
A systematic approach to evaluating domain-specific
modeling language environments for multi-agent systems

Moharram Challenger1 • Geylani Kardas1 • Bedir Tekinerdogan2

Published online: 10 September 2015
� Springer Science+Business Media New York 2015

Abstract Multi-agent systems (MASs) include multiple interacting agents within an

environment to provide a solution for complex systems that cannot be easily solved with

individual agents or monolithic systems. However, the development of MASs is not trivial

due to the various agent properties such as autonomy, responsiveness, and proactiveness,

and the need for realization of the many different agent interactions. To support the

development of MASs various domain-specific modeling languages (DSMLs) have been

introduced that provide a declarative approach for modeling and supporting the generation

of agent-based systems. To be effective, the proposed DSMLs need to meet the various

stakeholder concerns and the related quality criteria for the corresponding MASs. Unfor-

tunately, very often the evaluation of the DSML is completely missing or has been carried

out in idiosyncratic approach. If the DSMLs are not well defined, then implicitly this will

have an impact on the quality of the MASs. In this paper, we present an evaluation

framework and systematic approach for assessing existing or newly defined DSMLs for

MASs. The evaluation is specific for MAS DSMLs and targets both the language and the

corresponding tools. To illustrate the evaluation approach, we first present SEA_ML,

which is a model-driven MAS DSML for supporting the modeling and generation of agent-

based systems. The evaluation of SEA_ML is based on a multi-case study research

approach and provides both qualitative evaluation and quantitative analysis. We report on

the lessons learned considering the adoption of the evaluation approach as well as the

SEA_ML for supporting the generation of agent-based systems.

& Geylani Kardas
geylani.kardas@ege.edu.tr

Moharram Challenger
moharram.challenger@mail.ege.edu.tr

Bedir Tekinerdogan
bedir.tekinerdogan@wur.nl

1 International Computer Institute, Ege University, Izmir, Turkey

2 Information Technology Group, Wageningen University, Wageningen, The Netherlands

123

Software Qual J (2016) 24:755–795
DOI 10.1007/s11219-015-9291-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9291-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9291-5&domain=pdf

Keywords Domain-specific modeling language (DSML) � Evaluation framework �
Evaluation of DSMLs � Multi-agent system (MAS) � Software agent � SEA_ML

1 Introduction

Software agents are considered as autonomous software components which are capable of

acting on behalf of their human users in order to perform a group of defined tasks

(Wooldridge and Jennings 1995). In its most fundamental artificial intelligence definition,

an agent is anything that can be viewed as perceiving its environment through sensors and

acting upon that environment through effectors (Russell and Norvig 2003). Multi-agent

systems (MASs) include multiple interacting agents within an environment to provide a

solution for complex systems that cannot be easily solved with individual agents or

monolithic systems.

However, the development of MASs is not trivial due to the various agent properties

such as autonomy, responsiveness, and proactiveness, and the need for realization of the

many different agent interactions. The interaction among agents can be based on various

complex protocols and can be either cooperative or selfish (Sycara 1998).

Therefore, it is natural that methodologies are being applied to master the problem of

defining such complex systems. One of the possible alternatives is represented by domain-

specific languages (DSLs) (van Deursen et al. 2000; Mernik et al. 2005; Varanda-Pereira

et al. 2008; Fowler 2011) that have notations and constructs tailored toward a particular

application domain (e.g., MAS). The end users of DSLs have knowledge from the observed

problem domain (Sprinkle et al. 2009), but they usually have little programing experience.

Domain-specific modeling languages (DSMLs) (Mernik et al. 2005; Kelly and Tolvanen

2008; Fister et al. 2011) further raise the abstraction level, expressiveness, and ease of use.

The main artifacts of DSML are models instead of software codes, and they are usually

specified in a visual manner (Schmidt 2006; Gray et al. 2007).

To support the development of MASs, various DSMLs have been introduced that

provide a declarative approach for modeling and supporting the generation of agent-based

systems (e.g., Rougemaille et al. 2007; Hahn 2008; Fuentes-Fernandez et al. 2010; Cio-

banu and Juravle 2012; Gascuena et al. 2012; Challenger et al. 2014). In addition to these

existing DSMLs, it is expected that new DSMLs can be introduced in the future to address

various different concerns in MAS. DSML allows end-user programmers and domain

experts to specify the core essence of a problem using visual abstractions that are close to

the problem space of a specific domain.

To be effective, the proposed DSMLs need to meet the various stakeholder concerns

and the related quality criteria for the corresponding MASs. Several studies have reported

on the successful application of DSMLs in different companies such as SAP, Telephonica

and WesternGeco (Mohagheghi et al. 2013). Unfortunately, very often the systematic

evaluation of the DSML is completely missing or has been conducted in an idiosyncratic

way (Mohagheghi and Dehlen 2008). That is because DSMLs have a relatively short

history, and research on DSML evaluation methodologies is currently in its preliminary

stage where researchers still continue to work especially on the derivation of appropriate

DSML evaluation criteria (Kahlaoui et al. 2008; Barisic et al. 2012a). Moreover, experi-

ence reports with comprehensive evaluations and the adopted criteria may be kept private

and not published (Mohagheghi and Dehlen 2008) because of their business value. Hence,

756 Software Qual J (2016) 24:755–795

123

public reports on the real and complete evaluation of DSMLs in various fields can be

beneficial especially for researchers and developers who intend to use a DSML-based

engineering approach.

If MAS DSMLs are not well defined, then implicitly this will have an impact on the

quality of the MASs. Several criteria need to be taken into account that will impact the

effectiveness of the MAS DSML. In this context, we present an evaluation framework and

systematic approach for the assessment of existing or newly defined DSMLs for MASs

including both the language and supporting tools of the language. The framework mainly

addresses the concerns of MAS stakeholders for both qualitative evaluation and quanti-

tative analysis, so targeted languages are DSMLs specific for MAS rather than DSMLs in

general. The qualitative evaluation includes criteria for supporting the general DSML

assessment, and for the end user’s perspective. The quantitative analysis focuses on the

executional dimensions. This evaluation also paves the way for comparison and selection

of MAS DSMLs.

Although the assessment criteria presented in the evaluation framework take into

account the evaluation of MAS DSMLs and not their development processes, the evalu-

ation framework can also be used to evaluate parts of a MAS DSML during its devel-

opment (and/or compare with another mature MAS DSML), e.g., its abstract syntax,

concrete syntax, and transformations.

To illustrate the evaluation approach we first present SEA_ML, which is a MAS DSML

for modeling and generation of agent-based systems (Challenger et al. 2014). SEA_ML is a

comprehensive DSML that realizes the concerns of many existing DSMLs to especially

support the development of software agents in the Semantic Web environment (Berners-

Lee et al. 2001; Shadbolt et al. 2006). As such, the interactions and applied protocols

between agents and semantic web services are covered by SEA_ML (Getir et al. 2012).

The evaluation of SEA_ML is based on a multi-case study research approach. For eval-

uating the language elements of SEA_ML, the specifications of three main parts of this

DSML including the abstract syntax, concrete syntax and code generation are analyzed.

The evaluation considers the application of SEA_ML to develop agent-based systems.

However, SEA_ML is used here for the demonstration purposes, and the proposed eval-

uation framework can already be employed for the assessment of any MAS DSML due to

its built-in specifications and defined criteria by taking into consideration all aspects of

MAS modeling at static and dynamic levels; including both agent internals and MAS

environmental and organizational structures.

For evaluating the executional dimension, the generated artifacts are compared with the

final artifacts, and the percentages of generated artifacts are calculated. In order to assess

the development using SEA_ML, we have adopted two groups of users who had to develop

MASs for four different case studies. The first group used SEA_ML, while the members of

the second group did not use SEA_ML and they were free to use general-purpose modeling

languages. We call this group as manual developers. Manual users were also free to

implement systems by using general-purpose programing languages without a preceding

modeling stage. The comparison between MAS DSML-based development and manual

MAS development [e.g., by using a general-purpose language (GPL)] can be used to

evaluate DSMLs. That approach is similar to the comparison between a GPL and a DSL

given in Kosar et al. (2010). DSML-based development aims to be substituted with manual

development where DSML’s performance takeovers the manual approach. We report on

the results of the case study research and provide the lessons learned considering the

adoption of the evaluation approach as well as the development of SEA_ML for supporting

the generation of agent-based systems.

Software Qual J (2016) 24:755–795 757

123

The remainder of the paper is organized as follows: Sect. 2 discusses the background of

the study, including a general description of DSMLs for MAS and an example DSML,

SEA_ML. Section 3 presents the evaluation framework. Section 4 describes the multi-case

study protocol in which we adopt the evaluation framework to illustrate the evaluation of

SEA_ML. Section 5 presents the execution of the case studies including the data extrac-

tion. Section 6 presents the results and their analysis for the case study research. Section 7

includes the discussion on threats to validity. Section 8 describes the related work, and

finally we conclude the paper with Sect. 9.

2 DSML for MASs

In this section we present the basic elements of a MAS DSML and describe SEA_ML

which is an example MAS DSML that will be used throughout the paper to illustrate the

evaluation approach. The general language elements for MAS DSMLs are presented in

Sect. 2.1, while SEA_ML is presented in Sect. 2.2.

2.1 Elements of MAS DSMLs

In general, a DSML is defined using an abstract syntax, concrete syntax, static semantics,

and the operational semantics of the language (Warmer and Kleppe 1998; Mernik and

Zumer 2005). The abstract syntax of a DSML describes the concepts and their relations to

other concepts without any consideration of representation or meaning. In other words, the

abstract syntax of a language describes the vocabulary of concepts provided by the lan-

guage and how they may be combined to form models or programs (Clark et al. 2004). In

terms of model-driven development (MDD), the abstract syntax is described by a meta-

model which defines what the models should look like. The concrete syntax definition

provides a mapping between meta-elements and their representations. Static semantics

provides definitions of additional constraint rules on abstract syntax that are hard or

impossible to express in standard syntactic formalisms of the abstract syntax (Saritas and

Kardas 2014). Finally, the operational semantics of the language provides the meaning of

the concepts defined in the abstract syntax.

As stated before, various MAS DSMLs have been introduced in the literature. These

DSMLs are based on well-defined metamodels including several viewpoints (Demirli and

Tekinerdogan 2011) to address the domain concepts (e.g., Bernon et al. 2005; Omicini

et al. 2008; Beydoun et al. 2009; Hahn et al. 2009; Kardas et al. 2009; Challenger et al.

2011).

In Fig. 1, for the demonstration purposes, we illustrated a simplified and generic MAS

metamodel that may be considered as a high-level abstraction. It is worth noting that an

actual MAS metamodel is much more complicated with including many entities and their

associations as can be seen in various widely known agent metamodels (e.g., Omicini et al.

2008; Beydoun et al. 2009; Hahn et al. 2009; Kardas et al. 2009; Challenger et al. 2014).

Further, actual MAS metamodels can consist of different viewpoints such as agent internal,

environment, interaction/collaboration, protocol and organization. Simplified metamodel

given in Fig. 1 is used to describe and explain below some of the important concepts and

language elements of MAS DSMLs.

According to the metamodel in Fig. 1, a MAS consists of organizations in which agents

work. Each agent has its goals, plans, and beliefs which constitute the agent’s capacities.

758 Software Qual J (2016) 24:755–795

123

These components are required especially for Belief–Desire–Intention (BDI) agents (Rao

and Georgeff 1995) to be able to realize the pro-active feature of agents. On the other hand,

an agent having its behaviors can react to the events and realize reactiveness of agents.

Agents play roles to reach their goals, and they can change these roles during time and/or

moving from organization to another one. Inside these roles, agents may also interact by

message passing. These messages are sent and received, while agents execute their tasks

which compose plans in the agents. Finally, agents can change their organization and use

resources, information, and services which are in the environments of those organizations.

2.2 SEA_ML

In this paper, we will use SEA_ML (Challenger et al. 2014) as the instance DSML to

exhibit how the proposed evaluation approach can be employed. SEA_ML is a MAS

DSML for the development of Semantic Web enabled MASs. Main goal of this language is

to provide a convenient and handy environment for agent developers to construct and

implement software agent systems working on various application domains. In order to

support MAS experts when programing their own systems, and to be able to fine-tune them

visually, SEA_ML covers all aspects of an agent system from the internal view of a single

agent to the complex MAS organization. In addition to these capabilities, SEA_ML also

supports the model-driven design and implementation of autonomous agents who can

evaluate semantic data and collaborate with semantically defined entities of the Semantic

Web, like Semantic Web Services (SWS). That feature exactly differentiates SEA_ML and

makes unique regarding any other MAS DSML currently available. Within this context, it

Fig. 1 General metamodel (abstract syntax) representing MAS DSMLs

Software Qual J (2016) 24:755–795 759

123

includes new viewpoints which specifically pave the way for the development of software

agents working on the Semantic Web environment. Modeling agents, agent knowledge-

bases, platform ontologies, semantic web services and interactions between agents and

SWS are all possible in SEA_ML. Taking into account all of these features, this full-

fledged MAS DSML is chosen for the study reported in this paper.

SEA_ML’s metamodel is divided into eight viewpoints, each of which represents a

different aspect for developing Semantic Web enabled MASs. These viewpoints include

the followings: Agent’s Internal Viewpoint is related to the internal structures of semantic

web agents (SWAs) and defines entities and their relations required for the construction of

agents. It covers both reactive and Belief–Desire–Intention (BDI) (Rao and Georgeff 1995)

agent architectures. Interaction Viewpoint expresses the interactions and communications

in a MAS by taking messages and message sequences into account. MAS Viewpoint solely

deals with the construction of a MAS as a whole. It includes the main blocks which

compose the complex system as an organization. Role Viewpoint delves into the complex

controlling structure of the agents and addresses role types. Environmental Viewpoint

addresses the use of resources and interaction between agents with their surroundings. Plan

Viewpoint deals with an agent’s Plan’s internal structure, which are composed of Tasks

and atomic elements such as Actions. Ontology Viewpoint addresses the ontological

concepts which constitute agent’s knowledgebase (such as belief and fact). Agent–SWS

Interaction Viewpoint defines the interaction of agents with semantic web services (SWS)

(Sycara et al. 2003) including the definition of entities and relations for service discovery,

agreement and execution.

The collection of SEA_ML viewpoints constitutes an extensive and all-embracing

model of the MAS domain. The SEA_ML views, namely MAS, Agent Internal and

Interaction, cover the main agent entities and their relations on which the agent research

community is mostly agreed. Similar abstractions can also be found in (e.g., Pavon et al.

2006; Omicini et al. 2008; Hahn et al. 2009; Beydoun et al. 2009). Furthermore, more

specific aspects of the domain like Plan, Role and Environment are also supported in

SEA_ML syntax with individual metamodels. In fact, proposing specific metamodels for

these viewpoints is not a new idea. For example, Hahn (Hahn 2008) also presents sub-

metamodels for the Plan and Role aspects, while the Environment view is specifically

considered in Omicini et al. (2008) and Challenger et al. (2011). However, SEA_ML’s

abstract syntax combines all of these generally accepted aspects of MAS and introduces

two new viewpoints (Agent–SWS Interaction and Ontology) for supporting the develop-

ment of software agents working within the Semantic Web environment. On the other

hand, the behavior and goal aspects can also be considered with distinct sub-metamodels

although such an approach is not very common in MAS DSML proposals. Due to the

generality considerations and the scarcity of meta-entities for being a unique model,

SEA_ML does not consider these aspects as individual sub-metamodels. Instead, the

required first class entities and their relations pertaining to the behavior and goal aspects of

agent systems are included within the agent internal viewpoint of SEA_ML.

SEA_ML can be both used for modeling MASs and generation of code from the defined

models. SEA_ML instances are given a series of model-to-model (M2M) and model-to-

text (M2T) transformations to achieve executable artifacts of the system-to-be-built for

various agent platforms [such as JACK (AOS 2001) and JADEX (Pokahr et al. 2005)] and

semantic web service ontologies [e.g., OWL-S (Martin et al. 2004)]. For implementing the

M2M transformations, ATL language (Jouault et al. 2008) was used, while the M2T

transformations were implemented using MOFScript (Oldevik et al. 2005; MOFScript

2005). It is also possible to automatically check the integrity and validity of SEA_ML

760 Software Qual J (2016) 24:755–795

123

models (Getir et al. 2014). Complete discussion on SEA_ML and supported development

mechanism with including the internals of the abovementioned transformations can be

found in Challenger et al. (2014).

Comparison results again given in Challenger et al. (2014) show that SEA_ML and the

studies in Hahn (2008), Hahn et al. (2008), Fuentes-Fernandez et al. (2010), Ciobanu and

Juravle (2012) and Gascuena et al. (2012) have the expected features of being an almost

complete DSL/DSML for the development of agent systems since those studies cover the

definition of an abstract syntax, a concrete syntax and operational semantics at least, and

provide some mechanisms for the exact implementation of MASs. However, some of them

do not consider the general purpose. For instance, DSL introduced in Ciobanu and Juravle

(2012) only provides for the development of mobile agents, while Gascuena et al. (2012)

introduce a model just within the scope of Prometheus methodology. On the other hand,

SEA_ML and DSML4MAS (Hahn 2008) differentiate from the remaining studies by

introducing general metamodels with various viewpoints that enable the development of

MAS for many application domains. Further, SEA_ML supports the interaction of agents

with semantic web services and introduces new viewpoints for agent internals when

considering semantic web support. Although it can be said that Hahn et al. (2008) also

share the same service interaction perspective, SEA_ML brings a different approach by the

provision of a unique metamodel. Moreover, as far as we know, SEA_ML is also the first

MAS DSL which provides both textual (Demirkol et al. 2013) and graphical concrete

syntaxes for MAS developers.

Finally, it is worth indicating that abovementioned MAS DSML studies bring note-

worthy contributions on MDD of MASs by especially focusing on agent metamodeling,

model transformation and tooling aspects. However, they do not involve any compre-

hensive evaluation of the proposed languages including quantitative and/or qualitative

assessment of language features, development environment, and etc. based on an empirical

work.

3 Evaluation framework

In this section, we present the framework for evaluating MAS DSMLs. The framework

covers the evaluation of MAS DSML elements, tooling and generated artifacts. Figure 2

provides a conceptual model which describes the overall context in which the evaluation

framework is used. In the figure, Evaluation Approach presented in this study takes a MAS

Evaluation
Framework

MAS DSML Evaluation
Approach

Evaluation
Report

uses

results inInput to
MAS Domain

used to
model

Used to empirically evaluate

Multicase Study
Research

SEA_ML

Is a

used in

Fig. 2 Conceptual model of the DSML evaluation approach representing the context of the framework

Software Qual J (2016) 24:755–795 761

123

DSML as input that will be evaluated according to the Evaluation Framework. Hereby,

MAS DSML is used to model MAS Domain applications. As stated before we will use

SEA_ML as an example MAS DSML to illustrate the evaluation approach. The result of the

Evaluation Approach is an Evaluation Report that characterizes and describes the strong

and weak points of the MAS DSML. In this paper we will adopt a Multi-case Study

approach to assess this evaluation process. The multi-case study protocol is explained in

the next section.

Table 1 presents the evaluation framework with the corresponding evaluation dimen-

sions and criteria. The evaluation framework adopts three basic dimensions including

language, execution, and quality dimensions. The first two dimensions and their criteria are

considered as quantitative part of the assessment, while the latter one deals with the

qualitative part of the evaluation. The language dimension includes the sub-dimensions of

language elements and model transformations, each of which covers specific criteria that

are evaluated. The language elements sub-dimension includes the criteria of abstract

syntax, concrete syntax, and static semantics. The model transformations sub-dimension

includes the criteria M2M and M2T which represent model-to-model transformations and

model-to-text transformations, respectively. In essence, these criteria of the evaluation

framework aim to characterize and analyze the structure of the evaluated DSML.

Characterization and analysis with the related criteria can be used for evaluating and

comparing MAS DSMLs. To this end, the framework considers different aspects of MASs

in the abstract and concrete syntaxes to examine capabilities of MAS DSMLs in modeling

the agent system. These aspects are called viewpoints and addresses MASs from various

perspectives such as Agent Internal, Plan, Protocol, Interaction, Role, and so on. Although

these viewpoints are well-known in MAS domain (e.g., Hahn 2008; Hahn et al. 2009;

Challenger et al. 2014), they can be extended with other viewpoints covering static and

dynamic issues of MAS models (e.g., Beydoun et al. 2009). These assessments of abstract

syntax and concrete syntax from various viewpoints can pave the way to compare MAS

DSMLs in a higher level of abstraction and in a domain-specific way. While analyzing

abstract syntax based on this framework can demonstrate the expressiveness of the DSML,

analyzing the concrete syntax shows the capability of the language tools. For example,

considering agent internal viewpoint of two MAS DSMLs, the one with more meta-

elements and detailed relations in this viewpoint of its metamodel may have more capa-

bilities to model the internal structure of the agents. Also, by analyzing this viewpoint, we

can conclude that which MAS DSML supports BDI, Reactive, and/or some sort of hybrid

agents; hence, it makes the evaluation and comparison possible from this perspective. A

similar analysis can be performed for Plan viewpoint to show how much powerful the

modeling ability of the MAS DSML is in elaborating the planning of the agents, e.g., the

planning supports Hierarchical Task Networks (HTN), behaviors and/or primitive tasks.

This scenario is also true for the other viewpoints regarding evaluating and comparing the

MAS DSMLs.

The framework not only provides the criteria to evaluate the syntax of MAS DSMLs,

but also enables to evaluate the semantics of them by considering their static semantics,

and model transformations. For the static semantics, the number and types of MAS domain

controls can be considered; e.g., whether the MAS DSML can check the agent protocol

based on the MAS principles. For the M2M transformations, we can examine the number

of the rules and the coverage of these rules in the target MAS domain, e.g., whether the

transformations can support different agent architectures and different agent platforms. For

the M2T transformations, the number of code generation rules/templates can be considered

in addition to how many target agent platforms can be addressed to generate their

762 Software Qual J (2016) 24:755–795

123

Table 1 Evaluation framework including its dimensions and criteria

Evaluation
dimension

Evaluation
sub-dimension

Evaluation criteria Description

Language
dimension

Language
elements

Abstract syntax: Metamodel for
the viewpoints such as Agent
internal, Plan, Protocol,
Interaction, Role

The number of abstract syntax
model elements including views,
meta-elements, attributes,
connections, and so on

Concrete syntax: Tooling for the
viewpoints such as agent
internal, plan, MAS
Organization, Environment

The information about language
notations and tooling including
number of diagrams, nodes,
links, and so on

Static semantics: MAS domain
controls

The number of constraints
provided for the DSML

Model
transformations

M2M: Supporting BDI, reactive,
and/or hybrid behavior models
in the target MAS models

The number of rules that are
necessary to perform the model-
to-model transformations from
source model to target model.

M2T: Supporting the generation of
executables for agent behavior
models and MAS interactions

The number of rules that are
necessary to perform the model-
to-text transformations from
platform-specific model to code.

Execution
Dimension

Modeling input/
output

Input MAS Model The models, which are designed
by language developers, are
analyzed based on the number of
their modeling diagrams,
number of elements, relations,
and so on.

Target Agent Models: e.g., JADE,
JADEX, JACK

Generated models from M2M
transformations for the target
languages.

Generated MAS Artifacts Automatically generated files,
codes (LoC), functions/modules
for the target languages

Development MAS Delta codes by developer (#
of Plans, SWAs, SWSs and LoC)

The codes added by developers to
the generated codes including
number of files, LoC,
functions/modules, Plans,
SWAs, SWSs

Overall (output) performance ratio Generated artifacts ratio/generated
code ? delta artifacts

The performance can be calculated
for the generation of files, LoC,
functions, SWA, SWS, Plan, and
overall average

Development time Considering times for analysis,
design/modeling, generation/
development, error detection/
testing, maintenance, and overall
average

Software Qual J (2016) 24:755–795 763

123

architectural code, such as JACK (AOS 2001), JADE (Bellifemine et al. 2001), JADEX

(Pokahr et al. 2005) and so on.

The Execution dimension includes two sub-dimensions Modeling I/O and Development.

The sub-dimension modeling I/O includes the criteria Input models, Target agent models,

and Generated MAS artifacts. The Development sub-dimension includes the criteria MAS

delta codes by developer, overall (output) performance ratio and development time

performance.

The Quality dimension includes General DSML assessment and Users’ perspective sub-

dimensions. General DSML assessment sub-dimension covers criteria for qualitative

analysis of general properties of the DSML, while the user’s perspective sub-dimension

considers the advantages and disadvantages of using the DSML. The users consist of end

users, MAS DSML developers, and MAS project managers.

As it can be observed from Table 1, the evaluation framework focuses on evaluating the

language (including its elements, transformations, and general assessment), its artifacts

(including modeling input and output), and the evaluators’ results (including output per-

formance and development).

Different aspects of the evaluation are considered to support concerns of various

stakeholders of MAS DSMLs including MAS developers, MAS DSML developers, and

MAS project managers. MAS developers are end users of the DSMLs who mostly deal

with executional dimension and end user perspective in the evaluation framework. Con-

sidering MAS DSML developers’ perspective, as language developers, they are mostly

interested in language dimension of the evaluation including language elements and model

transformation. Finally, concerns of MAS project managers cover almost all aspects of the

evaluation framework (both of the other stakeholders’ concerns) to consider the internal

structure of the language, its artifact generation performance, and the end user’s per-

spective. The evaluation process based on this framework is applied for the evaluation of

SEA_ML using a multi-case study which is elaborated in the following sections.

It is worth indicating that the proposed evaluation framework and accompanying multi-

case study protocol are partly constructed by benefiting from some existing work within

Table 1 continued

Evaluation
dimension

Evaluation
sub-dimension

Evaluation criteria Description

Quality
Dimension

General DSML
assessment

Domain scope and suitability
Domain Expertise and
Expressiveness

Effective underlying generation
High-Level Abstraction
Viewpoint oriented
Understandability and
Maintainability

Modularity and Reusability
Well-written and Readability

Qualitative analysis

User perspective How much SEA_ML made the
development easier?

What are the main advantages?
What are the main disadvantages?

Qualitative analysis for different
users: End users (MAS
developers), Language
developers (MAS DSML
developers), MAS project
managers (to select a MAS
DSML)

764 Software Qual J (2016) 24:755–795

123

this field. For instance, ‘‘ISO/IEC TR 15504-2’’ (ISO/IEC 1998) software process

assessment standard and the guidelines offered in Runeson and Höst (2009) are followed in

our study for conducting and reporting the case study research. In addition, the study for

the assessment of benefits and risks of product lines given in Schmid and John (2002) is

used while defining the assessment process, especially for conducting a case study pro-

tocol. Hence, both Schmid and John (2002) and Runeson and Höst (2009) are considered

while building our detailed step-by-step multi-case study protocol including its prepara-

tion, execution, and analysis phases. The cost model of our evaluation, used during exe-

cution with data collection, is extended from the model given in Tekinerdogan et al. (2011)

in which the authors assess their study to apply model-driven architecture (MDA) tech-

niques on process sensitive embedded user assistance to provide the end user the necessary

guidance. We extended their cost model in our evaluation framework in a way that it

supports the cost of entire assessment process including different phases of initialization

and development of the multi-case study. We adopted some of the qualitative criteria (such

as ‘‘Domain scope and suitability,’’ ‘‘Domain Expertise and Expressiveness,’’ and so on)

from Wile (2004), used some DSML success factors from Kahlaoui et al. (2008) and

applied a qualitative assessment process similar to the one introduced in Kahraman and

Bilgen (2013). Finally, regarding the team preparation and execution of the case studies,

we inspired from Kosar et al. (2010) and Kosar et al. (2012) for constituting the teams,

structuring and presenting the case studies, and building the questionnaire. The way of

adoption and/or utilization of all these methods and techniques will be discussed exten-

sively in the following Sects. 4, 5 and 6.

4 Multi-case study protocol

In order to evaluate MAS DSMLs systematically, we need to derive a protocol for con-

ducting a case study research for MAS modeling languages. For the evaluation of the

addressed DSML based on the proposed evaluation framework, we consider a three-phase

process, as it is illustrated in Fig. 3, including preparation, execution and analysis phases.

Hereby, in the preparation phase, the domain is analyzed considering the dimensions

Fig. 3 The adopted process for case study preparation, execution and analysis

Software Qual J (2016) 24:755–795 765

123

indicated in the framework. The domain in here is the industrial application domain of the

proposed case study (stock trading, tourism, intelligent surveillance, document manage-

ment, etc.) where a MAS is needed to be built. Investigation of how MAS capabilities suit

well for the related domain takes place. Based on this analysis, the case studies are

designed in a way that covers the dimensions specified. In order to perform the evaluation,

evaluators are needed, so, the team is selected according to some criteria which will be

discussed later in Sect. 4.2 of this paper. Finally, as the last step of preparation, the team is

educated (tool teaching) to be able to use the language for evaluation.

In the execution phase, first an opening briefing is realized to introduce the cases (case

teaching) and then the teams develop the cases. After the development, we give the

evaluators a questionnaire to receive their feedback. The data are collected in this phase, as

described in Table 1, including the times recorded for each phase of the development, and

the data both for generated codes and delta codes.

Finally, in the analysis phase a detailed assessment report is prepared. In this report,

gathered information is evaluated in detail and the final judgment of benefits and risks of

performing reuse in the MAS DSML is developed. This information is extracted from the

qualitative and quantitative results in addition with tool assessment and processed in a

proper form, such as tables and diagrams. On the basis of these results, the report on the

findings is prepared.

Based on the above process, we can state that the case studies enable to experience the

usage of the MAS DSML in question and they also provide the collection of MAS DSML

operational properties. After performing the case studies, some of those operational

properties are compared with the similar properties of manual MAS development. Hence,

this method directly supports the use of the aforementioned framework during analysis and

assessment of the MAS DSML.

4.1 Selected case studies

A MAS DSML, say SEA_ML, can be utilized for different business domains when helping

in the design and implementation of the agent-based systems of those domains such as

e-commerce (Shih et al. 2005), document management (Pešović, et al. 2011), e-bartering

(Demirkol et al. 2011) and the stock exchange system (Kardas et al. 2012). Hence, in order

to evaluate the usage of the MAS DSML, design of MASs in four different domains is

considered in this study1:

1. Expert Finding System Software agents in an expert finding system work on the web

by using service descriptions, find candidate services, and then try to make an

agreement with those services on behalf of their human users by taking into

consideration QoS metrics. Services may include recommending alternative commu-

nication channels on the web, finding the nearest market to buy some special items,

etc. Main goal of the case study covering the development of this expert finding

system is to assess the modeling capabilities of the MAS DSML especially for the

interactions between autonomous agents and semantic web services. Taking into

consideration the modeling of agent internals is also crucial for this study.

1 We keep the descriptions of the case studies short in this paper in order to keep focus on the evaluation.
However, detailed descriptions of each case study, their models according to the SEA_ML specifications
with including all modeling and code generation tools of SEA_ML can be found online inside a bundle at:
http://mas.ube.ege.edu.tr/downloads/sea_ml_bundle.zip.

766 Software Qual J (2016) 24:755–795

123

http://mas.ube.ege.edu.tr/downloads/sea_ml_bundle.zip

2. Stock Exchange System In this case study, MAS developers are requested to design an

industrial software system in which Investor (Buyer and/or Seller), Broker and Stock

Trade Manager agents take role in computerized stock trading. All of the user agents

including investors and brokers cooperate with stock trade manager agent to access the

stock market. Also, the user agents interact with each other. For instance, investor X

and investor Y can cooperate with a broker in order to exchange the stock for which

the broker is an expert. With this case study, MAS developers need to cope with the

very complicated nature of agent behaviors in which agents pursue their own interests

on trading. Conducted study helps the investigation of whether the DSML modeling

features enable the easy design of such complicated interactions between agents and

planning mechanism of each agent.

3. Conference Management System As a familiar application domain for most of the

DSML evaluators who take part in this study, design of an online conference

management system in which various agents act as authors, reviewers or program

committee chairs during the review of papers submitted for the inclusion of a scientific

conference, is performed. Dealing with the requirements and constraints of paper

submission, paper evaluation, and making decision procedures, MAS developers

design the requested system with the given DSML and related tools. This case study

may help the assessment of the DSML features especially covering MAS organization.

4. Hotel Reservation System According to the preferences of their users, customer agents

search online for most appropriate hotels, communicate with the hotel agents who

represent hotels and make reservations if an agreement is settled with a hotel agent. In

addition to being familiar to all participants, the main aim of this case study is to

evaluate the modeling features considering ontology, agent-service interaction and

organization viewpoints.

As can be seen from the descriptions of the case studies, each serves for a different

MAS application domain with including various features of agents. In order to clearly

assess the DSML capabilities on the support of agent abstractions and viewpoints, each

case study also concentrates on different MAS viewpoints, e.g., agent internals, environ-

ment, service interaction, organization (as again can be seen from the above description).

That makes each case study unique and own different modeling and implementation

complexity level. For instance, case study 2 requires a complicated design of agent

interactions and agent internals, whereas case study 4 mostly reflects the development of

MAS organizations. If a grading of the design and implementation complexities for the

case studies relative to each other is taken into account, case studies 1, 2, 3 and 4 can be

graded as 4, 5, 2, 3, respectively, according to a 1,…,5 scale where 1 means the least

complex while 5 means the most complex case study.

4.2 Team preparation

As part of preparation for the case study protocol, the evaluator teams should be prepared.

To this end, two groups, including ten people, of the users/developers are selected, see

Table 2. The first group is considered to use SEA_ML to design and generate/implement

the code for the case studies. The other group is considered to work on the case studies

manually, without using SEA_ML language (but they can use generic software tools). Each

group has five members, including a PhD and four master students. Every group member

has experience on software development (including MASs) in industrial scale with varying

durations (4 years on the average). In fact, we aimed at organizing groups with much more

Software Qual J (2016) 24:755–795 767

123

than 5 members. However, adoption of both MAS and Semantic Web technologies in real

system implementations has been recently emerged and the developers especially with

industrial experience on the application of these technologies comparing with any other

trivial domains are very rare. So, only five people for each group were able to be gathered.

Most of the team members have passed related graduate courses in their master or PhD

program, including Agent-oriented Software Development, MASs, Meta Data, Semantic

Web, and Web Services which are taught in Computer Engineering department and

International Computer Institute of Ege University, Turkey. For those evaluators who have

not passed one or more of these courses, we had a teaching session on an individual base or

group form. Also, at least one member of each group works in a software company and

own professional development experience with industrial MAS development for 2 years on

the average.

4.3 Hypothesis

To realize the evaluation of a MAS development modeling language, we postulate a

hypothesis. This hypothesis will be tested after applying the case study research based on

the evaluation framework and analyzing the results. The hypothesis states that:

The performance of MAS development with employing a DSML (say SEA_ML) and its

tool is more than the performance of MAS development manually or with the aid of the

other non-DSMLs, such as general software development tools (e.g., UML), and other

agent development methodologies [e.g., Prometheus (Padgham and Winikoff 2004)] based

directly on the development by using GPLs. Within the scope of the performance men-

tioned in this hypothesis, only the following characteristics of each language will be

compared in order to test the hypothesis:

1. The development time: This is one of the important cost factors of MAS development.

In fact the main cost of development is programmer’s time which mainly is spent for

initial development.

2. The testing time: Error detection and resolving determine the cost of software testing.

Software testing is another important factor of a MAS development. Clearly, the

reason is that finding these errors and resolving them takes some noticeable effort.

Also, it is possible that some errors lead to cascading errors which demands higher

cost of testing. This is especially true when the errors are in the architectural level.

3. The maintenance effort: After system development and testing, its maintenance in the

long term is one of the effort consuming issues. To deal with this issue, in this study,

we have defined extensions for the case studies. The time for these extensions

represents maintenance effort in this study.

Table 2 Evaluation group profiles

Groups Number of
members

Number of PhD
candidates

Number of Master
students

Type of Development

A 5 1 4 Using SEA_ML

B 5 1 4 Manual (without using MAS
DSMLs)

768 Software Qual J (2016) 24:755–795

123

4. Software quality: We consider software’s structural quality which refers to how the

software meets non-functional requirements that support the delivery of the functional

requirements, such as robustness or maintainability, the degree to which the software

was produced correctly. Structural quality is evaluated through the analysis of the

software inner structure, its source code, which is in effect how its architecture adheres

to sound principles of software architecture outlined.

These different aspects of development performance are considered in the proposed

evaluation framework as execution dimension and are examined in the conducted case

study research.

5 Execution of the case studies

Execution of the case studies starts with a session for introduction of case studies to the

evaluators. This provides the adjustment of the familiarity level of all developers with the

problem domain, since it can affect their development time. Then, the evaluators fulfill the

development process. Time elapsed for their development activities in addition to the

information of the generated and delta codes are recorded for the later analysis. This step,

called data collection, is a key part of an empirical study. However, as is in any empirical

study, there are some threats to the validity of the data collection which is discussed later in

this section.

It is worth stating that team members worked individually for the development of the

case studies and the times were recorded for each of them and for each case study sepa-

rately. The average times were calculated for each phase of development considering all

members and all case studies to reduce the risk of validity.

The workflow of both groups’ development processes is depicted in Fig. 4. According

to this workflow, each developer in group A and B should follow several steps to realize

the development. To provide similar conditions for all of the developers, all of the steps are

mandatory for both groups. These steps are more elaborated and analyzed in the next

section where execution of the multi-case study is discussed. Moreover, meeting all

requirements specified for each case study is requested from every developer in order to

provide fair load of tasks.

While the group A used the MAS DSML (SEA_ML) and the APIs of target agent

platforms (JADEX and JACK), the group B used the generic software development tools

Fig. 4 The workflow representing steps of the development for Group A and Group B

Software Qual J (2016) 24:755–795 769

123

and approaches such as UML and general methodologies for agent system’s analysis and

design, e.g., Prometheus (Padgham and Winikoff 2004), Gaia (Zambonelli et al. 2003),

Tropos (Bresciani et al. 2004). In this regard, in group A, two evaluators selected JADEX

platform and three evaluators preferred JACK. On the other hand, in group B, two

developers used UML for their analysis and design, and JADE framework as the devel-

opment environment, two developers used Prometheus methodology and JACK platform,

and finally one developer used simply pen and paper for her analysis and design in addition

to JADEX platform for implementation. Although languages (SEA_ML, JACK, JADE,

JADEX) were different, both groups used the same integrated development environment

(IDE), well-known Eclipse (Eclipse 2004) in order to provide fair assessment as much as

possible. SEA_ML’s modeling, transformation and code generation features are directly

based on Eclipse. JACK, JADE and JADEX frameworks are also usable with their com-

plete APIs over Eclipse. Hence, all evaluators used the same IDE and had similar envi-

ronments for implementation with build options and appropriate editing tools. Within this

same IDE, the only difference originated from the adoption of the languages as expected.

For instance using the graphical concrete syntax of SEA_ML is naturally different from the

text-based JADE. This difference enabled us to analyze the impact of using various lan-

guages (inside the same IDE) which in fact, was one of the goals of this study.

5.1 Data collection

In this section the steps of data collection are discussed.

5.1.1 Procedure of data collection

The data collection is done during preparation and execution phases of the case study

research. During the preparation phase, some data is collected for team teaching. In this

part of the preparation, times for learning the DSML, reading the documents, and running a

demo are recorded to be used in the evaluation. These time data are solely collected for the

group of the evaluators (group A) who use the DSML in their development. The team

teaching is fulfilled for this group as a whole at once. Also, this time is needed to be spent

just once for each new group in the future.

After the initial team teaching session for developers in the preparation phase to adjust

the level of knowledge for the language, the execution phase starts with an introduction to

the case studies called opening briefing. The aim of this part is to normalize the level of all

developers’ familiarity with the problem domains, since this can affect development ability

for that domain which is a validity threat.

For execution of the case studies, the two groups developed the MASs for the related

case studies, one with SEA_ML and one without it. During the development, times for

different steps of development are recorded. Considering this timing data which is used in

the performance evaluation of SEA_ML, we collected the time periods, used by the

developers to perform analysis, modeling, implementation, testing, and maintenance for

the case studies as they are indicated in the evaluation framework (Table 1).

After development, some other data are collected both for each case study and each

developer related to the provided code. This data include modeling data and generated

artifact data, see Table 1. For the modeling data, we collected the detailed information

about different viewpoints of models, e.g., number of elements and relations. These data

are used in SEA_ML’s quantitative analysis (language dimension in the evaluation

framework). Considering the artifacts, we collected the data for the generated and

770 Software Qual J (2016) 24:755–795

123

manually developed artifacts for each case study (executional dimension in the evaluation

framework). These data can be used to compare the two DSMLs for developing the system.

Finally, to consider the evaluators’ experience in the evaluation, we provided a ques-

tionnaire for them. Based on their replies, we realized qualitative analysis of the DSML

(quality dimension of the evaluation).

5.1.2 Execution with data collection

As mentioned in the previous section, the data are collected in preparation and execution

phases. According to the evaluation framework, to collect data during the preparation, the

total initial cost is calculated based on the time spent for teaching, reading the documents,

and running the demo. So, the total initialization time is calculated as follows:

CTotalInit ¼ CTeaching þ CReadingDocs þ CDemo

The total cost needed for initial preparation consists of the time for learning SEA_ML,

reading the documents and running the demo by the developers. The elements constituting

the total initial cost are elaborated as follows:

5.1.2.1 Learning SEA_ML (CTeaching) In this part of the evaluation the evaluators

attended in a presentation session on SEA_ML. This time is only spent with the group

working with SEA_ML and the group which works with the classical approach does not

spend this time.

5.1.2.2 Reading the documents (CReadingDocs) The evaluators who worked with the

DSML are also given a manual (SEA_ML documentation) in 18 pages long. They read and

understood the document. Later, they tried different steps of installation and configuration

of SEA_ML as well as adding various plugins and loading required projects.

5.1.2.3 Running demo and analyzing it (CDemo) A previously prepared example was

provided in SEA_ML for the evaluators to learn the language. The example is an electronic

bartering system, E-barter. Interested readers may refer to Demirkol et al. (2011) for the agent-

based e-barter system development. Evaluators analyzed this example and run it. The time for

analyzing and running this real example is recorded for evaluators. Inspiring from this demo

example, they also wrote and run a hello world example based on the documentation.

On the other hand, as discussed in Sect. 4, to realize the evaluation based on the end

users’ development, four case studies were provided to software development groups (with

or without using the DSML) to develop MASs. The times for different phases of devel-

oping the software were recorded for analysis later. Based on the following adopted

general cost model (CTotalDevelop) for developing MASs (introduced in the evaluation

framework), we have provided the evaluation of SEA_ML:

CTotalDevelop ¼ CAnalysis þ CModeling=Design þ CImplementation þ CErrorDetection þ CMaintainance

The costs constituents of this cost model are explained below:

5.1.2.4 Problem analysis (CAnalysis) This is a common step, for both groups and elapsed

time depends on the complexity of the problem domain of the related case studies. This

time includes the time spent in reading and understanding the description of the case study

(1–2 pages) and the time for analyzing the problem.

Software Qual J (2016) 24:755–795 771

123

5.1.2.5 Modeling/design (CModeling/Design) Both of the groups spend this time, but the

group working with the DSML has two advantages. First, using the language they have a big

picture of the system specific to the domain and using the domain concepts and relations

which accelerates the design. Second, using the language, the developer can reuse partial/

entire model in further system developments. Therefore, this time is more important for group

B whose users do not use SEA_ML. Group B members, in addition to agent platform APIs,

can also use generic software development tools which are not specific to the MAS domain,

such as UML for their analysis and design. Also, they can use general agent development

methodologies such as Prometheus (Padgham and Winikoff 2004), Gaia (Zambonelli et al.

2003), and Tropos (Bresciani et al. 2004). However, these developers can also use just pen and

paper to make their design and realize their implementation based on their design if they wish.

5.1.2.6 Implementation (CImplementation) One of the main steps of software development

is the implementation phase, which can be improved by DSMLs. DSMLs generate

architectural templates and interconnect the components. In this way, DSMLs can produce

a noticeable part of the code. So, the methodology, equipped with a DSML, takeovers the

classical approach in this point. Considering this fact, the time spent in this phase is

expected to be less for the group using the DSML. On the other hand, the users using the

language (group A) need very little time for generating the code by SEA_ML plus com-

pleting the code manually, while the developers without using the DSML spent longer time

for cumbersome initial architectural code development with their interconnections, in

addition to the complementary code to finalize the implementation of the case studies.

5.1.2.7 Error detection/testing (CError) The code generated by SEA_ML is a template

code, and the relations are established by the language considering the user model. The

models are controlled by the language in semantic checking phase of the language by OCL

(2012) rules which prevents having errors. So, the models have no errors at this level. Also,

the programing experience shows that in complex systems, developers make mistakes in

the architectural level, which leads to many changes later on, costing lots of time, effort

and money. So, in this manner, the methodology equipped with DSML also takeovers the

classical software agent development approach in which development is done without

using domain-specific modeling tools and languages. However, it still needs some error-

proofing for those parts of the code which were added by the developers manually to

complete the code (which is smaller part of the code and it is in common with the group B).

5.1.2.8 Maintenance/extension (CMaintainance) To consider the process of software

development after the implementation phase, we examined the case studies with modeling

by adding a new feature (e.g., A SWS or SWA to the system) after it is completed. We

measured the time spent in accomplishing these additional tasks for both groups (w/o

DSML).

6 Results and analysis

As an empirical study, a DSML for MAS is evaluated and there is no single set of

outcomes. The results can be observed from different perspectives. In this section, these

results are demonstrated and analyzed. Please note that since the fractions are not logical in

the code or time, the digits are rounded which also makes the comparison easier. The

772 Software Qual J (2016) 24:755–795

123

results related to language and executional dimensions (from evaluation framework) are

discussed in Sect. 6.1, and the quality dimension of the evaluation framework is elaborated

in Sect. 6.2.

6.1 Quantitative analysis

In this section the quantitative analysis is realized including the language assessment of the

framework and development evaluation for executional dimension. For the first one, we

consider the language elements, language’s transformation and artifacts. In the latter one,

development evaluation, the results gained from the automatic generation for the case

studies are used for evaluating the performance of the development. In addition, the results

of the case study research are also used for time performance of the development. These

results are analyzed and illustrated in proper forms.

6.1.1 Language analysis and characterization based on quantitative properties

The SEA_ML language is assessed in two ways to cover language dimension of the

evaluation framework. First, we analyzed the language, as a DSML, and its elements. This

can show the sophistication and the structural complexity of the language and can be used

in the comparison of the languages. Second, the input and output of the language are

analyzed which paves the way to assess the generated artifacts.

Table 3 shows the characterization of the SEA_ML based on the evaluation framework

dimensions. In this table, the main types of elements with their quantities are given for the

three major definition elements of SEA_ML, regarding abstract syntax, concrete syntax,

and transformation. As it can be seen in Table 3, the viewpoints in the abstract syntax are

represented with the same number of diagrams in concrete syntax. Similarly, Aggregation/

Containment relations and Attributes/Properties are converted to the same number of

Compartments and Attributes, respectively. On the other hand, Meta-Elements and

Association/Reference relations are expressed with Nodes and Links, respectively; how-

ever, their number is reduced due to some super-class elements and inheritance relations,

used in the metamodel, are not directly represented in the instance models. On the contrary,

well formed-ness rules are represented with constraints in concrete syntax which are not

possible to be controlled in the abstract syntax level.

The data in Table 3 can be used to show the specification of SEA_ML and its tools

which by itself can be utilized in its comparison with other MAS DSMLs regarding the

features and/or complexities of the MAS DSMLs. As a general example, the metamodel of

ACSM (Odell et al. 2005) contains 8 meta-elements (as its abstract syntax), while

SEA_ML abstract syntax includes 67 meta-elements which shows the detailed modeling

capability of SEA_ML. As a more specific example, SEA_ML has 57 nodes in its concrete

syntax (tooling part) from which ten nodes are used for modeling the agent internal

viewpoint, while a MAS DSML called DSML4MAS (Hahn 2008) has only five elements

for modeling the agent internal viewpoint. As a result DSML4MAS probably cannot fully

support modeling agent’s belief and goals as main part of BDI agent architecture, in

addition to agent’s details such as agent state and agent type. So, the capability of modeling

the agent’s internal structure is higher in SEA_ML than DSML4MAS which paves the way

to generate both more detailed target agent platform models and more detailed artifacts

such as codes for the MAS domain.

Model transformations, both model-to-model and model-to-code, are the heart of MDD,

and they are among the main elements of any generative DSML tool. So, in this evaluation

Software Qual J (2016) 24:755–795 773

123

T
a
b
le

3
T
h
e
sp
ec
ifi
ca
ti
o
n
o
f
S
E
A
_
M
L

L
an
g
u
ag
e

d
im

en
si
o
n

A
b
st
ra
ct

sy
n
ta
x
(m

et
am

o
d
el
)

S
p
ec
ifi
ca
ti
o
n

fe
at
u
re

V
ie
w
p
o
in
t
(s
u
b

m
et
am

o
d
el
)

M
et
a-
E
le
m
en
t

(C
la
ss
)

A
tt
ri
b
u
te

(P
ro
p
er
ty
)

A
ss
o
ci
at
io
n

(R
ef
er
en
ce
)

A
g
g
re
g
at
io
n

(C
o
n
ta
in
m
en
t)

In
h
er
it
an
ce

(S
u
p
er

T
y
p
e)

S
el
f-

R
ef
er
en
ce

N
u
m
b
er

8
6
7

8
3

3
8

2
1

1
8

3

L
an
g
u
ag
e
d
im

en
si
o
n

C
o
n
cr
et
e
sy
n
ta
x
(g
ra
p
h
ic
al

la
n
g
u
ag
e)

T
ra
n
sf
o
rm

at
io
n
an
d
g
en
er
at
io
n

S
p
ec
ifi
ca
ti
o
n
fe
at
u
re

D
ia
g
ra
m

N
o
d
e

A
tt
ri
b
u
te

L
in
k

C
o
m
p
ar
tm

en
t

C
o
n
st
ra
in
ts

M
2
M

R
u
le
s

M
2
T
T
em

p
la
te
s

N
u
m
b
er

8
5
7

8
3

1
9

2
1

2
3

5
0

4
0

774 Software Qual J (2016) 24:755–795

123

we pay specific attention to them. Considering the transformations in SEA_ML language,

three types of ATL rules are used for different viewpoints. One for the multi-agent part of

the system (JADEX agents) which adds required SWAs into the previously generated

Agent Definition Files (ADFs) of the JADEX agents, another for the SWS part of the

system (OWL-S metamodel) which helps to generate OWL-S documents, and finally the

last type of rules provides the transformations for generating ontologies. Altogether, 50

ATL M2M transformation rules and 40 MOFScript M2T transformation templates are

provided in SEA_ML (Table 3). By applying these rules and templates, ADF files and plan

files are generated when considering the modeled agents. Also, a set of OWL-S files

(considering various modeled SWSs) and WSDL files (for each SWS) are generated.

To evaluate SEA_ML language, we also analyzed the input models and generated

artifacts (see Table 4). Input model consists of the data which are provided for building the

models. The generated artifacts include generated intermediate models and generated final

artifacts. The intermediate models are platform-specific models and its components which

are generated automatically from the platform-independent input models. The generated

final artifacts are the architectural codes and components achieved from the intermediate

models. Table 4 also includes the data related to the codes and components which are

added to the generated artifacts, a.k.a delta codes, to make the software complete. These

data are representing the capability of the DSML and are used in the next section to assess

the SEA_ML’s performance. Briefly, they can guide developers in the assessment of how

much the language is powerful regarding platform-independent to platform-specific

transformation. In other words, the strength of the DSML in realizing MAS in different

agent platforms can be evaluated.

The information provided in Table 4 is calculated from the average for all of the case

studies and all of the developers. For example, the LoC for Generated Final Code in

Table 4 indicates the average number of LoC which are generated for the case studies of

all of the users in Group A (who used the SEA_ML).

In conclusion, the data provided in Tables 3 and 4 can be used to compare and evaluate

the performance of a MAS DSML. To this end, the detailed data about abstract syntax of

the DSML in Table 3 can be used to compare the expressiveness of modeling language

(e.g., extensive support for agent viewpoints, transformability for real MAS execution

platforms) for MAS domain. For example, if number of elements and relations related to

Plan viewpoint of the abstract syntax of a DSML is more detailed than of another DSML,

this will show the ability of Plan modeling for the first DSML. In a similar way, the data for

concrete syntax and model transformations can be used to compare MAS DSML regarding

the ability of tooling for the MAS domain, and the ability of covering the target domain

model in addition to target framework final code.

On the other hand, the data presented in Table 4 can pave the way to calculate the

performance of the MAS DSML. In this regard, the details related to input models and

intermediate models can give the notion of the size of case studies in the evaluation. These

data are important to validate the performance evaluation. For example, in the case of

comparing the performance of two MAS DSMLs, their source models show that whether

the performance is calculated in the similar size or not (otherwise the performance com-

parison can be invalid). In addition, intermediate models help to assess the coverage of

MAS target model for the MAS DSML. Finally, the data related to generated artifacts and

delta codes in Table 4 are used to calculate the development performance of a MAS DSML

as part of the evaluation based on the formula given in the next section.

Software Qual J (2016) 24:755–795 775

123

T
a
b
le

4
T
h
e
sp
ec
ifi
ca
ti
o
n
o
f
I/
O

an
d
D
el
ta

C
o
d
e
fo
r
S
E
A
_
M
L

E
le
m
en
t

In
p
u
t
m
o
d
el

G
en
er
at
ed

in
te
rm

ed
ia
te

m
o
d
el
s

G
en
er
at
ed

fi
n
al

ar
ti
fa
ct
s

D
ev
el
o
p
er
’s

d
el
ta

co
d
e

F
ea
tu
re

M
o
d
el

d
ia
g
ra
m

E
le
m
en
t

R
el
at
io
n

A
tt
ri
b
u
te

S
W
A

(A
D
F
s)

P
la
n
s

S
W
S

In
te
rf
ac
e

P
ro
ce
ss

W
S
D
L

F
il
e

L
o
C

F
u
n
ct
io
n
/

m
o
d
u
le

F
il
e

L
o
C

F
u
n
ct
io
n
/

m
o
d
u
le

P
la
n
s

S
W
A

S
W
S

N
u
m
b
er

8
1
3
8

1
5
3

1
7
0

1
0

1
2

2
3

3
2

3
2

9
2
5

4
7

2
2
1
6

1
5

2
2

0

776 Software Qual J (2016) 24:755–795

123

6.1.2 Performance analysis through the multi-case study

In this section the development capability of SEA_ML is assessed. This evaluation is

realized considering the executional dimension proposed in the framework and provides

two types of performance evaluation: (1) Development performance (generation perfor-

mance) regarding the ratio of overall generated codes and artifacts to those which are

manually developed. (2) Performance of development time regarding the time which is

spent by the developers using SEA_ML and those who do not use it.

For calculation of the development performance of SEA_ML, we compared the auto-

matically generated code with the code which was added by developers of group A to

complete the code. Then the performance was calculated based on the percentage for

different artifacts which are generated and manually developed, such as files, LoC, SWAs,

and so on. The percentage shows the rate of generated or manually added artifacts com-

paring to the total number of the artifacts. To this end, we use the information provided in

Table 4, generated artifacts and delta code, and provide Fig. 5.

The performance calculation was realized using the following formulas for each artifact:

GX Generated number of artifact X

MX Manually developed number of artifact X

TX Total amount for artifact X = GX ? MX

PgX Performance for generated part of artifact X = (GX 9 100)/TX

PmX Performance for manually developed part of artifact X = 100 - PgX

In Fig. 5, rate of generation for the most important components of generated artifacts is

considered. The highest rate of generation is with SWS for which all of the desired ones are

modeled and generated. Although no new SWS was added after modeling the system by

developers, they added new Interface, Process, and/or Grounding for those SWS.

On the other hand, generated functions/modules have the least rate of generation in

Fig. 5. This is because the personal interests’ of the developers in using the number of

functions in the program affects this factor. In other words, some of the developers like

to divide the tasks in tinier modules and write more functions, when they complete the

code.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Files LoCs Functions SWA SWS Plan Average

Output Performance of SEA_ML

Artifacts generated by SEA_ML Artifacts created manaully

Fig. 5 Output performance of SEA_ML

Software Qual J (2016) 24:755–795 777

123

Generally, considering the results provided in Fig. 5, we can see that for average

developers and case studies, 85 % of the artifacts are generated and 81 % of the whole

code is generated.

Finally, the results show that the use of a DSML for MAS working on the Semantic

Web can reduce the complexity of developing these MASs considering both the com-

plexity in the MASs (various plans, roles, goals, beliefs, and capabilities) and the com-

plexity of Agent’s interaction with each other and with SWSs. This is done by generating

many artifacts required for developing the MASs and providing their interconnections.

On the other hand, one of the key concerns of the developers using the language is to

provide the software in a cost-effective manner. To evaluate the cost (i.e. time) of using the

DSML, both the time of preparation for the groups and the time for development are

considered.

The results of the preparation are provided based on the times recorded in the execution

phase of the case study, and calculations are carried out using the formulas presented in the

previous section. These data items are collected from group A developers and the average

elapsed time is calculated, as shown in Table 5.

In fact, Table 5 shows the initial overhead cost of using the DSML. To use the lan-

guage, one should spend this time and effort to prepare the developers to be able to use the

language and take the later benefits. This additional average time of 7 h 45 min is not

required for group B. They only need to be familiar with MAS and Semantic Web pro-

graming, which constitute the domain knowledge of this study and having this domain

knowledge is a must for each developer. Although we had separate sessions for each of the

developers who has weakness in any of these domains or their programing, we did not

consider this time in the evaluation since that is not part of the evaluation of the language.

Different case studies with two different groups were considered for the development

time evaluation. The results for the criteria mentioned in the evaluation framework are

collected as described in the previous section, and the averages of these results are cal-

culated for each team (five people). These results are shown in Table 6 for all case studies.

The average result of each group, including five members, is also shown in Table 6. To

gain a general result for all case studies, the average for them is calculated as the last row

of Table 6. In other words, these data show the average of each item, e.g., analysis,

modeling, and so on, for five developers and for four case studies; separately calculated for

each group. In this way, the results can be compared easier. To focus on the difference, we

also demonstrated the average row in a bar chart diagram depicted in Fig. 6.

To analyze the result, we compare the results for groups A and B based on Fig. 6. By

considering the results of group A and B for each item, we can find out the following

conclusions:

• Analysis of a problem is part of the development of any software system. For analyzing

the case studies, both groups spent more or less the same amount of time. In case study

1 and 3, group A spent slightly less time and in the other case studies, group B spent

Table 5 Initial preparation costs

Group CTeaching CReadingDocs CDemo CTotalInit

A 2 h:30 min 3 h:30 min 1 h:45 min 7 h:45 min

778 Software Qual J (2016) 24:755–795

123

T
a
b
le

6
T
h
e
re
su
lt
o
f
th
e
av
er
ag
e
to
ta
l
co
st
an
d
it
s
el
em

en
ts

in
tw
o
g
ro
u
p
s
an
d
fo
u
r
d
if
fe
re
n
t
ca
se

st
u
d
ie
s

#
C
as
e
st
u
d
y

T
ea
m

C
A
n
a
ly
si
s

C
M
o
d
e
li
n
g

C
Im

p
le
m
e
n
ta
ti
o
n

C
E
rr
o
r

C
M
a
in
ta
in
a
n
c
e

C
T
o
ta
l

1
E
x
p
er
t
fi
n
d
in
g

A
1
h
:3
6
m
in

0
h
:4
3
m
in

0
h
:3
4
m
in

0
h
:1
5
m
in

0
h
:3
1
m
in

3
h
:3
9
m
in

B
1
h
:4
0
m
in

1
h
:1
1
m
in

2
h
:5
3
m
in

0
h
:3
4
m
in

0
h
:5
4
m
in

7
h
:1
2
m
in

2
S
to
ck

ex
ch
an
g
e

A
1
h
:4
7
m
in

0
h
:5
3
m
in

0
h
:4
4
m
in

0
h
:2
1
m
in

0
h
:2
4
m
in

4
h
:0
9
m
in

B
1
h
:3
9
m
in

1
h
:1
9
m
in

2
h
:5
0
m
in

0
h
:4
2
m
in

0
h
:5
1
m
in

7
h
:2
1
m
in

3
C
o
n
fe
re
n
ce

m
an
ag
em

en
t

A
1
h
:0
7
m
in

0
h
:4
0
m
in

0
h
:3
7
m
in

0
h
:1
3
m
in

0
h
:2
1
m
in

2
h
:5
8
m
in

B
1
h
:1
3
m
in

1
h
:0
3
m
in

1
h
:5
2
m
in

0
h
:3
1
m
in

0
h
:4
7
m
in

5
h
:2
6
m
in

4
H
o
te
l
re
se
rv
at
io
n

A
1
h
:1
8
m
in

0
h
:4
7
m
in

0
h
:3
2
m
in

0
h
:1
7
m
in

0
h
:2
8
m
in

3
h
:2
2
m
in

B
1
h
:0
6
m
in

1
h
:1
2
m
in

1
h
:4
0
m
in

0
h
:2
9
m
in

0
h
:4
9
m
in

5
h
:1
6
m
in

5
A
v
er
ag
e

A
1
h
:2
7
m
in

0
h
:4
6
m
in

0
h
:3
7
m
in

0
h
:1
7
m
in

0
h
:2
6
m
in

3
h
:3
3
m
in

B
1
h
:2
4
m
in

1
h
:1
1
m
in

2
h
:1
9
m
in

0
h
:3
4
m
in

0
h
:5
0
m
in

6
h
:1
8
m
in

Software Qual J (2016) 24:755–795 779

123

less time than group A. The reason is that this step is independent of the development

language and is only dependent on the problem complexity.

• The modeling time is close for both groups, but group A is a bit faster. The reason of

this difference is that we asked both groups to do their design before implementation;

and the group A could use the DSML and work with the domain concepts in design

time, while group B fulfilled this step without SEA_ML. However, group B could use

any general-purpose modeling language such as UML in this phase.

• Implementation is the takeoff point in the comparison of the groups. The time for

implementing the case studies for group B is by far more than the time for group A.

Clearly, the reason is the DSML. A large amount of the files, code and their

interconnections are generated automatically by the language, while group B realizes

all of these coding and interconnecting manually. Although we saw slight improvement

in the later implementation of group B members considering the time of coding (due to

mastering on the code), this amount of improvement can be overlooked regarding its

small size in comparison with the whole time of implementation. Another point is that,

even though the architectural code is generated by the language, group A still needs to

complete the code to have an executable program, e.g., filling the plans to be run by an

agent.

• In error detection/testing phase, both groups try to find the syntax and semantic errors

of the programs. Group B finds the errors in the whole code, while group A finds only

the errors in the added complementary code which is by far less than the generated

code. The reason is the architectural generated codes, which are majority of final code,

consist of error-free ready template codes which do not need to be re-validated. The

models from which the codes are generated are validated not only by constraint check

(Challenger, et al. 2014) but also can be formally checked as discussed in our previous

work (Getir, et al. 2014). The time for this validation and model checking is considered

as part of the total modeling time. So the developers of group A only need to check

their delta codes for error detection/testing after development, as it is illustrated in the

development process workflow (Fig. 4). As a result, the amount of errors and the time

needed to resolve them for group A is less than of group B.

0:00

1:12

2:24

3:36

4:48

6:00

7:12

Analysis Modeling
(Design)

Implementation Error Detection
(Testing)

Extend
(Maintain)

Total Time

Development (Generation) Performance

Group A Group B

Fig. 6 The diagram comparing the general average for development time of Group A and B

780 Software Qual J (2016) 24:755–795

123

• To evaluate the effect of the DSML after the development, an extension is asked from

each developer (of both groups) for each case study. Group A uses the DSML for this

extension. In this way, they add or modify the instance models and re-generate the

code. However, group B makes this modification manually. Therefore, the time for

group A is less than of group B. Since the amount of the code needed in this step is

rather small, the difference in the time spent in developing this extension is relatively

small. Another reason for the small size of this difference is the fact that group A deals

with understanding the newly generated code to find where to add the code related to

the extension, since the language lacks round-trip development needed for iterative

development.

• In conclusion, the total time of development for both groups shows that group A needs

half of the time group B needs for developing the case studies in average.

Hence, the quantitative results are provided for the evaluation of SEA_ML based on the

proposed evaluation framework as part of the analysis phase (Fig. 3). To this end, the result

of the language and its tool assessments are reported in Tables 3 and 4. Also, the devel-

opment performance of SEA_ML is presented in Fig. 5 by analysis of the MAS DSML

artifacts.

6.2 Qualitative evaluation

SEA_ML is evaluated according to the criteria previously introduced for the quality

dimension given in Table 1 of Sect. 3. This evaluation is performed by taking into account

two criteria. First, the general assessment is fulfilled by discussing the general pros and

cons of the proposed DSML. Second, feedbacks are gained from the users, in this case the

developers, who have used the SEA_ML and its language in their developments (group A).

To this end, a questionnaire is filled by each developer of group A.

6.2.1 General assessment

In this part, we evaluate our DSML, considering some of the selected success factors

presented in Kahlaoui et al. (2008), Tekinerdogan et al. (2011), and Kahraman and Bilgen

(2013) to provide a general assessment.

6.2.1.1 Domain scope and suitability Domain scope of a DSML is very important,

because it determines the utility and usefulness of the DSML. If the domain scope of the

evaluated DSML is too broad, DSMLs will be less specific and less expressive; if it is too

narrow, the return on investment might be low (Kahlaoui et al. 2008). Agent developers

who especially intend to use SWS are targeted in SEA_ML. So, SEA_ML domain scope is

narrow enough to fit the needs of the end users. Also, the addressed domain should have

enough structural complexity to be targeted with increasing its abstract level (Mernik et al.

2005). The domain is suitable for applying DSML approach considering its internal and

external complexities while developing MASs. Each agent has its own roles and capa-

bilities, including plans, goals and beliefs. These components work with each other and

have interconnections which lead to agent’s internal complexity. Also, the agents have

interactions with other agents and with SWSs which lead to the agent’s external com-

plexity. A DSML can model these interactions and generate the code from these models

and reduce the complexity by increasing the abstraction level.

Software Qual J (2016) 24:755–795 781

123

6.2.1.2 Domain expertise and expressiveness Starting with conceptual independent

model, we extracted detailed elements and relations for the system. These elements belong

to different perspectives of the system. Richness of the domain concepts, vocabulary and

terminology increases expressiveness and functionality of our DSML.

6.2.1.3 Effective underlying generation Having an automated generative mechanism for

a DSML makes it to be more than an exclusively documentation tool. SEA_ML can

generate complex code schemas for OWL, OWL-S, and JADEX.

6.2.1.4 High-level of abstraction We demonstrated high abstraction level of the pro-

posed metamodel by transforming it into different agent technologies [JADEX (Pokahr

et al. 2005) and JACK (AOS 2001)], as well as SWS technologies such as OWL-S.

6.2.1.5 Viewpoint oriented Using different viewpoints, the DSML is specialized and

different aspects of the domain are separated which makes its usage and comprehension

easier (Tekinerdogan and Demirli 2013).

6.2.1.6 Understandability and maintainability As it has been described in the literature

(Hannemann and Kiczales 2002; Garcia et al. 2005; Monteiro and Fernandes 2005), the

invasive nature of pattern implementations with the base code may reduce the modularity

of the system, thus affecting its understandability and maintainability. In the contrary, a

DSML, as a MDD approach, manages the templates using a model for the software system

which leads to increase understandability and maintainability. Also, the commonly held

belief that DSL programs are easier to understand and maintain than GPL programs had

previously been empirically validated in Kosar et al. (2012). In case of SEA_ML, the tool

itself is quite easy to understand since the software developers have in effect to define a

kind of graphical diagram for the different parts of a MAS. Since the notion of diagram

was well-known in the domain, it was not difficult to define the MAS.

6.2.1.7 Modularity and reusability As the MASs consist of several concerns which are

elaborated in different viewpoints, the targeted software systems are modularly integrated

in the models. In case of required changes to one of the concerns, this can be easily located

and adapted to the new requirements by updating the aspects. All the model information is

stored in XML files which can be easily accessed and reused to define new MASs. Through

defining viewpoints and automating weaving the concerns in the final application, the

complexity of the overall development can also be reduced and maintenance is substan-

tially improved with respect to the manual approaches. In addition, due to the modularity

of models, it is possible to reuse the DSML artifacts and/or tools in multiple projects in

order to compensate for the high initial cost of developing tools and training human

resources. Similar conclusions were made in Kirstan and Zimmermann (2010) based on the

interviews with companies in the car industry where they reported that applying the

paradigm alone does not lead to cost and time savings without reuse.

6.2.1.8 Well-written and readable Using symbols that are too close to domain leads to

remove personal definition and interpretation of terms and jargon. This is an appealing

feature of DSMLs which avoids ambiguity in the models for the domain problem. The

result is the increase of models readability which is very important for programing lan-

guages (Khedker 1997). In other words, the models are well-written and more readable

782 Software Qual J (2016) 24:755–795

123

which makes them appropriate for audience. We have not received any complaints for the

readability of the models from our evaluators in their questionnaires. We believe that the

main reason is the appropriateness and completeness of concepts provided in SEA_ML for

MAS domain (Suitability).

Finally, it is worth indicating that DSML development has a cost overhead one time at

the beginning of the methodology compared to the classical methods. Also, using DSMLs

needs a learning time overhead (only once for each team) compared to the classical

approaches. However, these overheads are covered in the later phases of software devel-

opment, including the implementation, error detection, and maintenance of the system;

where they happen repeatedly for different system developments. Also, in the long term,

the time and money saved via reuse is the matter of issue in the later developments.

6.2.2 Questionnaire

To establish the qualitative evaluation based on the end user’s perspective, a questionnaire

is provided for the group A, who used the DSML and wrote some complementary code

(delta code) for the case studies. In this way, we examined SEA_ML and its pros and cons

from the user’s point of view. To do this, the questionnaire is provided including following

three main questions:

1. How much SEA_ML made the development easier? (Point out of 5; 0 is nothing and 5

is at most level)

2. What is (are) the main advantage(s) of the language and applying it?

3. What is (are) the main disadvantage(s) of the language and using it and suggestions for

them?

According to the results, in average, they marked 4 out 5 to question 1. In fact, grading

the use of SEA_ML for easiness was naturally subjective and directly based on each

evaluator’s own comparison between using a MAS DSML and applying a classical

development methodology without using a DSML. However, we think that such self-

assessment and grading SEA_ML in this way are convenient and acceptable since eval-

uators in group A possess substantial experience on designing agent systems with using

classical software development approaches (different from MDD) and implementing

MASs by utilizing only GPLs. Hence, they can perceive the enhancements brought by

DSML usage (if they think that those improvements really exist) and are capable of

resolving whether MAS DSML such as SEA_ML facilitates the development or not.

On the other hand, we categorized the replies for the other two questions as follows:

6.2.2.1 Advantage(s)

1. The language is easy to use, basically because it has a graphical drag and drop palette.

2. It saves the time in the development phase by generating the code.

3. The language is also helpful for brainstorming the ideas in the design time by

providing main concepts and their relations from which a partial product will be

produced.

6.2.2.2 Suggestion(s) There is a need for transforming the changes in the generated code

back to the models (round-trip engineering) to complete the iteration of software

Software Qual J (2016) 24:755–795 783

123

engineering. In this way, when the user extends the models, he/she can keep the manually

added code embedded in the newly generated code.

Above-mentioned items are the issues which have been put forward by the majority of

the evaluators. In other words, those are the main pros and cons of proposed methodology

using SEA_ML. However, there are some other points which are suggested by a group of

the team members. In this part, we also report those ideas especially exposing the benefits

of using SEA_ML during MAS development.

Evaluators believe that the language covers both BDI and reactive architectures for

agents. This offers more flexibility for the developers while designing a MAS. Also, the

evaluators believe that SEA_ML’s metamodel provides detailed enough elements and

relations considering Agent-SWS interaction viewpoint. This is one of the challenging

parts of designing MASs working in Semantic Web environment which is abstracted by

SEA_ML.

On the other hand, the evaluators had some suggestions for shortcomings of the pro-

posed methodology using SEA_ML. One of them was to have ready-to-use agent protocols

inside the SEA_ML. Although it is easy to provide any agent protocol using the language,

some of the evaluators suggested that it is useful to have some of the well-known protocols,

such as Contract-net protocol (Smith 1980), built-in the SEA_ML. They believe that this

kind of protocols is used frequently and having them in-hand can help the developers and

save their time, or even prevent some possible errors. For example, ready-to-use template

models of some well-known agent communication protocols can be included in SEA_ML’s

distribution. So, this issue is considered as one of our extensions for SEA_ML.

Some of the evaluators think that although SEA_ML successfully help designing the

system statically, it would be much better to extend the capabilities of dynamic modeling

specifically for the agent behaviors. In fact, SEA_ML already supports model checking and

validity of both agent behavior models and dynamic structure of agent-service interactions

as discussed in our another work (Getir et al. 2014). Required semantic checking is realized

based on the designed models and by using predicate logic and model analyzer of Alloy

(Jackson 2002) which is a well-known declarative language based on first-order logic to

define complex structures and behaviors of systems. In this way, the controls are auto-

matically completed for the instance models before they are used to produce the artifacts.

However, in order to enable model checking of SEA_ML instance models, currently a

developer needs manually to convert its MAS model conforming to Ecore into the

appropriate serialization required by Alloy environment. Automatization of that conversion

would extend SEA_ML’s capability and hence meet the expectation of those agent

designers. But, an automatic and complete conversion between Ecore and Alloy is missing

at the time of our study conducted.

6.2.3 Hypothesis test

To test the hypothesis, we examine its items which are discussed in the hypothesis pro-

posal. In this way we manifest the performance of SEA_ML. So, the validity of the

proposed hypothesis is checked. To this end, we analyze the items one by one as follows:

1. The development time: In fact, this time includes analysis, design and implementation

of the system. Considering Fig. 6 and the discussion presented in the analysis section,

the total time of development for Group A is less than of Group B. So, the performance

of MAS development using the modeling language (Group A) is more than manual

development (Group B).

784 Software Qual J (2016) 24:755–795

123

2. The testing time: We evaluate this time by considering the time which is spent in

finding errors and resolving them. As you can see from Fig. 6 and its analysis for

testing, the time used for testing for Group A is less than of Group B, which reflects a

higher performance for Group A, who are using the language. Since the cases are

rather small compared to the real industrial cases, the number of errors is small.

Therefore, for the bigger cases with more components and probably more errors, this

difference can be bigger.

3. The maintenance effort: Maintenance is considered with amount of effort used for later

extensions of the application. To emulate this, in our case study research, we have an

extension for each case study which is applied by each evaluator. The time for

applying these extensions represents the maintenance effort in our evaluation. Based

on Fig. 6, the effort used with Group A is much less than of Group B which

demonstrates the higher performance of the DSML compared to other non-specific

tools. Also, as it is discussed in the previous item, the difference between the

performances of the two groups will be bigger in the real industrial cases with a bigger

scope size.

4. Software quality: Based on the questionnaire, the automatically generated code

includes a better architecture. Also, different patterns are used in the generated code

which increases the quality of the software.

As we can see from the abovementioned scope analysis for the hypothesis, each scope

has improvement by applying the proposed development approach using SEA_ML. So, the

performance of MDD in our case using the proposed methodology is higher than the one

for classical approach. Therefore, the assumed hypothesis is true.

7 Threats to validity

As it is the case in any evaluation study, there are also some risks and threats to the validity

of this study. The threats can be originated from different validity types including con-

struction validity, internal validity, and external validity. Construct validity refers to what

extent the operational measures that are studied really represent what the researcher have in

mind and what is investigated according to the research questions. Internal validity relates

to a causal relationship between treatment and the outcome. External validity concerns the

ability to generalize the results of the study.

Since the domain of agents interacting with SWSs is not an established professional

occupation field, we could have limited number of researchers in the evaluation. Such

professional evaluators are familiar with the concepts and their relations which makes the

development and subsequently the evaluation more real. Because of this shortcoming, we

have a small size society for the evaluation. So, we have not considered statistics, such as

t test, for the questionnaire considering the size of the society. This may bring the risk of

validity for the results in the related part which is a conclusion validity. However, we have

selected the participants randomly from the available society. Finally, we have summarized

the findings for development teams and interpreted them in the analysis section.

Also, the small sample size is a threat to the generalization of the development and

questionnaire results to a larger population which is an external validity. However, we do

not generalize the findings and only consider the findings as outcomes of case studies.

On the other hand, the domain is under research and there are not many industrial uses

for the large cases by companies. So, our evaluators are not too experienced in the case

Software Qual J (2016) 24:755–795 785

123

studies’ domain, although they are familiar with MDD. Using such industrial real case

studies could improve the results, as they propose real problems in the industry which is

solved with this technology and the evaluators could be familiar with the domain’s real

cases. To mitigate this risk of construction validity, we have provided several case studies

from various viewpoints aiming a high coverage of domain application and comprehen-

siveness for the evaluators.

Considering the threats of validity in the execution phase of the research, case studies

can be realized with a combination of single group/two groups and one problem domain/

two different domains. Using a single group has the advantage of having the same level of

knowledge for solving two problems; however, working on the first problem helps the user

in working on the second problem and this affects the result of evaluation (another internal

validity). On the other hand, using two groups eliminates this risk, but controlling the level

of knowledge and experience of two groups to have them in the same range is difficult and

can strongly affect the result of the evaluation. In this study, we have two groups and the

evaluators are selected from the academia having almost the same educational background

and experience. For those who have not passed a related course, we had a personal teaching

session. Also, they had a general teaching session to adjust their level of knowledge.

Considering the problem domains, the case studies should be almost in the same size

and complexity level. Otherwise, a risk of validity for the results arises. Ideally, the same

problem can be used for two groups, which is adopted in this research.

Regarding the case studies, the specific selection for case studies could have influence

on the obtained results. So, some of them can be more suitable to handle with DSML which

also constitute a threat to validity. To reduce this risk, several actions take place. First,

several case studies are considered from various problem domains to cover different

features and capabilities. Second, the same case studies are used for the development of all

team members and the average times for different phases of their development are cal-

culated to adjust the risk. Third, both of the groups use the same multi-case study which

reduces the effect of this threat to validity. Finally, we have a briefing for the case studies

in the evaluation framework which adjusts the level of knowledge of the developers from

the problem domain.

The representation of the problem for the evaluation is also important and can have

influence on the result. The problem can be defined using a questionnaire, modifying or

changing the available code, interpretation of available code, and/or writing program from

scratch. In our study, among those approaches, we have used a questionnaire, modeling and

writing programs for case studies (for group A and B, respectively), and extending the

programs with a new feature (as a change) to cover different aspects of representation for

the cases. Moreover, the order of the questions can also affect the result, because the same

user learns the issues in the early questions and can help him/her in solving the later

questions (another construction validity). To reduce this effect as much as possible, we

have used the same order of the cases in each group and for each developer.

In addition, selected tools which are used by developers can affect the results which

cause a potential risk for the validity. For developers in group A, only tool is SEA_ML, so,

there is no threat to the validity for their results. However, group B can use various tools

and methodologies for their MAS development. Although their tools for analysis and

design can be different (such as UML and MAS methodologies, e.g., Prometheus, Gaia,

and Tropos), developers in group B utilize the same APIs and tools for the target agent

platforms (JADEX and JACK). Based on the results, it can be said that the divergence

appeared on group B developers’ tool selections for analysis and design has minor effect

786 Software Qual J (2016) 24:755–795

123

on their MAS development process and final throughput comparing between two groups,

so, it has less risk to the validity of the result.

Finally, to reduce the risk of validity for the evaluation and to make the results less

dependent on the domain of the case studies, the results are collected for each case study

and the average number is calculated for all of them.

8 Related work

The evaluation of a software system is one of the challenging issues in the field of software

engineering. Although there are some textbooks (Abran 2010) and papers (Basili et al.

1999; Carver et al. 2010; Bayona-Oré et al. 2014) for evaluation of the software systems in

general, the studies which evaluate DSMLs are rare (Marin et al. 2010). Taking into

account general DSL studies with including an evaluation, for instance, in Wile (2004), the

author describes experiences and lessons learned (successes and failures) from employing

three real DSLs during 10 years. These DSLs are ‘‘Military Message Experiment (MME),’’

‘‘Replenishment at Sea (RAS),’’ and ‘‘Survey Instrument Creator (SIC).’’ However, only

the last one is evaluated formally. In the evaluation of this system, five key objectives are

considered that the project purposed to achieve, e.g., help the user to design the instrument,

using users’ knowledge, and so on. At the end of the evaluation, the features which the

evaluators liked and did not like are listed, e.g., graphical tool, ease to design the system,

and so on. In general, the lessons learned from developing these DSLs are divided into

three groups: technical issues, organizational issues, and social issues. In this way the

author conveys his experiences to different groups of people who deal with DSLs. So, the

author suggests a procedure to consider the five innovations that the application engineers

are being asked to learn and use in the proposed methodology: artifacts, language, tools,

infrastructure and methodology.

Inspiring mainly from the study in Wile (2004), the authors of Kahlaoui et al. (2008)

propose some success factors for DSMLs and their assessment criteria. The success factors

are considered for DSML developers, and assessment criteria (for quality) are considered

for DSML users. They provide a list of success factors and a technique to convert them into

assessment criteria. The success factors are considered from using three different per-

spectives: Quality of Models, Quality of Modeling Languages (Bobkowska 2005; Paige

et al. 2000), and DSML design experiences (Wile 2004). Twelve success factors have been

identified by combining the results of work carried out in the three dimensions described

previously. The authors believe that DSMLs have four main elements: Abstract syntax

(concepts and relations), Concrete syntax (notation; text/graphics), Semantics (gives a

meaning to the concepts and the relations), and Views (perspectives of software). They

also believe that the proposed success factors have effect on some of the mentioned

elements (Kahlaoui et al. 2008). Considering these effects they offer some criteria to assess

and select DSML (for end users). Work given in both Wile (2004) and Kahlaoui et al.

(2008) guide our work in determination of some of the assessment criteria and use of some

DSML success factors as previously discussed in Sects. 3 and 6, respectively.

Another study in literature is Tekinerdogan et al. (2011) in which the authors apply MDA

techniques on process sensitive embedded user assistance with aim to provide the end user

the necessary guidance based on the state of the process that is being followed. In their study

two case applications are examined; Message Management System (MMS) and Listing and

Listening of Voice Records (LLVR). To evaluate the approach, the authors examine the

Software Qual J (2016) 24:755–795 787

123

cost-effectiveness of the system. To this end, the tool has been provided to a software

development group to define ‘‘user assistance’’ for LLVR. The software development group

had a standard background in Computer Science and Software Engineering. The time for

using the necessary activities of the tool has been recorded for analysis. Based on a general

‘‘cost model’’ for developing embedded user assistance they have provided an evaluation of

the tool. The cost model of our evaluation, is in fact an extended version of the model given

in this study. We used the extended model during execution with data collection.

In the study of Kosar et al. (2010), a GPL and a DSL are compared with an empirical

study to measure programmer’s understanding of DSL and GPL programs on the same

problem domain. The domain is graphical user interface production. The GPL is C# and the

DSL is XAML. The comparison is conducted via an experiment with two groups of pro-

grammers who have answered a questionnaire, one group for GPL and another for DSL

considering the same problem domain. The answer sheets of evaluators were processed, and

the uncompleted results were eliminated from the rest of analysis. Then the success rates

were calculated for each question of GPL and DSL (applying mean and standard deviation).

Also, extending this study with some other empirical researches, family of experiments is

presented in Kosar et al. (2012) by comparing results of using DSLs and related GPL

application libraries. Team preparation and execution in our work have similarities with

these studies considering preparation of the teams, and questionnaire building. For example,

both studies use case studies and have two groups of evaluators. However, structure of the

case study presentation and formalization of questionnaire differ in our study according to

the MAS developer profiles and MAS DSML viewpoint specializations.

Barisic et al. (2011a) outlines why usability, i.e., Quality in Use, is the most relevant to

be evaluated for the DSL under development. It also gives an appropriate definition of DSL

in order to be able to apply evaluation practices from Human–Computer interaction

community and explains why existing practices for evaluating GPLs are not sufficient in

this case. A case study on how to perform usability evaluation of DSL with real users by

taking into consideration expert users, as well as novices is given in Barisic et al. (2011b).

While studies in Barisic et al. (2011a, b) have similarities with our study in the way of

handling the quality of DSL usability, the evaluation in our work specifically concentrates

on the usability quality of MAS DSMLs instead of a general perspective.

In Barisic et al. (2012b) the authors present how to apply a set of patterns to perform

DSL evaluation. These patterns outline different roles relevant for the development and

evaluation of DSLs. All the patterns are followed by ongoing DSL example to give an idea

of their application to real DSL cases. Barisic (2013) proposes a process of the develop-

ment of DSL that includes a new role: Usability Engineer that is responsible to prepare and

evaluate produced a solution in an agile way, by capturing language user’s preferences.

Following this approach, it is expected to identify a usability failure early in the devel-

opment cycle and get the means to prepare a final evaluation that will give us meaningful

and generalizable results. In order to experimentally evaluate a DSL, there is a need to

know what are the criteria involved, understand the notion of quality from the relevant

perspectives and understand the experimental process itself. This complex challenge is

covered in Barisic et al. (2012a) by the general model for DSL experimental evaluation

that served as a set of proof of concept instantiations. Patterns in these studies cover agile

development process, iterative user-centered design and experimental evaluation design.

Although the organization of Barisic et al.’s experimental evaluation resembles the multi-

case study approach brought in our study, quality dimension of our framework supports

more criteria especially in the general DSML assessment comparing with the patterns

covered in Barisic et al. (2012b).

788 Software Qual J (2016) 24:755–795

123

Finally, there is another study (Kahraman and Bilgen 2013) which presents a Frame-

work for Qualitative Assessment of DSLs (called FQAD). FQAD is used for determining

the perspective of the evaluator, understanding the goal of the assessment and selecting the

fundamental DSL quality characteristics to guide the evaluator in the process. This

framework adapts and integrates the ISO/IEC 25010:2011 standard (ISO/IEC 2011),

CMMI maturity level evaluation approach (CMU/SEI 2010) and the scaling approach used

in DESMET (Kitchenham et al. 1997) into a perspective-based assessment. However, the

authors of this study focus on the evaluation of a DSL by solely considering the quality of a

DSL, and hence FQAD does not include any performance measurement and/or tool

assessment which differ from our approach.

During the discussion on the state of the art of MAS DSMLs in Sect. 2, it has been

clearly revealed that the work reported in this paper presents the first comprehensive MAS

DSML evaluation framework within the agent-oriented software engineering (AOSE)

research field, which also covers the usage of the framework in the real evaluation of one

of the well-known MAS DSMLs with including both qualitative and quantitative assess-

ment of the applied methodology and the generated artifacts. In addition, we believe that

our evaluation framework also contributes to the above-mentioned general-purpose

DS(M)L evaluation studies especially with introducing a new assessment approach and a

set of criteria which can be served for the evaluation of DSMLs by taking into account

agent system viewpoints both in static and dynamic dimensions.

The evaluation framework introduced in this paper benefited from the outcomes of many

of the previous DS(M)L evaluation efforts (e.g., Wile 2004; Kahlaoui et al. 2008; Tekin-

erdogan et al. 2011; Kosar et al. 2012; Kahraman and Bilgen 2013) during the derivation of

criteria and the application of the framework (as indicated in the various sections of this

paper). However, just straightforward application of those approaches or assessment based

on some sort of synthesis of their features without considering the MAS specifications

would expose drawbacks and inefficiency due to the unordinary, distributive and complex

nature of systems based on software agents. Instead, our work shows that directly supporting

the various aspects of MAS modeling during DSML evaluation such as agent behaviors,

composite agent interactions and resource allocation inside rapidly changing agent envi-

ronments facilitates the selection and utilization of MAS DSMLs and hence the assessment

of the DSML usage in the development of software systems that are composed of both

autonomous and proactive entities with social ability. Within this context, reported work

differentiates from those existing general DS(M)L evaluation efforts and contributes to their

field by specializing on the MAS domain. Moreover, as can be seen from the structure of the

above given studies, they mostly (e.g., Kahlaoui et al. 2008; Barisic et al. 2011b; Kahraman

and Bilgen 2013) focus on the evaluation of a DSL just considering the quality. Our work

does not only take the quality assessment into the consideration, but also covers the tool

assessment regarding its complexity level and development performance along with the

evaluation of agent artifacts. We think that presenting a set of quantitative measurements in

addition to the experience-based assessment facilitates the MAS DSML evaluation and

helps agent developers on the use of MAS DSMLs during an MDD.

9 Conclusion

In this paper we have provided a systematic approach for evaluating MAS DSMLs. The

approach is based on an evaluation framework that includes different dimensions and

criteria for supporting the evaluation. We have adopted SEA_ML, a representative MAS

Software Qual J (2016) 24:755–795 789

123

DSML to illustrate the evaluation framework and the corresponding approach. Using a

multi-case study approach, we have selected four different case studies in which MASs are

developed. In our multi-case study approach, one group of developers adopted the

SEA_ML to design the cases while the other group uses general-purpose modeling lan-

guages. During the study, the values for the criteria in the evaluation framework were

collected. For supporting the qualitative analysis, we have prepared questionnaires and the

feedback of both groups with respect to the evaluation framework criteria were collected.

We believe that the conducted multi-case study research with the four case studies illus-

trated that the evaluation framework and the corresponding systematic approach can be

used in evaluating a MAS DSML both from the quantitative and qualitative dimensions.

The results from both dimensions justified the adoption of the systematic evaluation

approach to evaluate MAS DSMLs. At this point, one can argue that a DSML is already

expected to enhance the development. MAS software development adopting a DSML will

have benefits compared to manual development and/or using a GPL. So, it can be thought

that some parts of the evaluation performed on this study provide the justification of using

an MAS DSML instead of a straightforward and GPL-based development. However, apart

from this justification, the framework and the multi-case study approach presented in this

work can also be employed in comparing MAS DSMLs. For instance, the use of another

MAS DSML, say DSML4MAS (Hahn 2008), can be evaluated with the same multi-case

study and hence the achieved results can be compared with the ones given in Sect. 6 of this

paper for SEA_ML usage. That may assist the determination of the MAS DSML which is

most appropriate for a specific MAS development. Such usage is probably one of the most

important benefits of our evaluation framework brought to the AOSE community.

It is worth indicating that, although the evaluation results show that SEA_ML is

effective, developing a DSML is a difficult and time-consuming task. It needs a high level

of expertise to develop a good language and tool. So, tradeoffs should be considered. Also,

its learning curve for users should be taken into the consideration. The expense of

developing a DSML are high and its breaking point for benefits can be far. In other words,

the time and money spent in developing a DSML should return in a logical time period.

These efforts can be the development and learning procedure of the DSML. These efforts

are retaliated by the benefits of saving the time and effort to develop in several future

software developments. But the key question is how much time later or how many projects

later this tradeoff will be in our favor. This question should be answered and the answer

should satisfy one to start developing a DSML.

Although SEA_ML was considered quite effective, one important result of the study

was also the identification of the points that need improvement in the language. For

SEA_ML this was described as a need for transforming the changes in the generated code

back to the models. In fact, this is our future work to extend the language by means of

round-trip engineering. We believe that a systematic evaluation approach that we have

presented here can also characterize and evaluate existing or newly defined DSMLs with

respect to their effectiveness for developing MASs. In our future work we will enhance

SEA_ML with respect to the results of the evaluation. Further we aim at evaluating also

other MAS DSMLs and where necessary enhancing the framework. Finally, the current

assessment of the quantitative properties such as the number of key elements supported by

the abstract syntax of a MAS DSML mostly helps the language analysis. Utilization of

such quantitative properties during detailed evaluation of MAS DSML usage is also future

work.

790 Software Qual J (2016) 24:755–795

123

Acknowledgments This study is partially funded by the Scientific and Technological Research Council of
Turkey (TUBITAK) Electric, Electronic and Informatics Research Group (EEEAG) under Grant 109E125.
The authors wish to thank the former members of the SEA_ML project, Dr. Marjan Mernik, Dr. Tomaz
Kosar, Sinem Getir and Sebla Demirkol for their valuable contributions on design and implementation of
SEA_ML. Finally, the authors would like to thank the participants, various Ph.D. and M.Sc. students, who
actively got involved in the language evaluation and helped to the realization of the empirical study
presented in this paper.

References

Abran, A. (2010). Software metrics and software metrology. New Jersey: Wiley and IEEE-CS Press.
AOS. (2001). Agent Oriented Software Pty., Ltd. JACK Environment. http://www.aosgrp.com/products/

jack/. Last Accessed August 2015.
Barisic, A. (2013). Evaluating the quality in use of domain-specific languages in an agile way. In Pro-

ceedings of the doctoral symposium at 16th international conference on model driven engineering
languages and systems (MODELS), September, 2013, CEUR-WS.

Barisic, A., Amaral, V., Goulao, M., & Barroca, B. (2011a). How to reach a usable DSL? Moving toward a
systematic evaluation. Electronic Communications of the EASST, 50, 1–12.

Barisic, A., Amaral, V., Goulao, M., & Barroca, B. (2011b). Quality in use of domain-specific languages: A
case study. In Proceedings of the 3rd ACM SIGPLAN workshop on evaluation and usability of
programming languages and tools (pp. 65–72). PLATEAU’11, New York, USA.

Barisic, A., Amaral, V., Goulao, M., & Barroca, B. (2012a). Evaluating the usability of domain-specific
languages. In M. Mernik (Ed.), Formal and practical aspects of domain-specific languages: Recent
developments (pp. 386–407). Hershey: IGI Global.

Barisic, A., Amaral, V., Goulao, M., & Monteiro, M. P. (2012b). Patterns for evaluating usability of domain-
specific languages. In Proceedings of the 19th conference on pattern languages of programs (PLoP),
SPLASH.

Basili, V., Shull, F., & Lanubile, F. (1999). Building knowledge through families of experiments. IEEE
Transactions on Software Engineering, 25(4), 456–473.

Bayona-Oré, S., Calvo-Manzano, J. A., Cuevas, G., & San-Feliu, T. (2014). Critical success factors tax-
onomy for software process deployment. Software Quality Journal, 22(1), 21–48.

Bellifemine, F., Poggi, A., & Rimassa, G. (2001). Developing multi-agent systems with a FIPA-compliant
agent framework. Software: Practice and Experience, 31(2), 103–128.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific American, 284(5), 34–43.
Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., & Zambonelli, F. (2005). A study of some multi-agent

meta-models. Lecture Notes in Computer Science, 3382, 62–77.
Beydoun, G., Low, G. C., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J. J., Pavon, J., & Gonzalez-

Perez, C. (2009). FAML: A generic metamodel for MAS development. IEEE Transactions on Software
Engineering, 35(6), 841–863.

Bobkowska, A. (2005). A methodology of visual modeling language evaluation. In SOFSEM 2005: Theory
and practice of computer systems. Lecture Notes in Computer Science (Vol. 3381).

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-oriented
software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.

Carver, J., Jaccheri, L., Morasca, S., & Shull, F. (2010). A checklist for integrating student empirical studies
with research and teaching goals. Empirical Software Engineering, 15(1), 35–59.

Challenger, M., Demirkol, S., Getir, S., Mernik, M., Kardas, G., & Kosar, T. (2014). On the use of a domain-
specific modeling language in the development of multi-agent systems. Engineering Applications of
Artificial Intelligence, 28, 111–141.

Challenger, M., Getir, S., Demirkol, S., & Kardas, G. (2011). A domain specific metamodel for semantic
web enabled multi-agent systems. Lecture Notes in Business Information Processing, 83, 177–186.

Ciobanu, G., & Juravle, C. (2012). Flexible software architecture and language for mobile agents. Con-
currency and Computation: Practice and Experience, 24(6), 559–571.

Clark, T., Evans, A., Sammut, P., & Willans, J. (2004). Language driven development and MDA. MDA
Journal, 2–13. http://www.bptrends.com/bpt/wp-content/publicationfiles/10-04%20COL%20MDA%
20-%20Frankel%20-%20Xactium.pdf. Last Accessed August 2015.

CMU/SEI. (2010). Software Engineering Institute, CMMI for Acquisition, Version 1.3, Technical Report,
CMU/SEI-2010-TR-032, Carnegie Mellon (November 2012).

Software Qual J (2016) 24:755–795 791

123

http://www.aosgrp.com/products/jack/
http://www.aosgrp.com/products/jack/
http://www.bptrends.com/bpt/wp-content/publicationfiles/10-04%20COL%20MDA%20-%20Frankel%20-%20Xactium.pdf
http://www.bptrends.com/bpt/wp-content/publicationfiles/10-04%20COL%20MDA%20-%20Frankel%20-%20Xactium.pdf

CMU/SEI. (2010). Software Engineering Institute, CMMI for Acquisition, Version 1.3, Technical Report,
CMU/SEI-2010-TR-032, Carnegie Mellon (November 2012).

Demirkol, S., Challenger, M., Getir, S., Kosar, T., Kardas, G., & Mernik, M. (2013). A DSL for the
development of software agents working within a semantic web environment. Computer Science and
Information Systems, Special Issue on Advances in Model Driven Engineering, Languages and Agents,
10(4), 1525–1556.

Demirkol, S., Getir, S., Challenger, M., & Kardas, G. (2011). Development of an agent based E-barter
System. In: International symposium on innovations in intelligent systems and applications (INISTA)
(pp. 193–198). IEEE Computer Society, Istanbul-Turkey.

Demirli, E., & Tekinerdogan, B. (2011). Software language engineering of architectural viewpoints. In
Proceeding of the 5th European Conference on Software Architecture (ECSA 2011), Lecture Notes on
Computer Science (Vol. 6903, pp. 336–343).

Eclipse. (2004). The Eclipse Foundation, Eclipse Integrated Development Environment (IDE). http://www.
eclipse.org/. Last Accessed August 2015.

Fister, I, Jr, Fister, I., Mernik, M., & Brest, J. (2011). Design and implementation of domain-specific
language easytime. Computer Languages, Systems and Structures, 37(4), 151–167.

Fowler, M. (2011). Domain-specific languages. Boston: Addison-Wesley.
Fuentes-Fernandez, R., Garcia-Magarino, I., Gomez-Rodriguez, A. M., & Gonzalez-Moreno, J. C. (2010). A

technique for defining agent-oriented engineering processes with tool support. Engineering Applica-
tions of Artificial Intelligence, 23(3), 432–444.

Garcia, A. F., Sant’Anna, C., Figueiredo, E., Kulesza, U., Pereira de Lucena, C. J., & von Staa, A. (2005).
Modularizing design patterns with aspects: A quantitative study. In Proceedings of the 4th interna-
tional conference on Aspect-oriented software development (AOSD 2005) (pp. 3–14).

Gascuena, J. M., Navarro, E., & Fernandez-Caballero, A. (2012). Model-driven engineering techniques for
the development of multi-agent systems. Engineering Applications of Artificial Intelligence, 25(1),
159–173.

Getir, S., Challenger, M., Demirkol, S., & Kardas, G. (2012). The semantics of the interaction between
agents and web services on the semantic web. In Proceedings of the 7th IEEE international workshop
on engineering semantic agent systems (ESAS 2012), held in conjunction with the 36th IEEE signature
conference on computers, software, and applications (COMPSAC 2012) (pp. 619–624).

Getir, S., Challenger, M., & Kardas, G. (2014). The formal semantics of a domain-specific modeling
language for semantic web enabled multi-agent systems. International Journal of Cooperative Infor-
mation Systems, 23(3), 1450005.

Gray, J., Tolvanen, J.-P., Kelly, S., Gokhale, A., Neema, S., & Sprinkle, J. (2007). Domain-specific modeling.
In P. A. Fishwick (Ed.), Handbook of dynamic system modeling (pp. 1–7). Boca Raton: CRC Press.

Hahn, C. (2008). A domain specific language for multiagent systems. In Proceedings of the 7th autonomous
agents and multiagent systems conference (AAMAS’08), Estoril, Portugal (pp. 233–240).

Hahn, C., Madrigal-Mora, C., & Fischer, K. (2009). A platform-independent metamodel for multiagent
systems. Autonomous Agents and Multi-Agent Systems, 18(2), 239–266.

Hahn, C., Nesbigall, S., Warwas, S., Zinnikus, I., Fischer, K., & Klusch, M. (2008). Integration of multi-
agent systems and semantic web services on a platform independent level. In Proceedings of IEEE/
WIC/ACM international conference on web intelligence and intelligent agent technology (WI-IAT
2008), Sydney, Australia (pp. 200–206).

Hannemann, J., & Kiczales, G. (2002). Design patterns implementation in Java and AspectJ. In Proceeding
of object oriented programming systems languages and applications (OOPSLA’02) (pp. 161–173).

ISO/IEC. (1998). International Organization for Standardization (Ed.), ISO/IEC TR 15504-2. Information
Technology-Software Process Assessment—Part 2: A reference model for processes and process
capability. Case Postale 56, CH-1211 Geneva, Switzerland.

ISO/IEC. (2011). ISO/IEC 25010. Systems and software engineering systems and software quality
requirements and evaluation (SQuaRE), System and software quality models, International Standards
Organization/International Electrotechnical Commission.

Jackson, D. (2002). Alloy: A lightweight object modeling notation. ACM Transactions on Software Engi-
neering and Methodology, 11(2), 256–290.

Jouault, F., Allilaire, F., Bezivin, J., & Kurtev, I. (2008). ATL: A model transformation tool. Science of
Computer Programming, 72(1–2), 31–39.

Kahlaoui, A., Abran, A., & Lefebvre, E. (2008). DSML success factors and their assessment criteria. Metrics
News, 13(1), 43–51.

Kahraman, G., & Bilgen, S. (2013). A framework for qualitative assessment of domain-specific languages.
Software & Systems Modeling. doi:10.1007/s10270-013-0387-8.

792 Software Qual J (2016) 24:755–795

123

http://www.eclipse.org/
http://www.eclipse.org/
http://dx.doi.org/10.1007/s10270-013-0387-8

Kardas, G., Challenger, M., Yildirim, S., & Yamuc, A. (2012). Design and implementation of a multi-agent
stock trading system. Software Practice and Experience, 42, 1247–1273.

Kardas, G., Goknil, A., Dikenelli, O., & Topaloglu, N. Y. (2009). Model driven development of semantic
web enabled multi-agent systems. International Journal of Cooperative Information Systems, 18(2),
261–308.

Kelly, S., & Tolvanen, J.-P. (2008). Domain-specific modeling- enabling full code generation. Los Alamitos:
IEEE Computer Society Publications.

Khedker, U. P. (1997). What makes a good programming language? Technical Report TR-97-upk-1,
Department of Computer Science, University of Pune.

Kirstan, S., & Zimmermann, J. (2010). Evaluating costs and benefits of model-based development of
embedded software systems in the car industry—Results of a qualitative Case Study. In Proceedings of
ECMFA 2010 workshop C2 M:EEMDD-from Code Centric to Model Centric: Evaluating the effec-
tiveness of MDD (pp 18–29).

Kitchenham, B. A., Linkman, S., & Law, D. (1997). DESMET: A methodology for evaluating software
engineering methods and tools. Computing and Control Engineering Journal, 8(3), 120–126.

Kosar, T., Mernik, M., & Carver, J. C. (2012). Program comprehension of domain-specific and general-
purpose languages: Comparison using a family of experiments. Empircal Software Engineering, 17,
276–304.

Kosar, T., Oliveira, N., Mernik, M., Varanda Pereira, M. J., Crepinsek, M., Carneiro da Cruz, D., &
Henriques, P. R. (2010). Comparing general-purpose and domain-specific languages: An empirical
study. Computer Science and Information Systems, 7(2), 247–264.

Marin, B., Pastor, O., & Abran, A. (2010). Towards an accurate functional size measurement procedure for
conceptual models in an MDA environment. Journal of Data and Knowledge Engineering, 69(5),
472–490.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M.,
Parsia, B., Payne, T., Sirin, E., Srinivasan, N., & Sycara, K. (2004). OWL-S: Semantic markup for web
services. W3C Member Submission. http://www.w3.org/Submission/OWL-S/. Last Accessed August
2015.

Mernik, M., Heering, J., & Sloane, A. (2005). When and how to develop domain-specific languages. ACM
Computing Surveys, 37(4), 316–344.

Mernik, M., & Zumer, V. (2005). Incremental programming language development. Computer Languages,
Systems and Structures, 31(1), 1–16.

MOFScript. (2005). The Eclipse Foundation, MOFScript model-to-text transformation language and tool.
http://www.eclipse.org/gmt/mofscript/. Last Accessed August 2015.

Mohagheghi, P., & Dehlen, V. (2008). Where is the proof? A review of experiences from applying MDE in
industry. In: I. Schieferdecker, & A. Hartman (Eds.) ECMDA-FA 2008. Lecture notes in computer
science (Vol. 5095, pp. 432–443).

Mohagheghi, P., Gilani, W., Stefanescu, A., & Fernandez, M. A. (2013). An empirical study of the state of
the practice and acceptance of model-driven engineering in four industrial cases. Empirical Software
Engineering, 18, 89–116.

Monteiro, M. P., & Fernandes, J. M. (2005). Towards a catalog of aspect oriented refactorings. In Proceedings
of the 4th international conference on aspect oriented software development (AOSD’05) (pp. 111–122).

OCL. (2012). Object Management Group, Object Constraint Language (OCL). http://www.omg.org/spec/
OCL/2.3.1/. Last Accessed August 2015.

Odell, J., Nodine, M., & Levy, R. (2005). A metamodel for agents, roles, and groups. Agent-oriented
software engineering. Lecture Notes in Computer Science, 3382, 78–92.

Oldevik, J., Neple, T., Gronmo, R., Aagedal, J., & Berre, A. J. (2005). Toward standardized model to text
transformations. Lecture Notes in Computer Science, 3748, 239–253.

Omicini, A., Ricci, A., & Viroli, M. (2008). Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 17(3), 432–456.

Padgham, L., & Winikoff, M. (2004). Developing intelligent agent systems: A practical guide. New York:
Wiley.

Paige, R. F., Ostroff, J. S., & Brooke, P. J. (2000). Principles for modeling language design. Information and
Software Technology, 42(10), 665–675.

Pavon, J., Gomez-Sanz, J. J., & Fuentes, R. (2006). Model driven development of multi-agent systems.
Lecture Notes in Computer Science, 4066, 284–298.

Pešović, D., Vidaković, M., Ivanović, M., Budimac, Z., & Vidaković, J. (2011). Usage of agents in doc-
ument management. Computer Science and Information Systems, 8, 193–210.

Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). JADEX: A BDI reasoning engine. In R. H. Bordini, et al.
(Eds.),Multi-agent programming languages, platforms and applications (pp. 149–174). Berlin: Springer.

Software Qual J (2016) 24:755–795 793

123

http://www.w3.org/Submission/OWL-S/
http://www.eclipse.org/gmt/mofscript/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/OCL/2.3.1/

Rao, A., & Georgeff, M. (1995). BDI agents: From theory to practice. In Proceedings of the 1st interna-
tional conference on multi-agent systems (ICMAS-95), San Francisco (pp. 312–319).

Rougemaille, S., Migeon, F., Maurel, C., & Gleizes, M.-P. (2007). Model driven engineering for designing
adaptive multi-agent systems. Lecture Notes in Artificial Intelligence, 4995, 318–332.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software
engineering. Empirical Software Engineering, 14, 131–164.

Russell, S. J., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). USA: Pearson
Education.

Saritas, H. B., & Kardas, G. (2014). A model driven architecture for the development of smart card software.
Computer Languages, Systems and Structures, 40(2), 53–72.

Schmid, K., & John, I. (2002). Developing, validating and evolving an approach to product line benefit and
risk assessment. In Proceedings of the 28th Euro-micro conference (EUROMICRO’02) (pp. 272–283).

Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven engineering. IEEE Computer, 39(2), 25–31.
Shadbolt, N., Hall, W., & Berners-Lee, T. (2006). The semantic web revisited. IEEE Intelligent Systems,

21(3), 96–101.
Shih, D. H., Huang, S. Y., & Yen, D. C. (2005). A new reverse auction agent system for M-commerce using

mobile agents. Computer Standards and Interfaces, 27, 383–395.
Smith, R. (1980). The Contract Net protocol: High Level Communication and Control in a Distributed

Problem Solver. IEEE Transactions on Computers, 29(12), 1104–1113.
Sprinkle, J., Mernik, M., Tolvanen, J.-P., & Spinellis, D. (2009). Guest editors’ introduction: What kinds of

nails need a domain-specific hammer? IEEE Software, 26(4), 15–18.
Sycara, K. (1998). Multiagent systems. AI Magazine, 19(4), 79–92.
Sycara, K., Paolucci, M., Ankolekar, A., & Srinivasan, N. (2003). Automated discovery, interaction and

composition of semantic web services. Journal of Web Semantics, 1(1), 27–46.
Tekinerdogan, B., Bozbey, S., Mester, Y., Turançiftci, E., & Alkışlar, L. (2011). An aspect-oriented tool

framework for developing process-sensitive embedded user assistance systems. In Transactions on
aspect-oriented software development VIII. Lecture notes computer science (Vol. 6580, pp. 196–220).

Tekinerdogan, B., & Demirli, E. (2013). Evaluation framework for software architecture viewpoint lan-
guages. In Proceedings of 9th international ACM Sigsoft conference on the quality of software
architectures (QoSA 2013) (pp. 89–98).

van Deursen, A., Klint, P., & Visser, J. (2000). Domain-specific languages: An annotated bibliography.
ACM Sigplan Notices, 35(6), 26–36.

Varanda-Pereira, M. J., Mernik, M., Da-Cruz, D., & Henriques, P. R. (2008). Program comprehension for
domain-specific languages. Computer Science and Information Systems, 5(2), 1–17.

Warmer, J., & Kleppe, A. G. (1998). The object constraint language: Precise modeling with UML. Boston:
Addison-Wesley.

Wile, D. (2004). Lessons learned from real DSL experiments. Science of Computer Programming, 51,
265–290.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The Knowledge Engi-
neering Review, 10(2), 115–152.

Zambonelli, F., Jennings, N. R., & Wooldrige, M. (2003). Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software Engineering and Methodologies, 12(3), 317–370.

Moharram Challenger received his B.Sc., and M.Sc. degrees in
Computer Engineering and Software Engineering from IAU-Shabestar
and IAU-Arak Universities (Iran) in 2001 and 2005, respectively.
Since 2006, he has been a tenure-track faculty member, as a lecturer, at
computer engineering department, IAU-Shabestar University. He is
currently a Ph.D. candidate at Ege University, International Computer
Institute. He is also R&D director of UNIT IT Ltd. Company in which
they are leading an international ITEA Project, called ModelWriter,
among Belgium, Turkey and France. His research interests include
domain-specific (modeling) languages, multi-agent and distributed
systems with a current focus on the semantics of DSMLs. Moharram is
also a student member of the IEEE and ACM.

794 Software Qual J (2016) 24:755–795

123

Geylani Kardas received his B.Sc. in Computer Engineering and both
M.Sc., and Ph.D. degrees in Information Technologies from Ege
University in 2001, 2003 and 2008, respectively. He is currently an
associate professor at Ege University, International Computer Institute.
His research interests include agent-oriented software engineering,
model-driven software development, and domain-specific (modeling)
languages. He has authored or co-authored over 50 published papers in
these areas. In the recent past, he has also worked as the principle
investigator, researcher or consultant in various national and interna-
tional R&D projects funded by both governments and private agencies.
He is a member of the ACM.

Bedir Tekinerdogan received his M.Sc. degree (1994) and a Ph.D.
degree (2000) in Computer Science, both from the University of
Twente, The Netherlands. From 2003 until 2008 he was a faculty
member at University of Twente, after which he joined Bilkent
University until 2015. At Bilkent he has founded and led the Bilkent
Software Engineering Group which aimed to foster research and
education on software engineering in Turkey. Currently he is full
professor and chair of the Information Technology group at
Wageningen University, The Netherlands. He has more than 20 years
of experience in software engineering research and education. He has
been active in many different research and consultancy projects with
various software engineering companies and is the author of around
200 scientific publications on different topics in software engineering.
His key research topics are software architecture design, model-driven
software development, software product line engineering, and aspect-
oriented software development.

Software Qual J (2016) 24:755–795 795

123

	A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems
	Abstract
	Introduction
	DSML for MASs
	Elements of MAS DSMLs
	SEA_ML

	Evaluation framework
	Multi-case study protocol
	Selected case studies
	Team preparation
	Hypothesis

	Execution of the case studies
	Data collection
	Procedure of data collection
	Execution with data collection
	Learning SEA_ML (CTeaching)
	Reading the documents (CReadingDocs)
	Running demo and analyzing it (CDemo)
	Problem analysis (CAnalysis)
	Modeling/design (CModeling/Design)
	Implementation (CImplementation)
	Error detection/testing (CError)
	Maintenance/extension (CMaintainance)

	Results and analysis
	Quantitative analysis
	Language analysis and characterization based on quantitative properties
	Performance analysis through the multi-case study

	Qualitative evaluation
	General assessment
	Domain scope and suitability
	Domain expertise and expressiveness
	Effective underlying generation
	High-level of abstraction
	Viewpoint oriented
	Understandability and maintainability
	Modularity and reusability
	Well-written and readable

	Questionnaire
	Advantage(s)
	Suggestion(s)

	Hypothesis test

	Threats to validity
	Related work
	Conclusion
	Acknowledgments
	References

