rate and number of changes at the end of the model

transformation.

7.5 What is the effect of changes and steps on memory consumption
in history? (RQ 5)

In addition to the added processing required to perform omniscient debugging, AODB also

requires a history of previous changes that have occurred within the transformation. The

history is required for the debugger to return to any previous state of the transformation, but

comes at the cost of additional memory consumption. Both RQ 5 and RQ 6 are designed to

assist in understanding the overall impact that history has on memory consumption.

History is composed of three main components. The first is the changes that occur during the

transformation.The second is the stepsor the discreteunits of execution that contain the changes.

Finally, the revisions cache contains a link between the elements in themodel and the changes in

history.Additionalminor elements are also included in history (i.e., a pointer to the current step),

but these elements provide only static memory usage and are trivial compared to the three main

components. To investigate the impact of these three components, we mapped out the per-

centage of history that is composed of the changes and the percentage that is composed of the

steps as we progress through the model transformation and the number of executed steps

increases. The revisions cache stores an entry for each change that has occurred. We can safely

consideronly these twoconcernsbecause the cost of the revisions cache canbe amortizedamong

all changes to produce a constant increase per change. Thus, the primary component is the

number of changes, because the memory usage of the revisions cache is dependent upon the

number of changes. Furthermore, as a result of the study,weobserved that themain contributing

component to the memory consumption of history for the observed systems (Sierpinski Tri-

angles and Movie DB Case) is due to the changes. This was expected because steps are a

containing unit of the changes and each step has an almost constant memory consumption.

There are several points during execution when we observed notable reductions in the

percentage of history’s memory usage due to the changes (as seen in both Figs. 14 and 15).

These reductions are observed in both model transformations. For the Sierpinski Triangles,

the model transformation is written in T-Core which maintains an internal store of dynamic

information which includes a set of matched sets (i.e., subgraphs matched by the matcher

rule, findTriangles). As the transformation progresses through the remainder of the

generation, the iterator removes elements from the matched set, and the rewriter uses the

removed match set to process a triangle. Over the course of the generation, the matched

sets slowly decrease and the total number of changes steadily increases. At the beginning

of the next generation, a new (significantly larger) matched set is generated. Because

history stores step information such as the matched sets, the percentage of history will vary

based on the current point in the generation. The Movie DB Case, however, appears to only

have a single transition rather than repeated transitions from continuous searches, but the

reduction in this case is due to the same concern. Internally, MoTif rules possess a similar

structure to the matched sets in T-Core that are used for the same purpose. However, the

Movie DB Case has a constant series of searches after the initial building phase of Task 1.

Thus, when Task 1 completes, the transformation will then continuously have a matched

set component that does not slowly reduce in size as seen in the Sierpinski Triangles

transformation. Thus, the result is a single reduction at the point where Task 1 ends, but the

reduction is due to the same cause as observed for the Sierpinski Triangles.

42 Software Qual J (2017) 25:7–48

123

7.6 What is the impact of history on total memory consumption? (RQ 6)

RQ 5 focused on the composition of history to determine the main components impacting

memory consumption. However, this question did not address the impact of history on

overall memory usage for the transformation engine. RQ 6 addresses the effect of history

on the memory consumption of the model transformation engine as a whole.

For each model transformation, we mapped the percentage of the model transformation

engine’s memory that is accounted for by the history as the number of executed steps

increases. For the Movie DB Case transformation, this value never surpassed 5 % of

memory consumption and displayed a slow growth rate. In contrast, the Sierpinski Tri-

angles transformation grew at a roughly logarithmic rate as the number of executed steps in

the transformation increased. Additionally, the Sierpinski Triangles transformation has

several observable sharp increases in memory usage which are due to the matched sets

generated at the beginning of generation (as discussed in the previous section). However,

even with this growth rate and the sharp increases, the memory usage never surpassed

15 % of the overall memory usage for the model transformation engine.

This would seem to indicate that there is still considerable room for the history to grow,

allowing for a larger number of model elements and changes. Furthermore, we can observe

that the size of a model and other factors seem to be contributing more significantly to

memory consumption than history.

7.7 Evaluating the efficiency and scalability of our technique

Each of the previous questions addressed a different point regarding the efficiency and the

scalability of the technique. The answers to these questions help address when the algorithms

proposed in this paper can be used by a developer during MT debugging. Due to the non-

deterministic nature of model transformations, omniscient debugging allows for the devel-

oper to debug an execution that may have been difficult to recreate without these features.

However, it is important to ensure that the techniques used to provide these features avoid

adding significant overhead affecting either runtime performance or memory consumption.

From the results of our study, we found that the omniscient debugging technique does

not significantly affect the execution time of a model transformation when compared with

stepwise execution. This is an important finding as it indicates that the developer should

not notice a difference when utilizing the omniscient features. In addition, we looked at

memory usage of the history structure that is required to make omniscient debugging

possible. We found that history only had a minor impact on the system. The major con-

tributors to memory usage include the size of the model and other standard features of the

transformation engine. With this in mind, the dominating factor for determining memory

resources to allocate is still the size of the model and not the additional storage of history.

In terms of the effectiveness of our MacroStep building algorithms, we found that there

was a significant difference between iterating through the steps (IterateSteps) and
iterating through the elements (IterateElements). The results of our analysis have

indicated we could improve the performance by altering the cutoff points for using one

algorithm over the other. We believe this will lead to significant gains when jumping

through history and improve the overall omniscient debugging process.

Finally, we found that in cases where non-determinism was not a factor and a model

transformation can be re-executed by the developer, it is often superior with regard to

execution time to use the omniscient features. This is especially true when the

Software Qual J (2017) 25:7–48 43

123

transformation incorporates costly search steps or when the number of changes grows

large. As we increase the effectiveness of building the macrosteps, this difference should

grow more prominent for all cases.

8 Conclusions and future work

Like all software systems, evolution also occurs in software models. In MDE, the evolution

of models is commonly defined using MTLs, which can be used to specify the distinct

needs of a requirements or engineering change at the software modeling level. Model

transformations are also a type of software abstraction that can be subject to human error.

Traditional approaches to bug localization have also been applied to assist in locating

errors in model transformations (Schönböck et al. 2009). Debugging is a fundamental

software engineering task. However, despite the common need for debugging in software

development, tool support for debugging has changed little over the past half century

(Seifert and Katscher 2008).

We presented an omniscient debugging technique and associated algorithms for model

transformations. The technique provides an intuitive extension to stepwise execution to

enable free traversal of execution history through a set of omniscient features that control

the execution of the system in a stepwise manner. We provide the ability to continuously

execute or revert the system (i.e., play and playback), progress stepwise through the

execution of the transformation (i.e., stepIn, stepOver, or stepOut), revert the
system in a mirror of the stepwise features (i.e., backIn, backOver, and backOut),
and jump directly to a target step of execution. We discussed the use of a trace of

execution, referred to as history, to enable the various omniscient traversals. Finally, we

introduced an algorithm to efficiently identify a minimal set of changes, MacroStep,

which must be executed to complete a traversal through history (either forward or

backward) along with a set of patterns used to determine which changes must be included.

We also provide discussion of the theoretical execution time performance scaling of the

MacroStep building algorithm and the theoretical memory consumption scaling of history.

We followed this theoretical discussion with an empirical evaluation of these concerns

guided by a set of 6 research questions. The evaluation indicates execution time perfor-

mance was not significantly different than a stepwise debugger when considering initial

execution (where omniscient debugging must provide additional processing to manage

history), and the memory scaling of the overall system was not observed to have a primary

effect on the memory usage of the model transformation execution engine as a whole.

Additionally, numerous features and components were explored such as comparing two

approaches to building a MacroStep.

As future work, we are preparing to conduct a human-based study to evaluate the

usability of AODB in practice. Thus far, AODB has been applied as a prototype designed

to explore our technique with a particular concern for the efficiency of the algorithms and

storage structures. We would like to extend AODB with a visualization of history and

perform a formal user study to assess the usability of the tool. The study will provide a

comparative analysis using the stepwise execution debugger provided in AToMPM as a

baseline. The results will provide insight and feedback to further drive the development of

our technique supporting omniscient debugging for model transformations as well as

evaluation of the usability of AODB.

44 Software Qual J (2017) 25:7–48

123

References

Agrawal, A., Karsai, G., Neema, S., Shi, F., & Vizhanyo, A. (2006). The design of a language for model
transformations. Journal of Software and Systems Modeling, 5(3), 261–288.

Androutsopoulos, K., Clark, D., Harman, M., Krinke, J., & Tratt, L. (2013). State-based model slicing: A
survey. ACM Computing Surveys, 45(4), 53:1–53:36.

AToM3. (2015). AToM3 Project Page. University of McGill Modelling, Simulation, and Design Lab. http://
atom3.cs.mcgill.ca. Accessed 9 Sept 2015.

Basciani, F., Di Rocco, J., Di Ruscio, D., Di Salle, A., Iovino, L., & Pierantonio, A.(2014) MDEForge: an
extensible web-based modeling platform. In Proceedings of the 2nd international workshop on model-
driven engineering on and for the cloud co-located with the 17th international conference on model-
driven engineering languages and systems (pp. 66–75).

Bousse, E., Corley, J., Combemale, B., Gray, J., & Baudry, B. (2015) Supporting efficient and advanced
omniscient debugging for xDSMLs. In Proceedings of the 8th international conference on software
language engineering (accepted for publication).

Burgueño, L., Troya, J., Wimmer, M., & Vallecillo, A. (2015). Parallel in-place model transformations with
LinTra. In Proceedings of the 3rd workshop on scalable model driven engineering part of the software
technologies: applications and foundations federation of conferences (pp. 52–62).

Clinger, H., & Ost, E. (1988). Implementation strategies for continuations. In Proceedings of the ACM
conference on LISP and functional programming (pp. 124–131).

Combemale, B., Deantoni, J., Baudry, B., France, R., Jézéquel, J. M., & Gray, J. (2014). Globalizing
modeling languages. IEEE Computer, 10–13.

Corley, J. (2014). Exploring omniscient debugging for model transformations. In ACM student research
competition at the 17th international conference on model-driven engineering, languages, and systems
(pp. 63–68).

Corley, J., Eddy, B., & Gray, J. (2014). Towards efficient and scalable omniscient debugging for model
transformations. In Proceedings of the 14th workshop on domain-specific modeling (pp. 13–18).

Corley, J., Syriani, E., Ergin, H., & Van Mierlo, S. (2016). Cloud-based multi-view modeling environments.
In A. M. Cruz & S. Paiva (Eds.), Modern software engineering methodologies for mobile and cloud
environments. Pennsylvania: IGI Global.

Czarnecki, K., & Helsen, S. (2006). Feature-based survey of model transformation approaches. IBM Systems
Journal, 45(3), 621–645.

Di Ruscio, D., Kolovos, D., & Matragkas, N. (2013). Scalability in model driven engineering: BigMDE’13
workshop summary. In Proceedings of the first workshop on scalability in model driven engineering
(pp. 1–2).

Engblom, J. (2012). A review of reverse debugging. In System, software, SoC and silicon debug conference
(pp. 1–6).

Ergin, H., & Syriani, E. (2014). Atompm solution for the IMDB case study. In Proceedings of the 7th
transformation tool contest part of the software technologies: Applications and foundations (pp.
134–138).

Gray, J., Tolvanen, J-P, Kelly, S., Gokhale, A., Neema, S., & Sprinkle, J. (2007). Domain-specific modeling.
Handbook of Dynamic System Modeling, 7/1-7/20.

Henkler, S., Meyer, J., Schafer, W., von Detten, M., & Nickel, U. (2010). Legacy component integration by
the Fujaba real-time tool suite. In ACM/IEEE 32nd international conference on software engineering
(pp. 267–270).

Horn, T., Krause, C., & Tichy, M. (2014). The ttc 2014 movie database case. In Proceedings of the 7th
transformation tool contest part of the software technologies: Applications and foundations (pp.
93–97).

IEEE. (2002). IEEE 610-12.1990 IEEE standard glossary of software engineering terminology. IEEE.
https://standards.ieee.org/findstds/standard/610.12-1990.html. Accessed 19 Sept 2015.

Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). ATL: A model transformation tool. Science of
Computer Programming, 72(1–2), 31–39.

Jouault, F., & Kurtev, I. (2006). Transforming models with ATL. In Satellite events at the MoDELS 2005
conference (pp. 128–138).

Kolovos, D. S., Rose, L. M., Matragkas, N., Paige, R. F., Guerra, E., Cuadrado, J. S., et al. (2013). A
research roadmap towards achieving scalability in model driven engineering. In Proceedings of the
workshop on scalability in model-driven engineering (pp. 1–10).

Kühne, T. (2006). Matters of (meta-) modeling. Journal of Software and Systems Modeling, 5(4), 369–385.
Lewis, B. (2003). Debugging backwards in time. In Proceedings of the fifth international workshop on

automated debugging.

Software Qual J (2017) 25:7–48 45

123

http://atom3.cs.mcgill.ca
http://atom3.cs.mcgill.ca
https://standards.ieee.org/findstds/standard/610.12-1990.html

Lienhard, A., Fierz, J., & Nierstrasz, O. (2009) Flow-centric, back-in-time debugging. In Proceedings of
objects, components, models and patterns (pp. 272–288).

Lienhard, A., Gı̂rba, T., & Nierstrasz, O. (2008). Practical object-oriented back-in-time debugging. In
Proceedings of the 22nd European conference on object-oriented programming (pp. 592–615).

Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G., et al. (2016). Model transformation
intents and their properties. Journal of Software and Systems Modeling. doi:10.1007/s10270-014-0429-
x.

Mannadiar, R., & Vangheluwe, H. (2011). Debugging in domain-specific modelling. In Software language
engineering (pp. 276–285).

Pothier, G., & Tanter, E. (2009). Back to the future: Omniscient debugging. IEEE Software, 26(6), 78–85.
QVT. (2015). Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT) version 1.2. http://www.

omg.org/spec/QVT/1.2. Accessed 19 Sept 2015.
Schönböck, J. (2012). Testing and debugging of model transformations. Dissertation. The Vienna University

of Technology. http://publik.tuwien.ac.at/showentry.php?ID=209018&lang=2. Accessed 19 Sept 2015.
Schönböck, J., Kappel, G., Kusel, A., Retschitzegger, W., Schwinger, W., & Wimmer, M. (2009). Catch me

if you can—debugging support for model transformations. In Proceedings of the 12th international
conference on model-driven engineering, languages, and systems (pp. 5–20).

Seifert, M., & Katscher, S. (2008). Debugging triple graph grammar-based model transformations. In
Proceedings of 6th international Fujaba days (pp. 19–22).

Selic, B. (2003). The pragmatics of model-driven development. IEEE Software, 20(5), 19–25.
Steel, J., & Lawley, M. (2004). Model-based test driven development of the Tefkat model transformation

engine. In Proceedings of the 15th IEEE international symposium on software reliability engineering
(pp. 151–160).

Stevens, P. (2010). Bidirectional model transformations in QVT: Semantic issues and open questions.
Journal of Software and Systems Modeling, 9(1), 7–20.

Syriani, E., & Vangheluwe, H. (2011). A modular timed model transformation language. Journal of Soft-
ware and Systems Modeling, 12(2), 387–414.

Syriani, E., Vangheluwe, H., & LaShomb, B. (2015). T-Core: A framework for custom-built model
transformation engines. Journal of Software and Systems Modeling, 14(3), 1215–1243.

Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., & Ergin, H. (2013). AtomPM: A
web-based modeling environment. In Joint Proceedings of MODELS invited talks, demonstration
session, poster session, and ACM student research competition co-located with the 16th international
conference on model driven engineering languages and systems.

Szárnyas, G., Izsó, B., Ráth, I., Harmath, D., Bergmann, G., & Varró, D. (2014). IncQuery-D: A distributed
incremental model query framework in the cloud. In Proceedings of the ACM/IEEE 17th international
conference model-driven engineering languages and systems (pp. 653–669).

Taentzer, G. (2003). AGG: A graph transformation environment for modeling and validation of software. In
Proceedings of the second international workshop on applications of graph transformations with
industrial relevance (pp. 446–453).

Ujhelyi, Z., Horvath, A., & Varro, D. (2012). Dynamic backward slicing of model transformations. In IEEE
fifth international conference on software testing, verification and validation (pp. 1–10).

Van Mierlo, S. (2014). Explicit modelling of model debugging and experimentation. In Proceedings of
doctoral symposium co-located with the 17th international conference on model driven engineering
languages and systems.

Varró, D., & Balogh, A. (2007). The model transformation language of the VIATRA2 framework. Science
of Computer Programming, 68(3), 214–234.

Zelkowitz, M. V. (1973). Reversible execution. Communications of the ACM, 16(9), 566.

46 Software Qual J (2017) 25:7–48

123

http://dx.doi.org/10.1007/s10270-014-0429-x
http://dx.doi.org/10.1007/s10270-014-0429-x
http://www.omg.org/spec/QVT/1.2
http://www.omg.org/spec/QVT/1.2
http://publik.tuwien.ac.at/showentry.php?ID=209018&lang=2

Jonathan Corley is currently a Ph.D. student in Computer Science at
the University of Alabama working in the area of model-driven
engineering. He graduated with a M.S. in Computer Science from the
University of Alabama in May of 2012. While working toward his
M.S. and Ph.D., he has been a member of the Software Engineering
Group at the University of Alabama. In addition to his research,
Jonathan has taught several undergraduate courses and has also been
involved with numerous outreach programs in Tuscaloosa (e.g.,
assisting with coordinating an after-school program at local elementary
schools).

Brian P. Eddy is an Assistant Professor at the University of West
Florida in Department of Computer Science. He graduated with his
Ph.D. from the Department of Computer Science at the University of
Alabama in 2015. He graduated from Armstrong Atlantic State
University in 2009 with B.S. degrees in both Computer Science and
Applied Mathematics. He then went on to receive his M.S. in Com-
puter Science from the University of Alabama. Mr. Eddy’s research
interests include program comprehension, software and maintenance,
and computer science education. His main areas of research include
improving the state of the art in maintenance and debugging tools for
large-scale software systems. In addition to his research interests,
Brian has a passion for teaching. He was worked with a wide range of
students in the areas of Computer Science and Mathematics.

Eugene Syriani is currently an Assistant Professor in Computer Sci-
ence at the University of Montreal where he is a member of the
GEODES Software Engineering Research Group. He teaches bachelor,
masters, and doctoral-level courses in software engineering. Eugene’s
main research interests are in model-based design, in particular model
transformation design and verification, model-driven methodology,
simulation-based design, and application of MDE in non-computer
science domains. In addition to his research and teaching, he serves on
the program committee, organizes several international conferences
and workshops, and is a reviewer for journals in modeling and simu-
lation. Eugene was formerly an assistant professor at the University of
Alabama until 2014. He received a Ph.D. in Computer Science in 2011
and holds a B.Sc. in Mathematics and Computer Science since 2006,
both at McGill University.

Software Qual J (2017) 25:7–48 47

123

Jeff Gray is a Professor in the Department of Computer Science at the
University of Alabama. His research interests include software engi-
neering, model-driven engineering, mobile computing, and computer
science education, More about Jeff’s research can be found at http://
gray.cs.ua.edu.

48 Software Qual J (2017) 25:7–48

123

http://gray.cs.ua.edu
http://gray.cs.ua.edu

	Efficient and scalable omniscient debugging for model transformations
	Abstract
	Introduction
	Background and related work
	Models and model transformations
	Non-determinism in model transformations
	Bidirectional transformations
	Stepwise execution
	Omniscient debugging for GPLs
	Omniscient debugging for MDE
	AToMPM

	An omniscient debugging scenario
	Transformation details
	An omniscient debugging scenario

	Omniscient debugging for model transformations
	Execution traversal features for omniscient debugging
	Stepwise execution traversal features modified for omniscient traversal
	Omniscient execution traversal features

	Collecting a history of execution
	Evaluating the memory consumption of history

	Traversing a history of execution
	Recognizing patterns of change
	Efficient omniscient traversal using MacroSteps
	Algorithms to construct a MacroStep
	Evaluating the MacroStep construction algorithms

	Maintaining scope in history
	Supporting omniscient debugging in other modeling platforms

	Empirical evaluation study design
	Research questions
	Debuggers and model transformations used in evaluation
	Measures used in the evaluation
	Configuration of experimental platform
	Data collection and analysis
	Threats to validity

	Results obtained from performance and scalability study
	Is there a significant difference in execution time between executing a model transformation with omniscient debugging versus stepwise execution? (RQ 1)
	Is there a significant difference in execution time between executing a model transformation with or without macrosteps? (RQ 2)
	Is there a significant difference in execution time between the	&!blank;iterateSteps and iterateElements algorithms? (RQ 3)
	At what point does omniscient debugging outperform restarting a model transformation in terms of total execution time? (RQ 4)
	What is the effect of changes and steps on memory consumption in history? (RQ 5)
	What is the impact of history on total memory consumption? (RQ 6)

	Discussion of empirical study and lessons learned
	Is there a significant difference in execution time between executing a model transformation with omniscient debugging versus stepwise execution? (RQ 1)
	Is there a significant difference in execution time between executing a model transformation with or without macrosteps? (RQ 2)
	Is there a significant difference in execution time between the &!blank;iterateSteps and iterateElements algorithms? (RQ 3)
	At what point does omniscient debugging outperform restarting a model transformation in terms of total execution time? (RQ 4)
	What is the effect of changes and steps on memory consumption in history? (RQ 5)
	What is the impact of history on total memory consumption? (RQ 6)
	Evaluating the efficiency and scalability of our technique

	Conclusions and future work
	References

